US008037105B2

a2y United States Patent (10) Patent No.: US 8,037,105 B2

Kegel et al. 45) Date of Patent: Oct. 11, 2011
(54) COMPUTER APPARATUS (56) References Cited
(75) Inventors: Ian C Kegel, Woodbridge (GB); Jeremy U.S. PATENT DOCUMENTS
M Thorne, Ipswich (GB); Martin Russ, 5,027,420 A 6/1991 Takebayashi et al.
Ipswich (GB); Timothy S Stevens, 5,267,351 A 11/1993 Reber et al.
Woodbridge (GB); Jason Morphett, 5,305,389 A 41994 _Palmer
Halesworth (GB) (Continued)
(73) Assignee: British Telecommunications public FOREIGN PATENT DOCUMENTS
limited company, L.ondon (GB) DE 10228597 Al 6/2003
(Continued)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 OTHER PUBLICATIONS
U S.C. 154(b) by 1078 days.

International Search Report mailed Jul. 6, 2005 in International

(21) Appl. N 10/593.585 Application No. PCT/GB2005/001051.
ppl. No.: :

(Continued)

(22) PCT Filed: Mar. 18, 2005 _
Primary Examiner — Greta L Robinson

(86) PCT No.: PCT/GBR2005/001051 Assistant Examiner — James J Wilcox
(74) Attorney, Agent, or Firm — Nixon & Vanderhye P.C.
§ 371 (c)(1),

(2), (4) Date: Sep. 21,2006 (57) ABSTRACT

A computer apparatus which uses a database (22) to offer

(87) PCL Pub. No.: WO2005/093603 persistent storage of metadata (36) describing the content of

PCT Pub. Date: Oct. 6, 2005 media files (32). Metadata 1s used to create a personalized
media article (48) from those media files. That metadata also
(65) Prior Publication Data indicates relationships between those media files. In order to
accelerate the creation of the personalized media article (48),
US 2007/0214157 Al Sep. 13, 2007 media element metadata items are stored i a cache. The
usetulness of this cache 1s improved further by reading related
(30) Foreign Application Priority Data media elements data from retrieved metadata 1tems (36), and
then pre-fetching those 1tems and placing them in the cache.
Mar. 26,2004 (GB) .o 0406860.7 Because the relatedness of the data items means that the
related data item 1s more likely to be required in the near
(1) Int. CL future, the caching method i1s more usetul than known cach-
GO6E 17730 (2006.01) ing methods. Furthermore, the improved usefulness of the
G061 7/00 (2006.01) cache 1s achieved without placing constraints on where the
(52) US.CL ... 707/803; °707/769; °707/796; 707/812 data items are placed in the persistent storage.
(58) Field of Classification Search None
See application file for complete search history. 9 Claims, 12 Drawing Sheets

S |

MEDIA MARK-UP TOOL
36 QbjectStore Database Sefver

32
MEDIA ELEMENT N 34 MEDIA
METADATA ELEMENTS
22

26
E ObjectStore DATABASE j/— E Ay —— T

ObjectStore Databsse Server |/~

/-—30

Application Programmer Interface 36

SCHEMA

ObjectStore Cliemt

TEMFLATE POPULATOR a3

RPC Server

42
M ng EOIT
DECISION Sarvar Computer
LIST
TEMPLATE 40
LA Client Computer
52

48

RPC Client MEDIA
' ARTICLE

TEMPLATE

CONTENT | > &
CREATION
TOOL SYNTHESISER

/ J

44 48

US 8,037,105 B2
Page 2

U.S. PATENT DOCUMENTS

5,584,006 A 12/1996 Reber et al.
5,619,636 A 4/1997 Sweat et al.
5,708,767 A 1/1998 Yeo et al.
5,724,605 A 3/1998 Wissner
5,752,029 A 5/1998 Wissner
5,754,851 A 5/1998 Wissner
5,767,846 A 6/1998 Nakamura et al.
5,884,316 A * 3/1999 Bernstemnetal. 707/103 R
5,806,506 A * 4/1999 Alietal.oeoo. 709/213
6,016,380 A * 1/2000 Nortoncoovvnvvnnn.n. 386/281
6,049,799 A * 4/2000 Mangatetal. 707/10
6,058,102 A 5/2000 Drysdale et al.
6,085,020 A * 7/2000 Saitoetal. 386/327
6,185,538 B1* 2/2001 Schulz 704/278
6,204,840 Bl 3/2001 Petelycky et al.
6,311,194 B1* 10/2001 Shethetal. 715/236
6,404,978 B1* 6/2002 Abecoovviiiiiiiiiniinnn, 386/281
6,560,236 Bl 5/2003 Varghese et al.
6,633,968 B2* 10/2003 Zwiegincew et al. 711/213
6,681,232 Bl 1/2004 Sistanizadeh et al.
6,701,316 Bl 3/2004 Li et al.
6,728,726 B1* 4/2004 Bernstemmetal. 707/103 R
6,771,881 B1* 82004 Ketcham 386/281
6,804,684 B2* 10/2004 Stubleretal. 1/1
2001/0009423 Al 7/2001 Davis et al.
2002/0003506 Al 1/2002 Freiberger et al.
2002/0010575 Al1*®* 1/2002 Haaseetal. 704/205
2002/0013943 Al 1/2002 Haberman et al.
2002/0046208 Al* 4/2002 Anderssonetal. 707/3
2002/0056095 Al 5/2002 Ukehara et al.
2002/0099737 Al1* 7/2002 Porteretal. 707/513
2002/0122430 Al 9/2002 Haberman et al.
2002/0186899 Al 12/2002 Bohnenkamp
2003/0001846 Al 1/2003 Davis et al.
2003/0045957 Al 3/2003 Haberman et al.
2003/0142689 Al 7/2003 Haberman et al.
2003/0149787 Al 8/2003 Mangan
2004/0024550 Al 2/2004 Doerken et al.
2004/0047289 Al 3/2004 Azami
2004/0073690 Al 4/2004 Hepworth
2004/0117257 Al 6/2004 Haberman et al.
2004/0246376 Al 12/2004 Sekiguchi et al.
2005/0120138 Al 6/2005 Carmello et al.
2006/0206600 Al 9/2006 Wong
2008/0019362 Al 1/2008 Wainwright et al.
2008/0019382 Al 1/2008 Wainwright et al.
2008/0019383 Al 1/2008 Wainwright et al.
2008/0019384 Al 1/2008 Wainwright et al.
2008/0112399 Al 5/2008 Cohen et al.
2008/0186854 Al 8/2008 Farrimond et al.
2008/0188191 Al 8/2008 Farrimond et al.
FOREIGN PATENT DOCUMENTS
EP 0716525 A2 6/1996
EP 0948165 A1 10/1999
EP 1549005 A 6/2005
JP 2001292173 10/2001
JP 2001-309269 11/2001
JP 2001-326922 11/2001
JP 2003-304473 10/2003
WO WO 93/21636 10/1993
WO WO 96/00946 1/1996
WO 97/45801 12/1997
WO WO 00/57276 9/2000
WO WO 01/77776 A2 10/2001
WO WO 02/28102 Al 4/2002
WO WO 02/32097 A 4/2002
WO WO 02/057959 A2 7/2002
WO WO 02/071191 9/2002
WO WO 2004/025508 3/2004
OTHER PUBLICATIONS

Harder et al., “Datenbanksysteme. Konzepte und Techniken der

Implementierung,” 1999, pp. 121-122 and 151-152.

Mostefaoul et al., “Multimedia Prefetching Strategy for News-On-
Demand Applications,” Database and Expert Systems Applications,
1999, pp. 1-5.

Chidlovskir et al., “Semantic Cache Mechanism for Heterogeneous
Web Querying,” Computer Networks, vol. 31, No. 11-16, May 1999,
pp. 1347-1360.

Xu et al.,, “Towards Semantics-Based Prefetching to Reduce Web
Access Latency,” Proceedings of the 2003 Symposium on Applica-
tions and the Internet (SAINT’03), Jan. 2003, 8 pages.
Bhattacharyya et al., “RFC 3569: An Overview of Source-Specific
Multicast (SSM)”, Internet Engineering Task Force, Jul. 2003,
XP015009351.

European Search Report of Jan. 10, 2007.

European Search Report of Aug. 17, 2007.

Holbrook et al., “Using IGMPv3 and MLDv2 for Source-Specific
Multicast (draft-holbrook-idmr-1igmpv3-ssm-08.txt)”, Internet Engi-
neering Task Force, Oct. 1, 2004, XP015014473.

Lamb, et al., ““The ObjectStore Database System”, Communications
of the ACM, 34(10):50-63, Oct. 1991.

McDysan, D., “QoS & Traffic Management in IP & ATM Networks”,
2000, McGraw-Hill, US, XP002442599.

Park, K., et al., “On the Effectiveness of Route-Based Packet Filter-
ing for Distributed DOS Attack Prevention in Power-Law Internets,”
Computer Communication Review, ACM, New York, NY, vol. 31,
No. 4, Oct. 2001, pp. 15-26, XP001115743, ISSN: 0146-4833, p. 16,
left-hand column, line 1-line 20.

Rosen Y. Rekhter Cisco Systems, et al., “BGP/MPLS VPNs” IETF
Standard, Internet Engineering Task Force, IETF, CH Mar. 1999,
XP0O15008330 ISSN: 0000-0003.

Singer, Beat, et al., “A Personal Assistant for Web Database Cach-
ing,” 1n the proceedings of the Conference on Advanced Information
Systems Engineering (2000).

European Search Report No. RS115250GB completed Jun. 7, 2007.
European Search Report No. RS115251GB completed Jun. 7, 2007.
Clark, M. et al., “Application-Level Measurements of Performance
on the vBNS,” Multimedia Computing and Systems, 1999, IEEE
International Conference on Florence, Italy Jun. 7-11, 1999, Los
Alamitos, CA, USA, IEEE Comput.Soc., U.S., vol. 2, Jun. 7, 1999,
pp. 362-366, XP010519415.

Jlang, Y., et al., “Providing Quality of Service Monitoring: Chal-

lenges and Approaches,” IEEE, Apr. 10, 2000, pp. 115-128,
XP010376678.

International Search Report and the Written Opinion of the Interna-
tional Searching Authority mailed Feb. 26, 2008 in PCT/GB2007/
003773.

Individual Submission Lennon/Schulzrinne Columbia University:
“Transporting User Control Information in SIP Register Payloads;
draft-lennon-sip-reg-payload-01.txt;” IETF Standard-Working-
Draft, Internet Engineering Task Force, IETF, Ch, No. 1, Oct. 31,
2000, XP015031574, ISSN: 0000-0004.

U.S. Appl. No. 11/489,718, filed Jul. 20, 2006.
U.S. Appl. No. 11/489,719, filed Jul. 20, 2006.
U.S. Appl. No. 11/594,972, filed Nov. 9, 2006.
U.S. Appl. No. 11/594,973, filed Nov. 9, 2006.
U.S. Appl. No. 11/598,230, filed Nov. 13, 2006.
U.S. Appl. No. 11/702,665, filed Feb. 6, 2007.
U.S. Appl. No. 1

‘ * 1/702,669, filed Feb. 6, 2007.

Translation of Office Action (6 pgs.) dated Aug. 17, 2010 1ssued 1n
Japanese Application No. 2007-504460.

Office Action dated Sep. 21, 2007 1ssued 1n corresponding Chinese
Application No.03821664.7 with an at least partial English-language
translation thereof.

Office Action dated Aug. 8, 2008 1ssued 1n corresponding Chinese
Application No.03821664.7 with an at least partial English-language
translation thereof.

An at least partial English-language translation of an Office Action
dated Apr. 17, 2009 1ssued 1n corresponding Japanese Application
No. 2004-571920.

Office Action dated May 8, 2009 1ssued 1n corresponding Chinese
Application No.03821664.7 with an at least partial English-language
translation thereof.

Office Action dated Nov. 20, 2009 1ssued 1n corresponding Chinese
Application No.03821664.7 with an at least partial English-language
translation thereof.

I

US 8,037,105 B2
Page 3

An at least partial English-language translation of an Office Action
dated Jan. 6, 2010 1ssued 1n corresponding Japanese Application No.
2004-571920.

An at least partial English-language translation of an Office Action
dated Jan. 22, 2010 1ssued in corresponding Chinese Application No.
038216647.

Qiang Ma et al., “WebTelop: A dynamic integration and presentation
system of web and broadcasting information”, Information Process-
ing Society Examination Report, Japan: Information Processing
society of Japan, Jul. 17, 2002, vol. 2002, Nov. 67: pp. 169-176 with
a partial English-language translation thereof.

Rehatschek, H. and Muller, H., “A Generic Annotation Model for
Video Databases”, Institute of Information Systems, Joanneum
Research, Austria and Vrye Universiteit Amsterdam, 9 pages
(undated).

Bateman et al., “InterMovie: A New Architecture for Interactive
Media,” Proceedings of the International Conference on Information
Technology and Multimedia at UNITEN (ICIMm 2001), Aug. 15,
2001, 8 pages.

Inventors Listing of Prior Art, 1 page.

Mozart’s Musikalisches Wuertelspiel, A Musical Dice Game for
Composing a Minuet, 1995, 3 pages.

Romance Writer, “Irouble Under the Stars,” from Trivia Park, 2
pages.

StoryCraft 4.0, User Manual, 2001, pp. 1-21.

Martinez et al., “MPEG-7 The Generic Multimedia Content Descrip-
tion Standard, Part 1,” IEEE Multimedia, Apr.-Jun. 2002, pp. 78-87.

Agamanolis, “Isis, Cabbage, and Viper: New Tools and Strategies for
Designing Responsive Media,” Jun. 2001, pp. 1-133.
Davis et al., “Media Streams: Video Annotation and Editing System,”

2 pages.

Russ et al., “Smart Realisation: Delivering Content Smartly,” Journal
of the IBTE, vol. 2, Part 4, Oct.-Dec. 2001, pp. 12-17.

Gerdt et al., “StoryML: An XML Extension for Woven Stories,” I'TS
2002, LNCS 2363, 2002, pp. 893-902.

Gerdt et al., “Woven Stories as a Cognitive Tool,” Cognitive Tech-
nology 2001, LNAI 2117, Springer-Verlag, 2001, pp. 233-247.
Gerdt etal., “Applying Computer Supported Collaborative Writing in
Education,” Paper Jul. 2001, 10 pages.

Rehatschek et al., “A Generic Annotation Model for Video Data-
bases,” Proceedings of Visual Information and Information Systems,
Third International Conference, Visual 99, Jun. 2-4, 1999, pp. 383-
391.

Davis, “Media Streams: An Iconic Visual Language for Video Anno-
tation,” Telektronikk 4.93, 1993, pp. 1-30.

Day et al., “A Multi-Level Abstraction and Modeling 1n Video Data-
bases,” Multimedia Systems Jul. 1999, pp. 409-423.

Ursula Wolz, Daniel Domen, Michael Mc Aulifte, “Multi-media inte-
grated into CS 2: an interactive children’s story as as unifying class
project”, ACM SIGCSE Bulletin, v.29 n. 3, p. 103-110, Sep. 1997.
Appeal Brief filed Dec. 20, 2010 1n U.S. Appl. No. 10/525,381.
Examiner’s Answer dated Feb. 16, 2011 1ssued in U.S. Appl. No.
10/525,381.

Reply Brief filed Apr. 18, 2011 in U.S. Appl. No. 10/525,381.

* cited by examiner

U.S. Patent Oct. 11, 2011 Sheet 1 of 12 US 8,037,105 B2

"-—-____________________

B 20

Content Store | / 18

] - 22
10 e _
=

Figure 1

12

U.S. Patent Oct. 11, 2011 Sheet 2 of 12 US 8,037,105 B2

MEDIA
LEMENTS

/-—30

| MEDIA MARK-UP TOOL

ObjectStore Database Server

MEDIA ELEMENT 34 MEDIA
METADATA ELEMENTS
22
ObjectStore DATABASE e —— T
JEERSTETE ' CONTENT STORE

¢ -

o 34

ObjectStore Database Server
I—
Application Programmer Interface 36

SCHEMA : :
ObjectStore Client

TEMPLATE POPULATOR

33

RPC Server

42

EDIT
DECISION

39

Server Computer

e ————— R iy gy aer s s Sal S A G Sy ki mn e T R N W I g wingT ke e g el WY ey g wlle wt i wmy e gk b S B gl o B A ol e wir e gl e g e wpe R - e v o e S S e s mlh s el e e e Sep B S s Bk Sl B R B ekl el S

|~ TEMPLATE 40
DATA

RPC Client

TEMPLATE |
CREATION
TOOL

—

44 46

CONTENT
SYNTHESISER

Figure 2

U.S. Patent Oct. 11, 2011 Sheet 3 of 12 US 8,037,105 B2

Media "]o053

Element D |

“:EF ~ | UR ~Tfile://c:/media/AvB/0.53.avi
Format | windowsmedia o

—_—I—_———"-'F—_—'-T—-_'—-'—l—'—'—-—_—-

Position In 65:05

l [Out ~ 16535
Structural | Description o Team B Goal 2

Event Nature] Goal '
1

i Performer Paulo |
- D
| Canio |
Barthez
Domain Teams Home Team A
Specific Team
| | Away Team B
| Team
 Performer I Team A
Allegiance
Recipient Team B —————————]
| | Allegiance
“Conceptual | Interest Value 0.7) T
| 'Raing | pG 1
Relﬁow quuence D 1.4

b e e e
Sequence | 2 |
Location

US 8,037,105 B2

Sheet 4 of 12

Oct. 11, 2011

U.S. Patent

aouanbaSOn dnoi9ON

i

,, dIysUoHESHOW

. 103(qO oluewss

$ 91nb14

108[qQ elpaiy

. 10°[q0 vews

SSe|) Joensqy -

uig elpsi

sl

19]|0J}U0D) BIPBA

iej—

US 8,037,105 B2

Sheet Sof 12

Oct. 11, 2011

U.S. Patent

1ods
A)j2uad 0)

| Sluoa G aInbi4
A Bbuneiqales e Mol
| anes ¢ 1dwajpe NLHMMU ieBeueus Buljelqaiso ONSILM
(uois1oaq Ajjeusd ynm) g wes} jeob v el gwesj |isuejgiieat | 99125y

Z |eoo) g uweoa |

@

Y WEQ L . : .
@9 i) |9 _

. 7

uoloesyy

(dn-pjing ynm)
L [e0D g wes | L [0S g wea]

b, A <

(dn-pling ylim)
¢ Jdwapy

wes
@ (ECO) V _ 1

(dn-pjing YIm)
Z [eo5 g weaj

&2

30O XA

yoleAl Jo 158

T Y

asuanbas
bulso)o

S

LOHONPOU

U.S. Patent Oct. 11, 2011 Sheet 6 of 12 US 8,037,105 B2

Title | Football Goal Highlights Template
“Section IName Tlntre - ._1
B @ntaiﬁs " Football Intro" |
Section - Main
Query Actor contains "Michael Owen”
Constraint | Target Duration = 150s
Section ~ [Name - ~ [Outro
Query | URI contains "outro" i

U.S. Patent Oct. 11, 2011 Sheet 7 of 12 US 8,037,105 B2

60
TRANSLATE SECTION QUERY TO
OBJECTSTORE QUERY
62

EXECUTE OBJECTSTORE QUERY

TO RETRIEVE POINTERS TO
MEDIA OBJECTS

GENERATE SECONDARY QUERY 63

TO RETRIEVE POINTERS 10
SEMANTICALLY-RELATED
MEDIA OBJECTS

64
FIND TREE CONTAINING
ALL MEDIA OBJECTS IN SELECTION
_ SORT TREE TO CONFORM
68" | WITH USER-DEFINED SEQUENCES
72
ADD / REMOVE MEDIA OBJECTS TO SATISFY
CONSTRAINTS SPECIFIED IN TEMPLATE

Figure 7

U.S. Patent Oct. 11, 2011 Sheet 8 of 12 US 8,037,105 B2

/— 705

Pass Query to ObjectStore AP

T ——

707
Receive Pages
Containing Media Objects
which Satisfy Query (Direct Hits)
709

Pass References to Direct Hits
to Template Populator

S e TP Ry e

Sp—

For each Direct Hit

Generate Secondary Query for other Media Objects
Belonging to same Relationship object

Pass Secondary Query 13
to ObjectStore AP
Receive Pages 715
Containing Media Objects
which Satisfy
Secondary Query (Indirect Hits)
B — 117

Pass References to Indirect Hits
to Template Populator
Program

Figure 8

jods

Ayevad o)
sjuiod

*EIEIEYS

6 24nb14

US 8,037,105 B2

Buneiqo}ed

€ MOlg
Z |noy e 1dwoye ¢ 48UI00 Jafeuew D::m.ﬁm_mu; SN
_ v Wweaj (eob v Wwea] q wesa] ||suejguwea] 5a10)aM

|
AN
#) J)E

(uoisioaq Ajjeuad yiim) | \{!s0

1200y g Wes |
@)

oy)&

gl

Y

S uofoeay

N (dn-pling yum) | (dn-pjing ypm)
b (dn-pIng yim) ¢ 1dwany | [BOS) g Wea| | |e0S g wes)
P - :

5 1209 g k) EDPOvIEL) @D _ TD
y—

1 e —

—

gl

— yoje 40 1say

2 o

-

aousnbes LOIDNPORUI

Guisojo Yoiei\

U.S. Patent

jods
Ajeuad 0}
sihod
29139y

US 8,037,105 B2

Buiieiqaied £ Molg
¢ Jeuod sebeuew Bunje.qalad IISIUWA
v uiea | quwes} ||suejqgwes] a319)9Y

(uoisoaq Aljeuad uim)
Z |e0os) g Weaj

))G

G110

o -
1=
uonoEeY dn-pjing Ypm
. (dn-ppng yym) (dn-pitng yum) A 3%_. ..,‘_m___m.n_@wP
b o_w. q wesy ¢ Jdwapy | [e05) g Wea] | 120D g
e 7 e
= [e00) \ WES | D)
2 <P, @ o @ _
= -
o UOIEIN 10 158 HO YO
y—
i A
- &>)
-

T
_ gauanbas uotanNpadjul
Y3e
BuIsojo .
@ | O <« a)

U.S. Patent

US 8,037,105 B2

Sheet 11 of 12

Oct. 11, 2011

U.S. Patent

10ds
Ajjeuad o)
sjuiod
CEICIEN

(uoisida Ajeusd yum)
¢ |E0D) g wes|

@

Q2

(dn-pjing yiim)
C _MOO g wes |

(dn-pling yum)
¢ Jdwany

wes
@ jE0D) V _ 1

Buneiqalad
136zuBW Bujesgs;ed

suej g wea)
10

e —

UoIjoeSY

| 20D g wea]

D,

UdjeN 40 1S3

e

aauanbas
puisold

€ MOig
SIISIUM

0
(&0

99189}

(dn-pjing ypm)
_‘ _mco H Emm._-

QD <=

H0O I

UOIPNPAUI

U.S. Patent Oct. 11, 2011 Sheet 12 of 12 US 8,037,105 B2

| AVB Highlights - J ‘ ﬁle://c:-/media/intro.avi '

ﬁle://c:/fnedfa/AvB/OlO.avi
| file://c:/media/AvB/011.avi
| ﬂe://c:/medi'a/AvB/OlZ.avi

| ﬁle://c:/media/AvB/(ﬁz.avi 4

l file://c:/media/AvB/053.avi

| _f_i_le://c:/media/oﬁtro.avi)
L - _ | _

Figure 12

US 8,037,105 B2

1
COMPUTER APPARATUS

This application 1s the US national phase of international
application PCT/GB2005/001051 filed 18 Mar. 2005 which
designated the U.S. and claims benefit of GB 0406860.7,
dated 26 Mar. 2004, the entire content of which 1s hereby
incorporated by reference.

TECHNICAL FIELD

The present invention relates to computer apparatus. It has
particular utility 1n relation to computer apparatus used in
retrieving information from databases.

DESCRIPTION OF RELATED ART

A database 1s normally provided using a computer having
a large amount of data items stored in persistent memory. The
apparatus includes database management software which 1s
executable to receive a query from an application program
setting out criteria for the selection of data items from the
database. Execution of the database management software
will transfer the selected data to volatile memory on the
computer running the application program.

Today, databases are often accessed via a communications
network. For example, BT s directory enquiries database 1s
available at http://www.bt.com/directory-enquiries.

The time taken to obtain a response to a query therefore
depends on two factors—the time taken to 1dentify those data
items which satisiy the query, and the time taken to transfer
data items to the volatile memory of the computer on which
the relevant application program 1s running.

One way of reducing the time taken to obtain a response to
a query 1s to cluster similar data 1items 1n a contiguous region
of memory in the database, and then send the contents of that
region of memory to a client computer 1n response to a query
which selects a data 1tem containing within that region. Any
subsequent reference to a data item contained within the
region can then be satisfied from the local memory. This 1s a
teature of databases that operate on a so-called ‘page-server’
basis. An example of such a database 1s ObjectStore provided
by Excelon Corporation (details of ObjectStore can be found
in C. Lamb, G. Landis, J. Orestein, and D. Weinreb. The
ObjectStore database system. Communications of the ACM,
34(10):50-63, October 1991 and International Patent Appli-
cation WO 00/57276).

Another technique for reducing the average time taken to
respond to a query 1s to store queries and their results 1n the
local memory. It 1s found that users often repeat queries, and
this enables a repeat query to be answered from local
memory—thereby saving the time that would otherwise be
spent 1n selected data items which meet the query and also the
time spent 1n moving those data items to the local memory.

Yet another technique 1s to predict, on the basis of data
about earlier queries, those queries that the user might be
about to enter. This approach 1s seen, for example, in “A
Personal Assistant for Web Database Caching™ Beat Signer,
Antonia Erni, Moira C. Norrie in the proceedings of the
Conference on Advanced Information Systems Engineering

(2000).

BRIEF DESCRIPTION OF PRESENT EXAMPL.
EMBODIMENTS

L1

According to a first aspect of the example embodiments of
the present invention, there 1s provided computer apparatus
having:

10

15

20

25

30

35

40

45

50

55

60

65

2

1) one or more data processors;

11) persistent storage means connectable to said one or
more data processors, said persistent storage means stor-
ing a plurality of data items, one or more of said data
items containing reference(s) to one or more other data
items whose content 1s semantically-related to said data
items:

111) volatile memory means, connectable to said one or
more data processors, for storing one or more of said
data items:

1v) database management system software executable by
said one or more data processors to respond to a query by
passing data items meeting one or more criteria specified
in said query from said persistent storage means to said
volatile memory means;

v) querying code executable by said one or more data
processors to pass a query to said database management
system software;

v1) pre-fetching code executable by said one or more data
processors to:

a) analyse response data items provided in response to said
query to find related data items semantically-related to
said response data items; and

b) automatically generate another query for said semanti-
cally-related data 1tems.

By selecting data items 1n response to a request for transfer
from a persistent memory to a cache memory and then select-
ing further data items according to relationship data which
forms part of the earlier selected data 1items, and moving the
turther data 1tems to the cache memory as well, the response
time to subsequent related requests 1s reduced.

According to a second aspect of example embodiments of
the present mvention, there 1s provided a method of operating
computer apparatus comprising a processor and first and sec-
ond data stores accessible to said processor, access by said

processor to data held 1n said first store being quicker than
access to said second store, said method comprising the steps
of:

storing a plurality of data items in said second data store,
together with relationship data indicating relationships
between said data items; and

executing a process on said processor to:

1) fetch one or more data 1tems from said second store together
with relationship data indicating one or more related data
items semantically related to said fetched data item:;

11) responsive to receipt of said relationship data, fetch one or
more of said semantically related data items from said second
memory to said first memory; and

111) check, on subsequent requests for a data item, whether
said requested data 1tem 1s present in said first store and read
said data 1tem from said first store 11 found.

A given data item often represents, or represents charac-
teristics of, a real or imagined entity. A further data item
semantically related to that given data item represents, or
represents characteristics of, a real or imagined entity which
1s related to the real or imagined entity represented by that
given data item.

BRIEF DESCRIPTION OF THE DRAWINGS

By way of example only, specific embodiments of the
present invention will now be described with reference to the
accompanying Figures in which:

FIG. 1 1s a schematic 1llustration of a media content distri-
bution system according to a first embodiment of the present
invention;

US 8,037,105 B2

3

FIG. 2 shows the architecture of the software run on the
computers shown 1n FIG. 1;

FIG. 3 shows metadata associated with a file;

FIG. 4 shows an object-oriented database schema used in
the first embodiment;

FIG. 5 1s a hierarchical representation of the relationship
data entered by the editor;

FIG. 6 shows template data generated using a template
creation tool;

FI1G. 7 1s a flow chart showing the operation of the template
populator component of the first embodiment of the present
invention

FIG. 8 shows some of the steps of FIG. 7 1n more detail;

FIG. 9 shows media objects selected 1n response to a pri-
mary query,

FIG. 10 shows media objects selected in response to a
secondary query;

FIG. 11 shows a tree whose leaves are the media objects
selected 1n response to the primary query; and

FI1G. 12 shows an edit decision list as might be produced by
the template populator module.

DETAILED DESCRIPTION OF NON-LIMITING
EXAMPLE EMBODIMENTS

FIG. 1 shows two personal computers 10, 12 each of which
comprises well-known hardware components connected
together 1n a conventional manner. The well-known hardware
components comprise a central processing unit, volatile
memory—in this case, random access memory—read-only
memory, a hard disk and input/output devices. The hardware
components are interconnected via one or more data and
address buses. The input/output devices comprise a monitor,
a keyboard, a mouse, a CD ROM drive and a network card.
The network card 1s connected to a server computer 16 by the
public Internet 14.

The server computer 16 has a similar architecture to the
personal computers 10, 12, but 1s provided with a faster pro-
cessor and a much greater amount of persistent storage. This
storage takes the form of a Redundant Array of Inexpensive
Disks (RAID) 18. The RAID stores a collection of media files
20.

The server computer 16 has ObjectStore database server
and ObjectStore Application Programmer Interface (API)
software from CD1 1nstalled upon it. Such software 1s avail-
able from Excelon Corporation of 25 Mall Road, Burlington,
Mass., U.S.A. In addition, an ObjectStore client program
which makes use of the API software, and which includes a
template populator module, and an Remote Procedure Call
(RPC) server module 1s mstalled from CID2 onto server com-
puter 16. Included with the ObjectStore client program 1s
code supplied by Excelon corporation which carries out much
of the processing required in handling a query, the server
program merely providing pages (4K blocks of memory)
when requested to do so by the ObjectStore client program. A
third compact disc CD3 provides a media mark-up tool pro-
gram which 1s also installed on the server computer 16. The
media mark-up tool program and the template populator pro-
gram are described in the applicant’s earlier International
Patent application GB2003/003976, which 1s hereby incor-
porated herein by reference.

Each of the personal computers has a template creation tool
program, content synthesiser, and RPC client program from
CD4 nstalled upon 1t. The template creation program and the
content synthesiser are described 1n the applicant’s co-pend-
ing International Patent application GB2003/003976. An

RPC client program can easily be provided by a person skilled

10

15

20

25

30

35

40

45

50

55

60

65

4

in the art. The structure and operation and interoperations of
these programs will now be described with reference to FIG.
2.

The media mark-up tool 30 provides an interface for an
editor to update the content store 20 and the database 22. In
practice 1t 1s envisaged that an editor using the present
embodiment will have access to media elements 32 generated
by other editors, rushes from various sources, sections of
prepared programmes, still photographs and various other
pieces of media (all represented in electronic form) at his
disposal. These media elements are stored 1n an appropriate
directory structure in the content store 20. Each directory 1s
known as a ‘bin’ in the art—a reference to the labelled bins 1n
which rolls of film relating to a particular project are stored.

However, for the purposes of the present description, it 1s
assumed that the editor begins only with a file that includes an
clectronic representation of unedited film recorded at a foot-
ball match and introduction sequences for a football pro-
gramme etc. An unedited piece of film 1s known as a ‘rush’ 1n
the art.

Using the media mark-up tool 30, the editor might select
various sections of the rush and store each as a media element
in a shorter file 1n a directory in the content store 20.

The media mark-up tool 30 also provides a tool enabling
the editor to generate or edit metadata 36 for media elements
stored 1n the content store 20. The mark-up tool program 30
uses the ObjectStore server database software 34 to store a
metadata item 36 for each media file 32 as part of the Object-
Store database 22 held 1n the RAID 18.

The media mark-up tool 30 has been described here 1n
order to put the present embodiment in the context of a larger
media article creation and delivery system. It 1s to be under-
stood however, that alternative embodiments of the present
invention could be provided in which an existing media
article metadata database and content store 1s used, without
providing an editor with a capability to add to the database—
1.e without requiring the provision of CD3 in the present
example.

The ObjectStore Client program on CD2 includes a defi-
nition of a database schema 36 which will be described n

more detail below with reference to FI1G. 4. It also includes a
template populator program 38 which receives template data
40 from a client computer 10,12 and processes 1t to generate
an Edit Decision List 42 for return to the client computer
10,12. The operation of the template populator program 38
will be discussed 1n more detail below with reference to FIGS.
7 and 8. Also included in the ObjectStore client program is an
RPC Server 39 which enables communication of the template
data 40 and the Edit Decision List 42 between the server
computer 16 and a client computer (10,12 for example).

The template creation tool 44, installed on the client com-
puter 10,12 from CDA4, 1s used to create the template data 44.
The content synthesiser tool 46 installed from the same CD4
1s used to fetch the media elements 32 listed in the Edit
Decision List 42 from the content store 20 and to combine
them 1n order to generate a media article 48, based on the
template data 40 to a user 50. Communication between the
server computer 16 and the client computers 10,12 takes
place using the RPC Client 52.

The mnformation included 1n a Media Object (a software
object forming a component of the database 22) 1s shown 1n
FIG. 3.

To enter this information, having selected one of the media
elements, the editor enters metadata to be associated with that
media element 1n two stages. In a first stage, the editor can

US 8,037,105 B2

S

double-click on one of the pictures to bring up a form onto
which the values of the parameters included within the
schema can be entered.

An example of the metadata generated 1n the first stage 1s
shown 1n the second to twelith row of FI1G. 3 (the information
in the first row having been generated when the editor gave a
media element 1dentifier to the file).

It will be realised that the metadata 1s arranged 1n accor-
dance with a structured data model. In each row, the entry at
the nghtmost column represents the value of a property which
1s 1nput by the user. The structured data model may provide
that a plurality of properties should be labelled as members of
a unit at a first level of aggregation—here referred to as a set
of properties (column second from the left in those rows
which have four columns). The structured data model may
also provide that a plurality of sets should be labelled as
members of a unit at a second level of aggregation—here
referred to as a superset of properties (leftmost column in
those rows which have three or four columns). Those skilled
in the art will realise that further levels of aggregation might
be provided.

The hierarchical arrangement 1s influenced by the Multi-
media Content Description Interface mentioned above. The
intention 1s not to enforce usage of a complete data model
across all possible applications, but to enable re-use of con-
tent within the subject domain of a production company or a
specific set of projects (eg. wildlife documentaries). The data
model provided 1s intended to provide a maximal set of ele-
ments and an interface which assists their use and the vocabu-
laries which can be applied to them.

The metadata includes a variable number of parameters

(but mustnevertheless conform with the predetermined struc-
tured data model). In the example, shown in FIG. 3, the editor
has entered values for 18 properties. These mclude:
1) Media Element ID—this identifies the media element—in
the present example, the editor has given it a numerical value
of 0.xx, where xx reflects the position of the media element
within the original rush;

This 1s followed by a ‘Media’ superset which comprises
two properties and a ‘Position’ set of properties. The two

properties are:

11) URI—the Universal Resource Identifier of the file which
contains the media element;

111) Format—this gives an indication of the format of the data
making up the file;

The ‘Position’ set contains two properties as follows:
1v) In—an indication of the time elapsed since the start of the
rush at the start of the media element;

v) Out—an indication of the time elapsed since the start of the
rush at the start of the media element;

The ‘Media’ superset 1s followed by a superset of four
‘structural’ properties. That superset begins with
v1) Description—a description of the content of the file;

which are followed by another set (called ‘Event’) which
contains three properties:

vil) Nature—the type of event that i1s seen 1n the video
sequence recorded 1n this file;

vii1) Performer—the person performing the principal action
of the event;

1X) Recipient—the person subject to the principal action of
the event;

These properties are followed by a domain-specific super-
set of properties which, i1n this example, are only sensibly
applied to media elements which relate to material obtained
from two-sided sporting events;

10

15

20

25

30

35

40

45

50

55

60

65

6

The first two properties belong to a set (called ‘Teams’) of

two properties:
x) Home Team—the name of the team playing on their home
ground during the football match featured 1n the original rush;
x1) Away Team—the name of the other football team in the
football match featured in the original rush;

This set 1s followed by the two properties:
x11) Performer Allegiance—the side (if any) to which the
performer owes allegiance;
x111) Recipient Allegiance—the side (1f any) to which the
recipient owes allegiance;

These two properties are followed by a set (named ‘con-
ceptual’) containing two properties:
x1v) Interest Value—this value, between 0 and 1 indicates
how si1gnificant the editor considers this media element to be;
and
xv) Rating—this value indicates the suitability of the media
clement for showing to people based on an age criterion—in
a similar way to the classification given to films.

The second stage of the metadata creation which generates
one or more ‘Relationship’ properties 1s described 1n detail 1n
the applicant’s earlier international patent application
(GB2003/003976. The user 1s provided with a graphical user
interface, allowing him to indicate relationship properties
between media elements by moving and clicking on 1cons
representing those media elements on the screen 18 of the PC
(F1G. 1).

One type of relationship that the editor may indicate 1s that
of sequence. An editor might wish to indicate a sequential
relationship of this nature where he feels that the media ele-
ments should be shown in the indicated order (1f more than
one of the media elements are selected 1n response to a query
made to the ObjectStore database management system).
Media elements showing gardening at different times of year,
for example, might be arranged 1nto a sequence so that an
clement representing the garden 1n spring precedes an ele-
ment representing the garden 1n summer and so on.

On creation of a sequence 1n this way, a sequence object 1s
created 1n the object-oriented database as a container object
containing pointers to the media objects associated with the
media elements included within the sequence. As will be seen
below, 1t 1s possible to generate a sequence which itself
includes sequences. This hierarchical property 1s reflected 1n
the first number 1n the i1dentifier attributed to the sequence.
Where the sequence includes only individual media elements,
then the sequence identifier 1s of the form 1.x where X 1s
simply incremented at each time a new sequence or group
(explained below) at the first level of the hierarchy 1s formed.

The media object (1.e. metadata) associated with each
media element 1n the sequence has the position of the media
clement within that sequence added to 1t. An example of the
sequence position metadata can be seen in the penultimate
row of FIG. 3.

Another type of relationship an editor may wish to indicate
between media elements 1s that of membership of a group. An
editor might do this where he wishes to indicate that 11 a
plurality of the media elements 1n the group are selected, then
they should be shown together. This action creates a group
object, a container object which contains pointers to the
media objects associated with the media elements within the
group. Group objects are also stored within the object-ori-
ented database 22.

Object-oriented programming involves the writing of
classes (user-defined data types which have methods as well
as data members within them). Programs then create and
mampulate instances of those classes in order to do their work
when executed on a computer.

US 8,037,105 B2

7

Similarly, object-oriented databases hold instances of
object classes which have both data members (such as the
metadata seen 1n FIG. 3) and methods allowing queries to be
made on those data members.

In object-oriented programming, a programmer can build
hierarchy of object classes. In such a hierarchy an object class
inherits the data members and methods of the parent object
class. In writing new classes, 1t 1s possible to change the
implementation of the methods (this 1s known as overriding
the parent object method), or to add to the inherited data
members or methods of the parent object class. This 1s one
way 1n which object-oriented programming promotes code
re-use.

Aside from 1nheritance, another way 1n which object-ori-
ented programming promotes code re-use 1s known as com-
position. In this case, an object class can be written to include
objects of another type as data members.

It 1s possible for a programmer to define an abstract class.
IT a class 1s declared to be abstract by the programmer, then 1t
1s not possible to create instances of objects of that class. It 1s
only used as a way of ensuring that any sub-classes written by
a programmer do have all the data members and methods of
the abstract parent class.

Similar concepts are used 1n object-oriented databases
such as ObjectStore. FIG. 4 shows an object hierarchy used in
a first embodiment of the present invention.

All objects 1n the database inherit data members and meth-
ods from the base class SmartObject. This ensures that all
objects to be stored in the database have certain attributes
which enable them to be persistent (1.e. stored 1n the Object-
Store database). Additionally, the inheritance from SmartO-
bject ensures that other Methods (such as the ability to inter-
rogate an object to find 1ts type, or to ask it to render 1tself in
eXtensible Markup Language (XML)), which are useful
throughout the database are present in all objects stored
within the database.

MediaController 1s the ‘root” object 1n the database (mod-
clled as a singleton pattern—i.e. there 1s only ever one
instance of an object of this class). It has a collection of
MediaBin objects within 1ts data members (an example of
composition).

The MediaController collection class (a C++ template) has
functions that enable queries 1n the form of expressions to be
made on 1t. For example, an instance of a MediaController
object (that instance being called binList in this example) can
be queried like:
MediaController::binList->query(“MediaObject™”, “m_ob-
11d32% 2=0").

This query results in a call to a query method forming a part
of all MediaController objects (including binlist) which
returns the result of the query. In the above example a collec-
tion of MediaObject pointers with even object ID’s would be
returned.

MediaBin objects can hold other MediaBin objects within
them 1n a directory-like hierarchical structure. So ifor
example, a ‘WorldCup® MediaBin may hold a MediaBin
within 1t called ‘EnglandSweden’. Equally, the ‘England-
Sweden” MediaBin will hold clustered MediaObjects from
the England Sweden World Cup game.

The MediaBin object class also has a collection of Seman-
ticObjects. SemanticObject 1s an abstract class. The Medi-
aObject, MORelationship, MOGroup and MOSequence
classes are all sub-classes of the abstract SemanticObject
class (an example of inheritance). MediaObject 1s the object
which contains the metadata like that seen i FIG. 2.

MORelationship 1s an intermediate abstract class with
MOGroup and MOSequence iheriting from 1t.

10

15

20

25

30

35

40

45

50

55

60

65

8

SemanticObjects (and, by inhernitance, MediaObjects)
have a data member (called parentRelationship) which 1s a
pointer to an MORelationship object. MediaObjects with no
parent relationship (called ‘root objects’) have this Member
set to NULL.

MORelationship objects have some public abstract meth-
ods which are overloaded 1n the two MORelationship sub-
classes, MOGroup and MOSequence, these are:
public

virtual BOOL isertObject(SmartObject®_data)=0;

virtual BOOL removeObject(SmartObject™_ptr)=0;

virtual BOOL contains(SmartObject™*_ptr)=0;

protected

virtual BOOL isertObject(SmartObject™_data,
Coll<SmartObject*>*_col);

virtual BOOL removeObject(SmartObject™_ptr,
Coll<SmartObject™>*_col);

virtual BOOL
Coll<SmartObject™>*_col);

MOGroup overloads these public methods and calls the
MORelationship protected methods passing 1n a Coll object
(an unordered collection). MOSequence overloads the same
methods and calls the protected methods with a List object (as
an ordered collection, inherited from Coll).

Furthermore, MOSequence also provides additional public
methods 1n the form of 1nsertFirst, insertLast, msertObject-
Belore and insertObjectAfter to mnsert objects at predefined
points 1n a sequence of semantically related objects.

As mentioned, MORelationship objects can hold collec-
tions of SmartObjects. However, the TYPE’s of SmartObject
held by MORelationship objects are restricted (e.g. MediaB-
ins are not held by MORelationship objects). The SmartOb-
ject types held are restricted to the chuldren of SemanticOb-
ject: (1) MOGroup; (1) MOSequence and (111) MediaObject.

Upon msertion ito an MORelationship object, a check 1s
made by calling getlype (inherited and overloaded from
SmartObject by each derived class) on the incoming object to
validate 1its TYPE. Assuming 1t 1s valid, the object 1s added to
the collection (or list) and 1ts parentRelationship attribute set
to be the MORelationship to which 1t has just been added.

The Boolean value returned by the msertion and removal
objects indicates whether the insertion or removal was suc-
cessiully carried out.

With the above methods, an editor 1s able to generate
MOGroup and MOSequence objects which contain lists of
pointers to MediaObjects. FIG. 5 shows the relationships
entered by the editor in huerarchical form. Note that the editor-
generated hierarchy shown in FIG. 5 1s unrelated to the data-
base schema hierarchy seen 1 FIG. 4. It would not be prac-
ticable to change the database schema every time an editor
changed his or her arrangement of a number of media ele-
ments. Instead the linkages seen in FI1G. 4 are stored 1n as data
members of MOGroup and MOSequence objects.

In the editor-generated hierarchy, MediaObjects are seen at
the ‘leaves’ of the tree structure. Many of the MediaObjects
(e.g. 0.13, 0.14, 0.135) are arranged 1nto groups (e.g. 1.2)—
shown as rectangles having arrows beneath them pointing to
the MediaObjects which belong to them. Sequences are por-
trayed similarly, save for having an arrow 1n the top left-hand
corner of the rectangle. Groups and Sequences can them-
selves be members of higher-level Groups and Sequences.

The template creation tool code which 1s installed from
CD4 onto the client computers 10,12 executes to provide an
interface for a user to specity the desired characteristics of a
media article—thus creating template data 40.

Like a media object, a template object for use 1n the present
embodiment conforms to a comprehensive predefined data

contains(SmartObject™ptr,

US 8,037,105 B2

9

model. As can be seen from FIG. 6, this predefined data model
includes a title field, and a plurality of sections. Each section
1s a set comprising a name field, a query field, and, optionally,
a constraint field. When run, the template creation program
controls the client computer 10,12 to prompt the user to enter
a name for the template and to indicate the section structure
(top-level sections may themselves contain sections). The
user indicates the section structure using a graphical user
interface component similar to the Folder List provided 1n
Microsolt Windows Explorer for example. In the example
given 1 FIG. 6, the template has a flat structure of three
sections.

The user uses this graphical user interface to enter query
strings for each of the sections. The query string for the
middle section 1 FIG. 6 indicates that candidate media
objects to fill this slot 1n the template must have Michael
Owen as a named actor.

The user may also enter one or more constraints for those
sections where he wishes to place some constraint on the
media elements represented by the media objects retrieved
from the database 1n response to the query. Constraints are
intended to restrict the way 1 which media objects are
assembled by the template populator. Possible examples of
constraints include time (e.g. this section must be 5 minutes
long), space (e.g. this presentation must be viewed on a
640%480 pixel display), or number (there must be five news
items 1n the ‘headlines’ section of a news programme).

Once the user indicates that the template 1s complete, the
client computer 10,12 sends the template data 40 (using the
RPC client and server 39,52) to the server computer 16.

The template data 40 1s then passed to the template popu-
lator program 38 which operates as indicated in FIG. 7.

As explained above the template populator module 38 pro-
vides a process for automatically assembling an edit decision
l1st 42 1n preparation for the synthesis of a set ol media objects
into a personalised media article 48 for a consumer 50. On
starting, the template populator 38 takes as 1ts inputs a spe-
cific template (e.g. F1G. 6) and an indicator of a store of media
objects (inthe present case, an indication of the location of the
object-oriented database 22).

The template populator then identifies the first section of
the template (FIG. 6) and iterates through the template’s

hierarchical structure.

Each iteration (FIG. 7) mvolves the next section in the
template being found, any query 1n that section being trans-
lated to an ObjectStore query (step 60), executed by the
ObjectStore server and client programs (step 62) to return a
set of pointers (references) to relevant media objects. The
returned references are then used to 1ssue a further Object-
Store query for media objects which are semantically-related
to the media objects pointed to by the received references
(step 63). Therealter, various steps (64, 68, 72) are carried out
to produce the part of the Edit Decision List 42 corresponding,
to the section of the template being worked on 1n the current
iteration of the template populator program.

The second iteration which relates to the section named
‘Main’ in FIG. 6 will now be described. The 1teration begins
(step 62) with the carrying out of the query contained with the
section. The query within the second section requests all
MediaObjects mentioning Michael Owen as a named actor
discussed above.

FIG. 8 shows the processing involved 1n the steps (FIG. 7:
62.63) of 1ssuing and answering the primary and secondary

10

15

20

25

30

35

40

45

50

55

60

65

10

query 1n more detail. In step 705, an ObjectStore query—in
this example similar to the one below—would be carried out
over a MediaBin called binList:
binList->query(“MediaObject™”,

“m_mediaObjects|:

m_actorList|:strcmp(data,“Michael Owen”y==0:]:]").

This returns, to the template populator program 38 a col-
lection of references to MediaObjects 1n which “Michael
Owen” 1s a named actor.

Step 707 indicates that ObjectStore database server 34 and
ObjectStore client program (36, 38, 39) interoperate in such a
way as to bring pages (4K units of memory) accessed as the

ObjectStore database server answers the query, from the
RAID 18 to the volatile memory (RAM) 17 of the server

computer. Even when any index present in the database 1s
used in answering the query, this will result in the pages which
contain the Media Objects which satisty the query being
brought mto the volatile memory 17.

In more detail, the ObjectStore client program uses the
virtual memory (page-swapping) code provided by modern
operating systems (1n the present example, it 1s assumed that
the server computer 16 1s running a suitable operating system
program such as Windows NT), in order to handle references
which point to objects on pages which have not yet been
transterred to the volatile memory 17 of the server computer
16 from the RAID 18. Those skilled 1n the art will realise that
this situation 1s similar to that used 1n page-swapping systems
where pages of memory are transierred between the hard disk
of a PC and the volatile memory of that PC. Virtual memory
1s used where the combined size of a program, data and stack
1s greater than the available physical memory. Where the
pages on which referenced objects reside are already in the
volatile memory 17 of the server computer 16, following the
pointers 1s straightforward matter for the ObjectStore client
program, however where the relevant page has not yet been
transierred to the volatile memory 17 of the server computer,
the virtual memory code 1ssues a memory fault. The Object-
Store client code responds to the memory fault by requesting
the relevant page from the ObjectStore database server 34.

Thus, the above-mentioned article about ObjectStore
states: “ObjectStore maintains a client cache, a pool of data-
base pages that have recently been used, in the virtual
memory of the client host. When the application signals a
memory fault, ObjectStore determines whether the page
being accessed 1s 1n the client cache. If not, it asks the Object-
Store server to transmit the page to the client, and puts the
page into the client cache. Then, the page of the client cache
1s mapped 1nto virtual address space [of the client host], so
that the application can access 1t. Finally, the faulting instruc-
tion 1s restarted, and the application continues.”

Although the above paragraph refers to a situation where
the ObjectStore client program 1s running on a client com-
puter different from the server computer where the database 1s
stored, the same advantage 1s seen 1n a situation where the
ObjectStore database server and ObjectStore client program
are running on the same computer (as 1s the case in the present
embodiment)—the client program (36,38,39) will resolve a
query more quickly 1f one or more of the Media Objects 1t
must access 1 order to answer the query are within pages held
in a cache within that part of the memory 17 allotted to the
client program. The default size of the cache 1s 8 MB—how-
ever this may be altered by the administrator of the server
computer 17.

The answering of the query 1ssued 1n step 705 might result
in the selection of the MediaObjects outlined in bold 1n FIG.
9, for example. Each of those media objects will be held 1n the

US 8,037,105 B2

11

cache—i.e. in the volatile memory 17 of the server computer
16. Reterences to those objects are passed to the template
populator program 38.

In step 711, a further query 1s made for MediaObjects
which have the same parent as each of the MediaObjects
returned 1n response to the first query, (through the parentRe-
lationship and MORelationship data members of each of the
selected MediaObjects). The effect of constructing this sec-
ond (and any subsequent) set of semantic queries 1s to transter
‘related” objects from the RAID 18 into the volatile memory
17 of the server computer 16.

This secondary query might result 1n the selection of the
MediaObjects outlined 1n bold mm FIG. 10, for example.
Again, the pages containing those media objects are trans-
terred from the RAID 18 to the volatile memory 17 (step 715)
and references to those media objects are provided to the
template populator code (step 717).

Returming to FIG. 7, 1n step 64, a tree 1s constructed which
includes the media objects selected 1n response to the first
query as its ‘leaves’. This construction takes place as follows:
The parent object of the first selected media object 1s retrieved
tollowed by 1ts parent object and so forth until an object 1s
reached which has no parent object associated with 1t. At this
point, a single linked list from the leat object to the top-level
container has been reconstructed. Another selected leaf
object 1s examined (if more than one object 1s selected as a
result of the query), and the ancestry of that leal object 1s
tollowed until either an object 1s retrieved that already exists
in the linked list representing the ancestry of the first object or
another top-level container 1s encountered. Repeating this
process for all the other objects 1n the selection reconstructs
the mimimal tree containing those objects.

The minimal tree might then be as shown in FIG. 11, for
example.

The building of the tree (steps 62 to 64) i1s followed by
sorting (step 68) of the objects within the tree.

The sorting (step 68) takes account of the sequence 1nfor-
mation entered by the user. The 1s done by using the known
‘Quicksort’ algorithm to place the nodes of the tree 1n the
correct order as 1dentified by the sequence position metadata
associated with the object. This 1s done starting at the top of
the tree and then moving towards the leaves (i.e. the media
objects) of the tree.

The template populator then evaluates any constraints and
updates the tree accordingly (step 72). To evaluate a time
constraint, the duration of each media object included within
the tree 1s calculated by subtracting the ‘Out’ property from
the ‘In’ property, and these durations are added together to
reach an actual duration. If this duration 1s found to be greater
than the target duration, then media objects are removed from
the tree. If this duration is less than the target duration, then
media objects are added to the tree.

Where the actual duration 1s less than the target duration,
MediaObjects which belong to the same sequence as any of
the MediaObjects selected 1n response to the first query are
selected—they are then appended to the selected MediaOb-
jects 1 order of closeness 1n sequence, and order of duration.
A new tree for the current section 1s then created 1n the same
way as the original tree. This process 1s repeated until the
actual duration 1s greater than the target duration.

It will be appreciated that this step will be slightly quicker
than might otherwise be the case, since this MediaObject was
brought 1nto volatile memory 17 on the 1ssuance of the sec-
ondary query 1in step 715.

When all sections have been populated with media object
metadata and sequenced 1n accordance with the queries and
constraints provided, the template populator outputs (step 78)

10

15

20

25

30

35

40

45

50

55

60

65

12

the edit decision list (FIG. 12) by concatenating the media
clements found at the leaves of the trees generated in the three
iterations of the loop.

The edit decision list (FIG. 12) produced by the template
populator program module (46) 1s passed to the content syn-
thesiser module (48) 1n the PC. In the present example, the
content synthesiser module outputs one scene after another 1n
a streamed video presentation or concatenates the scenes
together 1 order to produce a programme file. It will, of
course, be realised that a user will wish to be provided with an
automatically generated programme aiter as short a delay as
possible.

It will be seen that the present embodiment goes some way
towards achieving this by storing relationship data in the
database which indicates relationships between objects in the
database. By analysing the relationship data, secondary
objects related to primary objects returned in response a
query can be 1dentified and brought 1nto a cache. Subsequent
queries (which are likely to require access to the secondary
objects 1n order to be resolved) are then speeded up.

The present mnvention may be embodied 1n many different
ways. For example, the embodiment described above may be
altered 1n one or more of the ways listed below to provide an
alternative embodiment of the present invention (this list 1s by
no means exhaustive):

1) although the first embodiment shows personal computers
connected to the server by the Internet, other embodiments of
the invention could use set-top boxes instead of the comput-
ers, the resulting video being shown on an associated televi-
s10n set. It 15 also possible to use televisions having the func-
tionality of such a set-top box built in. Instead of the Internet,
other networks such as cable television networks, satellite or
terrestrial wireless networks could be used;

11) the constraints section 1n the template might be variable by
the user—for example, a user could be provided with a
graphical user interface in which he can select the duration of
the media article he wishes to see. A corresponding value can
then be added to the template object by the template populator
program;

111) an object-oriented database 1s used 1n the above embodi-
ment—other embodiments of the present invention could use
a relational database. In such embodiments, the relationship
data indicating semantically related data items could be
stored 1n a separate table, the connections between records 1n
the database and a record 1n another table listing one or more
semantically-related data items being made using primary
and secondary keys to indicate the association between the
two tables. In such a case, the metadata shown in FIG. 3 could
be stored as one or more records 1n respective tables;

1v) 1n the above embodiment, the ObjectStore client program
runs on the server computer. In alternative embodiments, the
ObjectStore client could be run on the client computers
instead. In that case, the caching would be even more benefi-
cial since the taken to send a request and response across the
Internet would be saved each time a relevant data item was
found 1n the memory of the client computer.

The mvention claimed 1s:

1. A computer system comprising:

1) one or more data processors;

11) persistent storage memory operatively connectable to
said one or more data processors, said persistent storage
memory storing a plurality of media file metadata items,
one or more of said media file metadata items containing
reference(s) to one or more other media file metadata
items, where the one or more of said media file metadata
items containing the reference(s) 1s about a media file
which encodes content that has been judged by an editor

US 8,037,105 B2

13

to be semantically-related to the content encoded by the
media file(s) associated with the media file metadata
item(s) to which the reference(s) refer;

111) volatile memory, operatively connectable to said one or
more data processors, for storing one or more of said
media file metadata 1items;

1v) database management system soltware executable by
said one or more data processors to respond to a query by
passing media file metadata 1tems meeting one or more
criteria specified in said query from said persistent stor-
age memory to said volatile memory;

v) querying code executable by said one or more data
processors to pass a query to said database management
system software;

v1) pre-fetching code executable by said one or more data
processors to:

a) analyse response media file metadata items provided in
response to said query to find said reference(s) to one or
more related media file metadata 1tems; and

b) use said reference(s) to automatically generate another
query for said related media file metadata 1tems.

2. The computer system according to claim 1 comprising a
client computer and a server computer, each having at least
one of said processors, said server computer having control
over said persistent memory and said client computer having
control over said volatile memory.

3. The computer system according to claim 2 wherein said
media file metadata 1tems are transferred 1n the form of pages
of memory.

4. The computer system according to claim 2 1n which said
server computer resolves said query and sends the selected
media file metadata 1tems to said client computer.

5. The computer system according to claim 2 1n which said
server computer sends said media file metadata items to said
client computer and said client computer resolves said query.

6. The computer system according to claim 1 wherein said
media file metadata 1tems are soltware objects.

5

10

15

20

25

30

35

14

7. A method of operating a computer system comprising a
processor and first and second data stores accessible to said
processor, access by said processor to data held 1n said first
store being quicker than access to said second store, said
method comprising:

storing a plurality of media file metadata i1tems 1n said
second data store, together with relationship data com-
prising reference(s) to one or more related media file
metadata 1tems where one or more of the plurality of
media file metadata 1tems stored together with relation-
ship data comprising the reference(s) 1s about a media
file which encodes content that has been judged by an
editor to be semantically-related to the content encoded
by the media file(s) associated with the media file meta-
data item(s) to which the reference(s) refer; and

executing a process on said processor to:

1) fetch one or more media file metadata 1tems from said
second store together with said relationship data includ-
ing said reference(s) to one or more related media file
metadata 1tems;:

11) responsive to receipt of said relationship data, use said
reference(s) to fetch one or more of said related media
file metadata items from said second memory to said
first memory; and

111) check, on subsequent requests for a media file metadata
item, whether said requested media file metadata item 1s
present 1n said first store and read said media file meta-
data 1tem from said first store 1f found.

8. A method according to claim 7 in which said media file
metadata 1tems comprise an identifier of a media file and
metadata representing what 1s portrayed by said i1dentified
media file.

9. A method according to claim 7 in which said second
store holds a database.

	Front Page
	Drawings
	Specification
	Claims

