US008028172B2
12 United States Patent (10) Patent No.: US 8,028,172 B2
Hunter et al. 45) Date of Patent: *Sep. 27, 2011
(54) SYSTEMS AND METHODS FOR UPDATING A gaggag% E iggggi Eﬂg{ﬂﬂi et ﬁi* ******************* ;Sg
,, ,, 1 ngland etal.
SECURE BOOT PROCESS ON A COMPUTER 6,643,781 B1 11/2003 Merriamc...oeeeeeene. 726/35
WITH A HARDWARE SECURITY MODULE 6,651,171 Bl 11/2003 England etal. 713/193
6,684,326 Bl 1/2004 Cromer etal. 713/2
(75) Inventors: Jamie Hunter, Bothell, WA (US); Paul 6,757,824 Bl 6/2004 Englandccoeonenee. 713/156
: 7,117,376 B2 10/2006 Grawrockc........ 380/277
gnglalﬁd’.Be%evdﬁ’ “;A\%S){ngfsseu 7237.121 B2 6/2007 Cammack etal. ... 713/189
umphries, Redmond, WA (US); 7,318,150 B2* 1/2008 Zimmeretal. 713/2
Stefan Thom, Snohomish, WA (US); 2002/0087877 Al 7/2002 Grawrock 713/200
James Anthony Schwartz, Jr., Seattle, 2003/0037231 Al* 2/2003 Goodmanetal. ... 713/2
WA (US): Kenneth D. Ray, Seattle, WA 2003/0046542 Al 3/2003 Chenetal. ..oocovvivee.... 713/176
(US): Jmiathan Schwarts jKirklanél 2003/0188179 Al* 10/2003 Challener et al. 713/193
WA ("US) ’ " 2003/0233558 Al 12/2003 Liebermanetal. 713/189
(Continued)
(73) Assignee: ?I/Ijlé:;'osoft Corporation, Redmond, WA OTHER PURI ICATIONS
Trusted Computing Platform Alliance (TCPA) Main Specification
(*) Notice: Subject to any disclaimer, the term of this Version 1.1b Published by the Trusted Computing Group in Feb.
patent 1s extended or adjusted under 35 2002 .*
U.S.C. 154(b) by 1251 days. (Continued)
This patent 1s subject to a terminal dis-
claimer. Primary Examiner — Ellen Tran
(74) Attorney, Agent, or Firm — Woodcock Washburn LLP
(21) Appl. No.: 11/036,018
(37) ABSTRACT
(22) Filed: Jan. 14, 2005 Systems and methods are provided for maintaining and
: Sy updating a secure boot process on a computer with a trusted
(65) Prior Publication Data platform module (TPM). A boot process may be maintained
US 2006/0161784 Al Jul. 20, 2006 by inspecting a log of TPM activity, determining data that
prevented a secret to unseal, and returning the data to an
(31) Int. Cl. original state. In situations where this type of recovery 1s not
HO4L 9/32 (20006.01) workable, techniques for authenticating a user may be used,
(52) US.CL ., 713/193 allowing the authenticated user to bypass the security features
(58) Field of Classification Search 726/16; of the boot process and reseal the boot secrets to platform
713/164, 193, 194 configuration register (PCR) values that may have changed.
See application file for complete search history. Finally, a secure boot process may be upgraded by migrating
TPM sealed secrets to a temporary storage location, updating
(56) References Cited one or more aspects of a secure boot process, and resealing the

secrets to the resulting new platform configuration. Other

U.S. PATENT DOCUMENTS advantages and features of the invention are described below.

5,937,003 A 8/1999 Davis
0,189,100 Bl 2/2001 Barr et al.

iiiiiiiiiiiiiiiiiiiiiiiiiiii

20 Claims, 7 Drawing Sheets

Sealad Secrets
302

JUT

0

Sealed PCR }d
Values ~10
304

TPM 301

P LL"L"

1121131456
9 ([10]]| 11]|12

13(|14(|15]||18| [17]| n

Pﬁﬁ‘ﬁSﬂB

CPU 300

LT

v

Software
Components 308

Othear Data
308

BIOS 306

\

Log 307

7

—
—

RAM/ROM 305

US 8,028,172 B2
Page 2

U.S. PATENT DOCUMENTS

2005/0021968 Al* 1/2005 Zimmer etal. 713/176

2005/0108564 Al* 5/2005 Freemanetal. ... 713/200

2006/0047944 Al 3/2006 Kilian-Kehr 713/2

2006/0053302 Al 3/2006 Yasakietal. 713/183

2006/0064752 Al 3/2006 Wangetal. 726/19
OTHER PUBLICATTONS

Chuang, S.-C., et al., “A Case Study of Secure ATM Switch Booting,”
Proceedings of the Symposium on Network and Distributed System
Security, San Diego, California, Feb. 22-23, 1996, 103-112.

Held, G., “Focus on: Encryption Plus,” International Journal of

Network Maagement, Jan.-Feb. 2002, 12(1), 61-66.

Taylor, K., et al., Protect Your Notebook [notebook security], Per-
sonal Computer World, Jul. 2004, 27(7), 107-109.

Yue-Zhi, 7., et al., “A Customizable Boot Protocol for Network

Computing,” Journal of Software, Mar. 2003,
In the United States Patent and Trademark O:

14(3), 538-546.
Tice, Non-Final Of]

1ce

Action dated Jun. 20, 2008, In re U.S. Appl. No. 11/031,161, filed

Jan. 7, 2005, 15 pages.
In the United States Patent and Trademark O:

Tice, Non-Final Of

1ce

Action dated Jun. 18, 2008, In re U.S. Appl. No. 11/035,715, filed

Jan. 14, 2005, 13 pages.

* cited by examiner

EET SWYHO0Ud
NOILVYOI'lddV

US 8,028,172 B2

Ilﬁll FIOWTN 71
el §C1 pivogdoy mﬂwﬂmm o ﬂ.mxﬁuczmQ.EESM.
zwmwwe@wu —_ WVYED0Ud Ehwmmwm NOILVOITddV | DNILVYIdO
1
6C/ :
“ _ —0E1
NIOMJIN] DIV 2PLY
i A e ll..l.lll'l.-l.l'.lllllllll....ll..l.llll..lll.._.llull.m
- | i _
= _ __ |
: S e |
N —

L | | FE7 [l TIT7 _
= yiosoN | B - 2onfanuy 20D 121u] 2ovf121u] Atouspy __ |
¢ » _ AUQENE INIoA ANIDI0 A -UON] 601 SINPoy _

Dal1y 020 NIOMIIN ynduy 4as|) \
| ~UOA] 2]QDAOUIS Y IIGUAOWII Y -UON] _ _ Eubwcunﬁ 43 ﬁg _
| L — |

— D !

—] | 01 swpiS04q |

~ _mﬂ siaypads _ 201 sng wiaiss uoyooddy "

- | £C1 — — |
7 —

e ___ " gel NUQ.\”_-NNHNN. NQH\M&HE\. ccl NQQ.\..&WNH_‘N 101 "

S L1 sopuysg iaoydiing 02p14 sarydvip nun i
2 | indino Su1ssasoag "

_ Y e———e _

6£1 JONUON orl “ ¢l 741 "
= _ daowajy ndo |
_ o 1) () g “

_

001 JU2tdtiod1au;] sunnduio,)

U.S. Patent

US 8,028,172 B2

Sheet 2 of 7

Sep. 27, 2011

U.S. Patent

e N

R/ C 250qD30(]

A

9/ 7 22107 3unndino’)

S

$LT

g ‘ol

LLZ 2919 sunpnduo)

SNG/YIOMPIN]
SUONDIIUNUINIO?)

suynduio)

U.S. Patent Sep. 27, 2011 Sheet 3 of 7 US 8,028,172 B2

Sealed Secrets

302
L]
Sealed PCR U000
Values 000000
304

Software Other Data
Components 308 309
BIOS 306 Log 307

RAM/ROM 305

Fig. 3

U.S. Patent Sep. 27, 2011 Sheet 4 of 7 US 8,028,172 B2

CRTM 400

BIOS 401

MBR 402

Boot Sector 403

Boot Block 404

Boot Manager 405

OS Loader 406

U.S. Patent Sep. 27, 2011 Sheet 5 of 7 US 8,028,172 B2

Entry: CRTM 508 I

oy

Load Subsequent Component

200

Yy

Measure Subsequent

Component
201

l =

Add Measurement Value to—l

PCR
202
Need Secrets? Yes I Unseal Secret |
203 204
| .]
\ 4
No
L .
Unseal Succeeds? NO | Error
905 207
Yes

Use Secret
206

Fig. 5

US 8,028,172 B2

Sheet 6 of 7

Sep. 27, 2011

U.S. Patent

L "Bl

¢0L
JusWwainses|\ MoN

0] 101098 P|Q / MON |esS

10.
Bleq ainseajpy

001
SS9001d

pajewojnyy 10 189S} Wol4
uoljeonuayiny ysenbay

¥09
Joogay

€09
9lElS
leuibluQ 0] ejeq uinjey

SOA

009
;joog leinbaul)

09

|ESSUN) Nd1 PIludAald ey |
ejeq 104 607 S0Oig 109dsy|

109

}J00Q SWNSay

US 8,028,172 B2

Sheet 7 of 7

Sep. 27, 2011

U.S. Patent

G08
Jusuoduwo)

joog MaN

008
S$S390.d apelbdn

IREENE
c08 Nd1

AU

€08 SI9109G Pa|eas

08
obelo)g Alesjodwa |

208
san|en

d3d Pejee§

US 8,028,172 B2

1

SYSTEMS AND METHODS FOR UPDATING A
SECURE BOOT PROCESS ON A COMPUTER
WITH A HARDWARE SECURITY MODULE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s related to co-pending U.S. patent appli-
cation entitled “Systems and Methods for Securely Booting a
Computer With a Trusted Processing Module,” U.S. patent
application Ser. No. 11/031,161, filed Jan. 7, 2005, and to
co-pending U.S. patent apphcatlon entitled Systems and
Methods for Boot Recovery 1n a Secure Boot Process On A
Computer With A Hardware Security Module, U.S. patent
application Ser. No. 11/035,715, filed Jan. 14, 2005, and
1ssued on Mar. 17, 2009 with U.S. Pat. No. 7,506,380.

FIELD OF THE INVENTION

The present invention relates generally to the field of com-
puting. More particularly, the invention provides mechanisms
tfor failure recovery 1n systems with a trusted platform module
(TPM) validated boot process, and mechanisms for updating
a TPM validated boot process.

BACKGROUND OF THE INVENTION

Security has become a widespread concern for computer
users. Viruses, worms, Trojan horses, identity theft, software
and media content piracy, and extortion using threats of data
destruction are rampant. An operating system can provide
numerous security features to guard against such attacks.
However, the security features of an operating system are
ineffective 1 they are disabled. Disabling such security fea-
tures, 1f 1t 1s attempted, will likely be attempted during the
boot of the operating system. After boot, an operating system
may have numerous features in place for protecting 1tself and
the data and processes which it manages. During boot, how-
ever, those features may not yet be 1nitialized and are vulner-
able to bypass and/or tampering.

To this end, a secure boot process for a computer with a
TPM has been developed by MICROSOFT®, as can be
understood with reference to a U.S. patent application
entitled “Systems and Methods for Securely Booting a Com-
puter With a Trusted Processing Module,” U.S. patent appli-
cation Ser. No. 11/031,161, filed Jan. 7, 2005. Also related to
this application are a U.S. patent application entitled “Sys-
tems and Methods for Controlling Access to Data on a Com-

puter with a Secure Boot Process,” U.S. patent application
Ser. No. 11/036,415, filed Jan. 14, 2005, and 1ssued on Jul. 21,
2009, with U.S. Pat. No. 7,565,553, a U.S. patent application
entitled “Systems and Methods for Boot Recovery 1n a Secure
Boot Process on a Computer with a Hardware Security Mod-
ule,” U.S. patent application Ser. No. 11/035,713, filed Jan.
14, 2005, and 1ssued on Mar. 17, 2009, with U.S. Pat. No.
7,506,380, and a U.S. patent application entitled “System and

Method for Protected Operating System Boot Using State
Validation” U.S. patent application Ser. No. 10/882,134, filed

Jun. 30, 2004.

Systems and methods for secure boot processes on com-
puters with TPMs will likely need to rely on technology for
maintaining and updating the boot process. Such updates,
while they may occur rarely, may require techniques to effec-
tively integrate maintenance with TPM security. Perhaps
because TPM secured boot processes remain largely unex-
plored, maintenance of such systems 1s also unexplored. Thus

10

15

20

25

30

35

40

45

50

55

60

65

2

there 1s an unmet need in the industry to address the mainte-
nance and update of TPM secured boot processes.

SUMMARY OF THE INVENTION

In consideration of the above, the present invention pro-
vides systems and methods for maintaining and updating a

secure boot process on a computer with a trusted platform
module (TPM). A boot process may recover from boot fail-
ures by mspecting a log of TPM activity, determining data
that prevented a secret to unseal, and returning the data to an
original state. In situations where this type of recovery 1s not
workable, techniques for authenticating a user may be used,
allowing the authenticated user to bypass the security features
ol the boot process and reseal the boot to platform configu-
ration registers (PCRs) that may have changed. Finally, a
secure boot process may be upgraded by migrating TPM
sealed secrets to a temporary storage location, updating one
or more aspects of a secure boot process, and resealing the
secrets to the resulting new platform configuration. Other
advantages and features of the invention are described below.

BRIEF DESCRIPTION OF THE DRAWINGS

The systems and methods for maintaining and updating a
secure boot process 1n accordance with the present invention
are further described with reference to the accompanying
drawings 1n which:

FIG. 1 sets forth a computing environment that i1s suitable
to implement the software and/or hardware techniques asso-
ciated with the invention.

FIG. 2 provides an extension of the basic computing envi-
ronment from FIG. 1, to emphasize that modern computing
techniques can be performed across multiple networked
devices.

FIG. 3 illustrates a computing platform that makes use of a
Trusted Platform Module (TPM).

FIG. 4 1illustrates an exemplary boot process wherein a
plurality of software components measure a subsequent pro-
cess prior to transitioning to the subsequent process.

FIG. 5 illustrates a general technique for using a hardware
security module (HSM), such at a TPM, ensure the integrity
of a subsequent software component or process prior to
allowing that subsequent component to execute.

FIG. 6 demonstrates a process for recovery from boot
failure by returning data used in boot to an original state.

FIG. 7 1illustrates a process for authenticating a user and
allowing the authenticated user to reseal secure boot to a
changed platform.

FIG. 8 illustrates a process for updating a secure boot
process, 1n which secrets are migrated to a temporary loca-
tion, data used 1n boot 1s updated, and the secrets are resealed
to new platform measurements.

L1l

DETAILED DESCRIPTION OF ILLUSTRATITV.
EMBODIMENTS

Certain specific details are set forth in the following
description and figures to provide a thorough understanding
ol various embodiments of the invention. Certain well-known
details often associated with computing and soitware tech-
nology are not set forth 1n the following disclosure, however,
to avoid unnecessarily obscuring the various embodiments of
the invention. Further, those of ordinary skill 1n the relevant
art will understand that they can practice other embodiments
of the invention without one or more of the details described
below. Finally, while various methods are described with

US 8,028,172 B2

3

reference to steps and sequences 1n the following disclosure,
the description as such 1s for providing a clear implementa-
tion ol embodiments of the invention, and the steps and
sequences of steps should not be taken as required to practice
this invention.

The following detailed description will generally follow
the summary of the mvention, as set forth above, further
explaining and expanding the defimitions of the various
aspects and embodiments of the invention as necessary. To
this end, this detailed description first sets forth a computing,
environment 1n FIG. 1 that 1s suitable to implement the sofit-
ware and/or hardware techniques associated with the mnven-
tion. A networked computing environment 1s illustrated in
FIG. 2 as an extension of the basic computing environment, to
emphasize that modem computing techniques can be per-
formed across multiple discrete devices.

Next, a summary of a computing platform that makes use
of a hardware security module (HSM) 1s provided, in connec-
tion with FIG. 3, to explain how measurements may be sub-
mitted to an HSM, which can be configured to unseal secrets
if the submitted measurements are correct. Note that the HSM
illustrated in FIG. 3 1s a TPM, which 1s an HSM that 1s readily
recognized by those of skill 1n the art. The operations of a
TPM can be logged 1n memory, for example by the BIOS.
These logs are used to detect appropriate data for repair/
recovery in embodiments of the invention. The use of a TPM
by software components 1n a boot process 1s then 1llustrated in
FIG. 4. FIG. 5 shows one general pattern for use of the TPM
by the software components such as those of FI1G. 4, in which
the loading and execution of a next software component may
be contingent on the successiul unsealing of a secret. To
unseal the secret, correct measurement values are stored in
the PCRs, thereby indicating that the measured data 1s as it
was when the TPM secrets were sealed.

FIG. 6 demonstrates an exemplary process for returning
data to an original state and rebooting when a secret does not
successiully unseal. FIG. 7 demonstrates an exemplary pro-
cess for authenticating a user prior so that the user can autho-
rize a boot process after an unsealing operation was blocked
by the TPM. FIG. 8 i1llustrates an exemplary schematic dia-
gram 1n which an update process manages an update to data
used 1n a secure boot, by unsealing TPM secrets, storing them
in a temporary location, updating data used for boot, and
resealing the secrets to the updated platform configuration.

Exemplary Computing and Networked Environments

The computing system environment 100 1n FIG. 1 1s only
one example of a suitable computing environment and 1s not
intended to suggest any limitation as to the scope of use or
functionality of the invention. Neither should the computing
environment 100 be interpreted as having any dependency or
requirement relating to any one or combination of compo-
nents 1llustrated 1n the exemplary operating environment 100.

The mnvention 1s operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with the invention include, but are not limited to,
personal computers, server computers, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputers, mainirame computers, distrib-
uted computing environments that include any of the above
systems or devices, and the like.

The mvention may be implemented 1n the general context
ol computer-executable instructions, such as program mod-
ules, being executed by a computer. Generally, program mod-
ules include routines, programs, objects, components, data

10

15

20

25

30

35

40

45

50

55

60

65

4

structures, etc. that perform particular tasks or implement
particular abstract data types. The mvention may also be
practiced 1n distributed computing environments where tasks
are performed by remote processing devices that are linked
through a communications network. In a distributed comput-
ing environment, program modules may be located 1n both
local and remote computer storage media including memory
storage devices.

With reference to FIG. 1, an exemplary system for imple-
menting the mvention includes a general purpose computing
device 1n the form of a computer 121. Components of com-
puter 121 may include, but are not limited to, a processing
umt 101, a system memory 103, and a system bus 102 that
couples various system components including the system
memory to the processing unit 101. The system bus 102 may
be any of several types of bus structures including a memory
bus or memory controller, a peripheral bus, and a local bus
using any of a variety of bus architectures. By way of
example, and not limitation, such architectures include Indus-
try Standard Architecture (ISA) bus, Micro Channel Archi-
tecture (MCA) bus, Enhanced ISA (EISA) bus, Video Elec-
tronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus also known as
Mezzanine bus.

An HSM 1s not shown 1n FI1G. 1, though such a device may
be a part of computers that implement the invention. FIG. 3
shows an HSM (a TPM 1n the embodiments of FIG. 3) that 1s
integrated with some components of a computer, as will be
discussed with reference to FIG. 3 below. In a classic embodi-
ment, an HSM may be a hardware chip that 1s welded to the
motherboard of a computer such as that of FIG. 1 for the
purpose of providing a range of security functions. However,
for the purpose of this specification, 1t should be understood
that an HSM can be implemented 1n hardware or software,
and 1s defined broadly as a functional unit that can provide
those trusted functions that are needed for operation of the
invention, 1.e. comparison and verification ol measurements
submitted to 1t, and release of keys for access to encrypted
memory resources. The TPM may also provide a range of
other functions, as described 1n the TCG® specifications for
an industry standard TPM.

Computer 121 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able media that can be accessed by computer 121 and includes
both volatile and nonvolatile media, removable and non-re-
movable media. By way of example, and not limitation, com-
puter readable media may comprise computer storage media
and communication media. Computer storage media includes
both volatile and nonvolatile, removable and non-removable
media implemented 1n any method or technology for storage
of mnformation such as computer readable 1nstructions, data
structures, program modules or other data. Computer storage
media includes, but 1s not limited to, RAM, ROM, FEPROM,
flash memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical disk storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other medium which can be used
to store the desired information and which can accessed by
computer 121. Communication media typically embodies
computer readable instructions, data structures, program
modules or other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any
information delivery media. The term “modulated data sig-
nal” means a signal that has one or more of its characteristics
set or changed 1n such a manner as to encode mnformation 1n
the signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network or

US 8,028,172 B2

S

direct-wired connection, and wireless media such as acoustic,
RF, infrared and other wireless media. Combinations of the
any of the above should also be included within the scope of
computer readable media.

The system memory 103 includes computer storage media
in the form of volatile and/or nonvolatile memory such as read
only memory (ROM) 104 and random access memory
(RAM) 106. A basic input/output system 105 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer 121, such as during start-
up, 1s typically stored in ROM 104. RAM 106 typically con-
tains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing unit 101. By way of example, and not limitation, FIG. 1
illustrates operating system 107, application programs 108,
other program modules 109, and program data 110.

The computer 121 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, FIG. 1 1llustrates a hard disk drive 112
that reads from or writes to non-removable, nonvolatile mag-
netic media, a magnetic disk drive 118 that reads from or
writes to a removable, nonvolatile magnetic disk 119, and an
optical disk drive 120 that reads from or writes to a remov-
able, nonvolatile optical disk 253 such as a CD ROM or other
optical media. Other removable/non-removable, volatile/
nonvolatile computer storage media that can be used 1n the
exemplary operating environment include, but are not limited
to, magnetic tape cassettes, flash memory cards, digital ver-
satile disks, digital video tape, solid state RAM, solid state
ROM, and the like. The hard disk drive 112 i1s typically
connected to the system bus 102 through an non-removable
memory interface such as mterface 111, and magnetic disk
drive 118 and optical disk drive 120 are typically connected to
the system bus 102 by a removable memory interface, such as
interface 117.

The drives and their associated computer storage media
discussed above and 1llustrated 1n FIG. 1, provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 121. In FIG. 1, for
example, hard disk drive 112 1s 1llustrated as storing operating
system 113, application programs 114, other program mod-
ules 115, and program data 116. Note that these components
can either be the same as or different from operating system
107, application programs 108, other program modules 109,
and program data 110. Operating system 113, application
programs 114, other program modules 115, and program data
116 are given different numbers here to illustrate that, at a
mimmum, they are different copies. A user may enter com-
mands and imnformation into the computer 121 through input
devices such as a keyboard 128 and pointing device 127,
commonly referred to as a mouse, trackball or touch pad.
Other input devices (not shown) may include a microphone,
joystick, game pad, satellite dish, scanner, or the like. These
and other input devices are often connected to the processing
unit 101 through a user mput intertace 126 that 1s coupled to
the system bus, but may be connected by other interface and
bus structures, such as a parallel port, game port or a universal
serial bus (USB). A monitor 139 or other type of display
device 1s also connected to the system bus 102 via an nter-
face, such as a video interface 232. In addition to the monitor,
computers may also include other peripheral output devices
such as speakers 138 and printer 137, which may be con-
nected through an output peripheral interface 123.

The computer 121 may operate 1n a networked environ-
ment using logical connections to one or more remote com-
puters, such as a remote computer 131. The remote computer
131 may be a personal computer, a server, a router, a network

10

15

20

25

30

35

40

45

50

55

60

65

6

PC, a peer device or other common network node, and typi-
cally includes many or all of the elements described above
relative to the computer 121, although only a memory storage
device 132 has been illustrated 1n FIG. 1. The logical connec-
tions depicted 1n FIG. 1 include a local area network (LAN)
135 and a wide area network (WAN) 130, but may also
include other networks. Such networking environments are
commonplace in offices, enterprise-wide computer networks,
intranets and the Internet.

When used 1mn a LAN networking environment, the com-
puter 121 1s connected to the LAN 135 through a network
interface or adapter 134. When used in a WAN networking
environment, the computer 121 typically includes a modem
129 or other means for establishing communications over the
WAN 130, such as the Internet. The modem 129, which may
be 1nternal or external, may be connected to the system bus
102 via the user mput interface 126, or other appropriate
mechanism. In a networked environment, program modules
depicted relative to the computer 121, or portions thereof,
may be stored 1n the remote memory storage device. By way
of example, and not limitation, FIG. 1 illustrates remote
application programs 133 as residing on memory device 132.
It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications
link between the computers may be used.

It should be understood that the wvarious techniques
described herein may be implemented in connection with
hardware or software or, where appropriate, with a combina-
tion of both. Thus, the methods and apparatus of the present
invention, or certain aspects or portions thereof, may take the
form of program code (i.¢., mnstructions) embodied 1in tangible
media, such as floppy diskettes, CD-ROMSs, hard drives, or
any other machine-readable storage medium wherein, when
the program code 1s loaded into and executed by a machine,
such as a computer, the machine becomes an apparatus for
practicing the invention. In the case of program code execu-
tion on programmable computers, the computing device gen-
erally includes a processor, a storage medium readable by the
processor (including volatile and non-volatile memory and/or
storage elements), at least one mput device, and at least one
output device. One or more programs that may implement or
utilize the processes described 1n connection with the inven-
tion, e.g., through the use of an API, reusable controls, or the
like. Such programs are preferably implemented 1n a high
level procedural or object oriented programming language to
communicate with a computer system. However, the
program(s) can be implemented 1n assembly or machine lan-
guage, 1f desired. In any case, the language may be a compiled
or interpreted language, and combined with hardware 1mple-
mentations.

Although exemplary embodiments refer to utilizing the
present invention in the context of one or more stand-alone
computer systems, the invention 1s not so limited, but rather
may be implemented in connection with any computing envi-
ronment, such as a network or distributed computing envi-
ronment. Still further, the present invention may be imple-
mented 1n or across a plurality of processing chips or devices,
and storage may similarly be effected across a plurality of
devices. Such devices might include personal computers, net-
work servers, handheld devices, supercomputers, or comput-
ers integrated mnto other systems such as automobiles and
airplanes.

An exemplary networked computing environment 1s pro-
vided 1 FIG. 2. One of ordinary skill in the art can appreciate
that networks can connect any computer or other client or
server device, or 1 a distributed computing environment. In
this regard, any computer system or environment having any

US 8,028,172 B2

7

number of processing, memory, or storage units, and any
number of applications and processes occurring simulta-
neously 1s considered suitable for use in connection with the
systems and methods provided.

Distributed computing provides sharing of computer
resources and services by exchange between computing
devices and systems. These resources and services include
the exchange of information, cache storage and disk storage
for files. Distributed computing takes advantage of network
connectivity, allowing clients to leverage their collective
power to benefit the entire enterprise. In this regard, a variety
ol devices may have applications, objects or resources that
may 1mplicate the processes described herein.

FIG. 2 provides a schematic diagram of an exemplary
networked or distributed computing environment. The envi-
ronment comprises computing devices 271, 272, 276, and

277 as well as objects 273, 274, and 275, and database 278.
Each of these entities 271, 272, 273, 274, 275, 276, 277 and
278 may comprise or make use of programs, methods, data
stores, programmable logic, etc. The entities 271, 272, 273,
274,275, 276, 277 and 278 may span portions of the same or
different devices such as PDAs, audio/video devices, MP3
players, personal computers, etc. Each entity 271, 272, 273,
274, 275, 276, 277 and 278 can communicate with another
entity 271,272,273, 274,275,276,277 and 278 by way of the
communications network 270. In this regard, any entity may
be responsible for the maintenance and updating of a database
2’78 or other storage element.

This network 270 may itself comprise other computing
entities that provide services to the system of FI1G. 2, and may
itsell represent multiple interconnected networks. In accor-
dance with an aspect of the invention, each entity 271, 272,
273, 274, 275, 276, 277 and 278 may contain discrete func-
tional program modules that might make use of an API, or
other object, solftware, firmware and/or hardware, to request
services of one or more of the other entities 271, 272, 273,
274, 275, 276, 277 and 278.

It can also be appreciated that an object, such as 275, may
be hosted on another computing device 276. Thus, although
the physical environment depicted may show the connected
devices as computers, such illustration 1s merely exemplary
and the physical environment may alternatively be depicted
or described comprising various digital devices such as
PDAs, televisions, MP3 players, etc., soltware objects such as
interfaces, COM objects and the like.

There are a variety of systems, components, and network
configurations that support distributed computing environ-
ments. For example, computing systems may be connected
together by wired or wireless systems, by local networks or
widely distributed networks. Currently, many networks are
coupled to the Internet, which provides an infrastructure for
widely distributed computing and encompasses many difier-
ent networks. Any such infrastructures, whether coupled to
the Internet or not, may be used in conjunction with the
systems and methods provided.

A network ifrastructure may enable a host of network
topologies such as client/server, peer-to-peer, or hybrid archi-
tectures. The “client” 1s a member of a class or group that uses
the services of another class or group to which it 1s notrelated.
In computing, a client 1s a process, 1.¢., roughly a set of
istructions or tasks, that requests a service provided by
another program. The client process utilizes the requested
service without having to “know” any working details about
the other program or the service itself. In a client/server
architecture, particularly a networked system, a client 1s usu-
ally a computer that accesses shared network resources pro-
vided by another computer, e.g., a server. In the example of

5

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 2, any entity 271, 272, 273, 274, 275, 276, 277 and 278
can be considered a client, a server, or both, depending on the
circumstances.

A server 1s typically, though not necessarily, a remote
computer system accessible over a remote or local network,
such as the Internet. The client process may be active 1n a first
computer system, and the server process may be active 1n a
second computer system, communicating with one another
over a communications medium, thus providing distributed
functionality and allowing multiple clients to take advantage
of the information-gathering capabilities of the server. Any
soltware objects may be distributed across multiple comput-
ing devices or objects.

Client(s) and server(s) communicate with one another uti-
lizing the functionality provided by protocol layer(s). For
example, HyperText Transfer Protocol (HTTP) 1s a common
protocol that 1s used 1n conjunction with the World Wide Web
(WWW), or “the Web.” Typically, a computer network
address such as an Internet Protocol (IP) address or other
reference such as a Universal Resource Locator (URL) can be
used to 1dentily the server or client computers to each other.
The network address can be referred to as a URL address.
Communication can be provided over a communications
medium, e.g., client(s) and server(s) may be coupled to one
another via TCP/IP connection(s) for high-capacity commu-
nication.

In light of the diverse computing environments that may be
built according to the general framework of FIG. 1, and the
turther diversification that can occur 1n computing in a net-
work environment such as that of FIG. 2, the systems and
methods provided herein cannot be construed as limited in
any way to a particular computing architecture. Instead, the
present invention should not be limited to any single embodi-
ment, but rather should be construed 1n breadth and scope 1n
accordance with the appended claims.

Exemplary HSM Secured Boot Sequence

Embodiments of the invention are directed to recovery and
upgrade of secure boot processes. An exemplary computer
architecture for implementing one type of secure boot pro-
cess—namely, one using an HSM. One type of HSM, a
TPM-—is 1llustrated in FIG. 3. A TPM 1s 1illustrated in the
context of a computer architecture. While the TPM contem-
plated for use 1n embodiments of the invention may be TCG®
1.2 compliant, any functional unit for comparing registered
measurements, such as PCRs, and returning trusted results
and/or keys for accessing encrypted data may be used. A
secure boot process that uses a TPM may be implemented 1n
a variety of ways. For the purpose of discussing the invention,
a particular implementation of such a boot process 1s set forth
here.

In this regard, FIG. 3 presents a CPU 300 with access to
memory 305, in a highly generalized view of a computer such
as that of FIG. 1. The CPU 300 may rely on a TPM 301 for
certain security functions. In general, the CPU 300 may first
perform measurements of data involved in a boot process, and
those measurements may be securely stored 1in the TPM 301,
as 1llustrated by the sealed PCR values 304. Note that 1n
various embodiments the various PCR values 304 and 303
illustrated 1n the figures herein my 1n fact be stored 1n one or
more single storage locations that are extended by an alge-
braic formula, as defined 1n the TCG® 1.2 specification.

Secrets 302 may be sealed to the particular PCR values 304
in the TPM 301. To retrieve the secrets 302 from the TPM
301, correct PCR values must be entered into PCRs 303.
These correct values may be obtained by measuring the same
data that was measured to obtain PCR values 304 sealed in the
TPM 301. Multiple secrets 302 may be sealed to a variety of

US 8,028,172 B2

9

PCRs 304. For example, to retrieve a first secret A, 1t may be
required that a correct value be storedin PCR [1], PCR [2] and
PCR [3]. To obtain a second secret B, a fourth correct value
may be required in PCR [4].

If a measurement 1s placed in a PCR 303 that does not
match a value for that measurement sealed in the TPM 301,
then when the TPM 301 1s requested to unseal a secret 302,
the unseal will fail. If correct measurements are placed in
PCRs 303, then the TPM 301 can be trusted to unseal secrets
302 when requested to do so. Therefore, a “correct” measure-
ment, or correct value, for purposes of this application, 1s a
measurement to which a secret 302 i1s sealed, and thereby
permits unsealing of the secret 302 by the TPM 301. Note that
a correct measurement could be, 1n some embodiments, a
measurement of malicious code. This 1s the case, for example,
when the 1ni1tial measurements 304 sealed 1n the TPM 301 are
corrupt. This scenario 1n which vulnerable or corrupt code 1s
discovered 1n a boot process presents a strong case for the
upgrade processes disclosed herein.

The secrets sealed to particular measurements may be any
data. Typically, secrets 302 will take the form of decryption
keys and/or Binary Large Objects (BLOBS). In general, akey
provides information that can be used to decrypt data. A
sealed BLOB may contain akey as well as other data that may
be useful. In this regard, equivalents for various techniques
discussed herein may be constructed by substituting keys for
BLOBS and vice versa, as will be appreciated by those ot skill
in the art. Thus, 1t a CPU 300 submits correct measurements
to PCRs 1n 303, then when a corresponding secret 302 such as
a key 1s requested, the TPM 301 can unseal the secret 302. The
key from 302 may then be used to decrypt portions of memory
305 accessible by the CPU 300. In embodiments of the mnven-
tion, a TPM 301 may be configured to grant access to three
secrets, A, B, and C, as shown in FIG. 3. The secrets 302 may
be sealed to various required PCR values, and therefore may
be accessible only after certain measurements are performed.
These three keys, or three secrets, will be referred to here as,
first, a boot access only secret, second, a volume-bound
secret, and third, a password secret.

TPM related activity may be stored 1n a log 307. The log
307 may be maintained by the computer’s BIOS 1n some
embodiments. Any other process may also be responsible for
maintaining a log 307. Thus, 11 data such as a software com-
ponent 308 or other data 309 1s measured into a PCR 303, the
data that was measured may be 1dentified in the log 307. If a
secret unseal request 1s made, the request event may be 1den-
tified 1n the log 307. These are but two examples of storing,
TPM related activity in a log 307, which may contain records
for a wide range of other events and activities.

Typically, a TPM 301 operates 1in conjunction with a Static
Root of Trust Measurement (SRTM) for performing trusted
measurements and submitting them to a TPM 301. Embodi-
ments of the invention may use an SRTM 1n this manner, and
in this regard the SRTM may be a BIOS standard SRTM used
by the various software components (also called processes
and RTMs) discussed herein to measure imitial disk based
boot code. The system may also extend the SRTM to measure
other code and critical data imnvolved 1n the early stages of
booting of an operating system so that any early stages of an
operating system boot can be measured. Note that PCRs 303
may contain values obtained from anywhere. The values may
be measurements of data such as software components 308 or
other data 309. The mvention 1s not limited to any exclusive
combination of data measurements or other values that are
placed in PCRs 303.

In a TPM secured boot process, the arrangement displayed
in FIG. 3 may be used to measure the exemplary software

10

15

20

25

30

35

40

45

50

55

60

65

10

components illustrated in FI1G. 4, and store the measurements
in the PCRs 303. The boot components 1llustrated 1n FIG. 4,
which may be chosen to be measured by embodiments of the
invention, and particularly disk based code components, are
known to change rarely, and are subject to an easy attack.
Therefore enforcing that certain boot components remain
unchanged, unless by qualified maintenance and update pro-
cesses as described herein, 1s a relatively small price to pay to
significantly enhance data security.

Referring to FIG. 4, a series of software components 400-
407 1s 1llustrated to provide an exemplary boot process for a
computer. The mvention 1s not limited to the particular com-
ponents shown, nor to the sequence of components. The 1llus-
trated components may be sequentially loaded, starting with
the Core Root of Trust for Measurement (CRTM) 400, and
ending with the components of an Operating System (OS)
407, which 1s generalized here as a single software compo-
nent 407. Loading a component entails giving the component
access to theresources of a computer, such as memory and the
CPU, so that the instructions of the component can be
executed by the CPU. If a component in FI1G. 4 1s malicious or
corrupt, it can be used to circumvent security measures once
it 1s loaded. Thus, a process for booting a computer in con-
formance with the invention comprises measuring a compo-
nent or plurality of components into one or more PCRs 303
prior to allowing the component(s) to execute. Successiul
boot may be made contingent on secrets 302 sealed to a
trusted set of measurements 304 that are sealed 1n the TPM.
Note, however, that the invention may also seal measure-
ments of malicious code 1n a TPM. If malicious code 1s
running at the time of seal, then those measurements may be
needed for boot. Ideally, the secrets are sealed to measure-
ments 304 of trusted code. If the measurements placed in
PCRs 303 are correct, then secrets from 302 may be unsealed,
allowing a machine to proceed with secure boot. The process
of unsealing a secret 302 1s 1llustrated 1n FIG. 5.

In some usage scenarios, the owner of a machine may
determine that they wish to “lock™ the configuration of the
machine, ensuring no ROM-based code 1n addition to that
previously validated 1s ever executed. In this case, the
machine owner may configure more software components to
be mvolved 1n the validation process (BIOS, option ROMs)
by selecting additional PCRs 302 to be used. The owner may
also determine they wish to additionally utilize a machine
password that 1s validated by the TPM 301. This allows the
security to be extended above what may be typically provided
in standard embodiments of the invention, and allows a user to
welgh machine security against ease of use.

FIG. 5 illustrates a technique for using a TPM to ensure the
integrity of a subsequent software component prior loading
that subsequent component. The steps of FIG. 5 may be
carried out by placing appropriate nstructions in a series of
components, such as the components of FIG. 4. In this regard,
the process of FIG. 5 may begin with the execution of a
CRTM component 508. A component, such at the CRTM and
some or all of the other components of FIG. 4 may bear
instructions for measuring another component and placing
the result in a PCR, such as from 303 in FIG. 3. A component
bearing such instructions 1s sometimes referred to as a Rootof
Trust for Measurement (RTM), and may contain instructions
for utilizing an SRTM as mentioned above. Thus, 11 the boot
block measures the boot manager, the boot block serves as an
RTM for the boot manager.

An RTM can load a subsequent component into memory

500, and then perform a measurement on a subsequent com-
ponent 501, and add the measurement to a PCR 502. If the
RTM needs a secret, such as a key or a BLOB from the TPM

US 8,028,172 B2

11

503, then 1t may request such secrets, and the TPM will
release the requested secret(s) only 11 correct PCR values are
loaded for all PCRs needed to access the secret. Thus, an
attempt may be made to unseal a secret based on information
retrieved from the TPM 504. If the unseal succeeds 1n step
505, additional steps may be taken, which may comprise
loading a subsequent component, as well as other actions
described below. Generally, a normal boot 1s one which 1s
contemplated for the majority of the boots undertaken by a
boot process. Such a boot will typically be one in which the
unsealing of secrets does not fail, and no additional measures,
beyond the normal boot process 1tself, are needed to ensure

the security of the machine.

It the unseal does not succeed, the values in the PCRs were
likely incorrect and thus the executing code may be corrupt.
An error may result 1n step 507 and appropriate measures can
be taken to ensure that no access 1s provided to the sensitive
information stored on the computer, for example, by using
encryption of the data on the computer’s disk and refraining
from giving out the decryption key. Alternatively, processes
for maintaining the system for example by restoring 1t to a
state which will produce correct PCR values, or by authenti-
cating a user to authorize new sealed PCR values—in values
302 from FIG. 3—may be implemented. Such processes are
explained in detail below. If no secrets are needed 1n step 503,
a subsequent component can be loaded without requesting
any secrets, as shown.

FIG. 4 and FIG. 5 may be referred to together to 1llustrate
exemplary boot processes conforming to the systems and
methods of the invention. A CRTM 400 can be loaded first,
which loads and measures a Basic Input/Output System
(BIOS) 401. This measurement can be made, for example, by
performing a hash over the BIOS, and then submitting the
hash measurement value to a PCR. The BIOS may then be
allowed to execute, and may serve as an RTM for the Master
Boot Record (MBR) 402. The MBR can be measured 1nto a
PCR, then the MBR 402 may be allowed to execute. The
MBR may measure a boot sector component 403, which 1s
then allowed to execute. This pattern of loading, measuring,
writing to a PCR, and then transitioning to a subsequent
component can be repeated by each component 404, 405,
406, and 407, as well as components 1n the operating system
407 as necessary.

The basic process of FIG. 4 and FIG. 5 can be enhanced by
requiring some ol the components 400-406 to retrieve secrets,
which may be decryption keys, BLOBS, or other guarded
information that allows access to decryption keys and the like
prior to transitioning to a subsequent component. Embodi-
ments of the mnvention may thus condition the performance of
usetul operations by an operating system on access to one or
more secrets at strategic points 1 a boot process. If 1t 1s
discovered that any of the code modules 401-406 (also
referred to here as components and/or software processes)
that are measured were changed, then these secrets can be
withheld. To repair the machine to a state from which it can
successiully boot, the systems and methods described below
may be implemented. These systems and methods may
include techmques for updating a boot process, such as updat-
ing a process with a known vulnerability.

Exemplary Systems and Methods for Repairing and
Upgrading a Protected Boot Process

Embodiments of the invention may incorporate processes
for diagnosing and repairing, as well as upgrading the data
used 1n securely booting a computer. Such data may be soft-
ware components or other data that 1s measured into PCRs,
and which must, 1n a standard secure boot, be measured into

10

15

20

25

30

35

40

45

50

55

60

65

12

appropriate PCRs to allow unsealing of a secret. Of course,
any other data used 1n boot may also be repaired and/or
upgraded.

A first observation for diagnosing problems 1n a boot pro-
cess 1s that the process of unsealing a secret provides a means
for determining if data measurements were correct or not.
Referring to FIG. 3, there may thus be two possible results
from step 3505: yes, and no. Either the secret will unseal,
which indicates that of the data being measured, only vali-
dated data has been used and validated code has been
executed—or 1t will not unseal, which indicates that it 1s
possible that non-validated data has been used and/or non-
validated code has been executed. The situation wherein the
unseal operation fails yields the error 507 in FIG. 5. FIG. 6
and FIG. 7 provide avenues for recovering from such an error
505.

With reference to FIG. 6, an exemplary technique for
recovering from a failed unseal operation 1s to determine the
data that resulted 1n an erroneous PCR value, restore that data
to an original state, and reboot. With regard to this technique,
various embodiments may incorporate steps 601-604. In this
regard, a first step 601 1n an exemplary recovery process may
be to mspect BIOS logs to determine the cause of failure 602.
A TCG® compliant BIOS will maintain such logs. The cause
of failure may be the software component or other data that,
when measured into a PCR, did not match the corresponding
TPM-sealed measurement and therefore resulted 1n an unseal
failure.

Data gleaned from inspection of the BIOS logs in step 602
can be used to determine 11 an 1irregular boot occurred 603. If
s0, steps 603 and 604 may be taken. If not, other security
measures may be implemented, or the error may be resolved
and boot may be resumed 601. Thus, 1f the user booted 1n an
unusual manner such as by attempting a network boot before
booting oil the system disk, then a computer may be rebooted
according to steps 603-604 in an attempt to boot 1 an
expected manner. This may resolve the unseal difficulty with-
out further action.

Information from the BIOS logs can then be used, 1n some
embodiments, to diagnose the problem for more informative
teedback when the error 1s accidental rather than intentional.
If 1t 1s determined that the error was intentional, additional
measures may be taken to prevent an attack on a system,
including a block to the recovery process. In situations where
the failure was accidental, however, recovery may proceed. It
may not be possible to determine whether the failure was
accidental or intentional. If this 1s the case, 1t can be assumed
accidental from a recoverability and feedback perspective,
and assumed intentional from a security perspective. To
achieve this, files that were measured incorrectly may be put
back to their original form. Then a reboot may occur so that
the files can be re-measured securely. Note that the protected
boot process described above relies on self validation of the
system by utilizing a TPM. In some embodiments, 1t 1s pos-
sible for such a system to appear invalid when 1t 1s actually
still valid. These situations present a clear need for an
adequate recovery mechanism.

Such a recovery mechanism can incorporate steps 603 and
604. First, the data 1dentified in the logs that led to the erro-
neous PCR entry may be returned to a state that can be
considered valid. Any number of techniques may be
employed to implement such restoration, including the reload
ol a correct copy of such data from disk. Alternatively, log
information may be used to diagnose why the TPM consid-
ered the measurement to be mvalid. Any data that may have
changed can be reverted back to its original state. Second, a
reboot may be initiated. Thus, 1f a software component mea-

US 8,028,172 B2

13

surement was 1nvalid, the software component can be
reloaded, and re-executed to begin the boot process from the
point of error.

FIG. 7 illustrates recovery based in user authentication
rather than the return of data to an original state. This may be
a desirable alternative to the process of FIG. 6, or may be used
upon failure of the process in FIG. 6. The techniques repre-
sented by FIG. 7 may be provided as additional features
which may be incorporated into products to supplement
embodiments that return a system to a valid state 1n accor-
dance with FIG. 6, or may be provided as a sole means of
recovery. The techmiques of FIG. 7 are usetul, for example, in
situations where the hardware on a machine 1s broken and a
disk was migrated to another otherwise 1dentical machine, 1n
which case the otherwise identical machine’s sealed TPM
secret key may be different. In FIG. 7, a user may authorize
that the system should be considered valid, regardless of the
entry of mvalid PCR entries that resulted 1n a failed unseal
operation.

A number of mechanisms can be used to implement the
user authentication techniques of FIG. 7. In general, a first
process may be employed to request credentials for user
authentication 700. This process may request the credentials
from the user directly or may instead trigger some secure
software that provides the credentials. A number of variations
are available to obtain credentials 1n step 700. Among the
exemplary techniques contemplated are, first, credentials
may be provided via removable media. Next, in some
embodiments, a pre-boot authentication system may auto-
matically provide credentials in preference to measurement
ol boot components to validate boot described above. Further,
a dual-boot system could store authentication information
700 using DPAPI on a local machine; allowing such a user to
boot from an 1nsecure (recovery) partition, authenticate over
adomain c/o RAS, and then recover the secure partition. Also,
a key-nput process similar to the product-1D input could be
used. Where recovery 1s an exception to the normal boot,
users are not so much worried about “someone looking over
the shoulder” as inputting a very strong random key correctly.
In this case, characters might be grouped together with a
check character, the user may be alerted when a group of
characters are incorrectly entered. Another vanation entails
putting recovery information on a network share so that
retrieval of the mmformation would require network authenti-
cation, thereby providing a level of security.

Yet another contemplated process for step 700 could be
internet-based. Again, a recovery-partition (or bootable CD)
may be used to gain access to a secure server on the internet.
There, the user would enter credentials using, for example,
MICROSOFT® Passport services; which also provides chal-
lenge-response password recovery; and then retrieves a file
payload that the recovery process looks for and reads. The
service providing the backup & recovery can be detached
from the authentication provider.

In short the recovery credentials and secrets may be
obtained via any number of different avenues. The credentials
need not be easily accessible as with many of the examples
above, and could 1nstead require, for example, a phone-call to
obtain a secret for entry 1 response to the request. Upon entry
ol appropriate credentials, the machine can be configured to
boot properly and to reseal new PCR values to a secret in the
TPM for subsequent boots.

In exemplary embodiments, a user may be required to
obtain authentication credentials by calling their IT depart-
ment. The IT department can use their system of choice to
validate the identity of the caller, and can read the caller a
password. When the password 1s entered, a migration mecha-

10

15

20

25

30

35

40

45

50

55

60

65

14

nism described below can be used to re-seal the secrets to new
PCR values. In addition, such a system could use a password
system that results 1n a password only being usable once, with
the secrets resealed to a new password for any subsequent
user authentication mechanism, requiring a new phone call
(or other user action) should secrets again fail to unseal 1n the
future.

Embodiments of the systems and methods for securely
booting a computer may be configured to be upgraded if
necessary. An exemplary system and method for performing
boot component upgrades 1s illustrated 1n FIG. 8. Although
the boot components monitored by embodiments of the
invention rarely change, it 1s inevitable that one of these code
modules may eventually be changed. Thus, a secure upgrade
process 1s beneficial.

Systems and methods for upgrading one or more boot
components may make use of migration of sealed secrets 803
to temporary storage 804. This process may entail placement
of appropriate values 1n PCRs 801 by an upgrade process 800
to unseal the secret(s) 803. The upgrade process 800 may then
migrate the secrets 803 to temporary storage 804. The secrets
803 can remain 1n temporary storage 804 while a boot process
1s modified, which may result in new sealed PCR values 802a
corresponding to measurements ol upgraded boot compo-
nents 805. In many embodiments this need not require a
reboot, as the PCR values 802a are known at the current boot
and need not change. However, 1f the code modules are
changed, ¢.g. by replacing them with new component 800, a
reboot will ensure that the new code modules are measured
and appropriate new values are used 1n PCRs 8024 to reseal
secrets 803.

Another method for upgrading one or more boot compo-
nents may be used 1n a controlled environment of code modi-
fication. In this case, the expected PCR values due to the new
code modifications are pre-determined, and the secrets can be
sealed to the anticipated PCR values belfore the system 1s
rebooted. Alternatively, a blanket re-evaluation of the
expected PCR values can be made based on code and data that
can be measured at boot.

To ensure security of a migration process, a running system
may perform the migrations described above according to one
or more of following non-limiting list of options:

Prior to a upgrade, a service pack may know it will be

changing the OS Loader.

Immediately after a change, for example, after a disk has
been formatted.

After change detection on a validated system. For example,
at shutdown, the system may notice components have
legitimately been modified, and silently perform the
migration.

As part of recovery. For example, at system startup, the
system may determine a recovery has been performed,
and may perform a migration so that the recovery
mechanism 1s not required atter the next boot.

Yet another system for maintaining the secure boot process
can provide multiple different keys that are created outside
the TPM. Each such key can use the same RSA keying mate-
rial but each key’s usage may be bound to different PCR sets
and/or passwords. Indeed, such additional keys may be bound
to nothing at all. In such embodiments, Then we at least one
BLOB may be associated with each disk volume (e.g. parti-
tion) that1s not bound to anything at all. Each key may be used
from a different boot component and ensure the privacy of the
BLOB. The password gated key can be used for recovery and
the RSA keying material can be escrowed.

While this approach differs only slightly from the secure
boot processes described above, significant benefits become

US 8,028,172 B2

15

clear in maintenance and service: Due to the fact that the RSA
keying material was generated outside the TPM and 1s 1den-
tical i every key, this RSA material can now be used 1n a
larger scale for multiple users such as employees 1n a division
or of an enfire orgamization. As a result, a master key can be
created that allows opening and service for any machine 1n the
organization. The keys are still protected by each TPM’s
SRK, so the keys can still be considered safe. In this embodi-
ment, however, a central department such as an information
technology (IT) department does not have to store one key per
machine but rather one key per logical group. It also requires
a little less storage space 1n the boot block to store the multiple
keys over multiple BLOBs.

Finally, in the embodiments described above, an adminis-
trator can now push down policies and new RSA keys, so the
keys are changed frequently on each machine. This will
reduce costs 1n the maintenance of the feature.

Permanent Destruction of Access to Data Using Full Vol-
ume Encryption and Protected Boot

A byproduct of the secure boot processes described above
1s that full-volume encryption, 1.e. the encryption of almost all
the data 1n a partition, can be efficiently and effectively sup-
ported. This can trivialize the effort required to destroy
secrets and thereby to destroy the critical information needed
to access data on a computer. This effective destruction of
data may be valuable in certain settings, in particular, where
it 1s desired to dispose of sensitive data, and more particularly
to dispose of such data quickly.

Elimination of the secrets required to operate computers
that implement the invention can render such computers
unusable without re-1nstallation of software, and can perma-
nently prevent access to data thereon. To accomplish this, the
secrets stored inside of the TPM may be reset. This can be
done by changing the ownership of the TPM. Any secrets
sealed by the TPM are no longer valid. A secondary recovery
mechanism must also be destroyed. In the short term how-
ever, until this mechanism 1s destroyed; when the recovery
mechanism 1s kept off-site, 1t may provide for a way to tem-
porarily disable a machine and then later recover the machine.

When both the secrets stored 1n the TPM and any recovery
mechanism are changed, the content, both code and data, of a
machine becomes unobtainable. This very quickly accom-
plishes a security wipe of a machine. One advantage of such
eificient security wiping 1s that 1t makes re-sale of a machine
to be more practical.

What 1s claimed 1s:

1. A computer readable medium, wherein the computer
readable medium 1s not a transitory signal, bearing nstruc-
tions for a computer, said computer comprising a Hardware
Security Module (HSM) that accesses recorded values, com-
pares submitted values indicative of at least one measurement
to the recorded values, and releases a sealed secret (a released
secret) 1f the submitted values match the recorded values, said
computer readable medium comprising;

A. 1nstructions for securely booting a computer, compris-

ng:

1. 1nstructions for measuring data involved 1 a boot
process;

11. instructions for submitting a measurement of said data
to the HSM;

111. 1nstructions for requesting release of the sealed secret
from the HSM, wherein said instructions for securely
booting a computer cannot successiully complete a
normal boot operation without said secret; and

1v. releasing the sealed secret only 11 the measurement
submitted to the HSM 1s correct when compared to a

10

15

20

25

30

35

40

45

50

55

60

65

16

recorded value, wherein the released sealed secret 1s
different from the measurement and the recorded
value; and
B. instructions for updating said data involved 1n a boot
process, comprising:

1. instructions for migrating the released secret to tem-
porary storage where i1t remains while the data
involved 1n the boot process 1s updated;

11. mstructions for measuring updated data involved 1n
the boot process; and

111. 1nstructions for restricting access to the migrated
released secret by resealing 1t using the measurement
of the updated data involved in the boot process,
wherein the secret may be subsequently obtained by
submitting at least a measurement of said updated
data to the HSM.

2. The computer readable medium of claim 1 wherein the
HSM 1s a Trusted Platform Module (TPM).

3. The computer readable medium of claim 1 wherein the
data 1s at least one of a software and a data component.

4. The computer readable storage medium of claim 1
wherein said instructions for measuring data comprise
instructions for computing a hash of the data.

5. The computer readable storage medium of claim 1
wherein said instructions for submitting a measurement com-
prise instructions for extending a platform configuration reg-
ister (PCR).

6. The computer readable storage medium of claim 1
wherein the instructions for restricting access to the secret use
an anticipated measurement of the updated data.

7. The computer readable storage medium of claim 1, the
instructions for updating said data involved 1n a boot process
turther comprising istructions for rebooting the computer.

8. A method for recovering a secure computer boot process
on a computer comprising a Hardware Security Module
(HSM) that accesses recorded values, compares submitted
values 1indicative of at least one measurement to the recorded
values, and releases a sealed secret (a released secret) 11 the
submitted values are correct, said method comprising:

A. securely booting a computer, comprising:

1. measuring data mvolved 1n a boot process;

11. submitting a measurement of said data to the HSM;

111. requesting release of the sealed secret from the HSM,
wherein said istructions for securely booting a com-
puter cannot successiully complete a normal boot
operation without said secret;

1v. releasing the sealed secret only 1f the measurement
submitted to the HSM 1s correct when compared to a
recorded value, wherein the released sealed secret 1s
different from the measurement and the recorded
value;

B. updating said data involved 1n a boot process, compris-

ng:

1. migrating the released secret to temporary storage
where 1t remains while the data involved 1n the boot
process 1s updated;

11. measuring updated data involved 1n the boot process;

111. restricting access to the migrated released secret by
resealing 1t using the measurement of the updated data
involved 1n the boot process, wherein the secret may
be subsequently obtained by submitting at least a
measurement of said updated data to the HSM.

9. The method of claim 8 wherein the HSM 1s a Trusted
Platform Module (TPM).

10. The method of claim 8 wherein the data 1s a software
component.

US 8,028,172 B2

17

11. The method of claim 8 wherein said measuring data
comprises computing a hash of the data.

12. The method of claim 8 wherein said submitting a mea-
surement comprises extending a platform configuration reg-
ister (PCR).

13. The method of claim 8 wherein an anticipated measure-
ment of the updated data involved 1n the boot process 1s used
when resealing the migrated released secret.

14. The method of claim 8, the step of updating said data
involved 1n a boot process further comprising rebooting the
computer.

15. A computer comprising a Hardware Security Module

(HSM) that accesses recorded values, compares submitted
values indicative of at least one measurement to the recorded

values, and releases a sealed secret (a released secret) 1t the
submitted values are correct, said computer comprising:
A. means for securely booting a computer, comprising:
1. means for measuring data involved 1n a boot process;
11. means for submitting a measurement of said data to
the HSM;
111. means for requesting release of the sealed secret from
the HSM, wherein said means for securely booting a
computer cannot successiully complete a normal boot
operation without said secret;
1v. means for releasing the sealed secret only 11 the mea-
surement submitted to the HSM 1s correct when com-
pared to a recorded value, wherein the released sealed
secret 1s different from the measurement and the
recorded value;

10

15

20

25

18

B. means for updating said data involved 1n a boot process,

comprising;:

1. means for migrating the released secret to temporary
storage where 1t remains while the data involved in the
boot process 1s updated;

11. means for measuring updated data mvolved 1n the
boot process;

111. means for restricting access to the migrated released
secret by resealing it using the measurement of the
updated data involved in the boot process, wherein the
secret may be subsequently obtained by submitting at
least a measurement of said updated data to the HSM.

16. The computer of claim 15 wherein the HSM 1s a Trusted
Platform Module (TPM).

17. The computer of claim 15 wherein the data 1s a software
component.

18. The computer of claam 15 wherein said means for
measuring data comprise means for computing a hash of the
data.

19. The computer of claam 15 wherein said means for
submitting a measurement comprise means for extending a
platform configuration register (PCR).

20. The computer of claim 135, the means for updating said
data involved 1n a boot process further comprising means for
rebooting the computer.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,028,172 B2 Page 1 of 1
APPLICATION NO. : 117036018

DATED . September 27, 2011

INVENTOR(S) : Jamie Hunter et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 16, line 22, in Claim 4, after “readable’™ delete “storage”.
In column 16, line 25, m Claim 5, after “readable™ delete “storage™.

In column 16, line 29, m Claim 6, after “readable™ delete “storage™.

In column 16, line 32, m Claim 7, after “readable™ delete “storage™.

Signed and Sealed this
Twenty-ninth Day of November, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

