US008051248B2

12 United States Patent (10) Patent No.: US 8,051,248 B2

Frank et al. 45) Date of Patent: Nov. 1, 2011
(54) TRANSIENT TRANSACTIONAL CACHE Hammond et al. (Transactional Coherence and Consistency: Simpli-
fying Parallel Hardware and Software), published 2004 by IEEE

(75) Inventors: Michael Frank, Sunnyvale, CA (US); computer society, 0272-1732/04, pp. 92-103.*
David J. Leibs, San Mateo, CA (US); Stephen M. Blackburn, et al., “Transient Caches and Object
Michael J. Haertel, Portland, OR (US) Streams,” Australian National University Technical Report, TR-CS-

06-03, Oct. 20006, 10 pages.

(73) Assignee: GLOBALFOUNDRIES Inc., Grand Maurice Herlihy, et al., “Transactional Memory: Architectural Sup-
Cayman (KY) port for Lock-Free Data Structures,” Proceedings of the 20th Annual

International Symposium of Computer Architecutre, May 16-19,

(*) Notice: Subject to any disclaimer, the term of this 10073
patent 1s extended or adjusted under 35 Stephen M. Blackburn, et al. “The Transient Cache: Modern Pro-
U.S.C. 154(b) by 638 days. grams and Modern Cache Design,” 7th Annual Austin CAS Interna-

(21) 1 tional Conference, Feb. 16-17, 2005.
21) Appl. No.: 12/115,355

* cited by examiner
(22) Filed: May 5, 2008
Primary Examiner — Kaushikkumar Patel

(65) Prior Publication Data (74) Attorney, Agent, or Firm — Lawrence J. Merkel;
US 2009/0276573 Al Nov. 5, 2009 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
(51) Int. Cl. (57) ABSTRACT
GO6F 12/08 (2006.01) In one embodiment, a processor comprises an execution core,
(52) U..S. Cl. s 711/120; 711/130 a level 1 (1) data cache coupled to the execution core and
(58) Field of .Cla.smﬁcatlon Search R None configured to store data, and a transient/transactional cache
See application file for complete search history. (TTC) coupled to the execution core. The execution core is
_ configured to generate memory read and write operations
(56) References Cited responsive to instruction execution, and to generate transac-

tional read and write operations responsive to executing

U.S. PATENT DOCUMENTS transactional instructions. The L1 data cache 1s configured to

5,428,761 A : 6/1995 Herlithy etal. ... 7117130 cache memory data accessed responsive to memory read and
0,542,966 B1™ 4/2003 Crawlordetal. 71133 write operations to identify potentially transient data and to

6,598,124 B1* 7/2003 Damronetal. 711/133 : . : : :
2005/0108478 Al* 5/2005 Holloway et al. 711/119 prevent the identified transient data from being stored 1n the
2008/0126883 Al* 5/2008 Capriolietal. 714/49 [.1 data cache. The T'TC 1s also configured to cache transac-
2008/0301378 Al* 12/2008 Carriecccoovvvveiiinnnnn, 711/147 tion data accessed responsive to transactional read and write
OTHER PUBI ICATIONS operations to track transactions. Each entry in the TTC 1s

usable for transaction data and for transient data.
Bahar et al. (Power and Performance Tradeoffs using Various Cach-

ing Strategies), published by ACM, Aug. 10-12, 1998, pp. 64-69.* 17 Claims, 6 Drawing Sheets

(Start - Verify/Commit)

Yes

i
N 1t yet'
° 102

Yes
¥

Fail Transaction No
194~/

All
TTC Lines
Checked?

196

Yes

T ?
l_YES Fail or OV Set? {oR

Transaction Fail | 7 200 No

Result ¥ -
Transaction

Succeed Result [~— 202

by

Clear All T Bits

v

(End - Verify/Commit)

N— 204

U.S. Patent Nov. 1, 2011 Sheet 1 of 6 US 8,051,248 B2

Processor 10

ee—

l :
| i - - _ |
: |
: Instruction <« Execution Core 14 :
: Cache 12 — :
|
| |
A ' |
RW,T| _ |Addr | Write Data__|ReadData
| Y | .____]
| Control _
) e
_2_8 B—

Data Cache 16 :

48
A
(I
Addr Tag | V[n-1:0} | Ctr ' CSt | T | P | U l
40 \/A 44 A 44B — 46 |
Fio 9 AR A — 48C
e = 48B

U.S. Patent Nov. 1, 2011 Sheet 2 of 6 US 8,051,248 B2

(Start - Read)
Yes
\ 4
Move Yes
Line to ¢

TTC

54
54 No 56 L1 Forward
<+—Yes @ 58 Data
<R Yoy |

No TTC
36 Na 66 Forward
: , Data
TTC WA Hit? TC WA Hat" —
v 60
Yes v [
i eg 70 7 INO—_ + ©5| | Increment
L 20 ' Generate Counter
Generate | No (Generate RiLiFT ine
Fill if Fill for Incomplete -
Incomplete TTC RA
pee] | [mera |2
Ge:nerate Set Valid Yes lhreshold? l
Fill for Bits, Reset (72 l ~ 64
| | ITC N Counter, | Move
Clear T Bit [ine to ' I
Y v v ' L1 |
. 90
Set T Bit _80 /—74 | i
T — Forward
| Data
FOI‘WB.l‘d |_
Data ™~— 82 No ‘
—_ | i | —
vVY VY
(" End - Read

Fig. 3

U.S. Patent Nov. 1, 2011 Sheet 3 of 6 US 8,051,248 B2
(" Start - Write)
Yes {nsaction? 100
' 126
Yes @ No
102 104
Move _
2 _ -
[ine to Ve 128 No I.1 Hat" Yes j i
| TTC - 134 No Write Data
| to L1
<+—Yes @ 106 . —
‘iﬂaiﬂib Yes—¢
- Write Data | _— 108
to TTC RA
Increment | —— 110
Push if Yes Allocate Counter
Updated | No r 140 WA Line in| .
- 118 TTC 112
L v
Allocate Write Data | Yes
TTC Line to Line | 11 4__\ i -
' | ¢ | I Move Line
\ 4 Update
130 P to L1
Set T and U/ (50 /| Valid Bits I
Bit | — | |
¢ - 132 Increment
ULpicIlle;te / 122 /| Counter l)
____:_! l No v

\ 4

(" End- Write)

Fig. 4

U.S. Patent Nov. 1, 2011 Sheet 4 of 6 US 8,051,248 B2

150
Yes—l
__ B - 152
154 ho Process /
| Normally
No _l__
Yes
156 — ‘ J
Yes
158
No
No Y|e >
160 ‘ '
noop
Write? Yes
\ 162 v &
| Set P Bit l
' No | N

\ 4 R T
(End - Snoop

F1g. S

U.S. Patent

132

170

172

Nov. 1, 2011

Sheet Sof 6

@ar? _TTC Alloc:a_te)

v

176

NG

Select Line to
Evict

— Thitsa? >

W AR

Write Modified
Bytes to Memory

v

Counter >=
Threshold?

R4 186
Modified? Ye
- \ 4

Write Line to
Memory

| J___Iq___

No

NO

78| G
. —————— . 17
\\ Yes WA Evict” Not Present)

No

US 8,051,248 B2

\ 4
| Move to L1

\

No

(' End - TTC Allocate)

Fig. 6

U.S. Patent Nov. 1, 2011 Sheet 6 of 6 US 8,051,248 B2

(Start - Vérif?? Comm_it)

190 E

Yes |

| > No
No P Bit Set"
192

Yes l
. A 4

Fail Transaction No

194

All
TTC Lines
Checked?

196

Yes

Fail or OV Set?

Transaction Fail 200 No
Result : i /

— Y €S-
.

198

Transaction
Succeed Result 202

Clear All T Bits

204

End - Verify/Commit

Fig. 7

US 8,051,248 B2

1
TRANSIENT TRANSACTIONAL CACHE

SUMMARY

In one embodiment, a processor comprises an execution
core, a level 1 (1) data cache coupled to the execution core
and configured to store data, and a transient/transactional
cache ('TTC) coupled to the execution core. The execution
core 1s configured to generate memory read and write opera-
tions responsive to instruction execution, and to generate
transactional read and write operations responsive to execut-
ing transactional instructions. The L1 data cache 1s config-
ured to cache memory data accessed responsive to memory
read and write operations to 1dentily potentially transient data
and to prevent the 1dentified transient data from being stored
in the L1 data cache. The TTC 1s also configured to cache
transaction data accessed responsive to transactional read and
write operations to track transactions. Fach entry 1n the TTC
1s usable for transaction data and for transient data.

BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description makes reference to the
accompanying drawings, which are now briefly described.

FIG. 1 1s a block diagram of one embodiment of a proces-
SOF.

FI1G. 2 1s a block diagram of one embodiment of a tag that
may be implemented 1n a transient/transactional cache shown
in FIG. 1.

FI1G. 3 1s a flowchart illustrating operation of one embodi-
ment of the processor for read operations.

FI1G. 4 1s a flowchart illustrating operation of one embodi-
ment of the processor for write operations.

FI1G. 5 1s a flowchart illustrating operation of one embodi-
ment of the processor for snoop operations.

FIG. 6 1s a flowchart illustrating operation of one embodi-
ment of the transient/transactional cache for an allocate.

FIG. 7 1s a flowchart illustrating operation of one embodi-
ment of the processor for a commit operation.

While the 1invention 1s susceptible to various modifications
and alternative forms, specific embodiments thereof are
shown by way of example 1n the drawings and will herein be
described 1n detail. It should be understood, however, that the
drawings and detailed description thereto are not intended to
limit the invention to the particular form disclosed, but on the
contrary, the intention 1s to cover all modifications, equiva-
lents and alternatives falling within the spirit and scope of the
present invention as defined by the appended claims.

DETAILED DESCRIPTION OF EMBODIMENTS

In various embodiments, a processor may implement a
transient/transactional cache (T'TC). The TTC may be
designed to cache potentially transient data and transactional
data. That 1s, the TTC may comprise cache entries that can
store transient data or transactional data, as needed.

For transient data, the TTC may generally allocate storage
for data corresponding to memory read and write operations
generated by the processor that miss the level 1 (LL1) data
cache. Thus, all memory operations that miss the cache may
initially be monitored to identify potentially transient data.
Transient data may be data that is referenced by the processor
only one time or a few times, and then 1s not referenced again
(at least within a reasonable time frame 1n which the data
might be expected to remain 1n a cache such as the L1 data
cache). Object-oriented execution (e.g. C++, Java, etc.) may
frequently create objects, use the objects for a brief period of

5

10

15

20

25

30

35

40

45

50

55

60

65

2

time, and destroy the objects. Accordingly, object data may be
transient data (at least for short lived objects). By allocating
cache misses to the TTC, and monitoring accesses to the data
in the TTC, transient data may be identified and may be
prevented from being cached in the L1 data cache (and thus
may be prevented from displacing data from the L1 data
cache that 1s more likely to be referenced again). Essentially,
the TTC may serve as a filter for the transient data.

Write misses may be allocated to the TTC, but may notread
the cache line that 1s updated by the write from memory.
Instead, the writes may be accumulated 1n the T'TC, and the
TTC may track which bytes have been written within the line.
At a later point, 1t the line in the TTC that stores the accumu-
lated writes 1s evicted, the writes may be transmitted to the
memory hierarchy. Alternatively, 11 the writes are detected as
being non-transient, the line may be read from the memory
hierarchy and the writes may be merged into the line. The
merged line may then be cached 1n the L1 data cache.

The processor may support transactional 1nstructions that
can be used to read and write data that 1s part of a transaction.
Transactions may be an alternative to locked memory
accesses, which tend to be low performance operations since
the overhead of ensuring the lock may increase the latency of
the accesses (or the overall latency of all accesses, 11 the lock
mechanism prevents all other accesses during the time that
the lock 1s active). Writes that are part of a transaction may be
performed, and then 11 the transaction completes successiully
the write data may become available to other processors/
devices. On the other hand, if the transaction fails (e.g. due to
interference from another processor or device that reads the
write set or writes either the read set or the write set), the
writes may be discarded and the transaction may be reat-
tempted.

Generally, transactional instructions may read and write
data, and the data becomes part of the read set (the locations
read by the transaction) or the write set (the locations written
by the transaction). During the pendency of the transaction,
the read set and the write set may be monitored to detect any
interfering accesses by another processor or device 1n the
system. The read set may permit other reads, but may be
interfered with 1f a write occurs. Any access to the write set
may be considered an interference, since the data written by
the transaction 1s not available to be read by other processors/
devices until the transaction 1s successiully completed.

The transactional instructions may be specific mstruction
encodings 1n the instruction set architecture implemented by
the processor, or may be identified via operand data. The
transactional instructions may cause the processor to generate
transactional read and write operations. The transactional
read and write operations may be reads and writes of memory
locations, but may be 1dentified as transactional (as compared
to memory read and write operations, which are generated
from non-transactional instruction execution and do not 1den-
tify data that 1s part of a transaction). The transactional
instructions may include, for example: a load transaction
instruction which reads data and indicates that the data 1s part
of a transaction; a get transaction data which also reads trans-
action data, but indicates that the data 1s likely to be written
and thus the processor may attempt to get an exclusive (or
owned) copy of the data; a verily instruction that can be used
during the transaction to determine if the transaction has
already been compromised (e.g. to permit early termination
and restart of the transaction); and a commit instruction that
may be used at the end of a transaction to commit all changes
if the transaction was successtul (or fail, 11 the transaction was
compromised, and cause all changes to be discarded). The
verily and commit mstructions may be examples of a trans-

US 8,051,248 B2

3

actional instruction that 1s defined to determine 11 the trans-
action has been compromised. Such instructions may have
other operations (e.g. the commit may cause the memory
writes that are part of the transaction to become available to
other processors/devices 11 the transaction succeeds). A trans-
action 1s compromised 11 at least one 1nterfering access from
another processor or device has been detected 1n the read set
and/or the write set of the transaction. There also may be a
store transaction data instruction. Alternatively, transactions
may be required to read any data that they write, and normal
stores may be performed to transaction data locations and
such stores may automatically be tracked as transaction data
since they hit on transactional lines 1n the TTC. Data read 1n
response to the load transaction data and get transaction data
instructions may be part of the read set of the transaction. Data
written by the store transaction data instruction (or stores to
data that 1s being tracked as part of a transaction) may be part
ol the write set of the transaction.

By caching transaction data in the TTC and monitoring the
transaction data there, the transaction tracking data and asso-
ciated logic may be localized to the TTC and need not be
implemented in the L1 data cache. Additionally, performing
the verity or commit may be relatively fast, since only the
TTC entries need to be checked for transaction data. In some
embodiments, the TTC may have alower capacity than the L1
data cache (e.g. a few entries, such as 8 or 16 entries, as
compared to hundreds of entries 1n the 1.1 data cache). Addi-
tionally, 1n some embodiments, the TTC configuration may
be simpler to scan through. For example, an embodiment of
the TTC may be fully associative and thus entries may be
accessible 1n parallel, as compared to a direct mapped or set
associative configuration for the L1 cache, in which multiple
accesses would be required to access all cache entries.

Because the TTC 1s fimite and 1s the location 1n which
transaction data 1s tracked, 1t 1s possible that larger transac-
tions may not fit 1n the TTC and some data may be evicted to
track other data. The processor may detect the eviction of
transaction data and take corrective action. In various
embodiments, the corrective action may include one or more
of: setting an overflow indication that causes the commait/
verily to fail and that may be software accessible; causing an
exception to software; etc. Soltware may perform the trans-
action using software transaction support if the transaction 1s
larger than the TTC can track.

Additionally, by providing the T'TC capable of storing both
potentially transient data and transaction data, efficient use of
the TTC cache storage may be performed. If no transactional
memory operations are being performed, the TTC may cache
more potentially transient data and may thus i1dentily more
actual transient data and may prevent more actual transient
data from being stored in the L1 data cache. Furthermore, all
TTC cache storage may be available to cache and monitor
transaction data.

Turning now to FI1G. 1, a block diagram of one embodiment
of a processor 10 1s shown. In the illustrated embodiment, the
processor 10 includes an mstruction cache 12, an execution
core 14, adata cache 16, and an external interface unit 18. The
instruction cache 12 and the data cache 16 are coupled to the
external interface unit 18 and to the execution core 14.

In the illustrated embodiment, the data cache 16 includes a
level 1 (IL1) data cache 20 and a transient/transactional cache
(TTC) 22. Corresponding tag memories for each cache data
storage are shown as well (1TC tags 24 and L1 tags 26). That
1s, the T'TC tags 24 may comprise a tag for each entry 1n the
TTC 22, and the L1 tags 26 may comprise a tag for each entry
in the L1 data cache 20. Each entry 1n either cache comprises
storage for a cache line (or cache block) of data, wherein the

10

15

20

25

30

35

40

45

50

55

60

65

4

cache line/block 1s the unit of allocation/deallocation 1n the
cache. The data cache 16 also includes a control unit 28 and a
mux 30. The control unit 28 1s coupled to the mux 30, the
caches 22 and 24, and the tag memories 24 and 26. The cache
22 and 20 are coupled to the execution core 14, the mux 30,
and the external interface unit 18. The execution core 14 1s
turther coupled to the tag memories 24 and 26 and the mux 30.
The control unit 28 may include an overtflow indication (OV)
32, which may be used to track if transactions include more
cache lines that can be tracked in the TTC 22.

The TTC 22 may comprise a combined transient data cache
and transactional data cache. That1s, each entry in the TTC 22
may store either potentially transient data or transaction data.
The potentially transient data may comprise memory data
that 1s fetched to the data cache 16 1n response to data cache
misses. That data may be cached 1n the TTC 22 to identify the
transient data and prevent the transient data from being stored
in the L1 data cache 20 (and may thus prevent data that may
be accessed again from being displaced by transient data).
The transaction data may be data that 1s part ol a memory
transaction, which may be 1dentified by specific instructions
that the processor 10 supports 1n order to support transactions.
That 1s, the transaction data may be cached in the TTC 22 to
track the transaction and ensure that 1t has not been compro-
mised by accesses performed by another processor.

The TTC 22 may have any configuration and capacity. In
one embodiment, the TTC 22 may be fully associative. Addi-
tionally, 1n one embodiment, the TTC 22 may be divided into
write allocate (WA) and read allocate (RA) sections, at least
with regard to transient data operation. The division may be
static (e.g. part of the hardware design of the TTC 22) or
dynamic (e.g. programmable by software). If a write miss
occurs for a memory write operation in both the L1 data cache
20 and the TTC 22, the control unit 28 may allocate an entry
in the WA section of the TTC 22 and may store the write data
in the allocated entry. If a read miss occurs for a memory read
operation 1n both the L1 data cache 20 and the TTC 22, the
control unit 28 may allocate an entry in the RA section of the
TTC 22. In one embodiment, for transactional read/write
operations, the control unit 28 may allocate entries without
regard to the sections. Other embodiments may allocate trans-
actional read operations 1in the RA section and transactional
write operations 1n the WA section.

The execution core 14 may be configured to fetch instruc-
tions irom the instruction cache 12, and may execute the
instructions. The execution core 14 may generate memory
read and write operations (e.g. responsive to implicit or
explicit loads and stores 1n the instructions), and may transmit
the memory read and write operations to the data cache 16.
Additionally, the execution core 14 may generate transac-
tional read and write operations responsive to executing
transactional instructions. Specifically, the execution core 14
may transmit an address (Addr in FIG. 1), which may be
received by the caches 20 and 22 and the tag memories 24 and
26, and corresponding read/write (R/W) and transaction (1)
indications, which may be received by the control unit 28. The
execution core 14 may transmit write data (Write Data 1n FIG.
1) to the TTC 22 and the L1 data cache 20, and may receive
read data (Read Data 1n FIG. 1) from the mux 30. The trans-
action indication may indicate whether the operation 1s a
transactional operation or a memory operation.

The L1 tags 26 may index based on the address, and select
one or more tags according to the index for comparison to a
corresponding tag portion of the address. The TTC tags 24
may perform a fully associative compare of the tags to the tag
portion of the address. The tag portion of the address may

differ for the L1 tags 26 and the TTC tags 24. For example, the

US 8,051,248 B2

S

.1 tags 26 may exclude the cache offset bits and the index bits
from the tag comparison. The TTC tags 24 may use the entire
address except for the cache ofiset portion (or may even
include the cache offset portion, to match to incomplete cache
lines 1n the WA section). The tag memories 24 and 26 may
communicate hit/miss information to the control unit 28. The
.1 data cache 20 may receive the address as well (or at least
the index portion) to index the entries that may be hit by the
address.

Based on the hit/miss information, the control unit 28 may
provide control signals to the TTC 22 and the L1 data cache
20. For example, the control unit 28 may provide write
enables for write operations and read enables for read opera-
tions, depending on which entry in the L1 data cache 20 or the
TTC 22 (af any) 1s it by the operation. For memory read
operations, the control unit 28 may control the mux 30 to
select data output by the TTC 22 or the L1 data cache 20,
dependent on which 1s hit by the read operation. Still further,
data may be transferred between the L1 data cache 20 and the
TTC 22, such as non-transient data being moved from the
TTC 22 to the L1 data cache 20 and transaction data moving
from the L1 data cache 20 to the TTC 22. Additional details
for each operation are provided below, with regard to the
flowcharts 1llustrated 1n FIGS. 3-7.

The external interface unit 18 may communicate with the
data cache 16 as well. For cache misses, the external interface
unit 18 may recerve fill requests to fetch the corresponding
cache lines. The external unit 18 may also recerve modified
lines (or partial lines, from the TTC 22) that have been evicted
(or cast out) from the data cache 16. The external interface
unit 18 may receive snoops ifrom the external interface, and
may transmit those to the data cache 16 to detect snoop hits.
The external interface unit 18 may also communicate with the
instruction cache 12 to perform cache fills for instruction
cache hits and misses.

Generally, the external interface unit 18 may be configured
to communicate with an external interface to other compo-
nents 1 a system with the processor 10. For example, the
external interface unit 18 may communicate with another
cachelevel (e.g. alevel 2, or L2, cache). The processor 10 may
be integrated onto a single integrated circuit with the L2
cache, or may be separate. In another embodiment, the pro-
cessor 10 may be a processor core 1n a multicore integrated
circuit, and may be integrated with an L2 cache as well 1n
some such embodiments. In still other embodiments, the
external interface unit 18 may communicate with non-cache
components (e.g. a memory controller and/or a bus bridge).
Thus, the external interface may be a proprietary internal
interface, a bus interface, a packet based interface, etc., n
various embodiments.

The execution core 14 may have any internal construction.
For example, various embodiments may be superscalar or
scalar; pipelined or superpipelined, multithreaded or single
threaded; 1n-order or out of order; speculative or non-specu-
lative; etc.; or any combination of the preceding.

Turning next to FI1G. 2, a block diagram of one embodiment
of a TTC tag 40 1s shown. The TTC tags 24 may comprise a
TTC tag 40 for each entry in the TTC 22. In the illustrated
embodiment, the TTC tag 40 may include an address tag field
42, transient tracking data 44, a cache state field 46, and
transaction tracking data 48.

The address tag field 42 may store the address tag bits for
the cache line. In one embodiment, the address tag bits may
comprise all ol the address bits except for the cache line offset
bits. The address tag bits may be compared to corresponding,
bits of an 1nput address from the execution core 14 or a snoop
address from the external interface unit 18 to detect a hit. The

[l

10

15

20

25

30

35

40

45

50

55

60

65

6

cache state field 46 may store the cache state of the cache line
according to the cache coherency protocol implemented by
the processor 10. For example, various embodiments may
implement the Modified, Owned, Exclusive, Shared, Invalid
(MOESI) protocol, the MESI protocol, subsets thereot, etc.

The transient tracking data 44 may be used for non-trans-
action TTC lines, to track access to the cache line to 1dentity
transient or non-transient cache lines. The transient tracking,
data may include a valid bit vector 44A and a counter 44B.
The valid bit vector 44A may be used for memory write
operations, to 1dentify which bytes 1n the cache line have been
written. There may be a valid bit per byte, for example. The
valid bit may be set to indicate that the byte has been written
(and thus 1s valid 1n the TTC 22) and clear to indicate that the
byte has not been written, or vice versa. The valid bit vector
44 A may be used 1n addition to the address tag comparison to
detect a hit for aread. If a read matches the address tag but not
all bytes accessed by the read are valid, then the cache line
may be read from memory and merged with the write data. In
embodiments 1n which the WA section of the TTC 22 1s static,
only the tags corresponding to entries in the WA section may
implement the valid bit vector 44 A. The counter 448 may be
used to count accesses to the cache line. The counter may be
initialized when the cache line 1s allocated into the TTC 20,
and may be modified for each access. If the number of
accesses exceeds a threshold (fixed or programmable), the
cache line may be deemed to be non-transient. The threshold
may differ for WA section lines and RA section lines (e.g.
multiple writes may occur to modity a cache line, e.g. when
an object 1s created, while still being transient data).

The transaction tracking data 48 may be used for transac-
tion data, to track the progress of the transaction. In the
illustrated embodiment, the transient transaction data 48 may
comprise a transaction indication (1) 48A, a probed 1ndica-
tion (P) 48B, and an updated indication (U) 48C. Each indi-
cation may comprise a bit indicative, when set, of one state
and indicative, when clear, of another state. Other embodi-
ments may use other indications. The remainder of this dis-
closure may refer to the T indication 48A as the T bit; the P
indication 48B as the P bit; and the U indication 48C as the U
bit. However, other embodiments may use other indications
or the opposite meanings of the set and clear states. The T bat
48 A may indicate whether the cache line 1n the corresponding
entry 1s transaction data (set) or potentially transient memory
data (clear). The P bit 48B may indicate that the transaction
has been compromised by a probe (set) or not compromised
(clear). The U bit 48C may 1ndicate the cache line has been
updated in the transaction (set) or not updated (clear). That 1s,
the U bit may indicate whether the cache line 1s part of the
write set (U bit set) or the read set (U bit clear) of the trans-
action.

It 1s noted that, 1n some embodiments, the TTC 22 may
support more than one transaction in progress at a time. In
such embodiments, the transaction tracking data 48 may
include a transaction i1dentifier to identify which transaction
the corresponding data belongs to. Other embodiments may
include alternative, additional, and/or substitute transaction
tracking data 48 and transient tracking data 44.

Turming next to FIG. 3, a flowchart 1s shown illustrating
operation of one embodiment of the processor 10 for a read
operation. While the blocks are shown 1n a particular order for
case of understanding, other orders may be used. Blocks may
be performed in parallel in combinatorial logic in the proces-
sor 10. Blocks, combinations of blocks, and/or the flowchart
as a whole may be pipelined over multiple clock cycles in the
processor 10. Particularly, checking for cache hits in the L1
data cache 20 and the TTC 22 may be performed in parallel.

US 8,051,248 B2

7

If the read operation 1s not a transactional read (decision
block 50, “no’ leg), the operation 1s a memory read operation.
I1 the memory read operation 1s a hit in the L1 data cache 20
(decision block 52, “yes™ leg), the L1 data cache 20 may
forward the read data (block 54). The control unit 28 may
select the L1 data through the mux 30 to be returned to the
execution core 14 as the read data, and may also assert a read
enable for the hitting entry to the L1 data cache 20, in some
embodiments. I1 the read operation 1s a hit 1n the TTC 22, 1n
the RA section (decision block 56, “yes™ leg), the TTC 22
may forward the read data (block 38). The control unit 28 may
select the TTC data through the mux 30 to be returned to the
execution core as the read data, and may also assert a read
enable to the TTC 22, in some embodiments. Additionally,
the control unit 28 may increment the counter in the counter
ficld 44B for the hit entry (block 60). If the count exceeds a
threshold for reads (decision block 62, “yes™ leg), the control
unit 28 may determine that the cache line 1s not transient data
and may move the cache line to the L1 data cache 20 (block
64). Moving the line may include transmitting the line from
the TTC 22 to the L1 data cache 20, allocating a storage
location 1n the L1 data cache 20 (and evicting the cache line
stored therein to the external interface unit 18, 11 applicable),
writing the L1 tags 26 with the address tag and cache state
from the TTC tags 24, and invalidating the tag in the T'TC tags
24. If the read 1s a hit in the TTC 22, in the WA section
(decision block 66, “yes” leg), the control unit 28 may gen-
crate a fill if the line 1s incomplete 1n the WA section (block
68). The fill may be generated 11 any bytes are missing in the
line, or only 1f the read accesses a byte that 1s missing, 1n
various embodiments. The fill data may be merged into the
WA section (and the valid bit vector may be set to all ones).
The TTC may forward the read data, increment the counter,

and possibly move the line to the L1 data cache 20 similar to
a hit 1n the RA section of the TTC 22 (blocks 58, 60, 62, and

64).

If the read memory operation 1s a miss 1n both the L1 data
cache 20 and the TTC 22 (decisionblocks 52,56, and 66, “no™
legs), the control unit 28 may generate a fill for the TTC 22
RA section (block 70). The control unit 28 may allocate an
entry in the TTC 22 RA section, which may cause an eviction
of a valid line 1n the RA section. The tlow chart of FIG. 6
illustrates the allocation process for one embodiment, and 1s
described 1n more detail below. The control unit 28 may set
the valid bits, reset the counter, and clear the T bit in the TTC
tags 24 for the allocated entry (block 72). The TTC 22 may
torward the {ill data as the read data (block 74).

If the read operation 1s a transactional read (decision block
50, “ves” leg) and the read 1s a hit 1n the L1 data cache 20
(decision block 76, “yes” leg), the control unit 28 may move
the cache line to the TTC (block 78). Moving the line may
include transmitting the line from the L1 data cache 20 to the
TTC 22, allocating a storage location in the TTC 22 (see FIG.
6 and 1its description below), writing the TTC tags 24 with the
address tag and cache state from the L1 tags 26, and invali-
dating the tag 1n the L1 tags 26. In some embodiments, 11 the
cache line 1s modified 1in the L1 data cache 20, the modified
line may also be transmitted to the external interface unit 18
to write out the data. Such operation may be performed in case
the transaction fails, so pre-transaction updates are not lost.
The control unit 28 may setthe T bitinthe TTC tags 24 for the
entry (and may clear the U and P bits in the entry—block 80).
The L1 data cache 20 may forward the read data to the
execution core 14 as well (block 82). If the read 1s a hit in the
TTC RA section (decision block 84, “yes” leg), the control
unit 28 may set the T bit in the hitting entry (block 80) and the
TTC 22 may forward the read data (block 82). If the read 1s a

10

15

20

25

30

35

40

45

50

55

60

65

8

hit 1n the TTC WA section (decision block 86, “yes™ leg), the
control unit 28 may generate a fill 1 the cache line 1s incom-
plete (block 88) and may setthe T bit for the entry and forward
the data from the TTC 22 (blocks 80 and 82). If the read 1s a
miss 1n both the L1 data cache 20 and the TTC 22 (decision
blocks 76, 84, and 86, “no” legs), the control unit 28 may
generate a fill for the TTC 22 (block 90). The control unit 28
may allocate an entry 1n the TTC 22 (as illustrated 1n FIG. 6
and described in more detail below). The control unit 28 may
set the T bit 1n the entry (and clear the U and P bits), and may
torward the read data (blocks 80 and 82).

Turning next to FIG. 4, a flowchart 1s shown 1illustrating,
operation of one embodiment of the processor 10 for a write
operation. While the blocks are shown 1n a particular order for
case of understanding, other orders may be used. Blocks may
be performed 1n parallel in combinatorial logic 1n the proces-
sor 10. Blocks, combinations of blocks, and/or the flowchart
as a whole may be pipelined over multiple clock cycles in the
processor 10. Particularly, checking for cache hits in the L1
data cache 20 and the TTC 22 may be performed in parallel.

I1 the write operation 1s not a transactional write (decision
block 100, “no” leg), the operation 1s a memory write opera-
tion. If the memory write operation 1s a hit in the L1 data
cache 20 (decision block 102, “yes” leg), the L1 data cache 20
may write the data to the hitting entry (block 104). The control
unit 28 may assert a write enable for the hitting entry to the L1
data cache 20, 1n some embodiments. I the write operation 1s
a hit i the TTC 22, 1n the RA section (decision block 106,
“ves” leg), the control unit 28 may cause the TTC 22 to write
the data to the hitting entry (block 108). Additionally, the
control unit 28 may increment the counter 1n the counter field
448 for the hit entry (block 110). If the count exceeds a
threshold for writes (decision block 112, “yves™ leg), the con-
trol unit 28 may determine that the cache line is not transient
data and may move the cache line to the L1 data cache 20
(block 114). Moving the line may include transmitting the
line from the TTC 22 to the L1 data cache 20, allocating a
storage location in the L1 data cache 20 (and evicting the
cache line stored therein to the external interface unit 18, 1f
applicable), writing the L1 tags 26 with the address tag and
cache state from the TTC tags 24, and invalidating the tag 1n
the TTC tags 24. If the write 1s a hit in the TTC 22, 1n the WA
section (decision block 116, “yes” leg), the control unit 28
may cause the TTC 22 to write the data to the hit entry (block
118). The control unit 28 may update the valid bit vector 44 A
in the hitting entry to set the valid bits written by the write
operation (block 120), and may increment the counter 1n the
counter field 44B 1n the hit entry (block 122). The control unit
28 may determine if the count exceeds the threshold (decision
block 112) and may move the cache line to the L1 data cache
20 11 so (block 114). If the write memory operation 1s a miss
in both the L1 data cache 20 and the T'TC 22 (decision blocks
102,106,and 166, “no’ legs), the control unit 28 may allocate
an entry in the TTC 22 WA section, which may cause an
eviction of a valid line 1 the WA section (block 124 and see
the flow chart of FIG. 6 and 1ts description below). The
control unit 28 may set the valid bits, reset the counter, and
clear the T bitinthe TTC tags 24 for the allocated entry (block
72). The control unit 28 may write the data to the allocated
line (block 118), update the valid bits (block 120), and option-
ally increment the counter (block 122). In this case, the count
1s not greater than the threshold (decision block 112, “no”
leg).

If the write operation 1s a transactional write (decision
block 100, “yes” leg) and the write 1s a hitin the L1 data cache
20 (decision block 126, “yes™ leg), the control unit 28 may
move the cache line to the TTC (block 128). Moving the line

US 8,051,248 B2

9

may include transmitting the line from the L1 data cache 20 to
the TTC 22, allocating a storage location 1n the TTC 22 (and
evicting the cache line stored therein to the external interface
unit 18, 11 applicable), writing the TTC tags 24 with the
address tag and cache state from the L1 tags 26, and invali-
dating the tag in the L1 tags 26. In some embodiments, 1f the
cache line 1s modified in the L1 data cache 20, the modified
line may also be transmitted to the external interface unit 18
to write the data to the memory hierarchy. Such operation
may be performed 1n case the transaction fails, so pre-trans-
action updates are not lost. The control umit 28 may set the T
bit and the U bit in the TTC tags 24 for the entry (and may
clear the P bit in the entry—block 130). The L1 data cache 20
may update the line with the write data (block 132). If the
write 1s a hit in the TTC RA section (decision block 134, “yes™
leg), the control unit 28 may set the T bit and the U bit in the
hitting entry (block 130) and the TTC 22 may update the line
with the write data (block 132). If the write 1s a hit in the TTC
WA section (decision block 136, “yes” leg), the control unit
28 may push the updates in the cache line to the external
interface unit 18 11 the T bit 1s clear 1n the hitting entry (block
138), to preserve the pre-transaction updates in case the trans-
action fails. The control unit 28 may set the T bit and the U bat
tfor the entry and write the data to the TTC 22 (blocks 130 and
132). If the write 1s a miss 1n both the L1 data cache 20 and the
TTC 22 (decision blocks 126, 134, and 136, “no” legs), the
control unit 28 may allocate an entry in the TTC cache 22
(block 140, and see FIG. 6 and its description below). The
control unit 28 may set the T bit and the U bit in the entry (and
clear the P bit), and may write the data to the cache line
(blocks 130 and 132).

It 1s noted that, 1n addition to the operation shown 1n FIG.
4, the processor 10 may perform coherence activities to
obtain a correct cache state for the cache line 1 order to
update the cache line. It 1s also noted that, 1n the embodiment
illustrated via FIGS. 3 and 4, the L1 data cache 20 and the
TTC 22 are exclusive of each other. That 1s, a given cache line
1s stored 1n at most one of the L1 data cache 22 and the TTC
22.

Turning next to FIG. 5, a flowchart 1s shown 1llustrating,
operation of one embodiment of the processor 10 for a snoop
operation received by the external interface unit 18. In gen-
eral, a snoop operation may be generated to the processor 10
in response to a read or write operation from another proces-
sor or device 1n a system that includes the processor 10. The
snoop operation may be used to maintain cache coherency 1n
the system. The snoop operation may be directly snooped
from operations on an interconnect to which the external
interface unmit 18 1s coupled, or may be probe operations
generated by a point of coherency 1n the system, for example.
While the blocks are shown 1n a particular order for ease of
understanding, other orders may be used. Blocks may be
performed 1n parallel in combinatorial logic in the processor
10. Blocks, combinations of blocks, and/or the flowchart as a
whole may be pipelined over multiple clock cycles 1n the
processor 10. Particularly, checking for snoop hits in the L1
data cache 20 and the TTC 22 may be performed 1n parallel.

If the snoop 1s a hit in the L1 data cache 20 (decision block
150, “yes™ leg), the snoop may be processed normally (block
152). If the snoop 1s a hit in the TTC 22 (decision block 154,
“yes” leg) and the T bit 1s clear in the hit entry (decision block
156, “no” leg), the snoop may also be processed normally
(block 152). If the snoop 1s a hit in the TTC 22 (decision block
154, “yes” leg) and the T bit 1s set 1n the hit entry (decision
block 156, “yes” leg), the snoop hit i1s alfecting transaction
data. If the U bait 1s clear (decision block 158, “no” leg), the

snoop hit may only be an interference with the transaction 11

10

15

20

25

30

35

40

45

50

55

60

65

10

the snoop indicates a write operation (decision block 160). IT
the snoop hit indicates a write operation (decision block 160,
“yes” leg), the control unit 28 may set the P bit in the hitting
entry, indicating the detection of the interfering probe (block
162). IT the U bat 1s set (decision block 158, “yes” leg), the
snoop hit 1s an interference no matter what type of snoop 1t 1s
and the P bit 1s set 1n the hitting entry (block 162).

Turming next to FIG. 6, a flowchart 1s shown 1illustrating
operation of one embodiment of the data cache 16 to allocate
an entry in the TTC 22. While the blocks are shown 1n a
particular order for ease of understanding, other orders may
be used. Blocks may be performed 1n parallel in combinato-
rial logic 1n the processor 10. Blocks, combinations of blocks,
and/or the flowchart as a whole may be pipelined over mul-
tiple clock cycles 1n the processor 10.

The control unit 28 may select a line to evict from the TTC
22 (block 170). Various algorithms may be used for selection.
For example, a least recently used algorithm may be used, or
other similar eviction selection algorithms that have been
implemented for caches may be used. Alternatively, the con-
trol unit 28 may attempt to select an 1nvalid entry in the TTC
22, then a clean, non-transactional line 1f no 1valid entry 1s
available, then a modified non-transactional line 1f no clean
lines are available, then a transactional line if no non-trans-
actional line 1s available. If the T bit 1s set 1n the selected line
(decision block 172, “yes™ leg), then a transactional line 1s
being evicted and will not longer be tracked. The control unit
28 may set the OV bit 32 to cause the transaction to fail when
a verify/commit instruction 1s executed (block 174). If the
counter 1n the counter ficld 44B of the evicted line 1s greater
than or equal to a threshold level (decision block 176, “yes”
leg), the line may be determined to be non-transient and may
be moved to the L1 data cache 20 (block 178). If the line 1s 1n
the WA section and 1s incomplete, the control unit 28 may
generate a fill for the line and the written bytes may be merged
with the fill data. If the counter 1s not greater than the thresh-
old (decision block 176, “no” leg) and the line 1s 1n the WA
section of the TTC 22 (decision block 180, “yes” leg), the
control unit 28 may cause the written bytes to be transferred
to the external mterface unit 18 to be written to memory
(block 182). Otherwise, if the RA section line 1s modified
(decision block 184, “yes” leg), the updated line may be
written to memory (block 186).

Turning next to FIG. 7, a flowchart 1s shown 1llustrating,
operation of one embodiment of the processor 10 to execute a
verily or commit instruction. While the blocks are shown in a
particular order for ease of understanding, other orders may
be used. Blocks may be performed 1n parallel in combinato-
rial logic in the processor 10. Blocks, combinations of blocks,
and/or the flowchart as a whole may be pipelined over mul-
tiple clock cycles in the processor 10.

Foreach T'TC line, if the T bit1s not set (decision block 190,
“no” leg) or the T bit 1s set (decision block 190, “yes™ leg) and
the P bit 1s not set (decision block 192, “no” leg), then the
transaction does not fail due to that line. If the T bit 1s set and
the P bit 1s set (decision blocks 190 and 192, “ves” leg), then
the transaction fails (block 194). If all the TTC lines have not
been checked (decision block 196, “ves” leg), the blocks 190,
192, and 194 may be repeated for the other lines. It 1s noted
that, 1n some fully associative embodiments, the check may
be performed in parallel for each line. If at least one failure 1s
detected 1n the TTC 20, or the OV bit 1s set 1n the control unit
28 (decision block 198, “yes™ leg), the control unit 28 may
report a transaction fail result for the verily or commit (block
200). Otherwise (decision block 198, “no” leg), the a trans-
action success result may be reported for the verily or commiut
(block 202). The updates made by the transaction may be

US 8,051,248 B2

11

made visible to other processors/devices 1f the commit 1s
being performed. The T bits may also be cleared 1f the commut
1s being performed, since the transaction 1s completed 1n
either the fail or success case (block 204).

Numerous variations and modifications will become
apparent to those skilled 1n the art once the above disclosure
1s Tully appreciated. It 1s intended that the following claims be
interpreted to embrace all such variations and modifications.

What 1s claimed 1s:

1. A processor comprising:

an execution core configured to execute instructions,
wherein the execution core 1s configured to generate
memory read and write operations responsive to mstruc-
tion execution, and wherein the execution core 1s con-
figured to generate transactional read and write opera-
tions responsive to executing transactional 1nstructions;

a level 1 (LL1) data cache coupled to the execution core and
configured to store data;

a transient/transactional cache coupled to the execution
core, wherein the transient/transactional cache 1s con-
figured to cache memory data accessed responsive to
memory read and write operations to 1dentify potentially
transient data and to prevent the identified transient data
from being stored 1n the L1 data cache, and wherein the
transient/transactional cache 1s configured to cache
transaction data accessed responsive to transactional
read and write operations to track transactions, and
wherein each entry 1n the transient/transactional cache 1s
usable for transaction data and for transient data at dif-
ferent points 1n time; and

a tag memory corresponding to the transient/transactional
cache, wherein the tag memory comprises a tag for each
entry 1n the transient/transactional cache, and wherein
the tag memory further comprises a cache state corre-
sponding to each entry, and wherein the cache state
indicates whether or not the data in the entry has been
modified with respect to memory, and wherein the tag
includes transaction tracking data and transient tracking
data, and wherein the transaction tracking data com-
prises a transaction indication that identifies the entry as
storing transaction data, and wherein the transaction
tracking data comprises an updated indication that indi-
cates whether or not the transaction data has been
updated by one or more transactional write operations,
wherein the updated indication 1s separate from the
cache state.

2. The processor as recited 1n claim 1 wherein the transac-
tion tracking data comprises a probed indication that indi-
cates whether or not a transaction has been compromised, the
transaction mcluding the transaction data in the entry.

3. The processor as recited 1n claim 1 wherein the transient
tracking data comprises a counter that tracks a number of
accesses to the transient data 1n the corresponding entry.

4. The processor as recited i claim 3 wherein, if the
counter exceeds a threshold value, the corresponding tran-
sient data 1s 1dentified as non-transient.

5. The processor as recited 1n claim 4 wherein the data 1s
transterred to the L1 data cache responsive to the data being
identified as non-transient.

6. The processor as recited in claim 1 wherein the transac-
tion indication identifies the entry as storing either transaction
data or potential transient data, dependent on a state of the
transaction mdication.

7. A processor comprising:

an execution core configured to execute instructions,
wherein the execution core 1s configured to generate
memory read and write operations responsive to mstruc-

10

15

20

25

30

35

40

45

50

55

60

65

12

tion execution, and wherein the execution core 1s con-
figured to generate transactional read and write opera-
tions responsive to executing transactional instructions;

a level 1 (LL1) data cache coupled to the execution core and
configured to store data;

a transient/transactional cache coupled to the execution
core, wherein the transient/transactional cache 1s con-
figured to cache memory data accessed responsive to
memory read and write operations to 1dentity potentially
transient data and to prevent the identified transient data
from being stored 1n the L1 data cache, and wherein the
transient/transactional cache 1s configured to cache
transaction data accessed responsive to transactional
read and write operations to track transactions, and
wherein each entry 1n the transient/transactional cache 1s
usable for transaction data and for transient data at dif-
ferent points 1n time; and

a tag memory corresponding to the transient/transactional
cache, wherein the tag memory comprises a tag for each
entry in the transient/transactional cache, and wherein
the tag includes transaction tracking data and transient
tracking data, and wherein the transaction tracking data
comprises a transaction indication that identifies the
entry as storing transaction data, and wherein the trans-
action tracking data comprises a probed indication that
indicates whether or not a transaction has been compro-
mised, the transaction including the transaction data 1n
the entry; and

wherein the execution core 1s configured to execute a trans-
actional mstruction that determines 1f the transaction 1s
compromised, and wherein the execution core 1s config-
ured to check the entries for which the transaction indi-

cation indicates a transaction for probed indications
indicating that the transaction has been compromised to
generate a result of the transactional 1nstruction.

8. The processor as recited 1 claim 7 wherein the tag
memory further comprises a cache state corresponding to
cach entry, and wherein the cache state indicates whether or
not the data in the entry has been modified with respect to
memory, and wherein the transaction tracking data comprises
an updated indication that indicates whether or not the trans-
action data has been updated by one or more transactional
write operations, and wherein the updated 1ndication 1s sepa-
rate from the cache state.

9. The processor as recited in claim 7 wherein the transient
tracking data comprises a counter that tracks a number of
accesses to the transient data 1n the corresponding entry.

10. The processor as recited 1 claim 9 wherein, 1f the
counter exceeds a threshold value, the corresponding tran-
sient data 1s 1dentified as non-transient.

11. The processor as recited 1n claim 10 wherein the data 1s
transierred to the L1 data cache responsive to the data being
identified as non-transient.

12. The processor as recited in claim 7 wherein the trans-
action indication 1dentifies the entry as storing either transac-
tion data or potential transient data, dependent on a state of the
transaction indication.

13. A method comprising:

generating memory read and write operations responsive to

istruction execution 1n a processor;

generating transactional read and write operations respon-

stve to executing transactional instructions;

caching memory data accessed responsive to memory read

and write operations 1n a transient/transactional cache;
monitoring the memory data cached in the transient/trans-
action cache to identify potentially transient data and to

US 8,051,248 B2

13

prevent the 1dentified transient data from being stored 1n
a level 1 (LL1) data cache 1n the processor;

caching transaction data accessed responsive to transac-
tional read and write operations 1n the transient/transac-
tional cache to track transactions, wherein each entry in
the transient/transactional cache 1s usable for transaction
data and for transient data at different points 1n time;

wherein a tag memory corresponds to the transient/trans-
actional cache, and wherein the tag memory comprises a
tag for each entry in the transient/transactional cache,
and wherein the tag includes transaction tracking data
and transient tracking data, and wherein the transaction
tracking data comprises a transaction indication that
identifies the entry as storing transaction data, and
wherein the transaction tracking data comprises a
probed 1ndication that indicates whether or not a trans-
action has been compromised, the transaction including
the transaction data in the entry, the method further
comprising;

setting the transaction indication to a state indicating the
data 1s transaction data responsive to caching transaction
data in the entry;

setting the transaction indication to a state indicating that
the data 1s transient data responsive to caching potential
transient data in the entry; and

executing a transactional instruction that determines 11 the
transaction 1s compromised, and wherein the executing

5

10

15

20

25

14

comprises checking the entries for which the transaction
indication 1indicates a transaction for probed indications
indicating that the transaction has been compromised to
generate a result of the transactional 1nstruction.

14. The method as recited 1 claim 13 wherein the tag
memory further comprises a cache state corresponding to
cach entry, and wherein the cache state indicates whether or
not the data 1n the entry has been modified with respect to
memory, and wherein the transaction tracking data comprises
an updated indication that indicates whether or not the trans-
action data has been updated by one or more transactional
write operations, and wherein the updated indication 1s sepa-
rate from the cache state.

15. The method as recited 1n claim 13 wherein the transient
tracking data comprises a counter that tracks a number of
accesses to the transient data in the corresponding entry;
wherein performing a memory read or write operation com-
prises detecting hit in the corresponding entry and increment-
ing the counter.

16. The method as recited in claim 15 wherein, responsive
to the counter exceeding a threshold value, 1dentifying the
corresponding data as non-transient.

17. The method as recited 1n claim 16 further comprising
transferring the data to the L1 data cache responsive to the
data being 1dentified as non-transient.

	Front Page
	Drawings
	Specification
	Claims

