US008032822B1
®
12 United States Patent (10) Patent No.: US 8.032.822 B1
Artamonov et al. 45) Date of Patent: Oct. 4, 2011
(54) METHOD AND SYSTEM FOR EXPLAINING 7.451,392 Bli 11;2008 Chalﬁcki et al. s 715;’234
7,496,837 Bl 2/2009 Larcheveque et al. T15/237
DEPENDENCIES ON A DOCUMENT 7,516,121 B2* 4/2009 TLiuetal.c..coooviiiniini.n, 1/1
_ _ 7,536,448 B2* 5/2009 Hasanetal. 709/220
(75) Inventors: Michael A. Artamonov, San Diego, CA 7,607,078 B2* 10/2009 Gevaetal. ... 715/221
(US); Michael Wang, San Diego, CA 7,877,682 B2 /2011 Aegertercccovvenee. 715/237
(US), Bradford R.]?,I'O‘?Vn:j San Diegoj 2001/0014899 A1l * 8/2001 Fll]ll(ﬂ.wa 707/513
: PR Y : 2001/0054046 A1* 12/2001 Mikhailovetal. 707/500
gi (Ug)f jay J‘eSBE‘_gHY“’.Sag D1ego, 2002/0082857 Al* 6/2002 Skordin et al.ccocooo......... 705/1
A (US); James S. Gillespie, San 2002/0111961 Al* 82002 Billings et al. 707/505
Diego, CA (US) 2002/0165875 AL* 11/2002 Verta ...cococoveeveerererinn.. 707/503
2002/0174222 A1™* 11/2002 COX ovvevieiiieieieeeiinanens 709/224
(73) Assignee: Intuit Inc., Mountain View, CA (US) 2003/0036912 A1* 2/2003 Sobottaetal. 705/1
2003/0061022 Al1* 3/2003 Reinderscooovvvvvvivvvvinnnn., 704/2
% SR : - - - 2003/0182102 Al1* 9/2003 Corston-Oliveret al. 704/9
(") Notice: Subject to any disclaimer, the term of this 2004/0078271 Al* 4/2004 Morano et al. 705/19
patent 1s extended or adjusted under 35 2004/0205529 Al* 10/2004 Poulose et al. 715/506
U.S.C. 154(b) by 1160 days. 2004/0237030 Al* 11/2004 Malkinocooceveveennne.. 715/505
2004/0237040 A1* 11/2004 Malkinetal. 715/526
(21) Appl. No.: 11/494,915 2005/0108625 Al* 5/2005 Bhogaletal.c........... 715/505
2006/0080594 Al1* 4/2006 Chavoustieetal. 715/503
‘14 2006/0212859 Al1* 9/2006 Parkeretal. 717/143
(22) Filed: Jul. 25, 2006 2007/0009158 Al* 1/2007 Gevaetal. ..oocoovovvn.... 382/209
2007/0055966 Al* 3/2007 Waddington et al. 717/144
(51) Int. Cl. 2007/0226708 Al* 9/2007 VAIMA cvvoveeveveerrrrerenen.. 717/139
GO6F 17/00 (2006.01) * cited by examiner
(52) US.CL ... 715/221:; 715/234; 715/255; 709/220;
717/141:;717/143; 717/144; 705/31; 705/19; Primary Examiner — Doug Hutton, JIr.
704/9 Assistant Examiner — Benjamin Smith
(58) Field of Classification Search 715/221-226 (74) Attorney, Agent, or Firm — Osha * Liang LLP
See application file for complete search history.
(57) ABSTRACT
56 References Cited . .
(56) A method for reviewing data dependencies in a document that
U.S PATENT DOCUMENTS 1n?lud§8 requesting an explanat?on of a dependent data con-
S367610 A * 11/1004 Dinaol | 18991 tainer in a plurality of data containers, in which the dependent
SAee " Dipaolo et al. ... N data container resides within a document, and receiving the
5,640,501 A 6/1997 Turpincooeeveviennn, 715/224) _ _ _ ,
5,745,712 A * 4/1998 Turpinetal T15/763 explanation of the dependent data container, in which the
5875334 A * 2/1999 Chowetal.cooovv...... 717/141 explanation that includes imnformation about the dependent
6,185,582 Bl : 2/2001 Zellwegeretal. 715/212 data container and information about a precedent data con-
6,594,785 Bl 7/2003 Dollinetal. 714/38.14 tainer of the plurality of data containers, and in which the
0,968,500 B2* 11/2005 Mikhailov etal. 715/221 information describes the dependency between the precedent
7,032,170 B2* 4/2006 Pouloseetal. 715/222 | P Y _ P
7.100,112 B1* 82006 WiNSer .oovevvevevevovnonnn 715/210 data container and the dependent data container.
7,117,433 B1* 10/2006 Glaseretal. 715/205
7,296,028 B1* 11/2007 Ivanovaccocooviiiiniiniin, 1/1 27 Claims, 12 Drawing Sheets

— Step 801

Obtain input code

l ~ Step 603

Parsa input cods into abstract syntax
tres

l ~ Step 605

Create dependency tree by analyzing
absltract syntax tree

l — Step 607

Create explain tree using abstract
syntax tree

¥ ~ Step 609

Sort the explain nodes into an intuitive
sequence ushg dependency tree to
create a sorted list

l ' StED 611

Generate natural languagse text for
gach explain node in sorted list and
output natural language explanation

U.S. Patent

Oct. 4, 2011 Sheet 1 of 12
— % —
User Interface
104 B
Source Section
108 110
Data ® ® o Data
Container a Container x
— .
\ A _
106
Explanation Section
112 —| 114
Explanation Explanation
of of
Data ® O o Data
Container ¢ Container n
Y
102
Expianation
Engine
. U

FIGURE 1

US 8,032,822 Bl

U.S. Patent Oct. 4, 2011 Sheet 2 of 12 US 8,032,822 B1

(START)

Y s Step 201

Enter values into data containers on the

| source section

o~ Step 203

Request an explanation for a dependent
data container

Y a Step 205
Receive explanation section containing

explanation of the dependent data container
and explanation of any precedent data
containers

Update data
containers?

* ~ Step 215

YES

View source section
| B i ~ Step 209 E ew]

Enter new values into data container

END
Step 211
Submit new values I
l s Step 213

l Review revised explanation J

FIGURE 2

U.S. Patent Oct. 4, 2011 Sheet 3 of 12 US 8,032,822 B1

(START)

Step 251

" Receive request for explanation for a dependent data
container

ya Step 253

Process explanation with dependent data container and
any precedent data containers

Step 255

Determine optional information for output I
Step 257

Output explanation and optional information I

Step 259

Receive
update in data

No—=(_EN0_)

containers?
YES
Step 261
Enter new values on source section or explanation
section

- Step 263

Recalculate data containers
' Y ~ Step 265

Output revised explanation

FIGURE 3

US 8,032,822 Bl

Sheet 4 of 12

Oct. 4, 2011

U.S. Patent

vy 34NOid

TR T e iy 11#1q*w.”. 15 %ﬁ&uﬁ..ﬂlﬂ _Hua.ﬁjwu-w_. PR S e TR WPl o =

&
i

o |

HEF

™
ﬂ:
)3
-
o

SUPPE Y pmgdng

(pato|dw 4155 I mnod E_.__ DR SIS

— —— Rt L At b

m ? snies By inoch ey Fqr | Z3Z 2y Bupn _
o 2Wr U AGieaos)

_ L = _ b 208 - 7| SUI} PUR L} SUI| SPDHPU _
. R @_ _ 0] R CEE)] 000 3ouop uogne "0} Fut pur gouN pPY Er2ur|
_, — & . 030 *sdn} 55 0w |§007 a8 ,.“,.MW %) _H:u_ JIWRIR PECIIEI 10 AZUNDI5 (€05 S -
__ @ 3L SUOORt BYIE .m_,ﬁ__m | m..H..U : @_ iqqu_o oISV dw od JuRwAO|Jwaun 110N
| o oimﬁwm.f,htsm | e @_ 000] iNresst wiod sweou s IEeL OyIUN]
u, d .
| seyguap syepsjohoiduy _H. oL - suoponmsu|

L -3 @_ i 835 () X0q 'z wio N sabemyejo) BOUN
., QWEN S =R q
_ - EkXog qrom @N.lm.” I‘ mNm l‘ mwmﬁm I‘

_ uogesuadwod 2O oD mwu @) £ B3y
5 - - -
R CUISIBINOA .

| ZONPA 2IED ~ {] 2aneagopes |

§ e INJEA $O12NIIS] ploY apey |l s am - GIHRA HOHINASH Piold Q1 Y |
1| reum eum R w Q 1M M w Q

Ol am Q0¢ 90¢ 90¢

% M 0L€ IH_WNES mo.mw
Y0€ pLe< ZLe €0t =Guy sooi sauoaes man w3 Al

P —— h&._m_.—n_xw 12UA 3 U}) O SOIDI Wgw's _“.w‘._mzm @b T WWNBOE mﬂm_.n“_ 2

U.S. Patent Oct. 4, 2011 Sheet 5 of 12 US 8,032,822 B1

Pa 400

[-

B@alculation'Dependencynformationt-"vozilla'Firefox &ty

Fiie Edit View Go Bookmarks Tools Help _ ®
Calculations for field Line? of form [
caS40ez with value 0 :
An Ordered List For Calculations
r404 K
1. A value must be entered for Box17 of W2 :
E
108~ 1. The value of Box17 for W2 copy 1 1s
o 412 418 o424 |
[3902 g0 to Box17
406
2. A value must be entered for Box15 of W2 ¥ |

R

s

410
\‘1. The vadue of Box1d W2 copy 1is
414 y 420 426 |

[Nat Entered setvalue | go to Boxl1D
e 402

3. Find all W2 forms, and for each W2 where the value of W2's Box15 is equal |
to "CA", sum up the contenis of W2's Box17. Put the result into Line9 of '{
form cadS40ez

Pa 428
is the value of Line9 of form caS40ez go here

i
i .t 'r-.‘,.ﬂ.ﬂl-"".h"". \ - e o jl"ﬁjw#“ u‘*nlwkllh.:h‘h.‘. hle, L vy o e [S . | T o & o ol wva el g - e xR .o - o wHa . " e a wl a - S el oy Tl o rp rac g .ﬂ.""
- e— el il e .

FIGURE 4B

U.S. Patent Oct. 4, 2011 Sheet 6 of 12 US 8,032,822 B1

400

B¥Falculation'Dependency information™mozilla’Pire tox by’
File Edit View Go Bookmarks Tools Help ' R
8
| Calculations for field Line9 of form |
caS40ez with value 9999 j
1’:
An Ordered List For Calculations f
| o 404 |
1. A value must be entered for Box17 of W2 !
408 ?
| A | The value of Box17 for W2 copy 11s ?‘;
o 412 418 Pa 424 |
| 993 | setvalue | go to Box17
Pa 406 P
2. A value must be entered for Box15 of W2 b
410 1|
\1. The value of Box15 W2 copy 11s | =
o 414) 420 426] %

e 402 =

3. Find all W2 forms, and for each W2 where the value of W2's Box15 15 equal to
"CA°", sum up the contents of W2's Box17. Put the result into Line9 of form

o 422 428
15 the value of Line9 of form cad40ez go here

FIGURE 4C

U.S. Patent Oct. 4, 2011 Sheet 7 of 12 US 8,032,822 B1

FIGURE 5

U.S. Patent Oct. 4, 2011 Sheet 8 of 12 US 8,032,822 B1

START

s Step 601

Obtain input code

Step 603
Parse input code into abstract syntax
tree
= Step 605

Create dependency tree by analyzing
abstract syntax tree

Step 607

Create explain tree using abstract
syntax tree

Step 609

Sort the explain nodes Into an intuitive
sequence using dependency tree to
create a sorted list

= Step 611

(GGenerate natural language text for
each explain node in sorted list and
output natural language explanation

END

FIGURE ©

U.S. Patent Oct. 4, 2011 Sheet 9 of 12 US 8,032,822 B1
< START)
(END >
¢ — Step 619 1
Obtain first AST node
'n Step 649
y [Step 62 Output stack to explain
Set current AST node = first AST tree
node
A
[Step 645
— otep 623
set current AST
Mark currel_wt_AST node as - node = next AST
visited node
A
YES
NO—
otep 625 Step 643 = Step 641

Mapping rule
found?

YES
* [~ Step 027

NO

Another
unvisited

node?

Add the new Explain node
onto the processing stack

Create an Explain node of the
type specified by mapping rule

Add the Explain node onto the
processing stack

Step 033

Reduction

NO

NO

rule found??

YES

T s Step 639

Create a new Explain
node from the set

T — Step 637

Create a set by removing
explain node and all
subsequent explain

nodes matching reduction

rule from the processing
stack

+

=S

Y

Step 635

Subsequent
node(s) match reduction
rule?

FIGURE 7

US 8,032,822 Bl

Sheet 10 of 12

Oct. 4, 2011

U.S. Patent

ﬁOZ

}Sl|
031J0S O pUS O] spoul
uie|dxs jualing ppy

)79 doyg «

paduanbas se spou
Uie|dxa jualind yIe

6/9 deyg - k

apou
Uig|dxs jualing sy

L0 Juspuadsp ale 1eU)
sapou ule|dxa |0 18|

JUspusdsp e ajelausn)

.89 dayg —/

Y

aweu p|sll
Aq 1s1| Juspuadap L0

cg9 de)g k

18pJ0 paLIosS
BuluiejuIiBW BIYM
MOR]S B]BIpauLIs]uI
uo 11| JUspusdsp ysnd

8 ddMNDI-

s pasusnbas
10U 9pouU UIR|dxs uo
spuadap apou uie|dxs
JuUBLINY

SdA—

G/9 dais

m N4 v

SdA

3
o SpoU UIEdXS < On Sdws yoesN fiduws
JuaJind m>o.Emw_ SJEIpaLlLLIgIL 151] eS|

S|
¢, doyg /89 da)s
1 /9 dals

o+z
1S1| JB3| WOl
}OBIS D]BIPaLLLIB]UI OJUO 3pou ule|dxa ppy [4— apou uie|dxa
599 da1g _J A 1X8U UIBR1qO)

689 deig —

15l] Je9o| LUOU) 9pOU (__m_o_xm 15dl) U1 O

199 dayg -/ A

1S1| po1os Ajdwe ue
pUB }or1S a1eipaullaiul AjJdws ue a1ealn

Go9 dajg —/ »
aweu pjaly Aq 18| Jea| MOS
€99 deig +

aaJ) Aouapuadap ay} ul sjuapaosa.d ou
Buiaey sapou ule|dxa Jo)SI| Jes| e a)ealn)

ggg doyg -/

199 dayg 4
m 14VIS U

U.S. Patent Oct. 4, 2011 Sheet 11 of 12 US 8,032.822 B1

START

Step 701
Obtain first explain node from sorted
list
Step 703
Output Marker
Step 709
Step 705 Obtain next
Process explain node using steps In explain node
Figure 9B from sorted

list

Sorted list

empty? NO

YES

Y

(END)

FIGURE 9A

U.S. Patent

Oct. 4, 2011 Sheet 12 of 12

START

[~ Step 721

Obtain template for natural language
translation for current explain node

Step 723

Determine member variable(s) of

current explain node using template
and current explain node

Step 725

Member variable of
current explain node is
explain node

YES

Step 727

Recursively process member
variable(s) that is an explain node
using Figure 9B

Step 729

(GGenerate and output natural language
explanation of current explain node
using template

END

FIGURE 9B

US 8,032,822 Bl

NO

US 8,032,822 Bl

1

METHOD AND SYSTEM FOR EXPLAINING
DEPENDENCIES ON A DOCUMENT

BACKGROUND

The typical computer system 1ncludes at least one proces-
sor and a memory device. Executing on the computer system
are various types of applications, such as operating system
applications and user applications. Typical user applications
require that a user enter data into the application. For
example, user applications that use forms, such as spread-
sheets, databases, web pages, and tax applications are
designed around the concept of forms. A form corresponds to
any type ol document (Hyper-text Markup Language
(HITML) page, spreadsheets, etc.) in which functionality 1s
achieved through a combination of fields and calculations. A
field 1n a form stores a data value, which may be supplied by
the user (or other outside resource), or calculated using an
equation.

Often, the interdependencies 1n an application are compli-
cated. For example, the interdependencies between fields 1n a
form and the equations used 1n different fields are often not
intuitive to programmers or users. For example, 1n a tax
application, a user may be unable to understand how input 1n
one field relates to input 1n another field. Specifically, the user
may only see the end result of any calculations that are per-
formed.

In order to understand the interdependencies of a docu-
ment, users (e.g., users of a spreadsheet application) rely on
static explanations that are produced by individuals writing
the help files. The help files correspond to a snapshot of the
description of the application at the time the application 1s
created. Accordingly, the explanation found 1n the help files 1s
static 1n nature. Thus, the explanations found 1n the help file
remain static even when the documents that the help files are
explaining are dynamic. When modifications are made to the
form and a new version of the application 1s produced, each
alfected portion of a help file must be updated to ensure the
help files are consistent with the form.

SUMMARY

In general, 1n one aspect, the invention relates to a method
for reviewing data dependencies 1n a document that includes
requesting an explanation of a dependent data container 1n a
plurality of data containers, wherein the dependent data con-
tainer resides within a document, and recerving the explana-
tion of the dependent data container, wherein the explanation
that includes information about the dependent data container
and information about a precedent data container of the plu-
rality of data containers, and wherein the information
describes the dependency between the precedent data con-
tainer and the dependent data container.

In general, 1n one aspect, the mvention relates to a user
interface for explaining a data container that includes a source
section that includes a plurality of data containers, and an
explanation section that includes an explanation of a depen-
dent data container of the plurality of data containers, wherein
the explanation that includes information about the depen-
dent data container and information about a precedent data
container of the plurality of data containers, and wherein the
information describes the dependency between the precedent
data container and the dependent data container.

In general, 1n one aspect, the invention relates to a system
for describing dependencies in a document that includes a
user 1nterface configured to recetve a request for explaining,
the dependent data container in a plurality of data containers,

10

15

20

25

30

35

40

45

50

55

60

65

2

wherein the dependent data container resides within the docu-
ment, and an explanation engine configured to output an
explanation of the dependent data container within an expla-
nation section, wherein the explanation that includes infor-
mation about the dependent data container and information
about a precedent data container of the plurality of data con-
tainers, and wherein the immformation describes the depen-
dency between the precedent data container and the depen-
dent data container.

Other aspects of the mvention will be apparent from the
following description and the appended claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a schematic diagram of a system for describ-
ing dependencies in a document 1n accordance with one or
more embodiments of the invention.

FIG. 2 shows a flowchart of a method for reviewing data
dependencies 1n a document in accordance with one or more
embodiments of the imnvention.

FIG. 3 shows a flowchart of a method for describing data
dependencies 1n a document 1n accordance with one or more
embodiments of the mvention.

FIGS. 4A-4C shows an example user interface for review-
ing data dependencies in a tax document 1n accordance with
one or more embodiments of the invention.

FIG. 5 shows a computer system 1n accordance with one or
more embodiments of the invention.

FIG. 6, FIG. 7, FIG. 8, and FIGS. 9A-9B show flowcharts

1n accordance with one or more embodiments of the inven-
tion.

DETAILED DESCRIPTION

Specific embodiments of the invention will now be
described 1n detail with reference to the accompanying fig-
ures. Like elements 1n the various figures are denoted by like
reference numerals for consistency.

In the following detailed description of embodiments of the
invention, numerous specific details are set forth 1n order to
provide a more thorough understanding of the invention.
However, 1t will be apparent to one of ordinary skill 1n the art
that the invention may be practiced without these specific
details. In other instances, well-known features have not been
described 1n detail to avoid unnecessarily complicating the
description.

In general, embodiments of the invention provide a method
and system for describing and reviewing data dependencies in
a document. Moreover, embodiments of the invention auto-
matically generate a new and sometimes more natural work-
flow for the user without having to manually create or main-
tain help content. In particular, embodiments of the invention
dynamically show an explanation of a dependent data con-
tamner and any precedent data containers upon which the
dependent data container depends. A data container corre-
sponds to any portion of adocument 1n which a user may enter
data. For example, a data container may correspond to a field,
an entry in a table, a cell 1n a spreadsheet, a word 1n a docu-
ment created by a word processing application, a collection of
the aforementioned types of data containers (e.g., multiple
istances of a field, multiple instances of an entry), efc.

In addition to the explanation of the calculation of the data
containers, one or more embodiments of the invention also
show the values that a user has entered 1nto a data container.
Further, a user may modily the value in the explanation or 1n
the data container when reviewing the explanation. After
receiving the modification, one or more embodiments of the

US 8,032,822 Bl

3

invention dynamically recalculate the explanation and update
the document to reflect the modification.

FIG. 1 shows a schematic diagram of a system for describ-
ing dependencies 1n a document 1n accordance with one or
more embodiments of the invention. As shown 1n FI1G. 1, the
system 1ncludes a user interface (100) and an explanation
engine (102). Each of these components 1s described below.

A user interface (100) corresponds to a logical component
that allows the user to interact with a user application and an
explanation of the data containers (e.g., data container a
(108), data container x (110)). The user interface (100)
includes a source section (104) and an explanation section
(106). The source section (104) corresponds to a document of
the user application 1n which a user enters data. Specifically,
the source section (104) corresponds to the document that 1s
to be explained. For example, the source section (104) may
correspond to a tax-document, such as a tax return, that con-
tains one or more forms. Accordingly, the document may
include one or more views such as windows, screens, tabs,
computer generated forms, etc.

When the source section corresponds to document having,
multiple views, then a view may correspond to multiple
instances of the same template. For example, a form may
correspond to a form for entering data from an Internal Rev-
enue Service form W-2 that 1s recerved from an employer. If
a user has worked at multiple jobs over the course of the year,
then the user may have several instances of the form for
entering data from the W-2.

The source section (104) includes data containers (e.g.,
data container a (108), data container x (110)) (described
above). The data containers (e.g., data container a (108), data
container x (110)) may span views on the source section
(104). Further, data containers (e.g., data container a (108),
data contamer x (110)) may correspond to dependent data
containers and/or precedent data containers.

A dependent data container corresponds to a data container
that1s dependent on other data containers (e.g., data container
a (108), data container x (110)). Inversely, a precedent data
container corresponds to a data container that has one or more
data containers (e.g., data container a (108), data container x
(110)) dependent on it. A data container 1s dependent on
another data container when the value for the data container
uses the value of another data container. For example, data
container j (not shown) may correspond to a calculated field
in which the calculation specifies adding three to data con-
tainer b (not shown). In such scenario, data container 1 1s a
dependent data container and data container b 1s a precedent
data container. A calculation as used herein corresponds to
any type of logical expression (e.g., “data container 1=3"", “if
data container 2==°‘female’, then data container 5=$5000",
etc.).

Continuing with FIG. 1, the user interface (100) also
includes an explanation section (106). The explanation sec-
tion (106) corresponds to a portion of the user interface (100)
that allows a user to interact with the explanation of one or
more data containers (e.g., data container a (108), data con-
tainer X (110)) on the source section (104). The explanation
section (106) may correspond to a separate view of the user
intertace (100) from the source section (104). In one or more
embodiments of the invention, the explanation section (106)
includes an explanation of a data container (e.g., explanation
of data container ¢ (112), explanation of data container n
(114)).

The explanation of the data container (e.g., explanation of
data container ¢ (112), explanation of data container n (114))
corresponds to an explanation of how a value 1n a data con-
tainer 1s created. Accordingly, the explanation section

10

15

20

25

30

35

40

45

50

55

60

65

4

includes an explanation of a dependent data container and one
or more precedent data containers. An explanation as used
herein may not only correspond to a translation of the calcu-
lations used to compute the value of a data container, but also
to a transformation of the calculations. Specifically, an expla-
nation may include different words and different ordering of
the words from a translation. Further, an explanation may
include more or fewer words and may add or remove content
in order to clarily the meaning for the user thereby resulting 1n
a metamorphosis of content for the user.

For example, suppose the calculation used in DataCon-
tainer, , states that DataContainer, ,=DataContainer, +Data-
Container,+DataContainer, ;+DataContainer-. A translation
may state “add the value 1n DataContainer, to the value in
DataContainer,. Add the value 1n DataContainer,, to the
result. Add the value of DataContainer, to the result. Put the
result 1n DataContainer,,” In contrast, an explanation of the
above calculation may correspond to “Add the values 1n Data-
Container,, DataContainer,, DataContainer-, and DataCon-
tainer, . Put the result into DataContainer, ,” Thus, as shown
in the example, an explanation may provide more intuitive
and helpiul information to the user.

When explaining the dependency information for a depen-
dent data container, the explanation section (106) may
include the dependent data container and the precedent data
container in a different order than on the source section (104).
Specifically, the order of the explanation of the data contain-
ers listed on the explanation section (106) may be 1n a format
more intuitive to the user.

Further, in one or more embodiments of the invention, each
explanation of a data container (e.g., explanation of data
container ¢ (112), explanation of data container n (114)) may
dynamically display the current value 1n the data container.
Specifically, 1n one or more embodiments of the invention, a
user may update the value for a data container on the source
section (104) or on the explanation section, (106) and the
updated value 1s propagated to the data container of the
opposing section (1.e., the explanation section (106) or the
source section (104)). Further, the propagation may also
result 1n the recalculation and update of other data containers
on the source section (104) and/or the explanation section
(106).

The explanation of a data container (e.g., explanation of
data container ¢ (112), explanation of data container n (114))
may also include optional information. Specifically, the
optional imformation may include the actual value that i1s
currently 1n the data container, the location of the data con-
tainer (e.g., which instance of a form), whether the data con-
tainer 1s empty (1.e., a value 1s not entered in the data con-
tainer), whether the data container contains invalid data (1.e.,
does not conform with the requirements for the data con-
tainer), whether the data container 1s able to be calculated, a
link to the data container on the source section, code refer-
enced by the calculation, a warning 1f a detected error exists
with the data container (e.g., the data container cannot be
calculated or other such errors), etc.

In addition, the data containers that require attention, (e.g.,
empty data containers, data containers with invalid data, etc.)
may have a modified appearance on the explanation section
from the data containers that do not require attention. For
example, the explanation, or a portion thereof, of a data con-
tainer that requires attention may be displayed 1n a different
formatting style, highlight, color, etc.

In one or more embodiments of the invention, the expla-
nations of the data containers (e.g., explanation of data con-
tainer ¢ (112), explanation of data container n (114)) may be
displayed on the explanation section (106) in virtually any

US 8,032,822 Bl

S

manner. Specifically, the explanations may be graphical, such
as a tree structure with connectivity between explanations
showing dependencies, a pictorial, a list, a multi-dimensional
interactive structure, etc.

Continuing with FIG. 1, an explanation engine (102) 1s
connected to the user interface (100) 1n accordance with one
or more embodiments of the mvention. The explanation
engine (102) corresponds to a logical component that
includes functionality to create the explanation section (106)
with the explanation of the data containers (e.g., explanation
of data container ¢ (112), explanation of data container n
(114)). Specifically, the explanation engine (102) includes
functionality to review the source section (104), identify the
dependencies between data containers (e.g., data container a
(108), data container x (110)) on the source section (104), and
create the explanation of the data container (e.g., explanation
of data container ¢ (112), explanation of data container n
(114)) with the optional information.

FIG. 2 shows a flowchart of a method for reviewing data
dependencies 1n documents in accordance with one or more
embodiments of the invention. Initially, values are entered
into data containers on the source section (Step 201) 1n accor-
dance with one or more embodiments of the invention. Spe-
cifically, the user may begin populating the data containers on
the source section with data. After or while the user 1s popu-
lating data on the source section, data containers that obtain
values through calculations may be calculated. Specifically,
the data containers that are calculated may also be populated
with values.

Next, an explanation for a dependent data container 1s
requested (Step 203). Requesting an explanation for a depen-
dent data container may be performed, for example, by click-
ing a button associated with the dependent data container,
accessing a menu item and specilying a particular data con-
tainer, or using virtually any other technique known 1n the art
for requesting an action. Further, at this stage, optional infor-
mation may also be selected to be displayed.

After requesting an explanation of the dependent data con-
tainer, an explanation section that contains the explanation of
the dependent data container and any precedent data contain-
ers 1s received (Step 205). Specifically, at this stage, the
explanation engine performs the necessary calculations to
create the explanation section in accordance with one or more
embodiments of the invention. The explanation section may
be received as a new display, a pop-up window, one or more
graphical bubbles overlaid on the source section, etc.

Once the explanation section 1s received, a user may review
the information data dependencies between different data
containers that are on the source section. While reviewing the
data dependencies, the user may decide to update the value 1n
the data containers. Thus, a determination 1s made whether to
update the data containers (Step 207).

If the data containers are to be updated, then a new value 1s
entered into the data container (Step 209). In one or more
embodiments of the invention, a new value may be entered
into a data container on the source section or the explanation
section. Specifically, 1f a value exists 1n the data container,
then the value may be changed. Alternatively, if a value does
not exist i the data container, then the value may be added.

Further, a new value may be entered 1nto a data container
regardless of whether the data container 1s calculated. Spe-
cifically, a data container that 1s calculated may be entered
with a value. Thus, when entering a dependent calculated data
container with a value, auser may determine which values are
required in the precedent data container(s) to achieve the
resultant value that the user entered. Alternatively, in one or
more embodiments of the invention, entering a value 1n a

10

15

20

25

30

35

40

45

50

55

60

65

6

calculated data container merely overrides the calculation
and no changes are made to the precedent data containers.

Next, the new value 1s submatted (Step 211) in accordance
with one or more embodiments of the invention. At this stage,
the user may click on a button or use another such command
to indicate a request to update the value 1n the calculations.
Thus, the explanation engine may recalculate the dependent
data container and output a new explanation section. When
submitting the new value, 1n one or more embodiments of the
invention, the update on the new value may be propagated
throughout the source section and the explanation section.
Specifically, any calculations that use the new value may be
recalculated on both the source section and the explanation
section.

Alternatively, rather than submitting the new value and
having the calculations on the source section recalculated
from the new value, the new value may be submitted as a
temporary value 1n accordance with one or more embodi-
ments of the invention. Specifically, a user may enter the new
value to understand how the new value would affect the
dependent data container. Once the user accepts the new
value, the user may finalize the new value by having the new
value propagated to the source section 1n accordance with one
or more embodiments of the invention.

After the new value 1s submitted, then arevised explanation
1s reviewed (Step 213). After reviewing the revised explana-
tion, then a determination 1s made whether to update the
values 1n the data containers (Step 207). If the user determines
not to update the values 1n the data containers, then the source
section may be viewed (Step 215) in accordance with one or
more embodiments of the invention. In particular, the user
may continue entering values or performing various tasks
with the source section.

FIG. 3 shows a flowchart of a method for describing data
dependencies in a document in accordance with one or more
embodiments of the invention. Initially, a request 1s recerved
for the explanation for a dependent data container (Step 251).
The request may include an indication of which data con-
tainer requires the explanation and a request for optional
information.

Next, the explanation 1s processed with the dependent data
container and any precedent data container upon which the
dependent data container depends (Step 2353). Specifically,
the precedent fields are 1dentified and an explanation 1s cre-
ated for each precedent field and dependent field. Multiple
mechamisms exist that can be used to transform code associ-
ated with the data containers and used to create the document
into explanations for the explanation section. One method for
creating the explanations i1s described 1n patent application
Ser. No. 11/439,362 which 1s incorporated herein by refer-
ence.

One method for creating the explanations 1s for a developer
of the user-application to create the explanation for each data
container. The developer may also specily dependencies that
ex1st between data containers, such as 1n a dependency tree.
During runtime, the explanation engine may analyze the
dependency tree and 1dentily the dependencies between the
runtime data containers, including multiple repeat dependen-
cies created by multiple instances of the same template.

For example, the developer for an application to file taxes
may develop forms that are similar to the Internal Revenue
Service (IRS) forms and can be filled 1n by a user. When
developing the forms, the developer may specily that a data
container specilying “wages” on the IRS 1040 form 1s depen-
dent on a data container “wages” of the IRS W-2 form. The
explanation engine may 1dentity multiple instances of the
W-2 form that a user has created. Subsequently, the explana-

US 8,032,822 Bl

7

tion engine creates the explanation section that has an expla-
nation for the “wages” data container for each instance of the
W-2 form and the “wages” on the 1040 form in accordance
with one or more embodiments of the invention. Thus, depen-
dency information on the explanation section may link the
multiple instances of the “wages” data container on the W-2
torm with the single instance of the “wages™ data container on
the 1040 form 1n accordance with one or more embodiments
of the mvention.

Another method for creating the explanations 1s for the
explanations to be processed automatically from the code
used to create the document. For example, the code for each
data container may be extracted from the code used to create
the document. Then the code for each data container may be
analyzed to create a dependency tree. Specifically each node
in the dependency tree corresponds to the code for a data
container. The aforementioned steps may be performed at
runtime, compile time, etc. If the dependency tree 1s a com-
pile-time dependency tree, then a runtime dependency tree
may be created from the compile-time dependency tree when
the user requests the explanation of the dependent node.

In one or more embodiments of the mnvention, any runtime
dependency tree may only include nodes corresponding to the
dependent data container that the user requests and any pre-
cedent data containers. The nodes 1n the runtime dependency
tree may also include multiple instances of precedent data
containers (e.g., 1f the precedent data container corresponds
to a “wages” data container on a W-2 form). The runtime
dependency tree may subsequently be reduced using a set of
reduction rules, ordered according to a manner deemed 1ntui-
tive to the user, and transformed into explanations using tem-
plates associated with the type of node.

A mapping rule repository corresponds to a storage unit
(e.g.,atable, database, listing, etc.). The mapping rule reposi-
tory includes rules for mapping each operator and parameter
into a classification of a type of object. For example, 1n one or
more embodiments of the imnvention, the “+7, “=7, “*” opera-
tors maps to arithmetic objects. As another example, an AST
node describing a field (e.g., “field__2), may have an entry in
the mapping rule repository that specifies a field name maps
to a “DSfieldRel” object.

FIG. 6 shows a flowchart of a method for converting input
code 1nto a natural language explanation 1n accordance with
one or more embodiments of the invention. Initially, the input
code 1s obtained (Step 601). Obtaining the input code can be
performed 1n a variety of ways known 1n the art. For example,
the input code or a link may be obtained by a user or program
using a user iterface, an application programming interface,
etc. The input code that 1s obtained may correspond to a part
or all of an application. For example, because a user may
specily that only a portion of the application should be trans-
lated, the mput code that 1s obtained may correspond to the
portion that should be translated.

After the input code 1s obtained, the mput code 1s parsed to
obtain an abstract syntax tree (Step 603). Parsing the input
code 1nto the abstract syntax tree may be performed by a
compiler using virtually any method known 1n the art. Those
skilled 1n the art will appreciate that rather than creating the
abstract syntax tree, the abstract syntax tree may be a by-
product of a third party compiler. In either scenario, the
abstract syntax tree 1s obtained.

Once the abstract syntax tree 1s obtained, the abstract syn-
tax tree 1s analyzed to create a dependency tree (Step 603).
Creating the dependency tree can be performed for example,
by 1dentifying the nodes that have an assignment operator in
the abstract syntax tree. For each assignment node, the field
name that 1s the object of the assignment operator becomes a

10

15

20

25

30

35

40

45

50

55

60

65

8

newly-created dependency node in the abstract syntax tree.
Field name(s) that correspond to parameters of the assign-
ment operator become parents of the newly created node 1n
accordance with one or more embodiments of the invention.

In one or more embodiments to the invention, 1in addition to
the dependency tree, an explain tree 1s created using the
abstract syntax tree (Step 607). Those skilled in the art will
appreciate that the explain tree may be created before, during,
or after the dependency tree i1s created. In one or more
embodiments of the invention, the explain tree i1s created by
applying the mapping rules to the syntax nodes in the abstract
syntax tree to create explain nodes and reducing the newly
created explain nodes. FIG. 7 shows a flowchart of a method
for creating an explain tree 1n accordance with one or more
embodiments of the invention.

As shown 1 FIG. 7, the first AST node 1s obtained (Step
619). The first node 1s typically a leal node from the abstract
syntax tree. Specifically, in accordance with one or more
embodiments of the invention, creating the dependency tree
from the abstract syntax tree 1s performed by performing a
post order traversal of the abstract syntax tree. In a post order
traversal, the children AST nodes are visited betfore the parent
AST nodes. Further, in one embodiment of the invention, the
order of visiting the children AST nodes may be determined
by the order of the children AS'T nodes 1n the input code. For
example, 1f the equation 1s “3+5”, then the AST node repre-
senting “3” 1s visited. Next, the AST node for “5” 1s visited.
Finally the AST node for “+” 1s visited. Those skilled in the art
will appreciate that other traversals of the abstract syntax tree
are also possible. Specifically, with modifications to algo-
rithm, virtually any traversal of the abstract syntax tree may
be used.

Continuing with FIG. 7, after obtaiming the first AST node,
the first AST node 1s set to be the current AST node (Step
621). The current AST node 1s then marked as visited (Step
623). Marking an AST node as visited may be performed by
changing the value of a Boolean variable associated with the
AST node. Next, a determination 1s made whether a mapping
rule 1s found for the current AST node (Step 6235). Determin-
ing whether a mapping rule 1s found may be performed by
searching the mapping rule repository for the type of the AST
node. Searching the mapping rule repository may be per-
formed, for example, by a simple lookup 1n a table, perform-
ing a hash operation on the type of AST node, or other means
known 1n the art. If a mapping rule does not exist for the
current AST node, then in one or more embodiments of the
invention, the current AST node 1s 1ignored and a determina-
tion 1s made whether another unvisited AST node exists (Step
643).

Alternatively, 11 a mapping rule 1s found for the current
AST node, then an explain node of the type specified by the
mapping rule 1s created (Step 627). Specifically, an object of
the type specified 1n the mapping rule 1s instantiated with the
data in the AST node as a member variable. For example, 1n
one or more embodiments of the invention, if “field 17 1s the
current AST node, then an object of type DSfieldret 1s created
with member variable “field__1”. By maintaining the member
variable, classification of AST nodes may be performed with-
out loss of information.

After creating an explain node using the mapping rules, the
created explain node 1s added to a processing stack (Step
629). Specifically, 1n one or more embodiments of the inven-
tion, the explain node 1s added to the top of the processing
stack.

Next, a determination 1s made whether a reduction rule 1s
tound for the explain node (Step 633). Determining whether
a reduction rule 1s found for the explain node may be per-

US 8,032,822 Bl

9

formed by a lookup in the reduction rule repository for the
explain node. If a reduction rule 1s not found for the explain
node then a determination 1s made whether another unvisited
AST node exists (Step 643).

Alternatively, if a reduction rule 1s found for the current
explain node, then a determination 1s made whether subse-
quent nodes 1n the processing stack of the current explain
node match the reduction rule (Step 633). Specifically, the
explain node(s) underneath the current explain node 1s exam-
ined to determine whether the node matches the reduction
rule. More specifically, the explain nodes that match the
reduction rule can only be contiguous on the stack 1n accor-
dance with one or more embodiments of the invention. If the
subsequent nodes of the current explain node do not match the
reduction rule, then a determination 1s made whether another
unvisited AST node exists (Step 643).

Alternatively, 11 the subsequent nodes match the reduction
rule, then a set 1s created by removing the current explain
node and the subsequent explain nodes that match the reduc-
tion rule from the processing stack (Step 637). In particular,
the set mcludes the removed explain nodes. Next, a new
explain node 1s created from the set (Step 639). Specifically,
the removed subsequent explain nodes are set as member
variables of the current explain node.

After resetting the children explain nodes, a determination
1s made whether another unvisited node exists in the abstract
syntax tree (Step 643). Determining whether another unvis-
ited node exists may be performed by determining whether
the current node 1s the root of the abstract syntax tree. It the
current node 1s the root of the abstract syntax tree, then all
nodes have been visited in accordance with one or more
embodiments of the invention.

Accordingly, the processing stack is outputted to create the
explain tree (Step 649). In one or more embodiments of the
invention, outputting the processing stack may be performed
by iteratively removing each explain node from the process-
ing stack and adding the removed explain node to the end of
the explain tree. In one or more embodiments of the invention,
the outputted explain tree corresponds to a list of explain
nodes corresponding to assignment objects. In particular the
reduction rules reduce the explain nodes to assignment nodes
in accordance with one or more embodiments of the mnven-
tion.

Alternatively, 1t the current node 1s not the root of the
abstract syntax tree, then the current AST node has a parent.
Because the abstract syntax tree 1s traversed with a post order
traversal, the parent AST node of the current AST node 1s
unvisited 1n accordance with one or more embodiments of the
invention. Thus, a determination 1s made whether the parent
AST node of the current AS'T node has any unvisited children.
I1 the parent AS'T node has unvisited children, then one of the
unvisited children 1s set as the current AST node (Step 6435).
Alternatively, 11 all children of the parent node are visited,
then the parent AST node 1s set as the current AST node (Step
645). After setting an AST node as the current AS'T node, the
current AST node 1s mark as visited (Step 623). When all
nodes are visited, then the explain tree 1s complete.

Those skilled 1n the art will appreciate that while FIG. 7
describes a stack implementation for transforming the AST
nodes into explain nodes, other implementations may also be
used. For example, rather than adding explain nodes to the
processing stack, the explain nodes may be added to the top of
the explain tree directly.

In the tree implementation, reduction rules are applied to
subtrees of the explain tree to determine whether the subtrees
may be transformed into a representation more suitable for
natural language translation. If the children match the reduc-

10

15

20

25

30

35

40

45

50

55

60

65

10

tion rule, then the children explain nodes are added as mem-
ber variables to the current explain node. The children of the
chuldren explain nodes are then set as children of the current
explain node.

Returning to FIG. 6, after creating the explain tree, the
explain nodes 1n the explain tree are sorted into an intuitive
sequence using the dependency tree to create a sorted output
list (Step 609). FIG. 8 shows a tlowchart of a method for
performing a topological sort of explain nodes 1n the explain
tree 1n accordance with one or more embodiments of the
invention.

As shown in FIG. 8, initially a leat list of explain nodes that
do not have precedents 1n the dependency tree are created
(Step 661). One method for creating the leaf list 1s to deter-
mine which nodes 1n the dependency tree do not have chil-
dren. The leaf list may be created by traversing the depen-
dency tree. When a dependency node 1s determined to not
have children, then the explain node 1n the explain tree that
corresponds to the field reference 1s added to the leaf list.

Continuing with FIG. 8, the leaf list 1s sorted by field name
(Step 663). Specifically, as previously discussed, the reduc-
tion rule has removed non-assignment explain nodes and set
the non-assignment explain nodes as member variables of the
assignment explain nodes. Therefore, the explain tree has
only assignment explain nodes i1n accordance with one or
more embodiments of the mnvention. Accordingly, the leaf list
may be sorted by the member variable speciiying the field
name corresponding to the assignment operator.

After sorting the leaf list by field name, an empty interme-
diate stack and empty sorted list 1s created (Step 663). Next,
the first explain node from the leaf list 1s obtained (Step 667).
Then, the first explain node 1s added (e.g., pushed) to the
intermediate stack (Step 669). After adding the first explain
node to the stack, a determination 1s made whether the inter-
mediate stack 1s empty (Step 671).

If the stack 1s not empty, then the first explain node 1s
removed (e.g., popped) from the intermediate stack and set as
the current explain node (Step 673). Next, a determination 1s
made whether the current explain node depends on a prece-
dent explain nodes not sequenced (Step 675). Determining
whether the current explain node depends on at least one
precedent explain node not yet sequenced may be performed
by traversing the dependency tree and determining whether
all dependency nodes that are children of the dependency
node with the field name of the current explain node are
marked as sequenced. If the current explain node does not
depend on any precedent explain node not yet sequenced,
then the current explain node 1s added to the end of the sorted
list (Step 677).

Next, the current explain node 1s marked as sequenced
(Step 679). In one or more embodiments of the invention, the
dependency node that field name corresponds to the current
explain node 1s marked as sequenced. Marking an explain
node may be performed by changing a Boolean variable
associated with the explain node or dependency node to
“true”.

After marking the current explain node as sequenced, a
dependent list of explain nodes 1s generated (Step 681). The
dependent list of explain node corresponds to the list of
explain nodes that are dependent on the current explain node.

The dependent list of explain nodes may be obtained by
aggregating the field names of all direct and indirect depen-
dents of the current explain node. The field name may then be
used to obtain the explain nodes from the explain tree.

US 8,032,822 Bl

11

After obtaiming the dependent list, the dependent list 1s
sorted by the field name (Step 683). Specifically, the member
variables corresponding to the field name are used to sort the
dependency list.

Alternatively, the order of the dependency nodes may be
maintained. For example, the explain node that corresponds
to the dependency node at the root of the tree may be 1n the
front of the dependent list, while the explain node(s) that 1s
directly dependent on the current explain node 1s added to the
end of the list.

Next, the set of explain nodes are added to the intermediate
stack while maintaining the order specified in the tree (Step
685). For example, the first explain node in the dependency
l1st 1s added to the intermediate stack first and the last explain
node 1n the dependency list 1s added to the intermediate stack
last 1n accordance with one or more embodiments of the
invention.

After adding the dependency list to the intermediate stack,
a determination 1s made whether the stack 1s empty (Step
671). The stack 1s typically empty when the current explain
node 1s the root of the tree.

If the stack 1s not empty, then the method continues with the
removing the next explain node from the stack and setting the
next explain node as the current explain node (Step 673).
Alternatively, 11 the stack 1s empty, then a determination 1s
made whether the leaf list 1s empty (Step 687). If the leaf list
1s not empty, then more un-sequenced leal explain nodes
exist. Accordingly, the next explain node 1s obtained from the
leat list (Step 689). After obtaining the next explain node from
the list, the next explain node 1s added to the stack (Step 669).

Alternatively, 11 the list 1s empty, then all of the explain
nodes 1n the dependency tree are sequenced into a sorted list.

Those skilled 1n the art will appreciate that while FIG. 8
describes one method for sorting the explain nodes, other
methods are also possible. Specifically, a different sorting,
algorithm may be used. The actual sorting algorithm that 1s
used may be based on the type of ordered output list that 1s
intuitive to the type of user. For example, 11 the type of user 1s
a programmer, then an ordering that 1s intuitive may be based
on the order of the equations as stated in the design of the
torm. Specifically, in the programmer example, explain nodes
are near the explain nodes on which they are dependent.
Alternatively, if the type of user 1s an application user, then the
ordering that 1s intuitive may be based on the order of the field
names as they are presented visually to the user. Specifically,
in the application user example, the order may correspond to
field 1, field 2, field 3, etc.

Returming to FIG. 6, after the sorted list 1s created, then a
natural language explanation 1s generated for each explain
node in the sorted list and the natural language explanation 1s
outputted (Step 611). FIGS. 9A-9B show a flowchart of a
method for generating natural language explanation of
explain nodes 1n accordance with one or more embodiments
of the invention. Specifically, FIG. 9A shows the steps of
traversing the sorted list in accordance with one or more
embodiments of the invention.

Initially, the first explain node 1s obtained from the sorted
list (Step 701). Next, a marker 1s outputted (Step 703). The
marker indicates that the equation (s) specified after the
marker 1s for a specific field. Those skilled 1n the art waill
appreciate that outputting the marker 1s optional.

Next, the explamn node i1s processed using the steps
described in FIG. 9B. FIG. 9B shows a method for processing
an explain node to generate a natural language explanation 1n
accordance with one or more embodiments of the invention.
For the purposes of FIG. 9B, the current explain node corre-
sponds to the explain node currently being processed.

10

15

20

25

30

35

40

45

50

55

60

65

12

Initially, a template for the natural language explanation of
the current explain node 1s obtained (Step 721). The template
may be obtained, for example, by accessing the natural lan-
guage repository. In one or more embodiments of the mven-
tion, the natural language repository has a single template that
matches the explain node with the member variables of the
explain node.

After obtaining the template, the member variables of the
current explain node are determined using the template and
the current explain node (Step 723). The member variables
are the member variables of the current explain node. Next a
determination 1s made whether any of the member variables
correspond to an explain node (Step 725). Specifically, a
determination 1s made whether the current explain node has
nested explain nodes as member variables.

If the current explain node does have explain nodes as
member variables, then the explain nodes that are member
variables of the current explain node are recursively pro-
cessed using the steps of FIG. 9B (Step 727). Specifically,
cach nested explain node 1s processed in order recursively
using FIG. 9B. Those skilled in the art will appreciate that
while FIG. 9B shows a recursive algorithm for processing an
explain node, an iterative algorithm may also be used.

Once the member variables corresponding to explain nodes
are processed or 11 no member variables exist that correspond
to explain nodes, then the natural language explanation of the
current explain node 1s generated and outputted using the
template (Step 729). Specifically, the template specifies the
filler words and the member variables specily the variable
data to apply between the filler words 1n accordance with one
or more embodiments of the invention.

Returning to FIG. 9A, once the natural language explana-
tion 1s generated for the explain node 1n the sorted list, then a
determination 1s made whether the sorted list 1s empty (Step
707). If the sorted list 1s not empty, then the next explain node
1s obtained from the sorted output list (Step 709). Alterna-
tively, 11 the sorted output list 1s empty, then the natural
language explanation 1s generated for all explain nodes.

Those skilled 1n the art will appreciate that the natural
language explanation may be outputted by adding the natural
language explanation to a file, printer, display, etc. Further,
outputting the natural language explanation may be per-

formed during or after generating the natural language expla-
nation.

Those skilled 1n the art will appreciate that innumerable
methods exist for implementing the natural language transla-
tion 1n accordance with one or more embodiments of the
invention. Specifically, the aforementioned methods may be
modified to improve performance using optimization prin-
ciples known 1n the art.

Regardless of the method that 1s used to create the expla-
nation of each data container on the explanation section, the
optional information for the output may also be determined at
this stage 1n accordance with one or more embodiments of the
invention (Step 255). Specifically, the optional information
that a user desires may be determined. The optional informa-
tion may be specified 1n the request, specified as defaults, etc.

Next, the explanation and the optional information are
outputted in accordance with one or more embodiments of the
ivention (Step 257). In particular, the explanation section 1s
created and displayed for the user to view.

After displaying the explanation, a determination is made
whether an update in the data containers 1s received (Step
259). At this stage, the user may have added a new value or
changed an existing value to a new value 1n one or more data
containers.

US 8,032,822 Bl

13

If an update to the data containers is recerved, then the new
value 1s automatically or manually entered onto the source
section or the explanation section (Step 261). Specifically, the
opposing section 1s updated with the new value 1n accordance
with one or more embodiments of the invention.

After updating the opposing section, the data containers are
recalculated (Step 263). In one or more embodiments of the
invention, recalculating the data containers may be per-
tormed by 1dentifying the data containers that are dependent
on the data container that has the new value. Only the depen-
dent data containers may be recalculated. Alternatively, the
data containers throughout the document may be recalcu-
lated.

Once the data containers are recalculated, then a revised
explanation 1s outputted (Step 265). Outputting the revised
explanation may correspond to updating the current values on
the explanation section to reflect the recalculated values. Fur-
ther, the explanation may be re-processed to reflect the new
values (as described above 1n step 253). Once the revised
explanation 1s outputted, then a determination 1s, made
whether an update 1n the data containers 1s received (Step
259).

While FIG. 2 and FIG. 3 show flowcharts of methods for
reviewing and explaining dependencies 1n a document, vari-
ous other methods may also be used. For example, in one or
more embodiments of the invention, the user may be pre-
sented with the explanation section when highlighting or
clicking on a data container on the source section. In such
embodiments of the invention, the request for the explanation
may be implicit by a user accessing the document or a data
container on the document.

In the following example, consider the scenario in which a
user 1s using an online tax program 1n order to file taxes. For
the purposes of the example, the document corresponds to all
of the forms required for the user’s taxes, and the data con-
tainers correspond to the fields on the forms. However, the
terms “data containers™ and “document” are not limited to the
use 1n this example.

FIGS. 4A-4C shows an example user interface for review-
ing data dependencies in a tax document 1n accordance with
one or more embodiments of the invention. Specifically, FIG.
4A shows an example source section (300). Because the
forms on the source section (300) are large, the source section
(300) 1s divided mnto sections (1.e., the top section (300A),
middle section (300B), and bottom section (300C)). In the
example, the middle section (300B) corresponds to a continu-
ation of the top section (300A). Sumilarly, the bottom section
(300C) corresponds to a continuation of the middle section
(300B).

In the example shown 1n FIG. 4A, a user 1s filing income
taxes 1n Califormia. Accordingly, the source section (300)
shows a ca5402e¢z form (302) and a W2 form (304). The
ca5402ez torm (302) corresponds to a portion of an applica-
tion that simplifies entering data on a California resident
income tax return form 5402EZ. Accordingly, certain fields
on the ca5402ez torm (302) may be calculated. The W2 form
(304) on the source section corresponds to a portion of an
application for entering data from the IRS W2 form that 1s
received from an employer.

Continuing with the example, both forms (1.e., ca3402ez
(302) and W2 (304)) have a field ID column (306), a field
istruction column (308), a value column (310), a column
entitled “What the calc?” (312), and a column entitled “What
the value?” (314). The field ID column (306) uniquely 1den-
tifies the line on the form (e.g., ca5402ez (302), W2 (304)).
The field mstructions column (308) presents basic instruc-
tions for entering data 1n the corresponding field. The value

10

15

20

25

30

35

40

45

50

55

60

65

14

column (310) has the data containers for populating the fields
with values. A certain portion of the fields 1 the values
column are calculated. The column entitled “What the calc?”
(312) allows a user to click on a button associated with the
field to see the calculation used to calculate the field. The
column entitled *“What the value?” (312) allows auser to click
on a button associated with the field to request an explanation
of the dependencies for the field.

Thus, 1n the example, the user enters data from the IRS W2
form that the user recerved from their employer onto the W2
form (304) on the source section. Specifically, the user enters

a value of “9999” into the field (322) of Box 17 (320). The
user may then notice the value of the field (326), “Line9”
(324), remain as “0.” Further, the instructions (328) on line 9
(324) indicate that the value 1n the field (326) should change.
Accordingly, the user clicks a button (330) for line 9 (324) in
the “What the value” column (314).

Thus, an explanation section 1s produced to explain the
value (326) for line 9 (324) of the source section (300). FIG.
4B shows an example of the explanation section (400) in the
user interface in accordance with one or more embodiments
of the invention. In the example, the user 1s guided through the
calculations for line 9 on the ca5402ez form. Specifically, not
only 1s the user able to read an explanation of the calculation
of line 9 (402), but the user 1s also able to read an explanation
of the precedent fields (e.g., explanation of Box 17 (404),
explanation of Box 15 (406)).

Thus, reading the explanation of line 9 (402), the user
learns line 9 contains the sum of the values of Box 17 the
instances of the W2 form that have box 135 set to “CA.” The
explanation for the precedent data containers (e.g., explana-
tion of Box 17 (404), explanation of Box 15 (406)) states that
a value must be entered for Box 17 of W2 and for Box 15 of
the W2 form, respectively. Further, for each instance of the
precedent data containers, a separate statement as to the cur-
rent value 1s displayed (1.e., (408), (410)). Thus, 1if the user had
multiple W2 forms, then each instance of Box 17 and Box 135
on the multiple W2 forms would be displayed. Further, as
shown below 1n the key (430) of the explanation section
(400), bold 1talic text indicates that the fields required for the
calculation are unknown. Thus, the explanation for line 9
(402) and Box 15 (410) are 1n bold, italic text. The text may
alternatively be highlighted, colored a different color, etc.

In addition to the explanation, the user has the opportunity
to view and update the current value in the fields on the
explanation section. Specifically, the user may change the
value of Box 17 using the field (412). Once the user enters a
new value, the user may click a *“set value” button (418) to
recalculate all of the fields. Alternatively, the user may click
on a link (424) to be directed to the box 17 on the source
section (shown 1n FI1G. 4A).

For the purposes of this example, suppose the user changes
the value 1n the field (414) for Box 15 on the explanation
section (400). Once the user changes the value, the user may
click on the “set value” button (420) next to the field (414).
FIG. 4C shows an example explanation section (400) after the
user updates the value 1n field (414) to “CA” 1n accordance
with one or more embodiments of the invention. As shown in
FIG. 4C, the explanations for Box 15 (410) and line 9 (402)
are no longer 1n a modified style (1.e., 1n bold italic text).
Further, a value 1s now entered into the field (416) of line 9 to
reflect the new calculations.

In addition, 11 the user clicks on the link to be navigated to
box 15 (426), then the user would see the value updated on the
source section 1n accordance with one or more embodiments
of the invention (not shown). Alternatively, the user may click

US 8,032,822 Bl

15

on the close and refresh button (432) to be directed back to the
source section that 1s updated with the user’s modifications on
the explanation section (400).

As shown 1n the example, the explanation section provides
a simple method for a user to understand the data dependen-
cies 1n the document. Further, the user may update and navi-
gate through the different fields on the source section and the
explanation section.

The mvention may be implemented on virtually any type of
computer regardless of the platform being used. For example,
as shown i FIG. 5, a computer system (500) includes a
processor (302), associated memory (504), a storage device
(506), and numerous other elements and functionalities typi-
cal of today’s computers (not shown). The computer (500)
may also include input means, such as a keyboard (508) and
a mouse (510), and output means, such as a monitor (512).
The computer system (500) 1s connected to a local area net-
work (LAN) or a wide area network (e.g., the Internet) (not
shown) via a network interface connection (not shown).
Those skilled i the art will appreciate that these input and
output means may take other forms.

Further, those skilled 1n the art will appreciate that one or
more elements of the aforementioned computer system (500)
may be located at a remote location and connected to the other
clements over a network. Further, the invention may be imple-
mented on a distributed system having a plurality of nodes,
where each portion of the invention (e.g., user interface,
explanation engine, etc.) may be located on a different node
within the distributed system. In one embodiment of the
invention, the node corresponds to a computer system. Alter-
natively, the node may correspond to a processor with asso-
ciated physical memory. The node may alternatively corre-
spond to a processor with shared memory and/or resources.
Further, software 1nstructions to perform embodiments of the
invention may be stored on a computer readable medium such
as a compact disc (CD), a diskette, a tape, a file, or any other
computer readable storage device.

One or more embodiments of the mvention simplity the
understanding of the calculations mherent 1 a document.
Specifically, by explaining the calculations, a user 1s able to
understand the data dependencies that exist and are not
readily evident between data containers.

Further, one or more embodiments of the invention shown
on the explanation section which data containers are empty or
have invalid values. Thus, a user 1s able to identify and correct
any errors 1n the document that cause a calculated data con-
tainer to have the icorrect value.

In addition, one or more embodiments of the invention
provide a mechanism for a user to update a value 1n the data
containers on the explanation section and have the update
propagated through the explanations and the calculations.
Thus, 1n accordance with one or more embodiments of the
invention, the user may continually modify values in the
precedent data container to obtain a desired value i the
dependent data container.

Also, 1n one or more embodiments of the invention, a user
may override the value 1n a calculated data container if the
user 1s not satisfied with the current value. Then, the user may
decide whether to update the precedent data containers or
leave the calculated data container with the user specified
value.

While the invention has been described with respect to a
limited number of embodiments, those skilled in the art,
having benefit of this disclosure, will appreciate that other
embodiments can be devised which do not depart from the

10

15

20

25

30

35

40

45

50

55

60

65

16

scope of the invention as disclosed herein. Accordingly, the
scope of the invention should be limited only by the attached
claims.
What 1s claimed 1s:
1. A method for reviewing data dependencies 1 a docu-
ment comprising:
receving a request for a natural language explanation of a
dependent data container 1n a plurality of data contain-
ers, wherein the dependent data container resides within
a form;
analyzing computer code, used to generate the form, to
identily at least one precedent data container of the
dependent data container;
generating, from the computer code, a natural language
explanation of the dependent data container and a natu-
ral language explanation of the at least one precedent
data container,
wherein the natural language explanation of the depen-
dent data container describes, 1n sentence form, the
computer code corresponding to the dependent data
container,
wherein the natural language explanation of the at least
one precedent data container describes, in sentence
form, the computer code corresponding to the at least
one precedent data container, and
wherein generating the natural language explanation of
the dependent data container comprises:
obtaining an abstract syntax tree from the computer
code corresponding to the dependent data con-
tainer, wherein the abstract syntax tree describes
the computer code corresponding to the dependent
data container and comprises a plurality of com-
piled tree structure nodes, wherein each of the plu-
rality of compiled tree structure nodes identifies a
portion ol the computer code;
obtaining an explain tree by:
transforming the plurality of compiled tree struc-
ture nodes into a plurality of explain nodes,
wherein the transforming the plurality of com-
piled tree structure nodes comprises for each
compiled tree structure node of the plurality of
compiled tree structure nodes:
marking the compiled tree structure node as a
current compiled tree structure node;
identifying a mapping rule corresponding to the
current compiled tree structure node,
wherein the mapping rule specifies an object
type that maps to at least one selected from a
group consisting of a plurality of operators and a
plurality of parameters, and
wherein the mapping rule 1s identified based on
the current compiled tree structure node com-
prising at least one selected from a group con-
s1sting of an operator of the plurality of operators
and a parameter of the plurality parameters;
generating a new explain node of the plurality of
explain nodes by instantiating the new explain
node as the object type specified by the mapping
rule, wherein the new explain node comprises
data in the current compiled tree structure node
as a member variable; and
adding the new explain node to a processing
stack: and
storing, 1n the explain tree, the plurality of explain
nodes remaining 1n the processing stack aiter the
transforming of the plurality of compiled tree
structure nodes 1s complete;

US 8,032,822 Bl

17

generating a natural language explanation of each
explain node of the plurality of explain nodes 1n the
processing by, for each explain node;
selecting a template matching the object type of the
explain node, and
generating the natural language explanation of the
explain node comprising filler words from the
template and the member variable comprised 1n
the explain node; and
outputting the natural language explanation of each
explain node into a natural language, wherein the
natural language explanation of the dependent data
container comprises the natural language explana-
tion of each explain node 1n the natural language,
and
displaying the natural language explanation of the depen-
dent data container and the natural language explanation
for the at least one precedent data container.

2. The method of claim 1, wherein the at least one prece-
dent data container 1s empty.

3. The method of claim 2, wherein an appearance of the at
least one precedent data container 1s modified in the natural
language explanation.

4. The method of claim 1, wherein the natural language
explanation of the dependent data container and the natural
language explanation of the at least one precedent data con-
tainer comprises a plurality of values in the dependent data
container and the at least one precedent data container.

5. The method of claim 1, further comprising;

entering a value 1n the at least one precedent data container

on a source section to create an entered value, wherein
the natural language explanation of the at least one pre-
cedent data container comprises the entered value.

6. The method of claim 1, further comprising;

updating a value 1n the at least one precedent data container

on an explanation section to create an updated value,
wherein the natural language explanation of the at least
one precedent data container comprises the updated
value.

7. The method of claim 6, wherein a source section 1s
updated with the updated value.

8. The method of claim 1, wherein the plurality of data
containers are a plurality of fields.

9. The method of claim 1, wherein the natural language
explanation of the at least one precedent data container com-
prises at least one selected from a group consisting of an
actual value of the at least one precedent data container, a
location of the at least one precedent data container, a warmn-
ing, a link to the at least one precedent data container, and
information i1dentitying whether the at least one precedent
data container 1s empty.

10. A non-transitory computer readable storage medium
comprising computer readable program code stored therein
for causing a computer processor to create a user interface for
explaining a dependent data container, the user interface com-
prising;:

a source section of a form comprising a plurality of data

containers; and

an explanation section comprising a natural language

explanation of the dependent data container of the plu-

rality of data containers, wherein the explanation section

1s generated by:

analyzing computer code, used to generate the form, to
identily at least one precedent data container of the
dependent data container;

10

15

20

25

30

35

40

45

50

55

60

65

18

generating, from the computer code, the natural lan-

guage explanation of the dependent data container
and a natural language explanation of the at least one
precedent data container,
wherein the natural language explanation of the
dependent data container describes, in sentence
form, the computer code corresponding to the
dependent data container,
wherein the natural language explanation of the at
least one precedent data container describes, 1n
sentence form, the computer code corresponding to
the at least one precedent data container, and
wherein generating the natural language explanation
of the dependent data container comprises:
obtaining an abstract syntax tree from the computer
code corresponding to the dependent data con-
tainer, wherein the abstract syntax tree describes
the computer code corresponding to the depen-
dent data container and comprises a plurality of
compiled tree structure nodes, wherein each of
the plurality of compiled tree structure nodes
identifies a portion of the computer code;
obtaining an explain tree by:
transforming the plurality of compiled tree
structure nodes nto a plurality of explain nodes,
wherein the transforming the plurality of com-
piled tree structure nodes comprises for each
compiled tree structure node of the plurality of
compiled tree structure nodes:
marking the compiled tree structure node as a
current compiled tree structure node;
identifying a mapping rule corresponding to the
current compiled tree structure node,
wherein the mapping rule specifies an object
type that maps to at least one selected from a
group consisting of a plurality of operators and a
plurality of parameters, and
wherein the mapping rule 1s identified based on
the current compiled tree structure node com-
prising at least one selected from a group con-
s1sting of an operator of the plurality of operators
and a parameter of the plurality of parameters;
generating a new explain node of the plurality of
explain nodes by instantiating the new explain
node as the object type specified by the mapping
rule, wherein the new explain node comprises
data in the current compiled tree structure node
as a member variable; and
adding the new explain node to a processing
stack: and
storing, 1n the explain tree, the plurality of
explain nodes remaining 1n the processing stack
alter the transforming of the plurality of com-
piled tree structure nodes 1s complete;
generating a natural language explanation of each
explain node of the plurality of explain nodes
explain node:
selecting a template matching the object type of
the explain node, and
generating the natural language explanation of
the explain node comprising filler words from
the template and the member variable comprised
in the explain node; and
outputting the natural language explanation of each
explain node 1into a natural language, wherein the
natural language explanation of the dependent

US 8,032,822 Bl

19

data container comprises the natural language
explanation of each explain node 1n the natural
language.

11. The non-transitory computer readable storage medium
of claim 10, wherein the at least one precedent data container
1s empty.

12. The non-transitory computer readable storage medium
of claam 11, wherein an appearance of the at least one prece-
dent data container 1s modified in the explanation section.

13. The non-transitory computer readable storage medium
of claim 10, wherein the explanation section comprises a
plurality of values in the dependent data container and the at
least one precedent data container.

14. The non-transitory computer readable storage medium
of claim 10, wherein the at least one precedent data container
on the source section 1s entered with a value to create an
entered value, wherein the natural language explanation of
the at least one precedent data container comprises the
entered value.

15. The non-transitory computer readable storage medium
of claim 10, wherein the explanation section 1s updated with
a value 1n the at least one precedent data container to create an
updated value, wherein the natural language explanation of
the at least one precedent data container comprises the
updated value.

16. The non-transitory computer readable storage medium
of claim 15, wherein the source section 1s updated with the
updated value.

17. The non-transitory computer readable storage medium
of claim 10, wherein the source section 1s a financial form,

and the plurality of data containers are a plurality of fields 1n
the financial form.

18. The non-transitory computer readable storage medium
of claim 10, wherein the natural language explanation of the
at least one precedent data container comprises at least one
selected from a group consisting of an actual value of the at
least one precedent data container, a location of the at least
one precedent data container, a warning, a link to the at least
one precedent data container, and information identifying
whether the at least one precedent data container 1s empty.

19. A system for describing dependencies in a document
comprising:

a computer processor;

a user iterface configured to recerve a request for explain-
ing the dependent data container 1n a plurality of data
containers, wherein the dependent data container resides
within a form; and

an explanation engine configured to execute on the com-
puter processor and configured to:
analyze computer code, used to generate the form, to

identily at least one precedent data container of the

dependent data container;

generate, from the computer code, a natural language

explanation of the dependent data container and a

natural language explanation of the at least one pre-

cedent data container,

wherein the natural language explanation of the
dependent data container describes, in sentence
form, the computer code corresponding to the
dependent data container,

wherein the natural language explanation of the at
least one precedent data container describes, 1n
sentence form, the computer code corresponding to
the at least one precedent data container, and

wherein generating the natural language explanation
of the dependent data container comprises:

10

15

20

25

30

35

40

45

50

55

60

65

20

obtaining an abstract syntax tree from the computer
code corresponding to the dependent data con-
tainer, wherein the abstract syntax tree describes
the computer code corresponding to the depen-
dent data container and comprises a plurality of
compiled tree structure nodes, wherein each of
the plurality of compiled tree structure nodes
identifies a portion of the computer code;

obtaining an explain tree by:

transforming the plurality of compiled ftree
structure nodes 1nto a plurality of explain nodes,
wherein the transforming the plurality of com-
piled tree structure nodes comprises for each
compiled tree structure node of the plurality of
compiled tree structure nodes:

marking the compiled tree structure node as a

current compiled tree structure node;

identifying a mapping rule corresponding to the
current compiled tree structure node,

wherein the mapping rule specifies an object

type that maps to at least one selected from a

group consisting of a plurality of operators and a

plurality of parameters, and

wherein the mapping rule 1s identified based on

the current compiled tree structure node com-

prising at least one selected from a group con-
s1sting of an operator of the plurality of operators
and a parameter of the plurality of parameters;
generating a new explain node of the plurality of
explain nodes by instantiating the new explain
node as the object type specified by the mapping
rule, wherein the new explain node comprises
data in the current compiled tree structure node
as a member variable; and

adding the new explain node to a processing

stack: and

storing, 1n the explain tree, the plurality of

explain nodes remaining 1n the processing stack

alter the transforming of the plurality of com-
piled tree structure nodes 1s complete;

generating a natural language explanation of each
explain node of the plurality of explain nodes
explain node;

selecting a template matching the object type of

the explain node, and

generating the natural language explanation of
the explain node comprising filler words from
the template and the member variable comprised

in the explain node; and

outputting the natural language explanation of each
explain node 1nto a natural language, wherein the
natural language explanation of the dependent data
container comprises the natural language explanation
of each explain node in the natural language, and
output the natural language explanation of the depen-
dent data container and the natural language explana-
tion of the at least one precedent data container within
an explanation section.

20. The system of claim 19, wherein the at least one pre-
cedent data container 1s empty, and wherein an appearance of
the at least one precedent data container 1s modified 1n the
natural language explanation of the at least one precedent data
container.

21. The system of claim 19, wherein the natural language
explanation of the dependent data container and the natural
language explanation of the at least one precedent data con-

US 8,032,822 Bl

21

tainer comprises a plurality of values in the dependent data
container and the at least one precedent data container.
22. The system of claim 19, wherein the user interface 1s
turther configured to receive a value entered 1n the at least one
precedent data container on a source section to create an
entered value, and wherein the explanation engine 1s config-
ured to enter the entered value into the natural language
explanation of the at least one precedent data container.
23. The system of claim 19, wherein the natural language
explanation of the at least one precedent data container com-
prises at least one selected from a group consisting of an
actual value of the at least one precedent data container, a
location of the at least one precedent data container, a warmn-
ing, a link to the at least one precedent data container, and
information i1dentitying whether the at least one precedent
data container 1s empty.
24. A computer readable storage medium comprising com-
puter readable program code stored therein for causing a
computer processor to perform a method for describing
dependencies 1n a document, the method comprising:
receiving a request for a natural language explanation of a
dependent data container in a plurality of data contain-
ers, wherein the dependent data container resides within
a form;

analyzing computer code, used to generate the form, to
identify at least one precedent data container of the
dependent data container;

generating, from the computer code, a natural language

explanation of the dependent data container and a natu-
ral language explanation of the at least one precedent
data container,
wherein the natural language explanation of the depen-
dent data container describes, 1in sentence form, the
computer code corresponding to the dependent data
container,
wherein the natural language explanation of the at least
one precedent data container describes, in sentence
form, the computer code corresponding to the at least
one precedent data container, and
wherein generating the natural language explanation of
the dependent data container comprises:
obtaining an abstract syntax tree from the computer
code corresponding to the dependent data con-
tainer, wherein the abstract syntax tree describes
the computer code corresponding to the dependent
data container and comprises a plurality of com-
piled tree structure nodes, wherein each of the plu-
rality of compiled tree structure nodes 1dentifies a
portion of the computer code;
obtaining an explain tree by:
transforming the plurality of compiled tree struc-
ture nodes into a plurality of explain nodes,
wherein the transforming the luralit of compiled
tree structure nodes comprises for each compiled
tree structure node of the plurality of compiled
tree structure nodes:
marking the compiled tree structure node as a
current compiled tree structure node;
identifying a mapping rule corresponding to the
current compiled tree structure node,

10

15

20

25

30

35

40

45

50

55

22

wherein the mapping rule specifies an object

type that maps to at least one selected from a

group consisting of a plurality of operators and a

plurality of parameters, and

wherein the mapping rule 1s identified based on

the current compiled tree structure node com-

prising at least one selected from a group con-
s1sting of an operator of the plurality of operators
and a parameter of the plurality of parameters;
generating a new explain node of the plurality of
explain nodes by instantiating the new explain
node as the object type specified by the mapping
rule, wherein the new explain node comprises
data in the current compiled tree structure node
as a member variable; and

adding the new explain node to a processing

stack; and

storing, 1n the explain tree, the plurality of

explain nodes remaining 1n the processing stack

alter the transforming of the plurality of com-
piled tree structure nodes 1s complete;

generating a natural language explanation of each
explain node of the plurality of explain nodes 1n
the processing by, for each explain node;
selecting a template matching the object type of
the explain node, and

generating the natural language explanation of
the explain node comprising filler words from
the template and the member variable comprised

in the explain node; and
outputting the natural language explanation of each
explain node 1into a natural language, wherein the
natural language explanation of the dependent
data container comprises the natural language
explanation of each explain node 1n the natural
language, and
displaying the natural language explanation of the
dependent data container and the natural language
explanation for the at least one precedent data con-
tainer.

25. The non-transitory computer readable storage medium
of claim 24, wherein the at least one precedent data container
1s empty, and wherein an appearance of the at least one
precedent data container 1s modified 1n the natural language
explanation of the at least one precedent data container.

26. The non-transitory computer readable storage medium
of claim 24, wherein the natural language explanation of the
dependent data container and the natural language explana-
tion of the at least one precedent data container comprises a
plurality of values 1n the dependent data container and the at
least one precedent data container.

277. The non-transitory computer readable storage medium
of claim 24, wherein the natural language explanation of the
at least one precedent data container comprises at least one
selected from a group consisting of an actual value of the at
least one precedent data container, a location of the at least
one precedent data container, a warning, a link to the at least
one precedent data container, and information identifying
whether the at least one precedent data container 1s empty.

G o e = x

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,032,822 Bl Page 1 of 1
APPLICATION NO. : 11/494915

DATED : October 4, 2011

INVENTOR(S) : Michael A. Artamonov et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In Claim 1, Column 16 (line 55), --of-- should be added after “plurality™.

In Claim 10, Column 18 (line 57), --in the processing by, for each-- should be
added after “nodes™.

In Claim 19, Column 20 (line 43), --in the processing by, for each-- should be
added after “nodes™.

In Claim 24, Column 21, (line 53), “luralit” should read as --plurality--.

Signed and Sealed this

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

