United States Patent

US008036384B2

(12) (10) Patent No.: US 8.036,384 B2
Zick et al. 45) Date of Patent: Oct. 11, 2011
(54) ENHANCED SHARED SECRET ga}?g,ggﬂl’ i * ggggg B&?CS et élll ********************** 726/9
,, ,, elis et al.
PROVISIONING PROTOCOL 6,141,752 A * 10/2000 Dancsetal. 713/172
6,169,893 Bl 1/2001 Shah t al.
(75) Inventors: Donald A. Zick, Saline, MI (US); 6.442.616 Bl 2/2007 Inou: eeltl :l‘a
Michael J. Klein, Ann Arbor, MI (US); 6,483,920 B2 11/2002 Pinkas
Robert G. Moskowitz, Oak Park, MI 6,574,609 B1* 6/2003 Downs etal. ... 705/50
(US) 6,591,364 Bl 7/2003 Patel
6,090,659 Bl 2/2004 Ahmed et al.
6,782,200 B2 8/2004 Nakakita et al.
(73) Assignee: Microsoft Corporation, Redmond, WA 6,826.401 Bl 11/2004 Mowailaete al
(US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35 - 0754317 /1087
U.S.C. 154(b) by 433 days. _
(Continued)
(21) Appl. No.: 12/168,430
OTHER PUBLICATIONS
(22) Filed: Jul. 7, 2008 CDMA 1XRTT Security Overview, by C. Wingert and M. Naidu,
Aug, 2002.
(65) Prior Publication Data :
Continued
US 2009/0169006 A1 Jul. 2, 2009 (Contintied)
Related U.S. Anolication Dat Primary Examiner — Farid Homayounmehr
elated U.S. Application Data
(62) Daivision of application No. 10/625,846, filed on Jul. (57) ABSTRACT
24, 2003, now Pat. No. 7,398,550. An Enhanced Shared Secret Provisioning Protocol (ESSPP)
provides a novel method and system for adding devices to a
(1) Int. CI. network 1n a secure manner. A registration process 1s
HO4K 1/00 (2006.01) launched at two network devices together within a predeter-
(52) U-S- Cl- .. 380/255; 380/277 mined time intewal. These two devices then automatically
(58) Field of Classification Search 380/255 regis‘[er with each other. When two devices running ESSPP
See application file for complete search history. detect each other, they exchange identities and establish a key
_ that can later be used by the devices to mutually authenticate
(56) References Cited cach other and generate session encryption keys. With

U.S. PATENT DOCUMENTS

ESSPP, two ESSPP devices that are attempting to register
with each other will only provision a key when they detect

3,937,474 A 7/1996 Brown et al. that they are the only two ESSPP devices on the wireless
0,625,838 A 4/1997 Ruther et al. network running ESSPP. If additional devices running ESSPP
5,778,316 A % 7/1998 Perssonetal. 455/434 are detected. the ESSPP protocol 1s either terminated or sus-
5,978,669 A 11/1999 Sanmugam ? P
6.078.811 A * 6/2000 Lin et al. wooeovoeoiinr. 455/433 pended.
6,088,451 A * 7/2000 Heetal.oooiiil 726/8
6,088,457 A * 7/2000 Parkinsonetal. ... 380/270 14 Claims, 3 Drawing Sheets
10
« - /
Wircless Wireless Other
N:t.l.vnrk A A Access Network
Device #1 Point #1 Services
- / 20 24
Wireless A Virtual
Netwark Private
Device #2 Network
14 26
Wireless éﬂ v A Wireless e
Netlmrk / Acceoss 28 ﬁ
Device #n Point #m
16 2
32 /
Wireless A
Network O
Device #nt+1
18

30

US 8,036,384 B2
Page 2

U.S. PATENT DOCUMENTS

6,934,838 Bl 8/2005 Boyce et al.
6,973,581 B2 12/2005 Chung et al.
7,152,238 Bl 12/2006 Leung et al.
7,203,315 B1* 4/2007 Livesayccoooevriinnnnn, 380/255
7,324,805 B2 1/2008 Nakakita et al.
7,398,550 B2* 7/2008 Zicketal. 726/5
7,409,543 B1* 8/2008 Bjornccoeieeeiiinnnn, 713/155
7.434,054 B2* 10/2008 Zick ..ccoovvvviiiiiiiniinnin, 713/171
7,480,934 B2 1/2009 Chan et al.
7,529,935 B2 5/2009 Saito et al.
7,610,619 B2 10/2009 Kastelewicz et al.
7,631,193 B1 12/2009 Hoffman
7,941,833 B2* 5/2011 Zicketal. 726/5
2002/0012433 Al 1/2002 Haverinen et al.
2002/0152405 A 10/2002 Colvin
2003/0129979 Al 7/2003 Cooper
2004/0010713 Al1* 1/2004 Vollbrechtetal. 713/201
2004/0054893 Al 3/2004 Ellis
2004/0203773 A 10/2004 Balasubramanian et al.
2005/0102517 A 5/2005 Paddon et al.
2008/0196092 A 8/2008 Benschop et al.

FOREIGN PATENT DOCUMENTS

EP 1117271 11/2000
WO 00/72499 5/2000
OTHER PUBLICATIONS

XP-002296898, “Shared Secret Provisioning Protocol,” by R.

Moskowitz, ICSA Labs, Jan. 2003, pp. 1-6.

L. Blunk, et al., PPP Extensible Authentication Protocol (EAP),
Network Working Group Request for Comments, Mar. 1, 1998 (XP-
002239395).

B. Aboba, etal., “EAP GSS Authentication Protocol”, Internet-Draft,
<draft-aboba-pppext-ecapgss-12.txt>, http://www.ietf.org/1etl/ 11d-
abstracts.html, The Internet Society, Apr. 2002.

H. Haverinen, “EAP SIM Authentication”, Internet-Draft, <draft-
haverinen-pppext-eap-sim-04.txt>, http://www.ietf.org/1ett/ 11d-ab-
stracts.html, The Internet Society, Jun. 2002.

J. Arkko, et al., “EAP AKA Authentication,” Internet-Draft, <draft-
arkko-pppext-eap-aka-03.txt>, http://www.ietf.org/1ett/ 11d-ab-
stracts.html, The Internet Society, Feb. 2002.

H. Anderson, et al., “Protected EAP Protocol (PEAP)”, Internet-
Draft, <draft-josefsson-pppext-eap-tis-eap-02.txt>, http://www.1etf.
org/iett/ lid-abstracts.html, The Internet Society, Feb. 2002.

B. Aboba, et al., “The EAP Keying Problem”, Internet-Draft, <draft-
aboba-pppext-key-problem-01.txt>, http://www.ietf.org/1etl/11d-ab-
stracts.html, The Internet Society, Feb. 2002.

G. Tsirtsis, “EAP over ICMP”, Internet-Draft, <draft-tsirtsis-eap-

over-icmp-00.txt>, http://www.ietf.org/1etl/11d-abstracts.html, The
Internet Society, Jan. 2002.

S. Josefsson, “The EAP SecrID® Mechanism™, Internet-Draft,
<draft-josefsson-eap-securid>, http://www.ietf.org/iett/ 11d-ab-
stracts.html, The Internet Society, Jan. 2002.

D. Potter et al., “PPP EAP MS-CHAP-V?2 Authentication Protocol”,
Internet-Draft, <draft-dpotter-pppext-eap-mschap-01.txt>, http://
www.letl.org/1etf/ 11d-abstracts. html, The Internet Society, Jan. 2002.

B. Aboba, “EAP IANA Considerations”, Internet-Draft, <draft-
aboba-pppext.eap-1ana-01.txt>, http://www.1etf.org/iett/11d-ab-
stracts.html, The Internet Society, Feb. 2002.

B. Aboba, “The Vendor-Specific EAP Method”, Internet Draft,
<draft-aboba-pppext.cap-vendor-01.txt>, http://www.ietf.org/1ett/
lid-abstracts. html, The Internet Society, Feb. 2002.

P. Engelstad, “EAP over UDP (EAPoUDP)”, Internet-Draft, <draft-
engelstad-pana-eap-over-udp-00.txt>, http://www.1etf.org/1etl/ 11d-
abstracts.html, The Internet Society, Feb. 2002.

B. Aboba et al, “RADIUS Support for Extensible Authentication
Protocol (EAP)”, Internet-Draft, <draft-aboba-radius-rfc2869bis-
02.txt>, http://www.1etf.org/ietl/ 11d-abstracts. html, The Internet
Society, May 2002.

B. Payne, “Extensible Authentication Protocol State Machine”,
Internet-Draft, <draft-payne-eap-sm-00.txt>, http://www.1etl.org/
iett/ 1id-abstracts.html, The Internet Society, May 2002.

P. Funk et al., “EAP Tunneled TLS Authentication Protocol (EAP-

TTLS)”, Internet-Draft, <draft-ietf-pppext-eap-ttls-01.txt>, http://
www.letf.org/iett/ 11d-abstracts.html, The Internet Society, Aug.

L. Blunk, et al., “Extensible Authentication Protocol (EAP)”,
Internet-Draft, <draft-iet-pppext-ric2284bis-04.txt>, http://www.
ietf.org/1ett/ 11d-abstracts . html, The Internet Society, Apr. 2002.

W. Simpson, “The Point-to-Point Protocol (PPP)”, Network Working
Group, Jul. 1994,

L. Blunk et al., “PPP Extensible Authentication Protocol (EAP)”,
Network Working Group, Mar. 1998.

B. Aboba et al., “PPP EAP TLS Authentication Protocol”, Network
Working Group, Oct. 1999,

* cited by examiner

US 8,036,384 B2

Sheet 1 of 3

Oct. 11, 2011

U.S. Patent

0t

L

8¢

RETN TS
uonEINUAINY

9¢
NI0MION
D1BALL]

[erju A

C
g JUEOJ

55900y
SSO[II

¥C
SIDIALIG

NIOMIAN
U0

01

0¢
14 ulod
$SS320VY
SSO[II A

81
[4-Ug 3010
JI0MIIN
SSOJAIIM

m —
Ol
U 991AS(T

\/ \/ | momn
» b @ SSa[lIM

L

21
ZH# 901A3(Q
JIOMISN
SSOIaII M

4]
[# 991A3(
SHOMION
SSA[IIM

US 8,036,384 B2

Sheet 2 of 3

Oct. 11, 2011

U.S. Patent

0

3

ct

8T
IOAIDS
UONEINUSYINY

9z

NI0MISN
O1BALL]

[enp

¥
SIOIAISG
IOMISN
BP0

01

¢ DIA

81
[-+U3# 331A3(Q
AIOMION

SSO[II M

C
Wi U104
SS90y
SEO[AII M

o1
Uj# 901A(0
MIOMION
SSSjOII M

vl
T# 99149
NI0MIIN
SSO[OII M

0c al
[# Ii0d [# 951A3(]
55390y SHOMION
SSOjaII M SS3AIM

U.S. Patent Oct. 11, 2011 Sheet 3 of 3 US 8,036,384 B2

US 8,036,384 B2

1

ENHANCED SHARED SECRET
PROVISIONING PROTOCOL

CROSS-REFERENC.

L1

This application 1s a divisional of U.S. patent application
Ser. No. 10/625,846, filed Jul. 24, 2003 and entitled
ENHANCED SHARED SECRET PROVISIONING PRO-
TOCOL, which claims priority to U.S. Provisional Applica-
tion Ser. No. 60/479,176, filed Jun. 18, 2003, the entirety of

which 1s incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to the field of secure network
registration processes that allow two network devices to reg-
ister with each other, and more particularly to a registration

process where two devices learn each other’s 1dentities and
establish a shared key that can later be used by the devices to
mutually authenticate each other and to generate session
encryption keys.

BACKGROUND OF THE INVENTION

The protection of information and secrets over a network
requires the use of secure methods to add new devices to the
network. It 1s possible to breach network security and gain
access to network information and secrets through interfering
with the registration process of devices with the network. One
method of interfering with the registration of network devices
1s through interjecting an imposter device into the registration
process. If this imposter device can successiully pose as the
legitimate device during the registration process, then 1t 1s
possible for the imposter device to register with the network
and masquerade as the legitimate device. As a result, the
imposter device can gain access to the information and secrets
stored on the network. It 1s therefore desirable to develop
methods and systems that can provide a secure method for
registering a device with a network.

A variety of methods and systems are known to facilitate
communications between two devices. One such protocol 1s
the Ditfie-Hellman key agreement protocol. The Diffie-Hell-
man key agreement protocol (also called exponential key
agreement) was developed by Ditlie and Hellman 1n 1976 and
published 1n the paper “New Directions in Cryptography.”
The protocol allows two users to exchange a secret key over
an msecure medium without any prior secrets. The protocol
has two system parameters p and g. They are both public and
may be used by all the users 1n a system. Parameter p 1s a
prime number and parameter g (usually called a generator) 1s
an integer less than p, which 1s capable of generating every
clement from 1 to p—1 when multiplied by itself a certain
number of times, modulo the prime p. The protocol depends
on the discrete logarithm problem for 1ts security. It assumes
that 1t 1s computationally infeasible to calculate the shared
secret key k=g¢“” mod p given the two public values g% mod p
and g” mod p when the prime p is sufficiently large. Breaking
the Ditlie-Hellman protocol 1s equivalent to computing dis-
crete logarithms under certain assumptions.

Another system 1s the Point-to-Point Protocol (PPP)
Extensible Authentication Protocol (EAP). EAP 1s a general
system for PPP authentication that 1s compatible with a vari-
ety of authentication mechanisms. EAP does not select a
specific authentication mechanism at a Link Control Phase,
but rather postpones this selection until an Authentication
Phase. This postponement enables the authenticator to
request more information prior to determining the specific

10

15

20

25

30

35

40

45

50

55

60

65

2

authentication mechanism. In addition, this postponement
also enables the use of a “back-end” server that actually

implements the various mechanisms while the PPP authent-
cator merely passes through the authentication exchange.

RSA 1s yet another protocol system that provides an algo-
rithm for public key cryptography. The “key” of an RSA
cipher has three numbers: the first 1s the public exponent, the
second 1s the private exponent, and the third 1s the modulus.
The public key 1s formed from the public exponent and the
modulus. The private key 1s formed from the private exponent
and modulus. If two devices are to engage 1 encrypted com-
munications, they each generate a pair of keys. These devices
then may exchange public keys using a non-secure commu-
nications channel. Thereafter, when the devices engage in
encrypted communications, one device can encrypt the mes-
sage using the other devices” public key and send it via a
non-secure channel. Since the private keys are not exchanged,
decryption by an eves dropper proves diflicult.

Consider the case of a wireless network with an access
point in indrastructure mode. Suppose a user buys a wireless
printer and wants to connect the printer to the network. If
Wi-F1 Protected Access (WPA) 1s enabled on the access point,
the user has a variety of options for setting up a secure con-
nection between the access point and printer:

The user can 1nstall an 802.11 pre-shared key on the access
point and on the printer. Note that pre-shared keys are not
device-specific. Also, multiple devices may utilize the same
pre-shared key to connect to an access point. Alternatively, 1T
the access point 1s a client to a Remote Authentication Dial in
User Server (RADIUS), or includes the capabilities of a
RADIUS server, the printer name and credentials can be
added to the RADIUS server database. A RADIUS server 1s
used to authenticate and return parameters including the users
IP address, gateway, and DNS server. The printer credentials
must also be 1nstalled on the printer. The credentials may be
a password, key, or certificate. The RADIUS server and
printer are also configured to perform the same type of EAP
authentication, with the printer acting as the supplicant.

SUMMARY OF THE INVENTION

The present invention i1s for an Enhanced Shared Secret
Provisioning Protocol (ESSPP). ESSPP provides a novel
method and system for adding devices to a network 1n a secure
manner. With ESSPP, two network devices that are attempt-
ing to register with each other and establish a secure commu-
nications link are both provided with a mechanism for starting,
ESSPP. Examples of these network devices include servers,
wireless printers, wireless computers, and network access
points. The mechanism may be to select a button located on
the device that triggers the ESSPP process, a menu selection
provided 1n a Graphical User Interface (GUI) shown on a
display provided with the device, or to enter a code on a
terminal of the device. When, for example, two devices such
as the printer and access point run ESSPP at the same time, the
two devices automatically register with each other. The
ESSPP process allows for registration of network devices
without the need to manually 1nstall encrypted keys, pass-
words, or certificates to add the device to the network.

When a device runs ESSPP, 1t searches for another device
running ESSPP. When two devices runming ESSPP detect
cach other they exchange 1dentities and establish a key that
can later be used by the devices to mutually authenticate each
other and generate session encryption keys. In a wireless
network, the established key can be used as a pre-shared key
or 1t can be used for 802.1x authentication using an Extensible
Authentication Protocol (EAP).

US 8,036,384 B2

3

Different techniques are utilized to protect against imntruder
devices. A Shared Secret Provisioning Protocol (SSPP) 1s
used to establish credentials. SSPP 1s structured such that 1t 1s
resistant to passive attacks. Additional methods are used to
protect against active man-in-the-middle attacks. SSPP is a
preferred system for establishing credentials, other types of
key exchanges function with ESSPP. For example, an RSA-
style key exchange 1s compatible with ESSPP.

With ESSPP, two ESSPP devices that are attempting to
register with each other will only provision a key when they
detect that they are the only two ESSPP devices on the wire-
less network running ESSPP. If additional devices running
ESSPP are detected, the ESSPP protocol 1s either terminated
or suspended.

The ESSPP process 1s initiated when two network devices
launch ESSPP within a predetermined time interval of each
other. Specifically, when ESSPP i1s launched at one network
device through the pressing of a button or selection of a menu
option, there 1s a window of time during which ESSPP can be
launched at the second network device. If ESSPP 1s not
launched within this window of time at the second device,
then the ESSPP process terminates. Through providing this
temporal requirement that ESSPP launch within a predeter-
mined time interval at both devices, the security of the regis-
tration process 1s enhanced.

In addition, 1n an alternative embodiment, an ESSPP sup-
plicant device may be labeled with a short PIN. The user 1s
required to enter the PIN on the authenticating device for
ESSPP to succeed, thereby providing additional security. In
another embodiment, a short PIN may be entered at both
devices when ESSPP 1s run. The user selects a unique PIN
that need not be remembered.

ESSPP allows for automatic registration of two devices
through a process where each device learns the other’s 1den-
tity and learns that the devices are allowed to communicate
with each other. In addition, ESSPP 1s a button, or menu
activated process that does not require a user to manually
enter passwords, or install credential files, or certificates.
ESSPP provides an optional PIN code support, thereby pro-
viding added security in some network environments. The
short PIN 1s used once to establish strong password creden-
tials.

ESSPP also provides protection from passive and active
attacks during the protocol exchange. ESSPP utilizes genera-
tion of a shared key that can be used to secure the connection
between the two devices. There 1s also an optional generation
of pseudonyms that can be used by the devices to 1dentily
cach other during EAP authentication without revealing their
true 1dentities on the network.

ESSPP also provides for an optional anonymous registra-
tion that allows two devices to run ESSPP without revealing
their identities on the network. ESSPP 1s an efficient mecha-
nism for changing a shared key once the key 1s established.
Cancellation of a registration 1s provided for by ESSPP 1f a
device detects more than one other device 1n ESSPP mode.
Further, ESSPP supports methods for authenticating using

established credentials.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s further described 1n the detailed
description which follows, 1n reference to the noted drawings

(Xs, Ys)
(Xc, Yc)
.9, g)
AddressS
NonceS

5

10

15

20

25

30

35

40

45

50

55

4

by way of non-limiting examples of certain embodiments of
the present invention, in which like numerals represent like
clements throughout the several views of the drawings, and
wherein:

FIG. 1 illustrates a Wi-F1 network that supports ESSPP 1n
accordance with a preferred embodiment of the present
invention;

FIG. 2 illustrates a “man-in-the-middle” attack on a Wi-F1
network that supports ESSPP in accordance with a preferred
embodiment of the present invention; and

FIG. 3 illustrates a block diagram of an authentication
server and a network device in accordance with a preferred
embodiment of the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The particulars shown here are by way of example and for
purposes of 1llustrative discussion of the embodiments of the
present invention only and are presented 1n the cause of pro-
viding what 1s believed to be the most useful and readily
understood description of the principles and conceptual
aspects of the present invention. In this regard, no attempt 1s
made to show structural details of the present mvention in
more detail than 1s necessary for the fundamental understand-
ing of the present invention, the description taken with the
drawings making apparent to those skilled in the art how the
several forms of the present invention may be embodied 1n
practice.

A novel method and system for registering devices with a
network 1n a secure manner 1s provided through an Enhanced
Secure Shared Provisioning Protocol (ESSPP). With ESSPP,
two network devices that are attempting to register with each
other and establish a secure communications link are both
provided with a mechanism for starting ESSPP. In order to
launch the ESSPP registration process, these mechanisms are
activated together within a predetermined time interval. If
both of these devices do not launch ESSPP together within
this predetermined time interval, the ESSPP registration pro-
tocol does not begin. When launched at both devices within
the predetermined time interval, ESSPP enables a secure
registration process for the two network devices. Through
requiring that these mechanisms for launching ESSPP are
activated within the predetermined time interval, the prob-
ability that a third device would intrude upon the registration
of the two devices 1s reduced.

A preterred general process flow for ESSPP 1s provided 1n
protocol tlow 1 below. Alternative process flows for ESSPP
are provided i protocol flows 2-7 and 9-10. Protocol flow 8
illustrates how credentials established by other flows can be
used for authentication. The mathematical terminology used

for the purposes of describing the ESSPP process flows 1s
documented in the Internet Engineering Task Force (IETF)
Internet Draft “draft-moskowitz-shared-secret-provprotocol-
01.txt”. This IETF document describes a Shared Secret Pro-
visionming Protocol. Where possible, the same notation used in

SSPP 1s used here.

Server’s Diffie-Hellman static key pair

Client’s Diffie-Hellman static key pair

Diffie-Hellman domain parameters, known by Server and Client before exchange
Server’s address

Random number generated by Server used in the exchange

US 8,036,384 B2

~
-continued
AddressC Client’s address
NonceC Random number generated by Client used in the exchange
/s Diffie-Hellman generated shared secret (YSAXD mod p) or ((Y ¢ Xs mod p)
kdf Key Derivation Function specified in SSPP
k Shared key generated by Client and Server as:
kdf(Zs, AddressC, AddressS, keydatalen, hashlen, NonceC, NonceS)
PIN Short password - typically a 4 digit number
proofS A hash generated by Server to prove he knows Zs. Calculated as:
LTRUN96(HMAC-SHA1(Zs, (Yc||AddressC|NonceC[||[PIN])))
The PIN may optionally be included in the hash. LTRUN96 performs a
left truncation, returning the left most 96 bits of data.
proofC A hash generated by Client to prove she knows Zs. Calculated as:
LTRUN96(HMAC-SHA1(Zs, (AddressC|[NonceC[||PIN])))
The PIN may optionally be included in the hash.
Base64Encode() A function that converts binary data into displayable text characters
pseudonymsS Pseudonym for Server
pseudonymC Pseudonym for Client

Protocol Flow 1

Protocol tlow 1 illustrates ESSPP 1n 1ts simplest form. Two
network devices, such as a server and client, exchange
addresses and public keys. Both of these devices derive
shared key k that they can later use to authenticate each other.

Server Client

1. Start ESSPP
2. Generate NonceS and send message

1. Start ESSPP

(1,9,2), Ys, AddressS, NonceS

o

3. Validate parameters as
required by SSPP, generate
NonceC, Zs, prooiC, and send
message

- Yc, AddressC, NonceC, proofC

4. Generate Zs, validate prooiC,
generate proofS and send message

proofd

5. Validate proofS

6. Generate shared key k

7. Store Server’s address and
shared key k

8. Detect other devices running
ESSPP throughout previous
steps and for an additional
wait period

9. Stop ESSPP

6. Generate shared key k
7. Store Client’s address and

shared key k

8. Detect other devices running
ESSPP throughout previous steps
and for an additional wait period

9. Stop ESSPP

Once shared key k has been established, Server and Client
can authenticate each other using the shared key k as the
hidden credential.

Referring to step 1 of protocol tflow 1 illustrated above, the
server and the client start ESSPP within a predetermined time
interval of one another. ESSPP 1s launched i step 1 through
an activation of a mechanism that 1s located on both the server
and the client. Requiring that ESSPP launch at both network
devices within the predetermined time interval reduces the
ability of a third network device to intrude and interfere with
the ESSPP registration process. This mechanism may be
referred to as a trigger, or a simultaneous registration trigger.
The actual mechanism on the device can take the form of a
button, a menu selection, or other triggering device.

The predetermined time 1interval has a length that can be set
depending upon the application and network environment.

20

25

30

35

40

45

50

55

60

65

Predetermined time intervals on the order of seconds may be
appropriate where there 1s one operator who can trigger each
ESSPP launch mechanism supported on each network device.
However, where there 1s one operator who has to trigger both
network device mechanisms on devices that are on different
tfloors of a building, the predetermined time interval may have
a length on the order of minutes.

In step 1, the server and the client broadcast a set of regis-
tration protocol startup messages to each other in an exchange
in order to initiate the ESSPP between the two devices. These
startup messages are an mitial “handshake” between the two
network devices that enable the implementation of ESSPP.
For instance, these mnitial start up messages may include a
wireless network device searching for the location of access
points on a network.

In steps 2, 3, 4, and 5, information 1s exchanged and veri-
fied between the two network devices to facilitate generation
of a shared key k in step 6. In step 2, nonceS 1s generated and
a message sent from the server to the client. In step 3, the
parameters sent in the message of step 2 are validated as
required by SSPP by the client. NonceC, Zs, and prooiC are
then generated by the client and sent via message to the server.
The values Zs and proois are generated in step 4. Also 1n step
4, prooiC 1s validated and proof S 1s sent via a message to the
client. In step 35, the client validates prooiS. Generation of
shared key k enables encrypted communications between the
server and the client. This shared key k along with the address
1s then stored within a database 1n step 7.

During the entire process, a monitoring system 1s provided
on both network devices to detect ESSPP communications
from a third device that 1s attempting to intrude and interfere
in the ESSPP process running between the server and the
client as noted 1n step 8. If and when these ESSPP commu-
nications from a third device are detected, in a preferred
embodiment the ESSPP process 1s terminated. The ESSPP
process 1s then not restarted until such time as the process 1s
reset and the trigger mechanisms on both devices reactivated.
Alternatively, with detection of ESSPP communications from
the third device, the process may be suspended for such a time
and then reinitiated at the same or a previous step at a later
time period.

ESSPP messages that are detected by the monitoring sys-
tem are messages that have a format in accordance with the
ESSPP process as outlined above. This format 1s detected
through looking at the structure of the message to determine
if 1t contains ESSPP information as outlined above.

If no such ESSPP communications are detected from the
third device, the process flows to step 9 where ESSPP process
1s completed and stops. When ESSPP 1s completed and stops

US 8,036,384 B2

7

in step 9, the registration process 1s complete and a registra-
tion has been established between the server and the client,
thereby enabling secure communications between them
while avoiding potential man 1n the middle attacks. In a
preferred embodiment, the protocol flow of flow 1 utilizes a
Diffie-Hellman key exchange process.

Protecting Against Man-in-the-Middle Attacks

Alice Carol Bob

i e il -

Conversation encrypted Conversation encrypted

using k1 using k2

A man-in-the-middle attack would allow an i1mposter

Carol between Alice and Bob. When Alice thinks she 1s talk-
ing to Bob, she 1n fact 1s talking to Carol, and when Bob thinks
he 1s talking to Alice, he 1n fact 1s talking to Carol. The
man-in-the middle attack allows Carol to establish a shared
key k1 with Alice and a shared key k2 with Bob. Carol can
decipher all traific between Alice and Bob and can modily
messages 1n the conversation.

The SSPP draft points out the need to protect against man-
in-the-middle attacks. ESSPP provides a new approach for
protecting against a man-in-the-middle attack that 1s less
burdensome on users than prior art. To protect against a man-
in-the-middle attack, only two devices on the network are
allowed to run ESSPP at a time. If either the Client or Server
receives ESSPP messages from more than one device, the
protocol exchange will fail. Client and Server devices keep
listening for ESSPP messages for a period of time after a
successiul registration, trying to detect any other device run-
ning ESSPP. IT a third device 1s detected running ESSPP after
a successiul registration, the detecting device destroys its
copy ol the generated shared key and attempts to inform the
device 1t registered with that the registration has been dis-
carded. This approach is appropriate on networks where 1t 1s
not feasible for an attacking device to disrupt trailic between
two devices without detection.

Protocol Flow 2

Protocol flow 2 1s an alternative flow that illustrates how a
PIN can be used with ESSPP. This 1s useful when ESSPP 1s
run on networks where 1t 1s feasible for an attacker to disrupt
communications between a Server and Client without detec-

tion. The use of a PIN provides additional security to the
ESSPP process.

Server Client

1. Start ESSPP, entering a PIN.
Use the same PIN that 1s
entered at the Client device or
that 1s PIN pre-programmed nto
the Client device.

1. Start ESSPP, enteringa PIN on a
keypad if necessary, or using a PIN
pre-programmed into the Client
device. A pre-programmed PIN
should appear on a label on the
Client device.

2. Generate NonceS and
send message

(1,q,2), Ys, AddressS, NonceS

3. Validate parameters as required
by SSPP, generate NonceC, Zs,

proofC. Include PIN in the
calculation of proofC. Send message.

10

15

20

25

30

35

40

45

50

55

60

65

8

-continued

Server Client

Y, AddressC, NoneC, proofC

~af

4. Generate Zs, validate prooiC,
generate proofs. Include PIN in
the calculation of proofs.

Send message

proofd

5. Validate proofS

6. Generate shared key k

7. Store Server’s address and
shared key k

8. Detect other devices running
ESSPP throughout previous steps
and for an additional wait period

6. Generate shared key k
7. Store Client’s address
and shared key k

8. Detect other devices
throughout previous steps
and for an additional
wait period

9. Stop ESSPP 9. Stop ESSPP

If a device 1s able to disrupt communications between the
Server and Client without detection, the device still has a very
low probability of being able to mount a successiul man-in-
the-middle attack. A successiul man-in-the-middle attack
would require an attacking device to guess the PIN 1n a single
try during the protocol exchange. Referring to step 1 of pro-
tocol flow 2, the PIN number entered at the server and the

client 1s 1ncluded 1n the calculations of proofC and prooiS.
Theretore, the PIN number 1s utilized once in the ESSPP

process. As a result, an attacking device has a single oppor-
tunity to correctly guess the PIN number, thereby providing
enhanced security for the ESSPP process.

Referring to step 1 of protocol flow 2 illustrated above, the
server and the client start ESSPP within a predetermined time
interval of one another. Server and client start ESSPP when
registration triggers are activated on both server and client
together within the predetermined time interval. In step 1, the
server and the client broadcast a set of registration protocol
startup messages to each other in an exchange 1n order to
initiate the ESSPP between the two devices.

Note that as with protocol 1, the detection or monitoring of
ESSPP communications from a third network device as 1llus-
trated 1n step 8 runs throughout the entire ESSPP process. As
a result, for istance, the monitoring systems on the server
and client will listen for a second message transmitted 1n steps
2, 3, or 4. For example, 1f two proofs messages are recerved
from the client i step 4, then a third network device is
participating 1 the ESSPP registration. As a result, the
ESSPP process will terminate without completing the regis-
tration between the two network devices.

Note that steps 3 and 4 differ from protocol flow 1 1n that
the PIN number 1s used to generate prooiC and proofs. Pro-
tocol flow 2 1s implemented utilizing a Diffie-Hellman key
exchange process.

Protocol Flow 3

Protocol flow 3 illustrates an alternative embodiment of
ESSPP that 1s similar to the preferred embodiment illustrated
in flow 1, but 1n this alternative embodiment pseudonyms are
derived. The pseudonyms can be used by the Server and
Client to 1identity each other on the network without revealing
their true 1dentities.

Flows 1 and 2 dealt with device addresses, but 1n this flow
cach device also has an associated i1dentity. The i1dentity 1s
sent 1n the clear during the ESSPP protocol exchange. The
generated pseudonyms can be used by the devices to 1identily
cach other once the ESSPP protocol exchange completes.

US 8,036,384 B2

Server Client

1. Start ESSPP
2. Generate NonceS and send message

1. Start ESSPP

(p,q,g), Ys, AddressS, NonceS, "Alice"”

Jin--

10

3. Validate parameters as required
by SSPP, generate NonceC, Zs,

proofC, and send message

Yc, AddressC, NonceC, proofC, "Bob”
-=aif

4. Generate Zs, validate prooiC,
generate proofS and send message

proofd
-

5. Validate proofS
6. Generate shared key k 6. Generate shared key k
7. Use kdf() to generate pseudonymC
8. pseudonymC = Base64Encode(pseudonymC)
9. Store Client’s address and shared key k
along with pseudonymC
10. Detect other devices running ESSPP
throughout previous steps and for an

additional wait period
11. Stop ESSPP

along with pseudonyms$S

additional wait period
11. Stop ESSPP

In step 7, a key dertvation function 1s used to generate
pseudonyms. The Client and Server generate each other’s
pseudonyms and store them so that they can be used as an
index into the credential database. The Client and Server can
generate their own pseudonyms at any time, because their
own pseudonyms are not indexes into the credential database.

Referring to step 1 of protocol flow 3 1llustrated above, the
server and the client start ESSPP within a predetermined time
interval of one another. Server and client start ESSPP when
registration triggers are activated on both server and client
together within the predetermined time interval. In step 1, the
server and the client broadcast a set of registration protocol
startup messages to each other in an exchange in order to
initiate the ESSPP between the two devices.

In step 7, the key dertvation function kdf 1s used to generate
pseudonymC and pseudonymsS. Note however, that these
pseudonyms are merely random numbers. In step 8, ESSPP

Nerver

1. Start ESSPP

30

35

40

45

7. Use kdf() to generate pseudoynmsS
8. pseudonymsS = Base64Encode(pseudonyms)
9. Store Server’s address and shared key k

10. Detect other devices running ESSPP
throughout previous steps and for an

converts these random numbers into an i1dentifier for use on
the network through a Base64Encode. Base64Encode con-
verts the random number 1nto a display field character. In this
manner, 1t 1s then possible for the two network devices, client
and server, to 1dentily each other over the network through the
use of pseudonyms without having to reveal their true 1den-
tities.

Note that steps 2 and 3 of protocol flow 3, the network
devices reveal their 1dentities to each other. Protocol tlow 3 1s
implemented utilizing a Diffie-Hellman key exchange proto-
col.

Protocol Flow 4

Protocol tlow 4 1llustrates an alternative embodiment of the
ESSPP protocol tflow illustrated in flow 1. Protocol flow 4 1s
similar to flow 3, but 1n this case, the two network devices,
server and client, commonly referred to as Alice and Bob 1n
cryptographic parlance, do not reveal their identities during
the registration process.

Client

1. Start ESSPP

2. Generate NonceS and send message

(p,9,2), Ys, AddressS, NonceS

-

3. Validate parameters as required
by SSPP, generate NonceC, Zs,
proofC, and send message

- Yc, AddressC, NonceC, proofC

4. Generate Zs, validate prooiC,
generate proofS and send message

proofd

-

5. Validate proofS

11

US 8,036,384 B2
12

-continued

Server

6. Generate shared key k

7. Detect other devices running ESSPP.

Wait for delay period to ensure

there’s no man-in-the-middle making noise,
This 1s not necessary when a PIN 1s included
in the exchange.

8. Use kdi{) to derive encryption keys to encrypt
Server name and decrypt Client name

9. Use key from step 8 to encrypt Server name
into EncryptedAlice field

10. Send encrypted name

EncriptedAlice
-

EncryptedBob
il

12. Use key from step 8 to get “Bob”

from EncryptedBob

13. Use kdf{) to generate pseudonymC

14. pseudonymC = Base64Encode(pseudonymC)
15. Store Client’s address and shared key k
along with name “Bob” and pseudonymC

16. Stop ESSPP

Client

6. Generate shared key k

7. Detect other devices running ESSPP.

Wait for delay period to ensure

there’s no man-in-the-middle making noise.

This 1s not necessary when a PIN 1s included

in the exchange.

8. Use kdi{) to derive encryption keys to encrypt
Client name and decrypt Server name

9. Use key from step 8 to encrypt Client name
into EncryptedBob field

11. Send encrypted name

12. Use key from step 8 to get “Alice”

from EncryptedAlice

13. Use kdf{) to generate pseudoynm$S

14. pseudonymS = Base64Encode(pseudonymsS)
15. Store Server’s address and shared key k,
along with name “Alice” and pseudonymS

16. Stop ESSPP

Referring to step 1 of protocol tlow 4 1llustrated above, the Protocol Flow 5

server and the client start ESSPP within a predetermined time
interval of one another as with protocol flow 1. Server and 30
client start ESSPP when registration triggers are activated on
both server and client together within the predetermined time
interval. In step 1, the server and the client broadcast a set of

registration protocol startup messages to each other 1n an _ _ _
ISSPP between the two 1s exchange, with RSA encryption, one device has less work

exchange in order to initiate the |
devices.

Note that neither the server nor the client, “Alice” and
“Bob,” reveal their identities during the process of protocol
flow 4. The client and server only are able to 1dentify each
other through their respective pseudonyms that are generated 4

Protocol flow 5 uses a different key agreement protocol
than the ones used by protocol tlows 1-4. Instead of perform-
ing a Diffie-Hellman key exchange, RSA encryption 1s used.
Whereas the Diffie-Hellman key exchange requires the same
amount of work to be performed by both devices 1n the

than the other. One device randomly chooses a shared key k,
encrypts 1t, and sends 1t to the other device. The other device
decrypts the shared key k. RSA encryption 1s much faster than
RSA decryption; so slow devices can be given the task of
encrypting while faster devices can perform the decrypting.

in steps 13 and 14. Protocol flow 4 1s implemented utilizing a Belore the exchange begins, Alice generates or somehow

Ditfie-Hellman key exchange process.

acquires an RSA public/private key parr.

Alice Bob

1. Start ESSPP 1. Start ESSPP
2. (Generate NonceS

"Alice”, RSA public key (RA), Nonced
-

2. k = random number,

NonceC = random number,
encryptedK = K encrypted
usimmg RA, NonceS and NonceC
3. Send message

"Bob", encryptedK

i

3. k = decrypt(encryptedK) using RS A private key (Ra), NonceS, and NonceC

4. Store Bob’s name and shared key k; 4. Store Alice’s name and shared key k;

5. Detect other devices running ESSPP 5. Detect other devices running ESSPP
throughout previous steps and for an additional throughout previous steps and for an additional
wait period wait period

6. Stop ESSPP 6. Stop ESSPP

US 8,036,384 B2

13

There 1s a need to protect against a man-in-the-middle
attacks with protocol flow 5 due to the fact that the RSA
public key (RA) 1s not validated by a certificate authority.

A variety of enhancements can be made to protocol tlow 5
such that Alice and Bob prove to each other knowledge of k by
generating proot hashes similar to proois and proofC. A PIN
can also be included 1n the generated proot hashes to provide

protection from man-in-the-middle attacks on some types of
networks.

Reterring to step 1 of protocol tlow 5 illustrated above, the

server and the client start ESSPP within a predetermined time
interval of one another. Server and client start ESSPP when
registration triggers are activated on both server and client
together within the predetermined time 1nterval. In step 1, the

Supplicant Authenticator

1. Start ESSPP

2. Scan for access points 1n range
3. Associate with access point in range

14

server and the client broadcast a set of registration protocol
startup messages to each other in an exchange in order to
initiate the ESSPP between the two devices.

Protocol Flow 6

This tlow demonstrates how ESSPP can be performed 1n an
EAP message exchange on a wireless network. The Authen-
ticator runs on an access point device, and the Authentication
Server1s a RADIUS server that may or may not be running on
the access point device. The Authentication Server 1s man-
aged via a web interface. This web interface has menu selec-
tions that allow the Authentication Server to run ESSPP. The
supplicant 1n this case 1s a headless device that has a button to
press to start the execution of ESSPP.

Authentication Server

1. Start ESSPP

4. Send EAP-Identity Request

it

5. dend FEAP-Identity Response("ESSPP_REGISTERING_DEVICE")
-

EAP-Request/ESSPP containing (p.q.g), Ys,AddressS,NonceS
-~

7. Validate parameters as required by
SSPP, generate NonceC, Zs,
prooiC, and send message

EAP-Response/ESSPP containing Yc¢,AddressC,NonceC, proofC
-

EAP-Request/ESSPP containing proofd
-~

9. Validate proofS, generate shared key k,
and send response containing Client’s
name, optionally encrypted using a key
derrved from k

EAP-Response/ESSPP containing Client's name

-

EAP-Success

i

12. Store Server’s shared key k

13. Associate with another access point 1n range.
In this example there is a second access point
connected to the same Authentication Server.

6. Generate NonceS and send
message

8. Generate Zs, validate proofC,
generate proofS, generate shared
key k. and send message

10. Send EAP-Success

11. Use kdf{) to generate client
pseudonym that can later be used
for anonymous authentications
12. Store Client’s name,
pseudonym, and shared key k

14. send EAP-Identity Request

-~

15. dend EAP-Identity Response("ESSPP_REGISTERING DEVICE")
.

16. Generate challenge and send
message to determine if device

US 8,036,384 B2

15

16

-continued

Supplicant Authenticator

EAP-Request/ESSPP containing challenge

~:

17. Send EAP-Response/ESSPP
containing challenge response

hash(shared key k, challenge)

EAP-Response/ESSPP containing challenge response _

EAP-Success

--aaf

19. Repeat steps 13 through 15 for each access point

N range.

If the access point uses the same Authentication Server
as the one we previously registered with, steps 16
through 18 will be repeated.

If the access point uses a different Authentication Server
than the one previously registered with, supplicant

will recerve an EAP-Response/ESSPP message beginning
a new registration. In this case, either the previous
registration was with an imposter or the current
registration attempt i1s with an imposter. The supplicant
cannot tell who the imposter is, so the registered device
1s unregistered and sent an EAP Identity Response
message contamning “ESSPP_ REGISTRATION__
FAILED.”

20. Stop ESSPP, activating
new registration

Protocol flow 6 1llustrates how ESSPP can be deployed
without changing access point (Authenticator) firmware.
ESSPP 1s run between the supplicant and the authentication
SErver.

After the supplicant starts running ESSPP, 1n step 2 it scans
tor all access points 1n 1ts range. The supplicant will attempt
to register with each access point 1n range. If more than one
access point starts EAP-ESSPP to begin ESSPP registration
(not just to 1ssue a challenge), the supplicant will not activate
the registration for any device. This 1s to avert a potential
man-in-the-middle attack.

In step 5, the supplicant sends an EAP-Identity Response
message with the user name set to “ESSPP_REGISTER-
ING_DEVICE”. The Authentication Server recognizes this
special EAP-Identity Response message as coming {from a
supplicant in ESSPP mode.

In step 6, the Authentication Server begins the EAP-ESSPP
protocol. The Authentication Server will only use this proto-
col with an unregistered device when it 1s running ESSPP to
register a device.

In step 11, the Authentication Server generates and stores a
pseudonym for the registering device, and will allow the
device to authenticate using this pseudonym when 802.1x
authentication 1s later performed, allowing the device ID to
remain confidential.

Device registration 1s not activated until ESSPP completes
execution. If the ESSPP protocol flow 1s not completely
executed, the registration 1s not activated and the network
device 1s not registered with the network.

When ESSPP 1s stopped on the supplicant, the user is given
some 1ndication of whether or not the registration was suc-
cessiul. Beeping patterns or light flashing patterns may indi-
cate the result of the registration attempt. Likewise, Authen-

35

40

45

50

55

60

65

Authentication Server

already registered through a
different Authenticator.

18. Send EAP-Success

19. Listen for additional EAP
Identity Responses.

If a response 1s received for
“ESSPP__REGISTERING__DEVICE”,
send an EAP-Request/ESSPP
message containing challenge. If
the challenge 1s not responded to
correctly, then the server recerved
registration requests from more
than one supplicant. In this case,
unregister the registered
supplicant.

If an 1dentity response containing
“ESSPP_REGISTRATION_

FAILED” 1s received, unregister
the registered device.

20. Stop ESSPP, activating

new registration

tication Server logs and configuration will contain
information about registered devices.

The established shared key may be used as the shared
secret to use with an 802.1x authentication protocol (EAP).
During the registration process, the registering client and
server may use the generated shared key to derive encryption
keys for an 1nitial session between the client and server. I the
initial session 1s stopped, the shared key may be used by the
client and server to authenticate each other and establish new
encryption keys using an 802.1x authentication protocol
(EAP). It a shared key already exists, ESSPP can be used for
802.1x authentication without going through the ESSPP reg-
1stration process.

Referring to step 1 of protocol flow 6 illustrated above, the
server and the client start ESSPP within a predetermined time
interval of one another. Server and client start ESSPP when
registration triggers are activated on both server and client
together within the predetermined time interval. In steps 2-3,
the server and the client broadcast a set of registration proto-
col startup messages to each other 1n an exchange 1n order to
initiate the ESSPP between the two devices.

Protocol Flow 7

Protocol flow 7 1s similar to protocol flow 6, but 1n this flow,
ESSPP 1s started at the Authenticator instead of at the Authen-
tication Server. The access point (Authenticator) may have a
button to press or provide a web-based interface to start
ESSPP. When running ESSPP, the access point will include a
special ESSPP-Mode attribute with (Access-Request) mes-
sages sent to the Authentication Server. The presence of this
attribute indicates to the Authentication Server that EAP-

ESSPP 1s allowed. In addition, the access point will include
the text “ESSPP_OPEN_FOR_REGISTRATION” 1n EAP-
Identity Request messages. Only one access point should be
put into ESSPP mode at a time or registrations will fail.

US 8,036,384 B2
17

Supplicant Authenticator

1. Start ESSPP 1. Start ESSPP

2. Scan for access points 1n range
3. Associate with access point in range

18

Authentication Server

4. Send EAP-Identity Request("ESSPP_OPEN_FOR_REGISTRATION")

g

5. dend EAP-Identity Response("ESSPP_REGISTERING_DEVICE"),ESSPP-Mode attribute added by Authenticator -

EAP-Request/ESSPP containing (p,q.g), Ys,Address>,Nonced
-l

7. Validate parameters as required by
SSPP, generate NonceC, Zs,
proofC, and send message

EAP-Response/ESSPP containing Y e, AddressC,NonceC proofC,ESSPP-Mode attribute added

EAP-Request/ESSPP containing proofs
-alf

9. Validate prooiS, generate shared key k,
and send response containing Client’s
name, optionally encrypted using a key
derived from k

EAP-Response/ESSPP contamning Client's name, ESSPP-Mode attribute added

-

EAP-Success

~lf;

12. Store Server’s shared key k

13. Associate with another access point in range.

14. Send EAP-Identity Request

~~aif

15. If EAP-Identity Request contains the text
“ESSPP__OPEN__FOR__REGISTRATION”,

either the previous registration was with an

imposter or the current registration attempt 1s

with an imposter. The supplicant can’t tell who

the imposter is, so the registered device 1s unregistered
and sent an EAP Identity Response message containing
the text “ESSPP_ REGISTRATION__FAILED”

If EAP-Identity Request does not contain the

text “ESSPP__ OPEN__ FOR__REGISTRATION”

then the authentication process with the current

access pont is stopped and, if there 1s another

access point in range, we go back to step 15.

16. Stop ESSPP, activating
new registration

6. Generate NonceS and send
Message

8. Generate Zs, validate prooiC,
generate proofS, generate shared
key k, and send message

10. Send EAP-Success

11. Use kdi{) to generate client
pseudonym that can later be used
for anonymous authentications
12. Store Client’s name,
pseudonym, and shared key k

15 Enter registration holding period.
If any EAP-Identity Response
messages are recerved for identity
ESSPP_ REGISTERING_ DEVICE™:
If the message contains the ESSPP-
Mode attribute, then we’ve received
registration requests from more than
one supplicant. In this case,
unregister the registered device.

If the message does not contain

the ESSPP-Mode attribute, then

the server just recerved an invalid

request. Fail the authentication
attempt but keep the registered
device registered.

16. Stop ESSPP, activating

new registration

US 8,036,384 B2

19

Referring to step 1 of protocol flow 7 1llustrated above, the
server and the client start ESSPP within a predetermined time
interval of one another. Server and client start ESSPP when
registration triggers are activated on both server and client
together within the predetermined time interval. In steps 2-3,
the server and the client broadcast a set of registration proto-
col startup messages to each other 1n an exchange in order to
initiate the ESSPP between the two devices.

Protocol tlow 7 involves the use of multiple access points
within the ESSPP environment. Referring to step 15 of the
supplicant, the process with the current access point 1s
stopped and goes to another access point 1 EAP-Identity
Request does not contain the text “ESSPP_OPEN_FOR
REGISTRATION.” Also referring to step 15 of the suppli-
cant, there 1s a failure in the ESSPP process 11 EAP-Identity
Request contains the text “ESSPP_OPEN_FOR_REGIS-
TRATION.” This message indicates that there 1s a network
device that 1s not properly registered with the network 1n spite
of steps 1-14 of protocol 7. This message therefore indicates
that the device registered 1n steps 1-14 1s an imposter device
that must be unregistered and that the device broadcasting the

Supplicant Authenticator

10

15

20

20

message “ESSPP_OPEN_FOR_REGISTRATION" 1s in fact
the legitimate device that should be registered. Alternatively,
the device broadcasting the message “ESSPP_OPEN_FOR_
REGISTRATION” may 1n fact be the imposter device. Since
the supplicant can not determine which device is the legiti-
mate device and which device 1s the imposter device, the
registered device 1s unregistered and sent amessage “ESSPP
REGISTRATION_FAILED.”
802.1x Authentication Choices

After EAP-ESSPP 1s used to establish a shared key
between two devices, the devices can authenticate each other
using 802.1x authentication. EAP methods that can perform
mutual authentication using the generated shared key can be
used. Such methods include Lightweight Extensible Authen-
tication Protocol (LEAP) and EAP-SPEKE (Simple Pass-
word-Authenticated Exponential Key Exchange). However,
the best choice 1s to use EAP-ESSPP 1itself, as this must
already be available on the client and server. Below 1s a flow
for EAP-ESSPP used for authentication using established
credentials.
Protocol Flow 8

Authentication Server

1. Send EAP-Identity request to supplicant

- EAP-Identity Request

2. Send EAP-Identity Response containing
supplicant name or pseudonym

EAP-Identity Response containing supplicant name or pseudonym

-

EAP-ESSPP authentication message containing Nonced

—~uf

4. Generate proofC as

LTRUN96(HMAC-SHAI1(shared key k,NonceS).
(Fenerate NonceC.

3. User supplicant name or
pseudonym to look up credentials.
Generate NonceS and send

EAP-ESSPP authentication
message

EAP-ESSPP authentication message response containing NonceC and proofC

EAP-ESSPP authentication message containing proofis

-l

6. Validate prooiS and send response

EAP-ESSPP authentication message response indicating success
‘-

EAP-Success

o :

v

5. Validate proofC.

Generate proofS as
LTRUN96(HMAC-SHA1(shared

key k, Nonce C)

7. Send EAP-Success

US 8,036,384 B2
21 22

When used for authentication, EAP-ESSPP can also perti- server begins EAP-ESSPP to provision a new key, using the
odically regenerate the shared key k. The server somehow old shared key k as the PIN to protect against attacks.
detects that the shared key k needs to be regenerated. This Protocol Flow 9
may be because a certain amount of time has passed or the This flow shows how ESSPP can be run on an 802.11
shared key k has been used for a certain number of times. 5 network without using EAP. This flow requires additions to

Instead of beginning EAP-ESSPP for authentication, the the 802.11 standard.

Supplicant Authenticator

1. Start ESSPP 1. Start ESSPP
2. Scan for access points 1n range.

Each access points provides capabilities
information in beacon messages and

in probe response messages. A bit in

the capabilities field can be used to

indicate that the access point 1s running
ESSPP. This would allow the supplicant

to use the probe command to scan for
access points in ESSPP mode. If more than
one access point 1s found in ESSPP mode,
or no access pomnt is found in ESSPP mode,
the protocol fails immediately

Broadcast probe request
:

3. Send Probe response, indicating access point
1s in ESSPP mode by setting a bit in the
capabilities field.

Probe response
=il

4. Once we’ve determined only one access point

is in ESSPP mode, associate with this access point

5. Begin authentication. Use new “Device Shared Key Generation™ authentication algorithm.
Generate NonceS and send message

Authentication message one containing (p.q.g), Ys,AddressS,Nonced
-

6. Validate parameters as required by SSPP,
generate NonceC, Zs, proofC. and
send authentication response message

Authentication message response containing Yc,AddressC,NonceC,proofC

=il

7. Generate Zs, validate prooiC,
generate proofS, generate shared key k,
and send authentication message

Authentication message two containing proofd
-

8. Validate proofS, generate shared key k,

and send response indicating success

Authentication message two response, indicating success

~=aif:

9. Store shared key k 9. Store shared key k along with
supplicant MAC address

10. Stop ESSPP. If a man-in-the-middle attack 10. Wait for a period of time to see if any
causes the access point to discard the generated other devices attempt to use the “Device
shared credentials, our attempts to authenticate Shared Key Generation™ authentication
using the “Device Shared Key™ algorithm will. algorithm. If any devices do, unregister
fail the supplicant device.
11. Stop ESSPP, activating 11. Stop ESSPP, activating

new registration new registration

US 8,036,384 B2

23

The 802.11 standard specifies two authentication algo-
rithms, Open System, and Shared Key. This flow requires two
additional authentication algorithms:

1. Device Shared Key Generation—This authentication algo-
rithm 1s used to establish a shared key using ESSPP key
exchange.

2. Device Shared Key—This authentication algorithm uses
shared keys generated by ESSPP key exchanges to authenti-
cate devices. It 1s very similar to the existing Shared Key
authentication algorithm except that instead of a device
choosing between 1 of 4 possible shared keys, a distinct key
1s associated with each device (MAC address).

Referring to step 1 of protocol flow 9 illustrated above, the
server and the client start ESSPP within a predetermined time
interval of one another. Server and client start ESSPP when
registration triggers are activated on both server and client
together within the predetermined time interval. In steps 2-4,
the server and the client broadcast a set of registration proto-
col startup messages to each other 1n an exchange 1n order to
initiate the ESSPP between the two devices.

Protocol Flow 10

Sometimes, one-way authentication 1s used to establish a
secure connection. For example, an SSL (Secure Sockets
Layer) connection can be established between a Client and a
Server with the Client authenticating the Server, but without
the Server authenticating the Client. The tlow below shows
how ESSPP can be run on such a connection to establish
credentials that can later be used for mutual authentication by
the Client and Server.

Server Client

1. Establish secure connection 1. Establish secure connection

2. Generate NonceS and send message

(p,q,8), Ys, AddressS, NonceS

-

3. Validate parameters as
required by SSPP, generate
NonceC, Zs, proofC, and send
message

_‘Ye, AddressC, NonceC, proofC

4. Generate Zs, validate prooiC,
generate proofS and send message

proofd
M

5. Validate proofS
6. Generate shared key k

7. Store Server’s address and
shared key k

6. Generate shared key k
7. Store Client’s address and
shared key k

An SSL (Secured Sockets Layer) connection can be estab-
lished between a Client and a Server without the Client pro-
viding any credentials. In this case, Server credentials can still
be authenticated by the Client, allowing for one-way authen-
tication. When an SSL connection 1s established in this way,
a Server has a certificate that it can send to a Client to identily
itself. The certificate contains the server’s public key and a
digital signature from a trusted party that the Client can verity
to make sure the certificate properly identifies the Server. The
Client can encrypt a message to the Server using the Server’s
public key. Only the Server will be able to decrypt the mes-
sage, because only the Server knows the private key that
corresponds to the public key. When an SSL connection 1s

10

15

20

25

30

35

40

45

50

55

60

65

24

established, the Client authenticates the Server by veritying
that the Server knows how to decrypt a message encrypted
with the Server’s public key. When one-way authentication 1s
used, the Server does not authenticate the Client.

In step 1 of protocol flow 10, the client and server establish
a secure connection using SSL, which allows for certain
messages to be encrypted. ESSPP can then run over this
connection, allowing the Client and Server to establish new
credentials. The Client and Server can re-connect using the
newly generated credentials instead of SSL. Connection-es-
tablishing credentials now allow for mutual authentication
with ESSPP instead of one-way authentication with SSL.

In steps 2 and 3 of protocol tlow 10, the server and client
exchange registration information. This information includes
address information AddressS and AddressC, portions of the
Ditfie-Hellman static key pair Ys and Yc¢, and random num-
bers NonceS and NonceC. In steps 3 and 4, the client and
server generate a Diflie-Hellman shared secret Zs and
exchange messages, proolC and proofs, indicating knowl-
edge of such secret. The server and client validate these proof
messages 1n steps 4 and 5 respectively. In steps 6 and 7, the
client and server then generate a shared key, k, and store the
key and address information for later use. In protocol 10,
client and server generate shared key, k, without requiring a
simultaneous triggering of registration processes at the
Server and the Client device.

A simpler method of establishing credentials over an SSL
connection 1s also possible. Because the Client and Server
communicate over an encrypted connection, in step 2, the
Server could pick a value for shared key k and send AddressS
and shared key k to the Client. In step 3 the Client would then
send the Server AddressC. Steps 4-6 are then skipped, and the
Client and Server store credentials in step 7. In this case, 1f an
attacker records the registration messages and later learns the
Server’s private key, the attacker may be able to decipher the
recorded registration to learn the value of shared key k.
Whether a Diffie-Hellman exchange 1s used to establish
shared key k or not, the newly established credentials allow
the Client and Server to re-connect with mutual authentica-
tion instead of one-way SSL authentication.

Transferring Keys

When device one successiully registers with device two
using ESSPP, device one will store device two’s credentials.
Device two’s credentials consist of information learned about
device two, such as device two’s name and address, as well as
the generated shared key k. These credentials may be stored in
a credential file. In certain environments, a credential file can
be copied from device one to another device, such as device
three, allowing device three to use the credentials to authen-
ticate with device one. This allows devices that do not support
the ESSPP protocol to utilize credentials generated using
ESSPP. It also allows an administrator to switch devices 1n a
network without running ESSPP.

ESSPP System Components

FIG. 1 1llustrates a Wi-F1 network 10 that supports ESSPP
in accordance with a preferred embodiment of the present
imnvention. Wi-Fi network 10 includes network devices 12, 14,
16, and 18 that are numbered as devices 1, 2, n, and n+1
respectively. These numbered designations 1llustrate that net-
work 10 may support as many as n+1 wireless devices.

Wireless network devices 12-18 are connected to Wi-Fi1
network through wireless access points 20 and 22 that are
respectively numbered 1 and m. In order to support n+l
wireless network devices, network 10 may utilize as many as
m wireless access points.

Wireless access points 20 and 22 numbered 1 and m may
couple to other network devices 24, a virtual private network

US 8,036,384 B2

25

26, as well as an authentication server 28. In addition, wire-
less access points 20 and 22 may couple to a terminal 30.
Coupled to authentication server 28 is a storage facility 32.

Wireless network devices 12-18 are each provided with the
mechanism that activates the ESSPP protocol on wireless
network devices 12-18 as described in step 1 of protocol flows
1-7 and 9. This mechanism may take the form of a button, a
switch, a menu selection on a Graphical User Interface (GUI),
or some other embodiment of a trigger. Authentication server
28 15 also provided with a mechanism that activates ESSPP
protocol on authentication server 28 as described in step 1 of
protocol tlows 1-6. In protocol flow 7, ESSPP 1s triggered at
the wireless access point and not with the authentication
server. In protocol flow 9, ESSPP 1s also triggered at the
wireless access point.

When ESSPP 1s activated on both one of network devices
12-18 and authentication server 28 within the predetermined
time 1nterval, ESSPP proceeds to step 2 as outlined 1n proto-
col tlows 1-7 and 9. If ESSPP 1s not activated within the
predetermined time interval, the ESSPP terminates at step 1
of protocol flows 1-7 and 9. IT ESSPP 1s activated on one of
said network devices 12-18 within a predetermined time
interval of an activation of ESSPP on authentication server
28, then the ESSPP process commences and proceeds to step
2 of protocol flows 1-7 and 9.

All ESSPP communications between wireless network
devices 12-18 and authentication server 28 occurs through
wireless access points 20-22. While network devices 12-18
are 1llustrated as commumicating with authentication server
28 through wireless network 10, other forms of communica-
tion are possible, such as via satellite, dial up connection,

broadband, cable, fire-wire, an Internet and World Wide Web,

as well as other methods.

FIG. 2 illustrates a “man-in-the-middle” attack on Wi-Fi
network 10 that supports ESSPP 1n accordance with a pre-
terred embodiment of the present invention. Depicted 1n FIG.
2 1s a man-1n-the-middle device 40 that 1s attempting a man-
in-the-middle attack on network 10. Man-in-the-middle
device 40 broadcasts communications to either authentica-
tion server 28 or network device 18 via the same wireless

channel that authentication server 28 and network device 18
are utilizing. Through broadcasting these communications,
man-in-the-middle device 40 1s attempting to interfere with
the ESSPP process occurring between authentication server
28 and network device 18 and engage 1n a man in the middle
attack. Through this man-in-the-middle attack, man-in-the-
middle device 40 1s attempting to register itself with authen-
tication server 28 posing as wireless network device 18.
Monitoring systems supported on authentication server 28
and wireless network device 18 listen for ESSPP communi-
cations from man-in-the-middle device 40 in order to detect
the man 1n the middle attack and react according to the ESSPP
process as detailed 1n protocol flows 1-7 and 9. When such
communications are detected from man-in-the-middle device
40, the monitoring systems on authentication server 28 and
wireless network device 18 trigger authentication server 28
and network device 18 to terminate the ESSPP process 1n a
preferred embodiment. To reinitiate the ESSPP process
between authentication server 28 and network device 18, the
ESSPP must be restarted with the triggering of the mecha-
nisms to launch ESSPP at step 1. Alternatively, detection of
these ESSPP signals from man-in-the-middle device 40 may
only cause authentication server 28 and wireless network
device 18 to suspend, or pause the ESSPP process at a par-
ticular step. At a later time, network device 18 and authenti-

10

15

20

25

30

35

40

45

50

55

60

65

26

cation server 28 may reimitiate ESSPP from where the process
was last suspended, or may restart the process at an earlier
step.

A block diagram depicting a system that supports the
Enhanced Shared Secret Provisioming Protocol 1s 1llustrated
in FIG. 3. Authentication server 28 supports a variety of
subsystems that enable it to support the Enhanced Shared
Secret Provisioming Protocol. Among these systems are a key
generator 40 that supports the cryptographic keys used with
the ESSPP process. Specifically, key generator 40 1s able to
create a cryptographic key in accordance with the ESSPP
process, such as through a Diffie-Hellman process, an RSA
process, or an EAP process. Monitoring system 42 enables
server 28 to listen for communications from a foreign net-
work device and detect a man-in-the-middle attack.

Authentication sever 28 includes an internal database 44
and/or an external database 46. Databases 44 and 46 are
provided with authentication server 28 to enable authentica-
tion server 28 to store information icluding network system
addresses and 1dentity information, pseudonym information,
cryptographic key information, and other related informa-
tion.

Authentication server 28 supports a registration trigger 48,
also referred to as a sitmultaneous registration trigger 48, that
causes authentication server 28 to mitiate execution of the
ESSPP process when registration trigger 48 1s activated. A
processor arrangement S0 1s provided that couples to data-
base 44 and 46, trigger 48, monitoring system 42, and key
generator 40.

A communications system 352 i1s coupled to server that
enables authentication server 28 to communicate with remote
network devices 12-18 through wireless access points 20 and
22. Alternatively, other methods of communication are suit-
able including communication via satellite, a computer net-
work such as the Internet and a World Wide Web, L AN, or
Ethernet, and broadband.

A network device 60 secking to securely register with
authentication server 28 1s also 1llustrated. As with authenti-
cation server 28, network device 60 also supports a variety of
subsystems that enable 1t to support the Enhanced Shared
Secret Provisioning Protocol. Network device 60 includes a
registration trigger 62, also referred to as a remote registration
trigger 62, and simultaneous registration trigger 62. This trig-
ger 62 1mitiates execution of the ESSPP process on network
device 60 when trigger 62 1s activated. Network device 60
includes a key system 64 that supports the cryptographic key
in accordance with the ESSPP process. This support can
include either generation or receipt and storage of a crypto-
graphic key in accordance with the ESSPP process, such as
through a Diflie-Hellman process, an RSA process, or an
EAP process. Also, 1t 1s possible that server 28 could recerve
the cryptographic key from network device 60.

Storage system 66 provided on network device 60 provides
data storage for network address information, identity infor-
mation, pseudo names, cryptographic key, and other related
information. Monitoring system 68 enables network device
60 to listen for communications from a foreign network
device and detect a man-1n-the-middle attack. A communica-
tions system 70 1s provided to enable network device 60 to
communicate with authentication server 28 through wireless
or other communication methods. A processor arrangement
72 1s provided that couples to storage system 66, trigger 62,
monitoring system 68, communications system 70, and key
system 64.

Diffie-Hellman Key Exchanges

The Diilie-Hellman key exchange 1s used to generate a key

from which session keys can be derived. Wireless devices

US 8,036,384 B2

27

commonly use 128 bit session keys for symmetric encryption.
The Datfie-Hellman key exchanges should therefore be as
strong as a 128 bit symmetric key so that the Diffie-Hellman
key exchange 1s not the weak link 1n the registration and
authentication process.

The following table 1s taken from a recent Internet dratt,
“More MODP Ditfie-Hellman groups for IKE”. It 1s an
equivalency table showing for different Ditfie-Hellman prime
moduli1 what symmetric key sizes are required to have equiva-
lent strengths. The strength comparisons are estimates.

Strength Fstimate 1 Strength Fstimate 2

exponent exponent

Group Modulus in bits S1Z¢ in bits S1Z¢
5 1536 bit 90 180 120 240
14 2048 bit 110 220 160 320
15 3072 bit 130 260 210 420
16 4096 bit 150 300 240 480
17 6144 bit 170 340 2770 540
18 8192 bit 190 380 310 620

The table indicates that a 2048-bit Diifie-Hellman key
provides the strength of a symmetric key probably some-
where between 110 and 160 bits 1n strength. Based on the
estimates 1n this table, a 2048-bit Diflie-Hellman prime
modulus 1s recommended for use with ESSPP on wireless

networks.
ESSPP will use prime moduli defined 1n the IETF draft,

“More MODP Diatlie-Hellman groups for IKE”. In a wireless
network, the Authentication Server may indicate, by group
number, which Diifie-Hellman prime modulus may be used.

ESSPP devices will likely support groups 5, 14, and 13.
Wei Dai has published benchmarks for Diffie-Hellman key

exchanges at: http://www.eskimo.com/~weidai/benchm-
marks.html

His measurements indicate that Diffie-Hellman 2048 Key-
Pair Generation and Key Agreement takes 49.19 milliseconds
on a Celeron 850 MHz processor running Windows 2000
SP1.

The Diffie-Hellman key agreement protocol (also called
exponential key agreement) was developed by Diflie and
Hellman 1n 1976 and published 1n the ground-breaking paper
“New Directions 1n Cryptography.” The protocol allows two
users to exchange a secret key over an insecure medium
without any prior secrets.

The protocol has two system parameters p and g. They are
both public and may be used by all the users in a system.
Parameter p 1s a prime number and parameter g (usually
called a generator) 1s an integer less than p, with the following
property: for every number n between 1 and p-1 inclusive,
there is a power k of g such that n=¢* mod p.

Suppose Alice and Bob wantto agree on a shared secretkey
using the Diffie-Hellman key agreement protocol. They pro-
ceed as Tollows: First, Alice generates a random private value
a and Bob generates arandom private value b. Bothaand b are
drawn from the set of integers {1, ..., p-2}. Then they derive
their public values using parameters p and g and their private
values. Alice’s public value 1s g° mod p and Bob’s public
value is g” mod p. They then exchange their public values.
Finally, Alice computes g*°=(g”)* mod p, and Bob computes
g??=(g*)” mod p. Since g?’=g”*=k, Alice and Bob now have a
shared secret key k.

The protocol depends on the discrete logarithm problem
for 1ts security. It assumes that 1t 1s computationally infeasible
to calculate the shared secret key k=g mod p given the two

10

15

20

25

30

35

40

45

50

55

60

65

28

public values g” mod p and g” mod p when the prime p is
suificiently large. Maurer has shown that breaking the Diflie-
Hellman protocol 1s equivalent to computing discrete loga-
rithms under certain assumptions.

The Ditfie-Hellman key exchange 1s vulnerable to a man-
in-the-middle attack. In this attack, an opponent Carol inter-
cepts Alice’s public value and sends her own public value to
Bob. When Bob transmits his public value, Carol substitutes
it with her own and sends 1t to Alice. Carol and Alice thus
agree on one shared key and Carol and Bob agree on another
shared key. After this exchange, Carol simply decrypts any
messages sent out by Alice or Bob, and then reads and pos-
s1ibly modifies them before re-encrypting with the approprate
key and transmitting them to the other party. This vulnerabil-
ity 1s present because Ditlie-Hellman key exchange does not
authenticate the participants. Possible solutions include the
use of digital signatures and other protocol variants.

It 1s noted that the foregoing examples have been provided
merely for the purpose of explanation and are 1n no way to be
construed as limiting of the present mvention. While the
present invention has been described with reference to certain
embodiments, it 1s understood that the words which have been
used herein are words of description and 1llustration, rather
than words of limitation. Changes may be made, within the
purview of the disclosure, as presently stated and as amended,
without departing from the scope and spirit of the present
invention 1n 1ts aspects. Although the present invention has
been described herein with reference to particular means,
materials and embodiments, the present mvention 1s not
intended to be limited to the particulars disclosed herein;
rather, the present mmvention extends to all functionally
equivalent structures, methods and uses.

We claim:

1. A server that can register a network device, comprising;:

a database capable of storing a set of registration informa-
tion, a set ol address information, and a cryptographic
secret;

a registration process mcluding communications for regis-
tering a network device;

a cryptographic generator that receives cryptographic
information, enabling authenticable communications
between said server and said network device;

a processor supported on said server;

a registration trigger coupled to said processor, whereby
activating said registration trigger within a predeter-
mined time interval of an activation of a remote regis-
tration trigger activates said registration process: and

a monitoring system that detects registration communica-
tions from a third device, wherein detection of said third-
device registration communications causes said regis-
tration process not to register the network device.

2. The server of claim 1, wherein said set of stored regis-
tration information includes at least one pseudonym for a
device.

3. The server of claim 1, wherein said registration process
1s at least partially hidden and does not include an exchange of
a plain-text identifier for at least one of said server and said
network device.

4. The server of claim 1, wherein said registration process
includes use of PIN number information.

5. A network device capable of registering with a server,
comprising;

a storage system storing registration information and

address information;

a registration process mcluding communications for regis-
tering said network device with a server;

US 8,036,384 B2

29

a cryptographic system that receives cryptographic infor-
mation, thereby enabling authentic communications
between said server and said network device;

a processor supported on said network device;

a registration trigger coupled to said processor, whereby
activating said registration trigger within a predeter-
mined time interval of an activation of a registration
trigger on another device activates said registration pro-
cess; and

a monitoring capability that detects registration communi-
cations from a third device, wherein detection of said
third-device registration communications causes said
registration process not to register the network device.

6. The network device of claim S, wherein said registration

process does not include an exchange of a plain-text device
identifier for the device.

7. The network device of claim 5, wherein said registration

process includes use of PIN number information.

8. The network device of claim 5, wherein said stored

registration information includes a pseudonym for a device.

9. A method for establishing a registration between a pair

of network devices, comprising the steps of:

exchanging 1nitial messages that are substantially simulta-
neously broadcast on a network between a first device
and a second device, each message 1mnitiated 1n response
to a local trigger;

broadcasting a first set of 1dentity information from said
first device;

10

15

20

25

30

broadcasting a second set of identity information from said
second device;

generating a key at said first device, thereby providing an
authenticable communications capability between said
first device and said second device;

monitoring for registration communications emitting from
a third device on the network:

completing said registration between said {irst device and
said second device 1f no said registration communica-
tions emitting from said third device are detected; and

terminating said registration process without completing
said registration between said first device and said sec-
ond device if said registration communications from
said third device are detected.

10. The process of claim 9, further comprising a step of

generating a key at said second device.

11. The method of claim 9, further including a step of

generating a pseudonym for a device.

12. The method of claim 9, wherein said identity informa-

tion 1includes PIN number information.

13. The method of claim 9, wherein said first set of regis-

tration information does not include a plain-text device i1den-
tifier.

14. The method of claim 9, wherein said second set of

registration mformation does not include a plain-text device
identifier.

	Front Page
	Drawings
	Specification
	Claims

