12 United States Patent

Guttman et al.

(54) FIXED-INCOME SYSTEM FOR MANAGING
PRE-TRADE ACTIVITY

(75) Inventors: Edward Guttman, New York, NY (US);
Mark Pollack, New York, NY (US); Jim
Perrello, Madison, NJ (US); Jawaid
Hakim, Brooklyn, NY (US); Robert
Hector, New Brunswick, NJ (US);
Howard Pein, Harrison, NY (US)

(73) Assignee: Codestreet LLC, New York, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 15 extended or adjusted under 35
U.S.C. 154(b) by 152 days.
(21) Appl. No.: 11/943,543
(22) Filed: Novw. 20, 2007
(65) Prior Publication Data
US 2008/0208732 Al Aug. 28, 2008
Related U.S. Application Data
(60) Provisional application No. 60/860,241, filed on Nov.
20, 2006.
(51) Int.CL
G060 40/00 (2006.01)
(52) US.ClL e 705/37
(58) Field of Classification Search 705/37

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

US008027907B2

(10) Patent No.: US 8.027.,907 B2

45) Date of Patent: Sep. 27, 2011
2003/0093343 Al* 5/2003 Huttenlocheretal. 705/35
2003/0233307 Al* 12/2003 Salvadorietal. 705/37
2004/0153389 Al* 8/2004 Lortscher, Jr.cccovvivin 705/36
2004/0172356 Al 9/2004 Agarwal
2005/0197857 Al1l™* 9/2005 AVEry ..oooovviviiiiiiieiiiiiinnnnn. 705/1
2005/0234807 Al* 10/2005 Toffeycooveviiiininnnnnnnnn, 705/37
2006/0031157 Al1* 2/2006 Gianakourosetal. 705/37
2006/0136326 Al* 6/2006 Heckmanetal. 705/37
2006/0173769 Al™* &/2006 Valesooovvvivviiiiiiininil. 705/37
2006/0200402 Al 9/2006 Digris et al.
2007/0192227 Al* 8/2007 Fitzpatrick et al. 705/36 R
2009/0292638 Al™* 11/2009 Hausman 705/37

OTHER PUBLICATIONS

A-Team Group: CodeStreet TeamWork Targets Sales-Trader Work-

Flow Process,
teamwork-targets-sales-trader-work-flow-process/#hide,

2004, p. 1.*

Chapman, P.: An attack on the king, Traders Magazine, Jul. 2004, pp.
1-4.*

PCT Notification of Transmittal of The International Search Report

and The Written Opinion of the International Searching Authority,
mailed Aug. 29, 2008.

http://www.a-teamgroup.com/article/codestreet-
Dec. 1,

* cited by examiner

Primary Examiner — Bijendra K Shrestha
(74) Attorney, Agent, or Firm — Thompson Hine LLP

(57) ABSTRACT

Methods and apparatus, including computer program prod-
ucts, for managing pre-trade activity. In general, a distribution
ol information about what traders and customers want to do
may be known. Users may be made aware of trade 1deas that
can be proposed to a trading desk’s buy-side clients. Relevant
information on the trading desk may be brought together, and
the information may be processed through a set of rules that
extract trading opportunities. On the buy side, trade 1deas may
be extracted without having to have the intervention of a
sell-side salesiorce.

7,024,387 B1* 4/2006 Nieboeretal. 705/37
7,769,668 B2* &/2010 Balabon 705/37
2003/0004859 A1* 1/2003 Shawetal.oooooviinl. 705/37 17 Claims, 9 Drawing Sheets
101
102 103 104
A It A
'8 y I r \ | "\
Client Tier : Middle Tier : EIS Tier
Z | |
105 I I
Trader! | 100 |
Salesperson | |
Application | p \ |
to5 [| Business Logic ;
JMS i
‘L% Er:IInd GUl VK Sarver !110 I
T— | E |
| Emlssary I
|] |
I |
Vi HTTP e 1 i
107 —] DB
~a| Monitoring | Business SOCKET
Application : | Services | (15
v li ¥
- | VS Database Server
"% | Entitement | DBSOCKET =
\"‘Adminish*atlun T | N Persistence
Application |
M2 / "r_—‘l
|
| & Rules Engine Server X 4
: /113 116
: __Ehissaw SOCKET
TS |
I Rules |
I]
| 114 T Engine |
I - —— I
| |

U.S. Patent

102

f__—%

Client Tier

Trader/
Salesperson
Application

106 L—

»(Bond GUI
-

Moniforing

Application

'8 [Enttiement
| Adminisiration
 Application

Sep. 27, 2011

DB SOCKET

Me ,———— ¢ =

114

Sheet 1 0of 9

101

103

{_—_\

Middle Tier

109

Business Logic

Server 110

Business

Services

Rules Engine Server
113

]
Rules
Engine
-

FIG. 1

US 8,027,907 B2

104

|
: EIS Tier
|
;
|
|
|
|
|
|
|
|
|
|
|

DB

SOCKET
|

115

A
Database Server

-
Persistence
| —

| 116
DB

SOCKET
|

U.S. Patent Sep. 27, 2011 Sheet 2 of 9 US 8,027,907 B2

201
202 203

— j — |
Client Tier : Middle Tier | E1S Tier

| 210 |

Trader/ 1 \ |

Salesperson j ——————— |

Application | Business Logic :

JMS Server ' 211 I

| |

' |

| |

| |

* |

I

|

|

Monitoring |

Application bE
JMS SOCKET

Database Server

Hanaling
Application

i Persistence |

DB SOCKET

DB SOCKET
Entitlement

Administration
Application

FIG. 2

U.S. Patent Sep. 27, 2011 Sheet 3 of 9 US 8,027,907 B2

302\\ 201
Infarence Engineg 303 (fact 113
(fact £7)
ract 13)
(fact £4)
(fact 153
306 (fact 16)
Fattern Matcher (fact 17}

304 working Memory
Yy _I '/

.72 | frule 1)
Agenda | rule)

' Rule Base (rutes 1)

The pattern-matcher applias the rules in the rule-dase 1o
the: factks in working memory to construct the agenda The
(1, £23 axacution angina firas rulas from the aganda, which

| changes the contents of warking memory and restans the
CYGle:

| Execution Engine

305

FIG. 3

U.S. Patent

401

FIG. 4

001

FIG. 5 5031

FIG. 6

Sep. 27, 2011

(call thread
sleep)

Sheet 4 of 9

JAVA

Javet code ca s Gall Juss, snd
Java methods can be invaked:
e Jdess

RULES
ENGINE

Fact create/update/delete

Event create/update/dete

Business Logic Server

event event
£ - A
O & o
Client Client Client
605
0044, | Rides”

Engine.

. "
W
- O O
T LTI
mam wam omaw mw w1 owm
- . e . .
[LI | InEEmE "m &

lllllllllll

Out of pmcess rsles angine

US 8,027,907 B2

U.S. Patent Sep. 27, 2011 Sheet 5 of 9

JMS Daemoni

US 8,027,907 B2

705

Emissary?

o
: Login JMS
/,f '; L_ng Daemon
701" Client1 f
702 703
JMS Daemon?
FIG. 7
802
JMS Daemon
801
o
Login JMS
Pasmon

Clientd e

JMIS DaemonZ

Emissary 1

803

FIG. 8

U.S. Patent Sep. 27, 2011 Sheet 6 of 9 US 8,027,907 B2

902 903

901, | _ --
N\ JMS Daemon
Clients
& e
Client3
FIG. ©
1001
A

FIG. 10

S. Patent Sep. 27, 2011 Sheet 7 of 9 US 8,027,907 B2

Zone:

1101

MY Chent3

LT g

s

—
-
-
o)

-
o
L2
=L

= 20 Y-

[e Lo e o T N e NN e N o T N I N TN

L L e
b LI onnLar L Lo ot g
[ESEE T - A ——
[] [N} (n} - - ! '
H wa wngns Vs WM amun wam omn,,
(=] Lo - L
- Cwcth o e twe | e W maa im
" o L P .
- " w W em et wm e e | fw W o wm T
o - }-! . = . . = ', - s e -
LTS L. e - -N e d
Ve ha ' AOTInaA Tefn

. -

G T . .
R) R i Ty e T S . -
' - IR I TR YT] -
eg—— . - . o I
o - - - RTs . -
- - 5 E " = oam o mium
- ' - - = '
H - Cwe I e O e v v R R v s o v
e = m m e mom m mm . e
- i ""::'-""‘;'-' oo rd md rmm o W
- o H N T o
aLn am, P s e WL I':..:' ". - e ':“"t
e L s s A i m it e s e R ey et

LRI -'U"U'ﬂ"J'U_"FLU LR LS N
[T] =T mwm 1"

u.;\'\.!.!.‘

u mEaas, s § NEEpEEaEmEs EE m mxs (o mEms sEEgEE
O T Tl a3 we ag
HLSLRLILLECRL R L g L LT
[R T T .l
e) P

Fee eammrs ras Faana s n® e aaees
LI I
IR
= .- e s
e nT -

[T TIN T T [[
AN RERE NRE AR L RAELRLARLGA
[

o
X
j'i’ = W OTW W e T aieens e e e

r W ' v I
-] CH I i il Wi [e I
.oEmE . m m :l{lﬁl'..:l....h. LI
. L W eV et e e e s s
L LTI T L] Lome e T

o :\.""' - :_r '\E-r“-'\.'r e '\."C:'\r'rnn"r:r'r T s b

P . e e P e e

] i Ll ol ol bl SR L S S i'-r-.'"."n'r'“r W

ARG

e g s

W oW g W K R EEEEEEL B R m oW R R
T '-.-.:::i Vo !
R T
S r AT Tt
PR e D P

e D e e o e oW

NY Chanth

™
P
H

L Y omm "W " w o, ,m omowm,
e i N R R - e N i - L s B LR]
. . LR e et fam

-
W awd Wm BmEEE im omm e W mm AW W CaedE wE gEm

[l i | [T = B N = e

-
m fmawam am o mlem miEm mEmm EE g
M

™ ¥
I e L L e e LSRN VP, I E _— - L
B T =R R et o] B = e e T
O T [
LT LI A L . R N A eem b LA
w
B T, L e 2 I R
Wan m am mmoam’ P o mae omom " .
B TR G TR IR IR L]
Wy wun m W 0w Taws o ol wwl o mw g
T T T N T A TR A TR TR TR
. P T R R R e
ﬁﬂh L L AN ETHT -
=
. 1
- - . R L e X arm 1w Wawn W H Em e om e man” gare]
et e e] PUIE R EEOT L e W mn e e
: :ﬁ.f--s:t :'} e E R A R A TEE LT RIr,
4 [T Aot T TR
P " = m =smm mamnm . o . W am om A
I oL oL ' '
Tl H . o i R R T e T T T PR IR PO T RY
L . C e AEL L - e
e N - et T arrass e emeeeD res e o]
L R 1 TR R et mcwrmom mom o wown
e L L LSRN e B L R A R B
L] " e m W & m e W W W oW wwnw [laarwn n o WTNn WE T omm Wu Em mmg imEEm masEn me)
.'.' - - L I Bl o o R T o (Lol ol T T T ol T [T oo g
W M e W U Ewww e w w W ww e o [l e waee ow e mE oam e om im gEm WWEEiE)
- P | [-
Com NS TRIR R IR L R T T I R B R - T TR TR T A
- - "= mem = TR ' " mEm = mEm = ® ®m -
ArevrrT A A A e e e ner A Fll D AR A AT e D P
L I R R "N L R Wi F,F m mEmm mom_m o
L T T,
B L R . R R]
T ' e n_aa_aa '
[PEP S TN S B R
woariea g L I S -
W Vema'e'n o'n Way u umwn ow n s [om o on e e
' Comtd o g om e L A
L e L T .
- O omlm T mn :ll.l.l'\lll.-.l (SR RN WRT_JESSUEY REL LI [DR QLT Ry g
R R B T e .. .
o LLLAR T U LR IRIIITR TR TIN [IRLRCTT LRI R
. * [T T T T T T T T T I R
* 4 wEms e
o) L] T '\:_."'\. i.-“'\. LT TR
rE o m L, gLt ol L woraLag
. N 2 P
a0 o mg oo Fa v
“w g=a D cowhEw cwtwew tafll tw e T W
- - e I
] [
. T
a1]
" 1
n
g g
TGN
-
= =
L I R R
"mmmEem oy gEEr aE s Em T aEm oE Lm0
Loaotna o i [
. ..
L A ow
d ma - A oam " - " . . i
E ; T oTmewen e s e p = m—n
L 1 L - J a u o= .- -
: '.I.'l. Em .
L AN
i]
u - —a -- = oA
h LE] LA .
d X l.: —_1
r
4 Mg e ATaEE T wwad
. 1 [- L)
r
r
r
r
o
- ~ -'
= -
- o
|
- L]
= 4
o
-
d i

1102

U.S. Patent Sep. 27, 2011 Sheet 8 of 9 US 8,027,907 B2

1201 1202

1401

FIG. 14

140

FIG. 15

1502/)'# ,;'”

d9l Qld Vol 9ld

US 8,027,907 B2

o
> 109} 7091
2
p
uonesndoy ¢091l N 1 OUOZ
Q G091 \
2 N
) 209
5
1091

~ AN-SU0F

U.S. Patent

US 8,027,907 B2

1

FIXED-INCOME SYSTEM FOR MANAGING
PRE-TRADE ACTIVITY

CROSS REFERENCE TO RELATED
APPLICATION

The present patent application claims priority under 335
U.S.C. §119 to U.S. Provisional Patent Application Ser. No.

60/860,241, filed on Nov. 20, 2006, and entitled, “FIXED-
INCOME SYSTEM FOR MANAGING PRE-TRADE
ACTIVITY,” the entire disclosure of which 1s incorporated by
reference herein.

BACKGROUND

This disclosure relates generally to computer-based
mechanisms for electronic financial trading, and more par-
ticularly to techniques for streamlined pre-trade processes in
fixed imncome securities trading.

In general, the fixed mmcome market 1s a financial market
where participants may buy and sell debt securities usually in
the form of bonds. In some markets, trading 1n the fixed
income markets has been largely phone-based but may
change, as fixed income transactions may be executed elec-
tronically. In the fixed income market, banks and brokers may
be on the sell side while asset managers, hedge funds and
corporate treasurers may be on the buy side. The sell side may
quote tradable bond prices while the buy side may be looking

for executable fixed income prices from a wide pool of liquid-
ity providers.

SUMMARY

The subject matter disclosed herein provides methods and
apparatus, including computer program products, that imple-
ment techniques related to a fixed-income system to manage
pre-trade activity.

In general, this document discusses a system and method
for enhancing productivity around pre-trade activity on the
sell-side fixed income trading desk. In particular, the system
may improve a distribution of information about what traders
and customers want to do and makes known to users trade
ideas that can be proposed to the trading desk’s buy-side
clients. It may achieve the above goals by bringing together
all relevant information on the trading desk, and processing
the information through a set of rules that extract the trading
opportunities. The system may also be relevant to the buy side
as a mechanism to extract trade ideas without having to have
the intervention of a sell-side salestorce.

In one general aspect, data characterizing an indication of
consummation of a trade of a bond from an emissary of a
server application 1s recerved. A notification of the consum-
mation to a client application of a client tier 1s generated. A
request to generate an axe being a desire to buy or sell the
bond according to a set of criteria 1s recerved. Data charac-
terizing a request to publish the axe from the emissary 1s
received. Data characterizing a match to the axe 1s sent.

The subject matter may be implemented as, for example,
computer program products (e.g., as source code or compiled
code tangibly embodied 1n computer-readable media), com-
puter-implemented methods, and systems.

Variations may include one or more of the following fea-
tures.

The server may cause the axe to be published.

The axe may be prioritized at a level lower than an order to
consummate a trade.

10

15

20

25

30

35

40

45

50

55

60

65

2

Data characterizing an inquiry for a bond matching the
criteria may be recerved from another client application. In
response to the mquiry the match may be generated.

The details of one or more embodiments are set forth in the
accompanying drawings and the description below. Other
teatures and advantages will be apparent from the description
and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects will now be described 1n detail
with reference to the following drawings.

FIG. 1 1s a functional block diagram of a bond trading
system.

FIG. 2 1llustrates a business logic tier with a remote ana-
lytics services configuration.

FIG. 3 1llustrates process execution by a rules engine.

FIG. 4 illustrates process execution of an in-process rules
engine.

FIG. 5 illustrates process execution of an out-of-process
rules engine.

FIG. 6 shows worktlow execution and interaction between
the BLS and RES.

FIGS. 7 and 8 illustrate server login processes of the sys-
tem

FIG. 9 shows the sequence of messages that are published
during a typical fan out procedure.

FIG. 10 shows deployment with three fully connected
EMS (Enterprise Messaging Service) servers.

FIG. 11 illustrates communications within multiple over-
lapping zones 1n a geographically distributed architecture.

FIGS. 12-15 illustrate communication failure handling
techniques among interconnected servers of the system.

FIGS. 16 A-B illustrate multiple hop and replication among,
multiple interconnected servers of the system.

Like reference symbols 1n the various drawings indicate
like elements.

DETAILED DESCRIPTION

This document describes computer-based systems and pro-
cesses (heremaiter which may be simply referred to as ““the
system,” which may be an example system that may vary 1n
implementations) that may be configured to streamline the
pre-trade processes 1n the fixed income market. Designed as a
singular, integrated application that spans both sales and trad-
ing, the system may be configured to provide users (e.g.
traders, but which may also include salespersons of a bond
trade or buy-side portiolio managers) with one location or
interface 1n which they can manage their worktlow. The sys-
tem may enable a user to manage offerings to salespeople and
customers via multiple electronic dealer channels, and enable
salespeople to view users’ offerings 1n support of their cus-
tomers as well as manage incoming customer inquiry, while
being able to share this information at their option with trad-
ers and other salespeople. Wherever functionality 1s provided
for a salesperson in terms of identifying trading opportunities,
similar functionality may be provided for a buy side customer.
The system may provide salespeople and traders with one
location where they can manage their workflow, and enable
salespeople to view traders’ oflerings in support of their cus-
tomers as well as manage incoming customer inquiry, sharing
this information at their option with traders and other sales-
people.

US 8,027,907 B2

3

Trading-Side Features

Bond Securities Master Database

The system maintains a securities master database of cur-
rent dollar-denominated bond issues 1n a database with a
proprietary schema. One type of database that can be used 1s

a relational database. The system automatically imports

REUTERS DATASCOPE Fixed Income {files that have been
loaded by script from a file transfer protocol (FTP) site, but
can also support receipt of data from other security master
database sources such as BLOOMBERG. The database
includes all relevant bond issue/issuer information required
for the bond workflow. REUTERS DATASCOPE Fixed
Income (an FTP-delivered subset of the EJV Rack data prod-
uct) includes such things as 1ssue/issuer ratings and actions,
1ssue sizes, bond terms and conditions, administrative infor-
mation, and 1ssue 1dentifiers.

Bond Queries

From the database of bond issues, a user can search for any
bond. Queries can be done 1n any number of unique ways to
find matching bonds. For instance, the user can specity the
issuer name or a partial 1ssuer name or a ticker, and be
returned bonds from that 1ssuer. Results can be narrowed by
entering coupon and maturity date information. This infor-
mation need not be exact, as the application allows functions
such as >, <, and combinations thereof across both parameters
to restrict the results returned. Bond 1ssues may also be found
through a search against CUSIP (Committee on Uniform
Security Identification Procedures) and ISIN (International
Securities Identifying Number) 1dentification codes.

AXxe-creation

The principal worktlow handled by the system for the user
1s the creation, updating and deletion of axes. Axes may be
described as an indication of a desire to buy or sell a bond at
a dollar-price or a particular spread to a benchmark index
yield such as that of a US (United States) Treasury instrument
or LIBOR (London Interbank Offered Rate).

The system allows users to create an indication of interest
to sell or buy a specific bond. Within the system, the user must
first 1dentify the bond. The most logical place from which
axes can be created 1s immediately following the consumma-
tion of a trade. At this point, typically, a user either wants to
re-offer a bond purchased or decrement an offering sold.
Therefore, one implementation of the system includes being
integrated with the client’s trade capture system, with the
system receiving a feed of message “exhaust” from the trade
capture system in much the same way the client’s settlement
system recerves messages from the trade capture system.
Upon recerving notification of a consummated trade, the sys-
tem will notify the relevant user(s). This notification waill
either be a prompt to create anew axe or to re-olfer an existing
axe.

Once the bond 1s 1dentified, the user must select the bench-
mark against which the axe will be priced, the size to show,
the price/spread he’d like to offer/bid and the venues to which
he’d like to publish.

When publishing an axe, users may publish to a number of
clectronic venues 1n addition to the primary sales force. Pos-
sible venues include, but are not limited to, BONDDESK,
TRADEWEB, MARKETAXESS, BLOOMBERG, and
VALUEBOND and any other venue to which the dealer
would like to publish prices. In addition to publishing to
institutional salespeople, the system may enable a tiered
offering, allowing publication of different prices to a second-
ary group of salespeople (e.g. client’s regional dealer desk or
middle market salespeople).

The system allows the user to select different sizes (e.g.
quantity) and prices for each distribution channel to which

10

15

20

25

30

35

40

45

50

55

60

65

4

they publish offerings. The user may also direct comments to
salespeople and those external channels that allow trader-
entered comments. The system provides a robust entitlement
model to allow traders to have permission to “view only”
specified trading books and to “view and edit” others.

Axe management may let traders efficiently manage posi-
tions and set axe pricing on multiple electronic platiforms.
Salespeople may see real-time axe updates and have easy
access to prices and data.

-

Irade Idea Generation:
The system processes positions, trade history and market
prices stored within the system to extract relevant trading
ideas that can be proposed to a user. The system calculates
whether bonds within the system are trading cheaply, histori-
cally or currently relative to other bonds, and can notily the
user. The system also indicates to the user the most logical
customers with whom to propose the trades based on their
historical trading patterns or portiolio positions. The system
may generates trade 1deas automatically by processing all the
information that underlies the fixed income market, such as
positions on the desk, customer inquiry, activity and holdings,
along with current market prices and market events, which
may replace scratch pads and human memory with software
algorithms that propose 1deas to the user. Inquiries may be
dynamically matched against axes, notifying both traders and
salespeople when a match occurs. Salespeople and traders
may be never more than a click away from a client’s portio-
lio—even when a bond 1s not in 1nventory, salespeople have
quick, convenient access to reports showing the largest hold-
ers of specific 1ssues, all bond 1ssues of an 1ssuer, and 1ndi-
vidual customer portiolios. Salespeople may call up instant,
customized views ol “axe matches”—the intersections of
inventory and customers” holdings. The system may continu-
ously monitor mventory, client holdings, historical trades,
and client inquiries to 1dentily intersections likely to be trade
opportunities. This means that traders and salespeople may be
instantly notified when their interests align. By recognizing
such “matches,” as well as more complex relationships
between data sets, the system may deliver a steady stream of
potential trades.

Bond “Benchmark™ Creation

The system enables traders to define a group of bonds that
represent most actively watched 1ssues 1n the market. The
most actively watched 1ssues 1n the market can be defined by
the traders, or according to any other schema. Traders can
update pricing for those i1ssues, indicating both sides of the
market as well as their preferred side of the security (bid/offer
or both), and then publish these pricing indications to sales-
people. This component replaces the typical BLOOMBERG
runs or emails that are conventionally used to disseminate this
information.

View Customer Inquiry

Traders can see customer inquiries provided to them by
salespeople regarding interest customers may have in doing,
trades 1n the marketplace. Traders can then access a list of all
axes to which they have “edit” rights that match against an
inquiry.

Update Ticker

Traders (and salespeople) are provided with a view of all
pricing and spread changes for existing axes as well as new
axes created by traders via an Update Ticker. They can scroll
back the Update Ticker to see all changes and updates to axes
and inquiry over a prior period. Traders can choose to update
those salespeople (or customers directly) via email or
BLOOMBERG with a single mouse click.

When salespeople create an inquiry based on interest from
their customer, traders are notified via the update ticker. Trad-

US 8,027,907 B2

S

ers are also notified 1f one or more axes they are entitled to edit
have matched against an inquiry. Traders may navigate from
the mquiry update directly to the specific inquiry from the
Update Ticker.

If salespeople indicate pricing on a “specific’” bond inquiry
(as opposed to a “group of bonds” inquiry where generalized
bond parameters for one or more bonds may be defined),
traders must approve and publish the correct price out to the
remaining sales force (assuming the salesperson originally
published the mquiry to other salespeople).

Dynamic Portfolio System—TIssue Query

The system maintains a proprietary database of investor’s
holdings as well as basic customer contact information. This
component of the system 1s referred to as the Dynamic Port-
folio System (DPS). The system automatically imports
EMAXX holdings from a source such as LIPPER via a script
from an F'TP site. The system also allows salespeople or other
users to import customer holdings provided 1n spreadsheets.
Details of the import function are provided in further detail
below.

From this holdings database, traders can run certain queries
to access the investors’” holdings. In one implementation, this
data 1s used to view a list of known 1nvestors who hold some
bonds of a particular 1ssue. In much the same way that a trader
can specily a bond 1ssue for which he would like to create an
axe, the trader can 1dentify bond issues and do an investor
search, 1identifying all investors who hold (or recently held)
that 1ssue. With respect to the DPS, traders have the same
functional capabilities as do salespeople. The DPS will be
discussed 1n greater detail below.

Dynamic Portifolio System—1Issuer Query

The system allows traders to query the database to identify
those ivestors that have accumulated holdings across a num-
ber of 1ssues from one 1ssuer. So, for example, a trader can
focus on who the largest investors are in CONAGRA as a
whole, rather than just who are the largest investors of a
particular CONAGRA 1issue.

Dynamic Portfolio System—Investor query

The system allows traders to search a list of a large number
of investors provided by EMAXX, as well as any not covered
by EMAXX butuploaded by the clients’ sales force, and view
the bond holdings of that investor. The data 1s configured such
that 1t can be viewed on a sub-account by sub-account basis.

Quick Filter

Users can apply a filter to axes in the MarketView, by
defining up to six filtering parameters. These parameters can
display results based on either the intersection or the union of
the parameters, or combinations of both. Parameters for fil-
tering include, but are not limited to: ask/bid price, ask/bid
spread, ask/bid yield, coupon, coupon type, dealer, domicile,
industry, 1ssuance date, 1ssue size, 1ssuer, market, maturity,
MOOQODY s rating, position, quantity ask/bid, S& P (standard

and poor) rating, series, subindustry, ticker, trader, and trad-
ing book. A link 1s provided from the Quick Filter to the
Detailed Filter and Search so that re-keying of search param-
eters 1s unnecessary.

Detailed Filter & Search

Users can search the complete universe of securities 1n the
system’s Security Master Database. Up to six parameters can
be defined, with the results being either the intersection or the
union of the parameters, or combinations thereof. Returned
results can be set to identify those securities that are also axes.
These axes can be displayed with or without their axe-specific
fields (quantity, spread, benchmark, yield, etc). Bonds 1n the
Security Master Database that are not axes do not contain

10

15

20

25

30

35

40

45

50

55

60

65

6

certain fields (bid and ask quantity, for example). Searches on
these parameters are not allowed within the Detailed Filter as
they would be meamingless.

The system 1s preferably implemented according to an
architecture in which clients have their own key software
components and services. In some implementations, instead
of an end-to-end solution, the system provides a critical mass
of key services based on an open Service Oriented Architec-
ture (SOA) built using proven technologies. SOA may be
described as a federation of cooperating and loosely coupled
services, implemented using technologies not only such as
DCOM (Dastributed Component Object Model), CORBA
(Common Object Request Broker Architecture), Sockets,
FTP, etc., but extended with standards-based technologies
such as JIMS (JAVA Message Service), Web Services/SOAP
(sometimes referred to as Service Oriented Architecture Pro-
tocol), XML (eXtensible Markup Language), etc.

The system core can be architected based on a pragmatic
SOA. For example, rather than using Web Services (with
severe performance implications), the reference implementa-
tion uses proven JMS technology. However, one or more
external services can be non-JMS based. In such cases, an
adapter layer will be provided to address the integration
requirements of the specific protocol.

System Core

Client applications are tightly integrated with desktop soit-
ware commonly used by ftrading and sales desks. For
example, client applications can leverage desktop tools such
as Microsoft Excel. The system core 1s platform neutral, 1s
able to efficiently distribute large quantities of data, and 1s
able to scale to hundreds of concurrent users, while being able
to be easily maintained and upgraded.

The system 1s designed as a three-tier distributed system.
The three tiers include the client (view) tier, the business tier
(controller), and the Enterprise Information System (EIS)
(model) tier, which are may retlect a model-view-controller
paradigm. Comnunication among the three tiers 1s accom-
plished via exchange of request and response messages. The
transport layer in the client and business tier 1s highly abstract.
This allows the actual transport implementation to be
swapped with relative ease. For example, even though the
classic SOA 1s based on Web Services/SOAP, in one imple-
mentation the system uses JMS as 1t provides better perior-
mance, scalability, security, and management. However, i
necessary, the JMS transport can be augmented or replaced
entirely with equivalent Web Services/SOAP transports.

Business services have been designed to support both local
(1n-process) and distributed implementations. The design
provides some key abstractions—namely, well-defined inter-
taces—that help to create and integrate different implemen-
tation of a service.

FIG. 1 1s a functional block diagram of a bond trading
system 101. As shown in FIG. 1, the system 1s embodied as an
application, and 1s organized 1n three logical tiers:

The client tier 102: The applications user mterface respon-

sible for managing the interaction with the end users.

The middle/business logic tier 103: A server to process
requests made by the users 1n the presentation tier. This
tier provides access to business services. Business ser-
vices may be hosted mn-process or remotely.

The Enterprise Information System (EIS) tier 104: The EIS
tier that provides access to the database and any existing
enterprise systems.

In implementations, the client tier may include four main
components: 1) Trader/Salesperson/Analyst application; 2)
System Monitoring; 3) Reference data and 4) entitlement
administration. The business logic tier has three major com-

US 8,027,907 B2

7

ponents: 1) Emissary; 2) Business Services; and 3) Rules
Engine. The EIS tier includes two components: 1) Database;
and 2) Other enterprise information repositories such as
LDAP (Lightweight Directory Access Protocol), file system,
etc. These tiers will now be explained in further detail below. >

As an example implementation, 1n FIG. 1, the client tier
102 includes a trader/salesperson application 1035, which
includes a bond graphical user interface (GUI) 106; a moni-
toring application 107; and an entitlement admainistration
application 108. The middle tier 103 includes a business logic
server 109, which includes an Fmissary 110 and business
services 111; and a rules engine server 112, which includes an
Emissary 113 and rules engine 114. The EIS tier 104 includes
a database server 115, which includes persistence 116.

Although the business logic tier 1s shown 1n FIG. 1 as being
in-process, one or more of the actual implementations may be
hosted remotely. For instance, 1f an external analytics engine
1s present and has been architected as a true service—e.g. 1t
exposes 1ts functionality via a well-defined API (application 3¢
programming interface) that can be accessed by out-of-pro-
cess clients, the business logic tier can be easily configured to
call out to the analytics service at appropriate points while a
request 1s processed. In fact, the business logic tier will not
notice any difference between an in-process and a remote 25
analytics engine. FIG. 2 shows the scenario described above.

FIG. 2 illustrates a business logic tier 203 with a remote
analytics services configuration. In a system 201 of FIG. 2, a
client tier 202 includes an error handling application and
logic (middle) tier 203 includes a combination of a business
logic server 210, which includes an Emissary 211 and busi-
ness services 212; and an analytics server 213, which includes
analytics 214.

Client Tier

In general, a client tier includes applications that interact
with the Middle Tier via request/response messages. Typi-
cally, these client applications are graphical user interfaces
(GUIs), such as the bon GUI 106 of FIG. 1. However, any
application that implements the message API can interact 4
with the Middle Tier.

The GUI may take an optimistic approach to the manipu-

lation of business objects. The creation, update or deletion of
a business object does not need to be confirmed by the back-
end before 1t 1s immediately reflected in the GUI. Contlicts 45
are resolved at the server. Contlicts are expected to berare and
the responsiveness of the GUI should not suffer 1n order to
accommodate this work case scenario. When a conflict 1s
detected—=e.g. two clients updating the same business
object—an error message 1s sent to the GUI that needs to 50
update 1ts state.

Middle Tier

The Emissary and Business Services are grouped together
into the Business Logic Server (BLS). Within the BLS, the
Emissary 1s the point of contact for communicating with the 55
user, servicing user requests, maintaining user state, applying
entitlements, and distributing information to the users. The
Emissary makes calls to the Business Services component
which 1s responsible for the management of domain business.
These services are typically not aware of the user. 60

Communication between these two components 1s prefer-
ably via a synchronous API interface, although other inter-
faces may be used. The synchronous API provides a layer of
indirection so that both local and distributed implementations
can be provided. A local implementation can be based on 65
normal JAVA classes, while a distributed implementation can
be based on a distributed call, such as a call to a distributed

10

15

30

35

8

process using JMS, SOAP, or J2EE (JAVA 2 ENTERPRISE
EDITION) Session Bean over RMI (Remote Method Invoca-
tion).

There are differences between synchronous/asynchronous
processing models. Asynchronous behavior imposes signifi-
cant design and development overhead. For example, access-
ing an asynchronous service implies that the caller must be
prepared to receive the response at some point 1in time after the
request has been submitted. As a result, the caller may be
required to cache the session state. Furthermore, the caller
may need to be prepared to roll back state changes if the
request fails. On the other hand, the synchronous interface
may allow for the caller to know 11 the call succeeded or 1f an
exception was raised. This may be very useful in terms of
grouping closely together the call to the business service and
any compensating actions based on the failure of call to the
business service. It also may make testing the business service
API much easier.

In some cases, a business service will only be available
asynchronously. For such cases, a wrapper service 1s pro-
vided. This wrapper service encapsulates the complexity of
asynchronous processing and presents a synchronous inter-
face to the Emissary. As a result, the Emissary 1s unaware that
it 1s interacting with an asynchronous business service.

Business objects provide the domain model and encapsu-
late the data as well as behavior. These business objects are
plain old JAVA objects (POJO). The business server API 1s
largely written 1n terms of these business objects. Other sys-
tem services, such as communication or monitoring, are also
based on the same Abstract Factory design as the Business
Services. Most, 1f not all, of the software developed can run
both 1n and out of an application server container. As a result,
the use of EJB (Enterprise JAVABEANS) becomes a deploy-
ment choice rather than an 1ntegral part of the architecture.

Rules Engine

In preferred implementations, the rule engine includes an
inference engine, an execution engine, a working memory,
and a rule base. This basic architecture 1s shown 1n FIG. 3. A
rule base consists of the rules that have been loaded into the
engine. Rules are typically loaded when the engine 1s 1nitial-
1zed. The working memory contains all facts that have been
loaded 1nto the engine. Unlike the rule base, working memory
1s more volatile. For example, when a rule 1s fired it may
change the working memory by asserting, updating, or
retracting facts.

The pattern matcher 1s responsible for applying rules to the
contents of working memory to create the contlict set—e.g.
the set of unordered rules that are candidates for execution.
After constructing the conflict set, the inference engine
applies various strategies—only some of which are exposed
via the rules engine API—to order the contlict set and create
the agenda. The rule engine takes into account the specificity
of rules and the relative age of the premises in the working
memory during conflict resolution. Finally, the first rule on
the agenda 1s fired (possibly altering the working memory)
and the entire process 1s repeated.

FIG. 3 1llustrates process execution by a rules engine 301.
Therules engine 301 includes an inference engine 302, which
includes a pattern matcher 303 and agenda 304; an execution
engine 305; a working memory 306; and a rule base 307. In
the rules engine 301, the pattern matcher 303 applies rules in
the rule base 307 to facts in working memory 306 to construct
the agenda 304. Rules from the agenda 304 may be executed
by the execution engine 305, which may change contents of
working memory 306 and may restart a cycle of process
execution.

US 8,027,907 B2

9

The rules-based system Jess (JAVA Expert System Shell) 1s
used 1n some implementations of the rules engine because
business logic 1s externalized, allowing rules engine behavior
to be modified by editing rule files rather than modifying
application code. Further, Jess uses the Rete algorithm for
cificiently matching rules against working memory. And,
since Jess 1s written from the ground up 1 JAVA, 1t provides
excellent support for integration with JAVA applications.
FIG. 4 illustrates process execution of an in-process rules
engine. As shown 1n FIG. 4, JAVA applications 401 can call
into a Jess rules engine 402 and Jess scripts of the Jess rules
engine 402 can call into the JAVA applications 401.

The rules engine may be used to identity matching between
inventory, client holdings, inquiries, and historical trades as
part of workflows. In the context of the system a fact may
refers to business objects of interest. For example, trades,
axes, and 1nquiries can all be considered facts.

In Process Rules Engine

When deployed with the m-process rules engine configu-
ration, the Business Logic Server contains an embedded rules
engine. As shown 1n FIG. 5, in this configuration the BLS
interacts directly with the rules engine. FIG. 5 illustrates
process execution of an out-of-process rules engine. In FIG.
5, the business logic server 501 includes an embedded rules
engine 502, where fact creation, updating, and deletion and
event creation, updating, and deletion are within the business
logic server 501, and events are sent to clients 503.

This configuration can be used by applications where the
number of rules 1s small and the rate of change 1n facts 1s low.
Since this deployment configuration has a direct impact on
the BLS performance a recommended configuration 1s the
out-of-process rules engine, as described below.

Out of Process Rules Engine

In the out-of-process rules engine configuration, the BLS
integrates with the Rules Engine Server (RES). This provides
high scalability and 1s a preferred configuration. As a number
of rules and facts grows, the RES may be deployed on high
performance hardware. Accordingly, the rule base can be
partitioned amongst multiple RES processes—each RES pro-
cess potentially running on separate hardware—to achieve
the desired performance levels.

FIG. 6 shows worktlow execution and interaction between
a BLLS 601 and RES 602. As shown 1n FIG. 6, interaction
between the BLS 601 and the RES 602 includes well-defined
workflows. First, whenever a new fact 1s created/deleted/
updated by the BLS 601, a notification 603 1s sent to the RES
602. This notification causes the RES 602 to update 604 the
working memory of a rules engine 605. Second, whenever a
rule 1s activated in the rules engine 605 and a new fact 1s
created/deleted/updated 606, the RES 602 sends a notifica-
tion 607 to the BLS 601. In turn, the BLS delivers this noti-
fication 608 to clients 609.

IMS Destinations

Clients may send login requests to an Emissary on the
following login destination (non-exclusive queue):
CSA.SERVER.LOGIN.

The IMS configuration on the client machine only includes
the information necessary to connect to the login JMS dae-
mon and the name of the login destination. Login requests
sent by the client contain a response destination (temporary
queue)—the Emissary sends the login response message to
this temporary destination.

FI1G. 7 shows Clientl 701 sending a login request 702 to the
login JMS daemon 703. In this implementation, there are two
Emissary processes 704, 705 listening for login requests. One
of the two Emissary processes—in this case, Emissaryl

10

15

20

25

30

35

40

45

50

55

60

65

10

704—accepts the login request. IMS queue semantics guar-
antee that exactly one Emissary process will recerve a login
request.

After accepting a client login request, an Emissary hosting
the client session may send the JMS connection, topic, and
queue information to the client 1in the login response message.

The client uses the JMS connection, topic, and queue infor-
mation to establish communication channels with 1ts Emis-
sary. All further commumnication between the client and 1ts
Emissary happens over these communication channels. In
clfect this strategy may act as a dispatcher of client connec-
tion requests and balance load amongst all available Emissary
and EMS (Enterprise Messaging Service; e.g., such as
TIBCO) servers.

This bootstrap procedure allows a client to configure itself
dynamically. In addition, the system can be scaled on multiple
levels—by adding additional IMS daemons and/or by adding
additional Emissary processes. In fact, the system adminis-
trator can reconfigure the system without any modification to
the client configuration.

Requests

All requests from clients may be published on the follow-
ing queue: CSA.<ServerID>REQUEST. Since all requests
may be sent to a single well-defined queue, it 1s possible to
assign priorities to messages. For example, 1in a trading sys-
tem one might assign a higher priority to order messages as
compared to instrument search messages. Position update
and allocation (PAS) messages from external services are
published on the following queue: CSA.SERVER.PAS—
where PAS stands for Position and Allocation Service.

Trades capture (TCS) messages from external services are
published on the following queue: CSA.SERVER. TCS—
where TCS stands for Trade Capture Service. Business events
generated by remote (out of process) rule engines are pub-
lished on the following topic: CSA. SERVER.EVENTS.

Every request sent to the Emissary can be viewed (logi-
cally) as consisting of the following components: principal
(user), action, and business object. For example, 1n a typical
trading system a user might submit a request to create (action)
a market order (business object). An entitlement check may
be a matter of determining whether the principal 1s authorized
to perform the specified action on the business object.

Response

Axepublication to external venues 1s done on the following
queue: CSA.SERVER.ADS—where ADS stands for Axe
Distribution Service. Messages published to internal venues
by the Emissary can either be directed to a specific user
(point-to-point semantics) or to a group of users (broadcast
semantics).

A message published to a single user 1s published on one of
the following topics: CSA.CLIENT.<UserlD>—where
<UserID> 1s an 1dentifier of the client whose session 1s being
established. This topic 1s used to send messages to a single
client for asynchronous delivery. This topic 1s for situations
where the client wants to send a request and does not want to
wait for a response from the Emissary, and also where client-
specific error messages are sent by the Emissary. A request
message can have i1ts JMSReplyTo property set. If the
IMSReplyTo property 1s set on a request message the
response 1s sent to this destination.

A message targeted to a group of users 1s published on the
following topic: CSA.CLIENT.<Role>—where <Role> 1s
one of the user roles defined in the system. A role 1s a logical
way to group system users. For example, 1n a trading system
the roles TRADER and SALES might be roles defined. Role

based publication allows the Emissary to “fan out” messages

US 8,027,907 B2

11

in an efficient manner—e.g. a single message 1s published per
role and all users 1n that role recerve that message.

A message targeted to clients interested in activity on a
particular logical business grouping such as an account, a
trading book or research stream 1s published on the following
topic: CSA.CLIENT.<interest>—where <interest™ 1s an ¢le-
ment with an enumeration such as a list of accounts, trading,
books, research streams etc. This distribution partitioning 1s
suitable for a wide range of applications where real-time
information 1s distributed according to a relatively fixed par-
titioning of interest.

Further efficiency can be gained by intelligent use of IMS
selectors. For example, suppose a trade message 1s published
on the topic CSA.CLIENT where ORDBKI 1s the name of the
book 1n which the trade 1s being booked. A client wishing to
receive notification of all activity in ORDBKI would simply
subscribe to this topic. However, suppose another client
wishes to recerve all trade activity in ORDBKI for bonds from
issuer DaimlerChrysler. This client could register a selector
with EMS server on the topic CSA.CLIENT. ORDBKI—the
selector would filter out all messages that are not trade mes-
sages and which do not carry the ticker symbol DCX. Of
course, the Emissary would be required to put the message
type (e.g. trade) and the ticker symbol of the 1ssuer as prop-
erties of the message. This 1s an optimization because filtering
1s done on the EMS server instead of on the client.

FIG. 8 illustrates server login processes of the system. As
shown 1n FIG. 8, after a client session has been established, all
communication between the client 801 and the host Emissary
802 1s brokered by the Emissary’s JMS daemon 803. In a
typical deployment, where the number of users 1s small, a
login JMS daemon and JIMS daemon that brokers non-login
messages may be one and the same.

Heartbeat Messages

Emissary processes publish heartbeat messages on the fol-
lowing topic: CSA.CLIENT.HEARTBEAT—the heartbeat
message contains the name of the emissary, the heartbeat
interval, flag to indicate whether the Emissary has encoun-
tered severe errors, and a description of the error condition.
Any client that wishes to monitor the health of an Emissary
can subscribe to heartbeat messages from that Emissary
instance.

Emissary processes subscribe to heartbeat messages on the
tollowing topic: CSA.SERVER.HEARTBEAT—the heart-
beat message contains the name of the emissary, flag to 1ndi-
cate whether the client has encountered severe errors, and a
description of the error condition. For example, the position
update service will publish heartbeats on this topic.

IMS Configuration

IMS configuration 1s externalized from the code by XML
deployment descriptors. In particular, the configuration
required on the client tier has been minimized 1n order to
allow easy management of deployed client applications. The
only JMS configuration required on the client 1s the URL
(uniform resource locator) of the JMS daemon to which the
application needs to connect. All other JMS configuration—
TOPIC, QUEUE, etc.—1s sent to the client by the server after
login 1s complete.

The Middle Tier configures 1ts JMS artifacts using XML
deployment descriptors. These full-featured deployment
descriptors allow configuration of all aspects of the JMS
laver—e.g. CONNECTION, SESSION, TOPIC, QUEUE,
etc. The JMS artifacts are created when the Emissary process
starts.

Session Management

The middle tier 1s responsible for managing user sessions.
However, the client tier has to be session aware for handling

10

15

20

25

30

35

40

45

50

55

60

65

12

certain error conditions. For example, 1f Clientl 1s connected
to Emissary1, suppose that Emissary1 has published a mes-
sage to Clientl and that Clientl fails before consuming the
message. Furthermore, suppose that the message 1s persistent
and does not expire. Now, Clientl restarts. The message from
the terminated session will be delivered to Chientl. In this
case, Clientl must discard all messages that are not from the
current session.

Heartbeat

Heartbeats are used to detect the presence or absence of
client processes. The ability to detect when a client process 1s
no longer active can be helpful 1n managing abnormal session
termination. In some implementations, the capabilities of the
transport layer are leveraged to manage client sessions. The
transport layer can be configured to publish monitor mes-
sages, such as when a client attempts to connect to the JMS
daemon or when a client connection 1s disconnected.

Middle Tier Operation

The flow and organization of the processing in the Emis-
sary 1s substantially as follows. A message may be received
from the EMS daemon, and compared against selection cri-
teria 1n order to select a processing pipeline. The processing
pipeline 1s responsible for implementing all of the function-
ality required by the use case in servicing the user request.
Most pipeline elements are reusable across use cases, such as
session and entitlement check as well as encapsulating send-
ing messages to users or other external systems.

Some pipeline elements are use case specific, typically
those that deal with the creation or manipulation of some
business entity. The operations that take place on the business
objects, primarily CRUD (Create, Read, Update, and Delete)
mampulation, are done by classes that sit behind a set of
interfaces known as “Business Services.” These services are
grouped 1nto several subsystems, such as an interface for
Offering manipulation and another for Trade manipulation. In
most cases, a data mapper 1s used to transfer data between the
domain model and the database. The data mapper allows the
database schema and the object model to evolve indepen-
dently.

An Emissary writes the state of all its hosted sessions in the
database and not cache any state related to a client session 1n
memory. As a result, each Emissary can be viewed as a set of
stateless session beans (SLSB). When an Emissary process
terminates, all sessions being hosted by that Emissary are
orphaned. Requests from these orphaned sessions cannot be
serviced. All orphaned sessions have to be reestablished by
logging into another Emissary. The re-login may be initiated
by the client and this 1s the simplest way to migrate orphan
sessions to another Emissary. However, the list of sessions
that were being hosted by the terminated Emissary 1s avail-
able 1n the database. This information can be used to seam-
lessly migrate orphaned user sessions to another Emissary
process. Here 1s the sequence of steps that would occur to
accomplish the migration of orphaned sessions to another
Emissary: a connection between an Emissary and 1ts JMS
daemon 1s terminated (this may happen 11 the Emissary fails,
or the network connection between the Emissary and its dae-
mon fails, or the IMS daemon 1tself fails); in the last case
(failure of the JMS daemon) the client immediately knows of
the failure because its own connection to the failed JMS
daemon 1s terminated and the client can re-initiate login; 1n
the first two cases clients whose session 1s being hosted at the
talled Emissary are unaware that the Emissary has failed, they
experience request timeouts; all Emissary processes sub-
scribe to EMS advisory messages; an EMS server can be
configured to publish advisory messages whenever some
event of iterest occurs (e.g., EMS can be configured to

US 8,027,907 B2

13

publish advisory messages whenever a client connects to the
daemon or disconnects from the daemon); another Emissary
that 1s connected to the same JMS daemon as the failed
Emissary recetves an advisory message from EMS; the
receiving Emissary extracts the name of the failed Emissary
from the advisory message; the receiving Emissary loads the
state of the orphaned sessions from the database; and the
receiving Emissary notifies the clients of the orphaned ses-
s1ons that they should forward all requests to it instead of the
talled daemon. In a typical deployment a single Emissary will
interact with a single database. However, 1n a geographically
distributed deployment 1t might be desirable to ‘push’ the
persistent data as close to the local Emissary as possible. This
may be necessary to avoid a performance hit of database
accesses over a WAN (wide area network). At the very least,
it 1s 1imperative that read-only data—=e.g. security reference
data—Dbe delivered to the Emissary from a local database.

Pipeline Design

The processing stages upon receipt of an mcoming user
request are handled by a processing pipeline. This pipeline
design 1s based on a so-called “Pipes and Filters™ architec-
tural pattern, 1n which the task of a system 1s divided into
several sequential processing steps. Each processing step 1s
implemented by a filter component. The filters are connected
by pipes, and the output of one filter 1s used as the input to the
subsequent filter. The sequence of filters connected by pipes
1s collectively known as a processing pipeline.

A famihiar example of this pattern comes from program
codes where commands like ‘Is” and ‘sort” are joined by a pipe
in order to perform linked processing steps. Translating this
design to an object model yields a Module object that repre-
sents the filter and a data structure, PipelineData, which 1s
passed to each Module’s processing method. The collection
of Modules that gets sequentially executed 1s represented by
a Pipeline. The execution of the pipeline consists of sequen-
tially calling each Module’s processing method. In the case of
a processing exception, a rollback method 1s called on each
Module 1n the pipeline. The modules are called 1n reverse
order and exclude the module from which the exception was
thrown.

Reactor Design

In message-based middleware the message callback func-
tion 1s called upon receipt of a message and the logic to
determine what processing steps should be taken 1s deter-
mined by examining the contents of the message. The Reactor
architectural pattern 1s used to organize the logic that deter-
mines what processing pipeline will be executed.

The pattern has two key participants; a Handler and a
Reactor. The Reactor receives asynchronous messages from a
messaging system and reacts to the stimulus by querying a set
of registered Handlers to determine 1f they are eligible to
process the message. The Handler encapsulates the selection
criteria of the message that must be satisfied 1 order to
execute a specified processing pipeline, an optional select of
a synchronous lock based on message field value, and an
exception module that 1s called 1n case of a pipeline exception
alter a pipeline rollback.

Message Processing

When an incoming message 1s recerved, a MessageReactor
examines the message and determines which of the registered
MessageHandlers should process the message. The Message-
Handler 1s defined by several properties, the message selector
(optional), error handler, required incoming message type
(optional), and a processing pipeline.

Normal Flow

The following processing steps occur 1n the message han-
dler for normal processing: 1. Unmarshal the incoming JMS

10

15

20

25

30

35

40

45

50

55

60

65

14

message to a MessageForge/RMsg message object; 2. Com-
pare received RMsg against the handler’s message selector;
3. Compare recetved RMsg class to the one specified by the
handler; 4. Validate recetved incoming RMsg; 5. Execute the
target pipeline. 6. Upon successiul execution send a Server-
Response message indicating to the client.

Error Flow

The following processing steps occur in the message han-
dler for processing abnormal conditions:

1. Incoming JMS message cannot be unmarshaled to an
RMsg. Send a ServerResponse message indicating the error
to the client. Log error message on the server.

2. No matching pipeline. Call the generic error handler to
send a ServerResponse message indicating the error 1s sent to
the client and an error message 1s logged on the server. This
error 1s categorized using the key, NO-MATCHING-SELEC-
TOR-ERROR

3. Validation of RMsg fails, matching pipeline error mod-

ule 1s called setting the PipelineException to the ErrorCode
VALIDATION-ERROR.

4. Handler throws a PipelineException or a DAOException
1s thrown. Call the MessageHandler’s error handler. The
ErrorHandler 1s responsible for notifying the user about the
error that occurred. There will generally be three categories of
error handlers: GenericErrorHandler, <Business
Object>FErrorHandler, and LogmFErrorHandler. The
GenericErrorHandler 1s responsible for sending a ServerRe-
sponse message type. The <BusinessObject>ErrorHandler 1s
used when a request 1s made to update or delete a business
object. It sends a <BusinessObject>Error message type that
extends the ServerResponse message but in addition contains
the latest state of the business object. The LoginErrorHandler
1s responsible for sending a ServerLoginResponse message
type since all login errors are treated equally.

If there 1s an error while executing the error handler, a
ServerResponse message indicating the error 1s sent to the
client and an error log message 1s logged on the server. This
error 1s categorized using the key, ERROR-HANDLER-
NOT-EXECUTED. If the latest state of the BusinessObject
can not be retrieved, typically because there was a database
error that caused the pipeline to stop executing, then the
<BusinessObject>Error will indicate this by setting the
“ContainsNewstate™ field to false.

In the case of not being able to convert to an RMsg (#1 1n
Error Flow), the IMS destination of the client 1s determined
by looking 1n the JMS Properties for the field UserID. The
other property fields, Workilow, Action, and CorrelationlD
are also extracted from the IMS Properties to create the Serv-
erResponse message.

In the case that the JMS destination of the client can not be
determined using the field UserID, the error message 1s sent
on the TOPIC CS.CLIENT.ADMIN. If other required prop-
erty fields, Workflow, Action, and CorrelationlD are not
present, they are set to the special value “UNKNOWN”.

Belore a module 1n the pipeline 1s invoked, the Message-
Handler has already checked that the ncoming RMsg mes-
sage 1s 1) Not Null, 2) Valid, and 3) of the correct class
expected by the module. Therefore, modules can safely
downcast the object returned from the method PipelineDat-
a.getlncomingMessage() removing their need to perform any
error checking, allowing them to concentrate on performing
the “sunny-day” scenario.

Message Distribution

Incoming request messages—1.¢. messages from a client to
an Emissary—are routed to the Emissary that 1s hosting the
client session. Outgoing response messages—I1.€. messages

US 8,027,907 B2

15

from an Emissary to clients—are either directed to a specific
client (point-to-point) or fanned out (publish-subscribe).

FI1G. 9 shows the sequence of messages that are published
during a typical fan out. Client2 901 publishes a request 1n
Step 1. The IMS daemon 902 delivers the request to the
Emissary 903 1n Step 2. The Emissary 903 processes the
request and publishes a fan out response 1n Step 3. The JMS
daemon 902 delivers the response to all subscribers 901, 904,
905 1n Step 4.

In a deployment with multiple JMS daemons, 1t 1s neces-
sary to provide a mechanism for inter-daemon routing of
messages 1n order to provide correct message fan out (pub-
lish-subscribe). Otherwise, messages published on one IMS
daemon will not be delivered to clients connected to other
IMS daemons. One implementation includes having each
Emissary publish messages to all known JMS daemons. In
order to do this, each Emissary would have to connectto every
IMS daemon and publish each message to all IMS daemons.
Alternatively, the built-1n message routing capabilities of the
EMS can be leveraged, which allows routes to be established
between EMS servers. Each route connects two EMS servers
and forwards messages between corresponding destinations
(c.g. destinations of the same type, with the same name) two
servers. Routes can be either 1-hop or multi-hop. Every time
a message 1s forwarded on a route 1ts hop count 1s incre-
mented. As the name 1-hop suggests, messages can get for-
warded at most one hop.

FIG. 10 shows a deployment with three fully connected
EMS servers 1001, 1002, 1003. Each server 1n this deploy-
ment forwards 1ts messages to every other server. A message
published to server A 1001 on the 1-hop route will get for-
warded by server A 1001 to servers B 1002 and C 1003.
However, the message that was routed to servers B 1002 and
C 1003 will not get forwarded any further since the routes are
1-hop.

Messages on multi-hop can get forwarded more than one
hop. This creates the potential for cycles. Consider the
deployment described above with fully interconnected serv-
ers A 1001, B 1002, and C 1003. If the routes between the
servers were multi-hop then a cycle would exist because a
message published could reach a server by more than one
path. For example, a message published to server A 1001 on
the multi-hop route will get forwarded by server A 1001 to
servers B 1002 and C 1003. Servers B 1002 will, 1n turn,
forward the message to C 1003. Thus, C 1003 will receive the
message via two distinct paths.

When a deployment i1s geographically distributed, with
cach geographic location running multiple JMS daemons,
connecting the two locations may be best achieved by setting
up zones. Zones allow complex routing to be developed using
1-hop routes. Basically, when a message crosses zone bound-
aries 1ts hop count 1s reset to zero. FIG. 11 1llustrates a con-
figuration 1 which there are two zones—NY 1101 and TK
1102. In addition, there 1s an overlapping zone—WW 1103.

When a NY:Emissaryl 1104 publishes a message to
NY:JMS:Daemonl 1105, the message travels one hop to
NY:JMS:Daemon2 1106. When the message reaches
NY:IMS:Daemon2 1106, it crosses into zone WW 1103 and
its hop count 1s reset to zero. Since the hop count of the
message 1s zero, NY:JMS:Daemon2 1106 forwards the mes-
sage to TK:IMS:Daemonl 1107 where the message crosses
zone boundaries again and enters zone TK 1102. TK:JMS:
Daemonl 1107 forwards the message to TK:JMS:Daemon2
1108.

Fully Connected Deployments

FIGS. 12-15 illustrate communication failure handling
techniques among interconnected servers of the system. In

5

10

15

20

25

30

35

40

45

50

55

60

65

16

general, routing messages between JMS daemons can be
achieved 1n several ways. Consider FIG. 12 1n which four

servers 1201, 1202, 1203, 1204—w1ithin the same zone—are

connected via m-hop routes. A message published on a server
1s routed to all the other servers. A network failure occurring

between servers B 1302 and C 1303, as shown in FIG. 13,

partitions the deployment into two groups. Routing still
occurs between severs within the groups. For example, a
message published on server A 1301 will reach server B 1302.
However, no routing occurs across groups. For example, mes-
sage published on server A 1301 will not reach server C 1303
or server D 1304.

A way to avoid this type of partitioning 1s to deploy fully
interconnected servers. FIG. 14 shows four servers 1401,
1402,1403,1404 fully connected via 1-hop routes. As before,

a message published on any server 1s routed to all other
servers. Note, m-hop routes cannot be used with this routing
topology because it would create a cycle in the routing graph.
A cycle exists 1f there 1s more than one routing path between
two servers. 11 the routes 1n FIG. 14 were m-hop then redun-
dant paths would exist between server A 1401 and C 1403
(one direct, one through server B 1402, and one through
server D 1404).

A network failure between two servers 1n a fully intercon-
nected deployment does not partition the routing graph. The

impact on routing 1s limited to the two aflected servers. FIG.
15 shows the error scenario. A message published on server A
1501 will reach all other servers 1502, 1503, 1504. A message
published on server B 1502 (or C 1503) will reach all other
servers except server C 1503 (or B 1502, respectively). As a
result, this routing topology is resilient to failures.

As explained above, with a zone (region), a fully-intercon-
nected deployment provides optimal performance and resil-
iency to network failures. Two or more zones can be con-
nected via a single 1-hop route as shown 1n FIGS. 16 A-B. As
shown 1 FIG. 16 A, the fully-interconnected NY 1601 and
TK 1602 zones are connected via a 1-hop route between
Emissary C 1603 (in NY 1601 zone) and Emissary D 1604 (1n
TK 1602 zone). F1G. 16B 1llustrates multiple hop and repli-
cation 1605 among multiple interconnected servers of the
system. Replication 1605 across databases 1606, 1607 of the
zones 1601, 1602 may allow for data to be synchronized
and/or shared across the zones.

Selectors

In addition to the ability to route message traific between
EMS servers, it 1s possible to set up selectors on routes. A
selector allows only a subset of published messages to be
routed. The use of selectors reduces network traffic and
ensures that only relevant messages are forwarded. Selectors
can be pre-configured or mstalled on demand.

System Monitoring

In some 1mplementations, the JAVA Management Exten-
sion (JMX) technology 1s used to monitor and manage the
Emissary. SpringFramework supports exposing a manage-
ment API. Every bean that 1s managed and configured via
SpringkFramework can be automatically exposed as a man-
aged bean.

Heartbeats

Heartbeats are typically used to detect the presence (or
absence) ol client processes. The ability to detect when a
client process 1s no longer active can help 1n session manage-
ment. Heartbeats allow servers to detect abnormal client ter-
mination.

Duplicate Session Detection

Connections to the EMS server have a (optional) ClientID
attribute. Each ClientID 1s guaranteed to be unique within an

US 8,027,907 B2

17

EMS server. An attempt to open a connection with an existing
ClientID throws an exception.
Enterprise Information Tier

The system 1ncludes persistence technology that can work
both 1nside and outside of EJB containers, using JTA (JAVA

Transaction API) transactions 1f inside and JDBC (JAVA
DATABASE CONNECTIVITY) ftransactions 1f outside.
Critical data entities in the system—such as trades and axes—
are persisted 1n a relational database, in which application
objects are mapped to the relational database. The following
design patterns can be used: Domain Model, Identify, Data
Mapper and Optimistic Offline Locking.

Domain Model

The domain model 1s an object model of the domain that
will incorporate both behavior and data. Every business
entity—e.g. TraderAxe, Inquiry, etc.—1s modeled as a busi-
ness object. A business object encapsulates both data and
behavior. The Domain Model facilitates development
because developers will be working with business objects
rather than database artifacts.

Identity

At any given moment 1n time a business object will either
be transient or persistent. A transient business object 1s an
object that has been created 1n memory but has not yet been
persisted. Once a business object 1s persisted, 1ts identity must
be unique within its class hierarchy—mno two persisted busi-
ness objects within a class hierarchy may have the same
identily. Business object identity 1s represented by unique
keys. This unique key 1s automatically generated by the per-
sistent store. In preferred implementations, each persistent
business object has a JAVA long field (Decimal 1n C#) that
will umiquely 1dentity the instance. This field—called ID—is
generated automatically, using the available database capa-
bilities, when the object 1s persisted.

Optimistic Oftline Locking

Business objects are typically shared amongst clients. For
example, two traders could be viewing the same business
object. This sharing of business object 1s not solely for view-
ing purposes. Multiple users could simultaneously modity
the same business object. Such changes are detected by the
system when they occur, and clients whose updates have
failed are notified.

Version

Each persisted business object has a JAVA long field (Deci-
mal 1n C#) associated with 1t. This version 1s used to 1mple-
ment optimistic offline locking. For example, suppose two
clients attempt to simultaneously modily a business object
with the same ID and Version. Only one update succeeds in
the database, and the client that submitted the failed update 1s
notified of the failure.

Data Mapper

At some point 1n their lifecycle, objects from the Domain
Model have to be persisted into a database. The Data Mapper
layer moves data between objects from the Domain Model
and a database while keeping them independent of each other.

In addition to the built-in lifecycle management of cached
objects, the persistence interface allows the system to explic-
itly evict cached objects from memory. This feature 1s 1impor-
tant for situations where the persistent store 1s modified by an
external process. For example, 1 Position business objects are
cached in the Emissary and an end-of-day (HOD) process
modifies Position business objects 1in the database directly,
the cached objects are no longer consistent with the database.
In such scenarios 1t 1s important for the Emissary to be able to
casily evict objects from 1ts cache. In this example, the FOD
process would notify the Emissary that it has updated all
Position objects—in response, the Emissary could simply

10

15

20

25

30

35

40

45

50

55

60

65

18

evict all Position business objects from its cache. Accord-
ingly, the next time a Position 1s requested by the Emissary, a
cache-miss will cause it to be loaded from the database.

Second, when the client sends a request that requires access
to reference data, the client request contain only the 1dentity
of the reference object. Since an object reference simply
translates to a foreign key 1n a relational database, the unique
ID of the reference object 1s sulficient to create the necessary
database mappings correctly.

Entitlements

Entitlements are primarily enforced by the Middle Tier. All
reference data delivered to the client are based on entitle-
ments. In addition, the Middle Tier 1s responsible for check-
ing entitlements for key workilows, and for filtering out sub-
sets of data content based on entitlements. Clients waill
typically have an existing entitlement service. As described
clsewhere 1n this document, integration with external services
1s easily accomplished using the service oriented architecture
of the system.

While clients may require their own entitlement infrastruc-
ture to be leveraged, where this 1s not so, a flexible entitlement
framework 1s provided by the system. This entitlement frame-
work consists of the entitled data types, actions, roles, users,
groups (of users), etc. The framework 1s flexible enough to
accommodate varied client requirements.

Data Driven Entitlements

The system entitlement framework defines a tlexible data
model. This data model allows client specific entitlements to
be implemented by creating appropriate entries 1n the data-
base. Below describes the key abstractions of the flexible data
model provided by an entitlement framework of the system.

Datatype

An entitled data type 1s any business object that can par-
ticipate 1n the enftitlement model. It may be important to
identify business objects for which users will be granted
entitlements. For example, a typical trading system might
entitle users to trading books, accounts (counterparty), sec-
tors, etc.

Attribute

Entitled attributes may be defined for each entitled data
type. Each attribute may have a name, a type, and a list of
permitted values. It might not be necessary to define entitled
attributes for every property of an enfitled data type. For
example, a trading book might contain many properties out of
which only a handful participate in entitlements. Only those
properties that participate 1n the entitlement model have to be
defined. Entitled attributes can be defined as either required or
optional. Required attributes must be provided by the entitled
data type to the entitlement engine at run time.

Action

An entitled action 1s an operation that can be performed on
an entitled data type. For example, a typical trading system
will support entitled (CRUD) actions such as create, read
(view), update and delete.

Iype
The system supports both positive and negative entitle-
ments. A positive entitlement asserts that the entitled attribute
must have (contains) the specified value. In contrast, a nega-
tive asserts that the entitled attribute must not have (contains)
the specified value.

Role

The system entitlement model allows roles to be defined. A
role 1s the most general grouping of enftitlements. For
example, a typical trading system might have roles such as
trader, salesperson, administrator, etc. Each role can be

assigned 1ts own set of entitlements.

US 8,027,907 B2

19

Group

The next level for grouping of entitlements 1s entitled
groups. An entitled group 1s a collection of entitled users. An
entitled group can have a parent entitled group. In addition to
its own set of entitlements, each entitled group inherits 1ts
parent’s entitlements. Finally, roles can be assigned to an
entitled group. As expected, each entitled group will inherit
the entitlements of 1ts role(s).

User

The final level of grouping of entitlements 1s entitled users.
Each entitled user in the system can be granted fine grained
entitlements. Fach entitled user inherits the entitlements
granted to any entitled group of which the user 1s a member.

The subject matter described herein can be implemented 1n
digital electronic circuitry, or 1n computer software, firm-
ware, or hardware, including the structural means disclosed
in this specification and structural equivalents thereof, or 1n
combinations of them. The subject matter described herein
can be implemented as one or more computer program prod-
ucts, 1.e., one or more computer programs tangibly embodied
in a computer-readable medium, e.g., 1n a machine-readable
storage device, for execution by, or to control the operation of,
data processing apparatus, €.g., a programmable processor, a
computer, or multiple computers.

A computer program (also known as a program, software,
soltware application, or code) can be written 1n any form of
programming language, including compiled or interpreted
languages, and 1t can be deployed 1n any form, including as a
stand-alone program or as a module, component, subroutine,
or other umit suitable for use 1n a computing environment. A
computer program does not necessarily correspond to afile. A
program can be stored 1n a portion of a file that holds other
programs or data, 1n a single file dedicated to the program in
question, or in multiple coordinated files (e.g., files that store
one or more modules, sub-programs, or portions of code). A
computer program can be deployed to be executed on one
computer or on multiple computers at one site or distributed
across multiple sites and interconnected by a communication
network.

The processes and logic tlows described 1n this specifica-
tion, including the method steps of the subject matter
described herein, can be performed by one or more program-
mable processors executing one or more computer programs
to perform functions of the subject matter described herein by
operating on mput data and generating output. The processes
and logic flows can also be performed by, and apparatus of the
subject matter described herein can be implemented as, spe-
cial purpose logic circuitry, e.g., an FPGA (field program-
mable gate array) or an ASIC (application-specific integrated
circuit).

Processors suitable for the execution of a computer pro-
gram 1nclude, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read-only memory or a
random access memory or both. The essential elements of a
computer are a processor for executing instructions and one
or more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to receive data from or transier data to, or both, one
or more mass storage devices for storing data, e.g., magnetic,
magneto-optical disks, or optical disks. Media suitable for
embodying computer program instructions and data include

all forms of volatile (e.g., random access memory) or non-
volatile memory, including by way of example semiconduc-
tor memory devices, e.g., EPROM, EEPROM, and flash
memory devices; magnetic disks, e.g., mnternal hard disks or
removable disks; magneto-optical disks; and CD-ROM and

10

15

20

25

30

35

40

45

50

55

60

65

20

DVD-ROM disks. The processor and the memory can be
supplemented by, or incorporated 1n, special purpose logic
circuitry.

To provide for interaction with a user, the subject matter
described herein can be implemented on a computer having a
display device, e.g., a CRT (cathode ray tube) or LCD (liquid
crystal display) monitor, for displaying information to the
user and a keyboard and a pointing device, €.g., a mouse or a
trackball, by which the user can provide mput to the com-
puter. Other kinds of devices can be used to provide for
interaction with a user as well; for example, feedback pro-
vided to the user can be any form of sensory feedback, e.g.,
visual teedback, auditory feedback, or tactile feedback; and
input from the user can be received in any form, including
acoustic, speech, or tactile input.

The subject matter described herein can be implemented 1n
a computing system that includes a back-end component
(e.g., a data server), a middleware component (e.g., an appli-
cation server), or a front-end component (e.g., a client com-
puter having a graphical user interface or a web browser
through which a user can interact with an implementation of
the subject matter described herein), or any combination of
such back-end, middleware, and front-end components. The
components of the system can be interconnected by any form
or medium of digital data communication, €.g., a communi-
cation network. Examples of communication networks
include a local area network (“LAN”) and a wide area net-
work (“WAN™), e.g., the Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other 1n a
logical sense and typically interact through a communication
network. The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client-server relationship to each other.

The subject matter described herein has been described 1n
terms of particular embodiments, but other embodiments can
be implemented and are within the scope of the following s.
For example, operations can differ and still achieve desirable
results. In certain implementations, multitasking and parallel
processing may be preferable. Other embodiments are within
the scope of the following claims.

What 1s claimed:
1. A computer-implemented method comprising;:
recerving data characterizing an indication of consumma-
tion of a trade of a bond from an emissary of a server
application;
determining an interest of a customer to perform a second
trade of a second bond related to the bond and based at
least 1n part on the indication of the consummation and
portiolio positions of the customer;
generating a notification to a client application of a client
tier, wherein the notification 1s indicative of the interest:
receving a request to generate an axe indicating a desire of
the customer to buy or sell the second bond according to
a set of critenia;
recerving data characterizing a request to publish the axe
from the emissary; and
sending data characterizing an axe match, the axe match
representing the intersection of the customer’s axe with
another customer’s holdings or expressed interest.
2. The method of claim 1 further comprising a server caus-
ing the axe to be published.
3. The method of claim 1 further comprising prioritizing,
the axe at a level lower than an order to consummate a trade.
4. The method of claim 1 further comprising receiving,
from another client application data characterizing an inquiry
for a bond matching the criteria and generating the axe match
in response to the mquiry.

US 8,027,907 B2

21

5. A computer program product, tangibly embodied on a
computer-readable medium, the product comprising instruc-
tions to cause a data processing apparatus to perform opera-
tions comprising:

receiving data characterizing an indication of consumma-

tion of a trade of a bond from an emissary of a server
application;
determining an interest of a customer to perform a second
trade of a second bond related to the bond and based at
least in part on the indication of the consummation of the
trade and portiolio positions of the customer;

generating a notification to a client application of a client
tier, wherein the notification 1s indicative of the interest:

receiving a request to generate an axe indicating a desire of
the customer to buy or sell the second bond according to
a set of critenia;

receiving data characterizing a request to publish the axe
from the emissary; and sending data characterizing an
axe match, the axe match representing the intersection of
the customer’s axe with another customer’s holdings or
expressed interest.

6. The product of claim 5, wherein the operations further
comprise a server causing the axe to be published.

7. The product of claim 5, wherein the operations further
comprise prioritizing the axe at a level lower than an order to

consummate a trade.

8. The product of claim 5, wherein the operations further
comprise receving from another client application data char-
acterizing an inquiry for a bond matching the criteria and
generating the match 1n response to the inquiry.

9. The method of claim 2, wherein the axe 1s published as
a tiered offering, wherein the axe varies 1n price based upon

the entity to which the axe 1s published.
10. The method of claim 1, wherein the notification indi-

cates the interest of the customer in performing multiple
trades.

10

15

20

25

30

35

22

11. The method of claim 1, wherein the set of criteria does
not include price.

12. A computer-implemented method comprising:

recerving data indicating a consummation of a trade of a

first bond:
processing the data utilizing a processor, wherein the pro-
cessing 1s with respect to historical data associated with
a customer to 1dentily trading 1deas for the customer,
wherein the historical data comprises positions of the cus-
tomer,
presenting the trading 1deas to a user;
identifying a suggested trading idea selected from the trad-
ing 1deas relevant to the customer, where the step of
identifying 1s the intersection of a set of criteria with
historical data;

generating an axe i response to an indication of a desire of

the customer to buy or sell a second bond according to
the set of criteria; and

performing an axe match between the axe and another

customer’s holdings or expressed interest.

13. The computer-implemented method of claim 12, the
historical data comprising trade history of the customer and
inquiries of the customer.

14. The computer-implemented method of claim 13, the
historical data further comprising market history and market
events.

15. The computer-implemented method of claim 12,
wherein generating the axe includes offering the axe at mul-
tiple prices.

16. The computer-implemented method of claim 12, where
the historical data comprises the data indicating consumma-
tion of the trade of the first bond.

17. The computer-implemented method of claim 12, fur-
ther comprising;:

matching an inquiry expressing an indication of interest to

buy or sell a bond against the axe.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

