US008015561B2
12 United States Patent (10) Patent No.: US 8.015,561 B2
Stanev 45) Date of Patent: *Sep. 6, 2011
(54) SYSTEM AND METHOD FOR MANAGING 0,675,214 B2 1/2004 Stewart et al.
MEMORY OF JAVA SESSION OBJECTS 6,763,440 B1* 7/2004 Traversatetal. 711/159

6,950,822 Bl 9/2005 Idicula et al.

_ 7,013,329 Bl 3/2006 Paul etal
(75) Inventor: Georgi Stanev, Sofia (BG) 7,167,917 B2 1/2007 Creamer et al

(Continued)

(73) Assignee: SAP AG, Walldort (DE)

(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS

patent 1s extended or adjusted under 35 WO WO-0023898 AL 4/2000
U.S.C. 154(b) by 1489 days. (Continued)
TlhlS patent 1S SUbjECt to a terminal dis- OTHER PUBLICATIONS
claimer.
Pasin, Marcia , et al., “High-Available Enterprise JavaBeans Usin
gh Ip 2
(21) Appl. No.: 11/025,316 Group Communication System Support”, pp. 1-6, XP002285985,
2001.
(22) Filed: Dec. 28, 2004 (Continued)
ontinue
(65) Prior Publication Data _ _
Primary Ikxaminer — Emerson C Puente
US 2006/0143609 Al Jun. 29, 2006 Assistant Examiner — Camquy Truong
(51) Int.Cl. (74) Attorney, Agent, or Firm — Schwegman, Lundberg &
GOGF 9/455 (2006.01) Woessner, EA.
GO6IF 15/16 (2006.01) (57) ABRSTRACT
Go6l’ 11/00 (2006.01) | _ | o o
(52) U.S.CL oo 718/1; 709/228; 714/4.11 A}?eﬁhid for managing a session ""lflﬂh ! clientis desc“fbe‘d}llﬂ
(58) Field of Classification Search 718/1; 714/13 Vel the method recetves lrom the client a request lor the

session. The session 1s handled with a first virtual machine.

See application file for complete search history. . . .
PP P = The method places the session state information for the ses-

(56) References Cited s10n 1nto an object located 1n the first virtual machine’s local
memory. The method writes 1nto a shared memory an object
U.S. PATENT DOCUMENTS that contains the session state information. In response to a
5974804 A 12/1993 Jackson et al tailure that renders the first virtual macl}ine unable to handle
5:692: 193 A 11/1997 Jagannathan et al. the session, the method reads the object 1n the shared memory
5,805,790 A 0/1998 Nota et al. from the shared memory and places 1t into a second virtual
5,835,724 A 11/1998 Smith machine’s local memory. Lastly, the method receives from
0,884,516 A 3/1999 Bemnstein et al. the client another request for the session, and handles the
g’gg’igg é 2?3882 g&iﬁﬁtj‘l' another request with the second virtual machine and the ses-
6:502:148 Bl 12/2002 Krum sion state information.
6,523,027 Bl 2/2003 Underwood
6,539,445 Bl 3/2003 Krum 16 Claims, 9 Drawing Sheets
COSI‘{!E};EH&JG
401
ot [40
——

DISPATCHER

: 404
NETWORK
403

VIRTUAL
2
408
LOCAL
MEMORY
409

US 8,015,561 B2

Page 2
U.S. PATENT DOCUMENTS FOREIGN PATENT DOCUMENTS

7,174,363 Bl 2/2007 Goldstein et al. WO WO0O03073204 9/2003

7,177,823 B2 2/2007 Lam et al. WO W02004038586 5/2004

7,185,096 B2 2/2007 Kalyanavarathan et al.

7,197,568 B2 3/2007 Bourne et al. OTHER PUBLICATIONS

7,203,944 Bl1* 4/2007 wvan Rietschote et al. 718/104 | _ _

7.254.634 Bl {/2007 Davis et al. “U.S. Appl. No. 11/025,200, Examiner Interview Summary mailed

7,296,267 B2 11/2007 Cota-Robles et al. Mar. 20, 20097, 3 pgs.

7,302,423 B2 11/2007 De Bellis “U.S. Appl. No. 11/025,200, Non Final Office Action mailed Mar. 24,

7,302,609 B2 11/2007 Matena et al. 20097, 12 pes

7,308,501 B2 12/2007 DeLima et al. . ’ ' o

7.543.051 B2 6/2000 Greifeneder et al. U*S;pAppL No. 11/025,200, Preliminary Amendment filed Mar. 24,
2001/0054004 Al 12/2001 Powers 20057, 4 pgs.
2002/0046304 Al* 4/2002 Fabrietal. 709/331 “U.S. Appl. No. 11/025,200, Response filed Jun. 24, 2009 to Non
2002/0078060 Al 6/2002 Garst et al. Final Office Action mailed Mar. 24, 2009, 14 pgs.
2002/0078192 Al 6/2002 Kopsell et al. “U.S. Appl. No. 11/025,549, Non-Final Office Action mailed Mar.
2002/0116505 Al 8/2002 Higgins et al. 24, 2009”, 13 pags.
2002/0143958 Al 10/2002 Montero et al. o ’ -
5007/0188678 Al 129007 FEdecker ef al 2[562:%}1)[[));50. 11/025,549, Preliminary Amendment filed Mar. 21,
2002/0198923 Al 12/2002 Hayes, Ir. y ’ ‘
2003/0014521 Al 1/2003 FElson et al. US Ap‘pl* NO‘. 11/02?,549, Response ﬁied Jun. 24, 2009 to Non
2003/0014525 Al 1/2003 Del.ima et al. Final Office Action mailed Mar. 24, 2009, 9 pgs. | |
2003/0018707 Al 1/2003 Flocken OSDIR, “RE: Barracude: Reference Objects 1n Session/
2003/0074580 Al 4/2003 Knouse et al. ServletContext”, msg#00056, (Nov. 2002).
2003/0084248 Al 5/2003 Gaither et al. “U.S. Appl. No. 11/025,200, Non-Final Office Action mailed Mar. 3,
2003/0167333 Al 9/2003 Kumar et al. 20107, 11 pgs.
2003/0177382 Al 9/2003 Ofek et al. “U.S. Appl. No. 11/025,200 , Final Office Action mailed Nov. 16,
2003/0212654 A1 11/2003 Harper et al. 20097, 10 Pgs.
2003/0229529 Al 12/2003 Mui et al. “U.S. Appl. No. 11/025,200, Advisory Action mailed Feb. 3, 2010”,
2004/0024971 Al 2/2004 Bogin et al. 3 ps
2004/0049673 Al 3/2004 Song et al. . ' .
2004/01174%6 A | 6/7004 Rourne of al AU.S. Appl..ll\ilol.jlé/%252,§(1)8:9Rlessponse filed Feb. 9, 2010 to Advisory
2004/0153509 A1 8/2004 Alcorn et al. ction matled feb. 5, » 19 PSS |
2004/0181537 Al 0/2004 Chawla et al. “U.S. Appl. No. 11/025,200, Response filed Jan. 12, 2010 to Final
27004/0221261 Al 11/2004 Blevins Office Action mailed Nov. 16, 20097, 5 pgs.
2005/0278278 Al 12/2005 Petev “U.S. Appl. No. 11/025,549, Final Office Action mailed Nov. 4,
2005/0278341 Al 12/2005 Kostadinov et al. 20097, 9 Pgs.
2005/0278346 Al 12/2005 Shang et al. “U.S. Appl. No. 11/025,549, Response filed Jan. 4, 2010 to Final
2005/0283585 Al 12/2005 Sexton et al. Office Action mailed Nov. 4, 20097, 13 pgs.
2006/0036448 Al 2/2006 Haynie et al. “U.S. Appl. No. 11/025,200, Examiner Interview Summary mailed
2006/0047974 Al 3/2006 Alpern et al. Mar. 20, 2009”, 3 pes
2006/0053112 Al 3/2006 Chitkara et al. T AL 3 | - - -
2006/0080002 Al1* 4/2006 Blaho 700/2907 ;(fus)ﬂAfflpgo 11/025,200, Non-Final Office Action mailed Allg. 6,
2006/0130063 Al 6/2006 Kilian et al. ’ ‘
0060143217 A1 69006 Stancev of al “U.S. Appl. No. 11/025,200, Response filed Nov. 1, 2010 to Non
2006/0143608 Al 6/2006 Dostert et al Final Otfice Action mailed Aug.. 0, 2019”, 15 pgs.
2006/0143600 Al 6/2006 Stanev “U.S. Appl. No. 11/025,200, Final Office Action mailed Dec. 16,
2006/0155756 Al 7/2006 Stanev 20107, 11 pgs.
2006/0206856 Al 9/2006 Breeden et al. “U.S. Appl. No. 11/025,200, Pre-Appeal Briet Request filed Mar. 8,
2008/0086564 Al 4/2008 Putman et al. 20117, 5 pgs.
2008/0201417 Al 8/2008 McCain et al. ‘ ‘
2008/0222270 Al 9/2008 Gilbert * cited by examiner

US 8,015,561 B2

Sheet 1 0of 9

Sep. 6, 2011

U.S. Patent

? A
¢oN

{L¥V ¥OIAd)

SIR N™AHONIN Y001 TIZ Z7AHOWIN TWHO"

TIR N INIHOVN TYRLYIA TI? ZaNHOWYN TVALSIA

\Z

IE

H

: xN:.
- E— — - rw._.—
1z it

TOT MIL1SAS DNILRINOD

US 8,015,561 B2

Sheet 2 0of 9

Sep. 6, 2011

U.S. Patent

8t¢

Z'Old

¥eC Ebd CEC o7

Nt e

T2 ZTIANIMOYN WALYIA

TET 4 AUONIN VIO

2T {TINIHIWA TVLLHIA

441

2 WILEAS ONLINGENOD

U.S. Patent Sep. 6, 2011 Sheet 3 of 9 US 8,015,561 B2

COMPUTER
SYSTEM
300

=
®
=
z
=

320
330
FIG. 3
(PRIOR ART)

305

CLIENT

US 8,015,561 B2

Sheet 4 of 9

Sep. 6, 2011

U.S. Patent

607

OO

80¥

INIHOVIA
TVNLYIA

-
- Oy e e

)

AJONIN GIVHS

Hoy
d3HOLVASI

WALSAS
ONUNAWOD

1Op

vy Ol

£op
AMOMLIN

AN

US 8,015,561 B2

Sheet S of 9

Sep. 6, 2011

U.S. Patent

INIHOYW
TVALHIA

™)

AHOWIN QVHS

H3HOLvVdSId

00
NILSAS
ONLLNGWOD

0¥

dv 9Ia

€07
AHOMLSN

U.S. Patent

Sep. 6, 2011 Sheet 6 of 9

RECEIVE REQUEST
FROM CLIENT

CREATE SESSION
OBJECT

COPY OBJECT TO
SHARED MEMORY

RECEIVE 2ND
REQUEST FROM
CLIENT

OBJECT READ FROM
SM AND WRITTEN
TO LOCAL HEAP

CHANGES WRITTEN
10 OBJECT

COPY OBJECT
BACK TO SM

FIG. 5

510

520

530

940

050

260

570

US 8,015,561 B2

US 8,015,561 B2

Sheet 7 0of 9

Sep. 6, 2011

U.S. Patent

609
AJONEIN
VOO

809
INIHOVIA
TVALHIA

-
'lll‘

OO

ASONS N (RAVHS

G09
INIHOVIA
TVILLYEIA

HHOLVASIJ

009
WELSAS
ONUNAJNOD

’

0

9

9 Ol

€09
AHOMLIN

U.S. Patent Sep. 6, 2011 Sheet 8 of 9 US 8,015,561 B2

START

RECEIVE 15T
CLIENT REQUEST

710
720

CREATE SESSION
OBJECT ACTIVE 795
OBJECT
COPY OBJECT 730
TO SM
CREATE SOFT 140
REFERENCE

750

RECEIVE 2ND
CLIENT REQUEST

765

NO YES

ARE THE
OBJECTS THE
SAME?

170

|S THERE
READ OBJECT FROM A SOFTLY REFERENCED WRITE CHANGES
SM BACK TO LOCAL OBJECT IN TO LOCAL OBJECT
MEMORY OCAL MEMORY? |

WRITE CHANGES 785

OBJECT

790

COPY OBJECT
TO SM

CREATE SOFT 795

REFERENCE ' FIG. 7

U.S. Patent Sep. 6, 2011 Sheet 9 of 9 US 8,015,561 B2

COMPUTING —

SYSTEM | 6ROCESSING
CORE MEMORY
(PROCESSOR) 805
806

REMOVABLE

MEDIA
DRIVE

NETWORK
INTERFACE

803

US 8,015,561 B2

1

SYSTEM AND METHOD FOR MANAGING
MEMORY OF JAVA SESSION OBJECTS

BACKGROUND

1. Field of the Invention

This invention relates generally to the field of data process-
ing systems. More particularly, the invention relates to an
improved system and method for managing memory of ses-

s1on objects within Java-based system architecture.
2. Description of the Related Art

In order for a data processing device such as a personal
computer or personal information manager (“PIM”) to dis-
play a particular alphanumeric character or group of charac-
ters, the alphanumeric character(s) must be installed on the
data processing device. For example, 1n order for a data pro-
cessing device to display non-English characters, such as the
“€” character (“¢” with an “accent egu”), a character set,
which includes those characters, must first be installed on the
data processing device.

BACKGROUND

FIG. 1 shows a prior art computing system 100 having N
virtual machines 113, 213, . . . N13. The prior art computing,
system 100 can be viewed as an application server that runs
web applications and/or business logic applications for an
enterprise (e.g., a corporation, partnership or government
agency) to assist the enterprise in performing specific opera-
tions 1n an automated fashion (e.g., automated billing, auto-
mated sales, etc.).

The prior art computing system 100 runs are extensive
amount of concurrent application threads per wvirtual
machine. Specifically, there are X concurrent application
threads (112, through 112 ,,) running on virtual machine 113;
there are Y concurrent application threads (212, through
212) running on virtual machine 213; . . . and, there are Z
concurrent application threads (N12, through N12.) running
on virtual machine N13; where, each of X, Y and 7 are a large
number.

A virtual machine, as 1s well understood 1n the art, 1s an
abstract machine that converts (or “interprets”) abstract code
into code that 1s understandable to a particular type of a
hardware platform. For example, 11 the processing core of
computing system 100 included PowerPC microprocessors,
cach of virtual machines 113, 213 through N13 would respec-
tively convert the abstract code of threads 112, through 112,
212, through 212, and N12, through N12_, 1nto instructions
sequences that a PowerPC microprocessor can execute.

Because virtual machines operate at the instruction level
they tend to have processor-like characteristics, and, there-
fore, can be viewed as having their own associated memory.
The memory used by a functioning virtual machine 1s typi-
cally modeled as being local (or “private”) to the virtual
machine. Hence, FIG. 1 shows local memory 115, 215, N15
allocated for each of virtual machines 113, 213, . . . N13
respectively.

A portion of a virtual machine’s local memory may be
implemented as the virtual machine’s cache. As such, FIG. 1
shows respective regions 116, 216, . . . N16 of each virtual
machine’s local memory space 115, 215, . . . N15 being
allocated as local cache for the corresponding virtual machine
113, 213, . .. N13. A cache 15 a region where frequently used
items are kept in order to enhance operational efficiency.
Traditionally, the access time associated with fetching/writ-
ing an item to/from a cache 1s less than the access time

10

15

20

25

30

35

40

45

50

55

60

65

2

associated with other place(s) where the item can be kept
(such as a disk file or external database (not shown 1n FI1G. 1)).

For example, in an object-oriented environment, an object
that 1s subjected to frequent use by a virtual machine (for
whatever reason) may be stored in the virtual machine’s
cache. The combination of the cache’s low latency and the
frequent use of the particular object by the virtual machine
corresponds to a disproportionate share of the wvirtual
machine’s fetches being that of the lower latency cache;
which, 1 turn, effectively improves the overall productivity
of the virtual machine.

A problem with the prior art implementation of FIG. 1, 1s
that, a virtual machine can be under the load of a large number
of concurrent application threads; and, furthermore, the
“crash” of a virtual machine 1s not an uncommon event. If a
virtual machine crashes, generally, all of the concurrent appli-
cation threads that the virtual machine is actively processing
will crash. Thus, 1f any one of virtual machines 113,213, N13
were to crash, X, Y or Z application threads would crash along
with the crashed virtual machine. With X, Y and Z each being
a large number, a large number of applications would crash as
a result of the virtual machine crash.

Given that the application threads running on an applica-
tion server 100 typically have “mission critical” importance,

the wholesale crash of scores of such threads 1s a significant
problem for the enterprise.

SUMMARY

A method for managing a session with a client 1s described
in which the method recerves from the client a request for the
session. The session 1s handled with a first virtual machine.
The method places the session state information for the ses-
s10n 1to an object located 1n the first virtual machine’s local
memory. The method writes into a shared memory an object
that contains the session state information. In response to a
failure that renders the first virtual machine unable to handle
the session, the method reads the object 1n the shared memory
from the shared memory and places 1t into a second virtual
machine’s local memory. Lastly, the method receives from
the client another request for the session, and handles the
another request with the second virtual machine and the ses-
s1on state mformation.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained from the following detailed description in conjunc-
tion with the following drawings, 1n which:

FIG. 1 illustrates a portion of a prior art computing system.

FIG. 2 illustrates a portion of an improved computing
system.

FIG. 3 illustrates a prior art computing system, which
offers no fail over protection for session objects.

FIG. 4A 1llustrates fail over protection, before a system
crash, through the use of an externally shared memory for
storing session objects during an active client session.

FIG. 4B illustrates fail over protection, after a system
crash, through the use of an externally shared memory for
storing session objects during an active client session.

FIG. 5 1llustrates a flow chart of the processes used for an
externally shared memory for storing session objects during
an active client session.

FIG. 6 1llustrates fail over protection through the use of soft
references and an externally shared memory for storing ses-
s10n objects during an active client session.

US 8,015,561 B2

3

FIG. 7 1llustrates a flow chart of the processes used for soft
referencing and an externally shared memory for storing ses-
s10n objects during an active client session.

FIG. 8 illustrates a block diagram of a computing system
that can execute program code stored by an article of manu-
facture.

DETAILED DESCRIPTION OF PR
EMBODIMENTS

L1
vy

ERRED

FIG. 2 shows a computing system 200 that 1s configured
with less application threads per virtual machine than the
prior art system of FIG. 1. Less application threads per virtual
machine results 1n less application thread crashes per virtual
machine crash; which, 1n turn, should result in the new system
200 of FIG. 2 exhibiting better reliability than the prior art
system 100 of FIG. 1.

According to the depiction of FIG. 2, which 1s an extreme

representation of the improved approach, only one applica-
tion thread exists per virtual machine (specifically, thread 122
1s being executed by virtual machine 123; thread 222 is being
executed by virtual machine 223; . . . and, thread M22 1s being
executed by virtual machine M23). In practice, the computing
system 200 of FIG. 2 may permit a limited number of threads
to be concurrently processed by a single virtual machine
rather than only one.
In order to concurrently execute a comparable number of
application threads as the prior art system 100 of FIG. 1, the
improved system 200 of FIG. 2 mstantiates more virtual
machines than the prior art system 100 of FIG. 1. That 1s,
M>N.

Thus, for example, if the prior art system 100 of FIG. 1 has
10 application threads per virtual machine and 4 wvirtual
machines (e.g., one virtual machine per CPU 1n a computing,
system having four CPUs) for a total of 4x10=40 concur-
rently executed application threads for the system 100 as a
whole, the improved system 200 of FIG. 2 may only permit a
maximum of 5 concurrent application threads per virtual
machine and 6 virtual machines (e.g., 1.5 virtual machines
per CPU 1n a four CPU system) to implement a comparable
number (5x6=30) of concurrently executed threads as the
prior art system 100 in FIG. 1.

Here, the prior art system 100 instantiates one virtual
machine per CPU while the improved system 200 of FIG. 2
can instantiate multiple virtual machines per CPU. For
example, 1 order to achieve 1.5 virtual machines per CPU, a
first CPU will be configured to run a single virtual machine
while a second CPU 1n the same system will be configured to
run a pair of virtual machines. By repeating this pattern for
every pair ol CPUs, such CPU pairs will instantiate 3 virtual
machines per CPU pair (which corresponds to 1.5 virtual
machines per CPU).

Recall from the discussion of FIG. 1 that a virtual machine
can be associated with 1ts own local memory. Because the
improved computing system of FIG. 2 instantiates more vir-
tual machines that the prior art computing system of FIG. 1, 1n
order to conserve memory resources, the virtual machines
123,223, ... M23 of the system 200 of FIG. 2 are configured
with less local memory space 125, 225, .. . M25 than the local
memory 115, 215, . . . N15 of virtual machines 113,213, . ..
N13 of FIG. 1. Moreover, the virtual machines 123, 223, . ..
M23 of the system 200 of FIG. 2 are configured to use a
shared memory 230. Shared memory 230 1s memory space
that contains 1tems 231-238 that can be accessed by more than
one virtual machine (and” typically, any virtual machine con-
figured to execute “like” application threads that 1s coupled to
the shared memory 230).

10

15

20

25

30

35

40

45

50

55

60

65

4

Thus, whereas the prior art computing system 100 of FIG.
1 uses fewer virtual machines with larger local memory
resources containing objects that are “private” to the virtual
machine; the computing system 200 of FIG. 2, by contrast,
uses more virtual machines with less local memory resources.
The less local memory resources allocated per virtual
machine 1s compensated for by allowing each virtual machine
to access additional memory resources. However, owing to
limits 1n the amount of available memory space, this addi-
tional memory space 230 1s made “shareable” amongst the
virtual machines 123, 223, ... M23.

According to an object oriented approach where each of
virtual machines 123, 223, . . . N23 does not have visibility
into the local memories of the other virtual machines, specific
rules are applied that mandate whether or not information 1s
permitted to be stored in shared memory 230. Specifically, to
first order, according to an embodiment, an object residing 1n
shared memory 230 should not contain a reference to an
object located 1n a virtual machine’s local memory because
an object with a reference to an unreachable object 1s gener-
ally deemed “non useable”.

That 1s, 11 an object in shared memory 230 were to have a
reference 1nto the local memory of a particular virtual
machine, the object 1s essentially non useable to all other
virtual machines; and, 1f shared memory 230 were to contain
an object that was useable to only a single virtual machine, the
purpose of the shared memory 230 would essentially be
defeated.

In order to uphold the above rule, and 1n light of the fact that
objects frequently contain references to other objects (e.g., to
clfect a large process by stringing together the processes of
individual objects; and/or, to effect relational data structures),
“shareable closures™ are employed. A “closure” 1s a group of
one or more objects where every reference stemming from an
object 1n the group that references another object does not
reference an object outside the group. That 1s, all the object-
to-object references of the group can be viewed as closing
upon and/or staying within the confines of the group itself.
Note that a single object without any references stemming
from can be viewed as meeting the definition of a closure.

If a closure with a non shareable object were to be stored 1n
shared memory 230, the closure 1tself would not be shareable
with other virtual machines, which, again, defeats the purpose
of the shared memory 230. Thus, 1n an 1implementation, 1n
order to keep only shareable objects in shared memory 230
and to prevent a reference from an object in shared memory
230 to an object 1 a local memory, only “shareable” (or
“shared™) closures are stored in shared memory 230. A
“shared closure” 1s a closure 1n which each of the closure’s
objects are “shareable”.

A shareable object 1s an object that can be used by other
virtual machines that store and retrieve objects from the
shared memory 230. As discussed above, 1n an embodiment,
one aspect of a shareable object 1s that 1t does not possess a
reference to another object that 1s located in a wvirtual
machine’s local memory. Other conditions that an object
must meet in order to be deemed shareable may also be
elfected. For example, according to a particular Java embodi-
ment, a shareable object must also posses the following char-
acteristics: 1) 1t 1s an istance of a class that 1s serializable; 2)
it 1s an 1nstance of a class that does not execute any custom
serializing or deserializing code; 3) 1t 1s an 1nstance of a class
whose base classes are all serializable; 4) it 1s an 1nstance of
a class whose member fields are all serializable; 5) 1t 1s an
instance of a class that does not interfere with proper opera-
tion of a garbage collection algorithm; 6) 1t has no transient
fields; and, 7) 1ts finalize () method 1s not overwritten.

US 8,015,561 B2

S

Exceptions to the above criteria are possible 1 a copy
operation used to copy a closure 1nto shared memory 230 (or

from shared memory 230 1nto a local memory) can be shown
to be semantically equivalent to serialization and deserializa-
tion of the objects in the closure. Examples include instances
of the Java 2 Platform, Standard Edition 1.3 java.lang.String
class and java.util.Hashtable class.

A container 1s used to confine/define the operating envi-
ronment for the application thread(s) that are executed within
the container. In the context of J2EE, containers also provide
a family of services that applications executed within the
container may use (e.g., (e.g., Java Naming and Directory
Intertace (JNDI), Java Database Connectivity (JDBC), Java
Messaging Service (JMS) among others).

Different types of containers may exist. For example, a first
type of container may contain instances of pages and servlets
for executing a web based “presentation” for one or more
applications. A second type of container may contain gran-
ules of functionality (generically referred to as “components™
and, in the context of Java, referred to as “beans”) that refer-
ence one another 1n sequence so that, when executed accord-
ing to the sequence, a more comprehensive overall “business
logic™ application 1s realized (e.g., stringing revenue calcula-
tion, expense calculation and tax calculation components
together to implement a profit calculation application).

FIG. 3 shows that more than one thread can be actively
processed by the virtual machine 323 depicted therein. It
should be understood that, 1n accordance with the discussion
concerning FIG. 2, the number of threads that the virtual
machine 323 can concurrently entertain should be limited
(e.g., to some fixed number) to reduce the exposure to a
virtual machine crash. For example, according to one imple-
mentation, the default number of concurrently executed
threads 1s 5. In a further implementation, the number of con-
currently executed threads 1s a configurable parameter so that,
concetrvably, for example, 1n a first system deployment there
are 10 concurrent threads per virtual machine, 1n a second
system deployment there are 5 concurrent threads per virtual
machine, 1n a third system deployment there 1s 1 concurrent
thread per virtual machine. It 1s expected that a number of
practical system deployments would choose less than 10 con-
current threads per virtual machine.

Examples of the Prior Art’s Handling of Session
Objects

An exemplary model of the prior art’s handling of session
objects are shown 1n FIG. 3. A Computing System 300, com-
prises a Virtual Machine (hereinafter “VM”) 310, and a local
memory 315 where at least one session object 1s kept when
requests are made from client 305. When client 305 commu-
nicates with and makes a first request 320 to VM 310, a
session object 325 1s created and placed in local memory 315.
Object 325 1s activated upon 1ts creation. When client 305
makes a second request 330 to VM 310, the session’s state
information 1s written to object 325. Client 305 may make
additional N requests to VM 310. Each additional request
would alter the client’s state information, which would 1n turn
be written to session object 325.

Session state information contains details of a client’s ses-
sion with an application. In one embodiment, this might
include a client who visits a website. In such an embodiment,
the state information would 1nclude what page(s) the client
has visited or currently visiting, where the client came from
(e.g. the referring website), and what information the client
has accessed. If the website sells goods or service, the state
information might also include the goods and/or services the

10

15

20

25

30

35

40

45

50

55

60

65

6

client has requested to purchase (e.g., a shopping cart), as well
as address and payment information. As additional requests
are made from client 305, the session’s state information 1s
continuously written to session object 325.

An Exemplary System for Memory Management of

Session Objects

FIG. 4 A 1llustrates fail over protection of session objects by
using a shared memory. In computing system 400 two VMs
are present. Each VM also comprises a local memory. In this
example, VM 4035 has a local memory 406. and VM 408 has
a local memory 409. In a typical, a computing system, more
than two VMs per computing system are possible.

As discussed 1n the background section, a Virtual Machine,
also known as an interpreter, 1s a middleware component on a
computing system. The purpose of a VM or interpreter 1s to
allow software applications to be written independent of the
hardware platform they will run on. Before VMs were used,
soltware applications had to be written specifically to run on
a single hardware platform such an Apple Macintosh, IBM
PC, Sun Solaris, or IBM RISC. If an application were written
for an IBM PC, 1ts code 1s not compatible with a Macintosh
platform and vise versa. Virtual Machines remove this limi-
tation by allowing software to be written once, yet be capable
of running on multiple platforms. The VM acts as a translator
by recetving abstract code, as an mnput (e.g., Java bytecode)
and outputting language the specific hardware platiorm can
understand. Hence, the alternate name of “interpreter”.

VM 405 contains a local memory 406 where session
objects are created upon requests made from client 401. VM
408 also contains a local memory 409, which 1s also capable
ol storing session objects from client 401. A local memory
may exist for each VM. In a typical embodiment, a local
memory 1s allotted for a single VM, such that no other VMs
are permitted to utilize the local memory of another VM. A
shared memory 407 exists where session objects from VM
405 and VM 408 may be stored. Shared memory 407 can be
viewed as being “external” to VM 405, VM 408 and any other
VMs, but “internal” to the overall computing system 400. VM
405, VM 408 and any other VMs coupled to system 400 may
be granted access to shared memory 407 1n order to read or
write information to and from 1t.

System 400 1s coupled through a dispatcher 404, to a net-
work 403 that transmits the communication requests from
client 401 toward the appropriate virtual machine(s) that are
to handle client 401°s session(s). Dispatcher 404 1s respon-
sible for routing session requests, from client 401 to one of the
VMs. Dispatcher 404 will query the existing workload of
computing system 400 to determine which VM 1s best
equipped to handle client 401°s session.

In this example, upon creation of client 401°s initial
request, VM 405 1s assigned to handle the session with client
401. A first session object 410 1s created and placed 1 local
memory 406. At this point, object 410 1s a local object and
only exists 1n one location (local memory 406). Object 410
(€.g., as part of the 1n1tial communication 1n an HTTP session
with client 401) 1s 1n an activated state upon its creation. In
one embodiment, object 410 1s automatically deactivated
alter 1ts creation and a copy 411 1s written to shared memory
407, where copy 411 remains in a deactivated state. In this
embodiment, a new session object 1s deactivated and written
to shared memory after the successiul handling of each client
request. This embodiment ensures that session fail over exists
between each request, during the same session, from client
401. In another embodiment, object 410 1s not deactivated
and written to shared memory 407 immediately after the

US 8,015,561 B2

7

successiul handling of each client request. Instead, a prede-
termined period of time 1s set by which object 410 remains in
local memory 406. During this time, 1t 1s possible than mul-
tiple requests from client 401 could be made. Each state
change 1n client 401°s session would be continuously written
to object 410. Once the predetermined time interval expires,
object 410 would then be deactivated and written to shared
memory 407 as copy 411.

If and when client 401 makes additional requests to VM
405, as part of the same session that object 410 was created
tor, copy 411 1s read from shared memory 407 and placed into
local memory 406 as new session object 412. In one embodi-
ment object 412 would be copied to local memory 406 after
cach request from client 401. In such an embodiment, the
currently activated object i local memory 406 1s always
copied to shared memory 407 aiter the receipt of each client
request, aiter the imitial request 1s recerved. Hence, when VM
405 receives each new client request, the current object 1n
shared memory 1s copied to local memory 406. In another
embodiment, as mentioned above, the same object 1 local
memory 406 may be used for two or more consecutive
requests received within a predetermined period of time.
Under such an embodiment, object 411 would not be copied
to local memory 406, based on VM 405 receving a new
request from client 401, unless the predetermined period of
time has expired. Once time has expired, object 410 1s copied
into shared memory 407 as object 411. Upon the next client
request receirved, object 411 would then be copied from
shared memory 407 to local memory 406, as object 412.

Upon its creation and placement 1n local memory 406,
object 412 1s changed from a deactivated to an activated state.
Changes to the session’s state information are stored in new
object 412. Once the changes are written to new object 412, 1t
1s placed 1n the deactivated state and another copy 413 1is
written to shared memory 407. Based on the embodiments
mentioned above, copy 413 could be wrntten to shared
memory 407 after each client request, or only after a prede-
termined time interval expires. Copy 413 also remains in the
deactivated state unless read back to local memory 406 at a
later time (1f client 401 makes further requests).

FIG. 4B illustrates the same system as shown 1n FIG. 4A,
but with a VM crash occurring at VM 405. In this example,
VM 205 has crashed, which 1s represented by a large “X”
placed over VM 405. When such a crash occurs while the
current session with client 401 1s ongoing, Computing Sys-
tem 400 will st1ll be able to handle the session. Here, VM 408
(which may be mstantiated for the purpose of resuming client
401’s session) would be able to retrieve the latest session
object from shared memory 407. In this case, object 413
contains the latest session information. Object 413 1s read
from shared memory 407 and placed into local memory 409
as new session object 414. This process allows client 401°s
current session to continue even though VM 403 1s no longer
available.

The prior art system of FIG. 3 only maintains session
objects within the local memory of each VM. It VM 310 were
to crash, all the existing session objects would be lost since
they were only present in local memory 315, which was
erased due to the crash. However, Computing System 400 (of
FIGS. 4A and 4B) provides fail over protection due to the
presence of shared memory 407. Even though a crash of VM
405 has occurred, the session’s latest object for client 401°s
session exists 1 shared memory 407. Backup VM 408 could
casily retrieve the latest session object from shared memory
407 such that no loss of session data would occur.

FI1G. S1llustrates a tlowchart of the processes by which two
or more VMs would use a shared memory to store and retrieve

5

10

15

20

25

30

35

40

45

50

55

60

65

8

session objects from an individual client session. First, a
client attempts 510 to establish a communication session with
a VM (e.g., by sending an HI'TP request for access to an
application). If there are multiple VMs available, a dispatcher
1s responsible for routing the client request to one of them. A
session object 1s created 520 for this specific client’s session.
The session object 1s activated upon creation and placed 1n
local memory of the VM. The session object 1s deactivated
and a copy 1s written 530 to the shared memory. The copy
placed 1n the shared memory now resides external to the VM
and may be accessed by all VMs connected to the shared
memory.

Then, the client again invokes 540 the session with the VM
(c.g., with another request). Instead of using the session
object that resides locally on the VM, the object placed 1n
shared memory 1s used instead. That 1s, the session object 1s
read from the shared memory and placed 1n local memory
550. The object 15 activated so that the client may use it.
Session activity taken by the client 1s written 560 to the
session object 1n local memory. The session object 1s eventu-
ally deactivated and copied 570 to the externally shared
memory, allowing it to be accessed by any other VM con-
nected to the shared memory.

Recalling the mnitial session object 410, once object 410
was deactivated, it became a “dead session” object since 1t
will no longer be used. A “dead session” 1s the physical
instance of an “active session”, which 1s no longer in the
scope of a clientrequest and cannot be accessed or reached by
the application any longer. In terms of Java, this object 1s
known as anunreachable object. An unreachable object1s one
that can’t be accessed from an application because the object
1s no longer referenced by any other objects. Since a “dead
session” object 1s no longer accessible, it becomes useless to
local memory 406.

Any time an object 1s created, some amount of memory
must be allocated for this object. Until that object 1s removed,
the memory allocated to 1t 1s unavailable. As with all com-
puting systems, the local memory of each VM has a limited
amount of memory available to 1t. As more objects are cre-
ated, less free memory remains available. An unreachable, or
dead object continues to hold the memory allocated upon 1ts
creation, until the object 1s deleted. Typically, Java does not
allow for the manual removal of objects (including session
objects). The standard Java Garbage Collector (hereinafter
“GC”) 1s responsible for removing them in environments that
depend on the GC. The GC will periodically (usually every
tew seconds) delete any objects that are unreachable 1n order
to free up the memory allocated for those objects.

In the present example illustrated by FIG. 4A, object 410
and object 412 become “dead session” objects after they are
deactivated and a copy of them are written to shared memory
407. Depending on the length of client 401°s session, local
memory 406 could end up with many dead session objects
that are eventually deleted in order to free up memory. If there
are numerous clients accessing VM 405, the free memory 1n
local memory 406 can become constrained or run out. There-
fore, unreachable or dead objects should be deleted.

An exemplary system according to another embodiment 1s
illustrated 1 FIG. 6. Like the system of FIG. 4A, FIG. 4A
illustrates fail over protection of session object by using
shared memory. In addition, FIG. 6 uses soft references
between session objects to allow for the possibility of their
reuse. As with the system of FIG. 4A, System 600 contains
two VMs. VM 605 contains a local memory 606 where ses-
s10n objects are created when requests are made from client
601. VM 608 also contains a local memory 609. A shared
memory 607 exists that 1s accessible to both VM 6035 and VM

US 8,015,561 B2

9

608. Shared memory 607 can be viewed as being “external” to
VM 605, VM 608 and any other VMSs, but “internal” to

Computing System 600. VM 605, VM 608 and other VMs
within system 600 may be granted access to shared memory
607 1n order to read or write information to and from it.
System 600 also contains a session manager 625. Session
manager 625 1s responsible for creating soit references (de-
scribed below) to session objects.

System 600 1s coupled through a dispatcher 604, to a net-
work 603 that transmits the communication requests from
client 601 toward the appropriate virtual machine(s) that are
to handle client 601’s session(s). Dispatcher 604 1s respon-
sible for routing session requests, from client 601 to one of the
VMs. Dispatcher 604 will query the existing workload of
Computing System 600 to determine which VM 1s best
equipped to handle client 601°s session.

In this example, upon creation of client 601’°s 1nitial
request, VM 605 1s assigned to handle the session with client
601. A first session object 610 1s created and placed 1n local
memory 606. At this point, object 610 1s a local object and
only exists 1n one location (local memory 606). Object 610
(e.g., as part of the imitial communication 1n an HT'TP session
with client 601) 1s 1n an activated state upon its creation. Next,
object 610 1s deactivated and written to shared memory 607 as
object 611. Object 611 also 1s 1n a deactivated state while
residing in shared memory 607.

After object 611 1s written to shared memory 607 a “soft
reference” 616 1s created from session manager 625 to object
610. In one embodiment, such a reference 1s created by call-
ing Java method java.lang.ref.SoftReference(). Creating a
“soft reference’ to object 610 provides an advantage over the
embodiment 1llustrated in FIG. 4A. In FIG. 4A, once object
410 was deactivated i1t became a “dead session” object and
would be automatically deleted by the GC since 1t was not
referenced by any other objects (e.g., unreachable). In the
present embodiment, creating a “soit reference™ to object 610
allows the object to remain reachable and available until the
physical memory of local memory 606 runs low. Such a softly
referenced object would remain 1n local memory 606 as long,
as there 1s adequate free memory. This 1s due to the nature of
the GC to forego the deletion of such objects until physical
memory runs too low.

The purpose of creating a “soit reference” to object 610
from session manager 625 1s to provide for the possible reuse
of object 610 at a later time. The alternative (as taught in FIG.
4A) 1s to automatically read object 611 from shared memory
607 and write another copy of 1t to local memory 606. How-
ever, this approach mmvolves some overhead 1n the form of
read/write accesses to shared memory 607. In FIG. 6, if and
when client 601 makes additional session requests, VM 605
will attempt to reuse object 610. In one embodiment, VM 605
first looks to local memory 606 to see if object 610 still exists
(e.g., 1t has not been deleted by the GC because of the soft
reference). If object 610 still exists, VM 605 will then verily
its contents. If the contents of object 610 are the same as the
contents of object 611, object 610 may be reused. However, 1t
1s possible that object 611 was altered by another VM, while
residing 1n shared memory 607. Under such circumstances,
object 610 (in local memory) and object 611 (in shared
memory) could have different information. If this was the
case, or 1f the GC deleted object 610, object 610 1s not reus-
able and object 611 would be read from shared memory 607
and a new copy object 612 would be written to local memory
606.

Next, VM 603 writes the changes from the client’s session
state to object 610 or 612 (depending on whether 610 was
reusable or a new object 612 had to be copied from shared

5

10

15

20

25

30

35

40

45

50

55

60

65

10

memory 607). From here, object 610 or 612 1s deactivated and
a copy 613 of object 610 or 612 1s written to shared memory
607. Another “soft reference” 617 1s created from session
manager 623 to object 610 or 612 (depending on which was
used last). This allows for object 610/612 to remain available
for reuse as long as adequate free memory 1s available and the
GC does notremove object 610/612. Hence, it 1s possible that
only a single session object (e.g., object 610) would be
needed 1n local memory 606 for client 601°s entire session.
This can cut down on the resources required for the GC to
delete multiple dead session objects as well as the reduction in
copying multiple session objects from shared memory 607
back to local memory 606.

FIG. 7 illustrates a flowchart of the process by which an
externally shared memory 1s used by two or more VM’s to
store and retrieve session objects from an individual client
session. This process differs from FIG. 5 by creating a ““soft
reference” to all locally created session objects so that their
reuse may be possible. This could reduce the number of read
requests from shared memory since objects 1 local memory
may be reusable.

First, a client attempts 710 to establish a communication
session with a VM (e.g., by sending an HITP request for
access to an application). If there are multiple VMs available,
a dispatcher 1s responsible for routing the client requestto one
of them. A session object 1s created 720 on the chosen VM for
this specific client. The session object 1s activated upon cre-
ation and placed in local memory of the chosen VM. Next, the
objectis deactivated 725. Deactivation allows for the objectto
be placed 1n a senalizable state, permitting it to be copied to
another location. Next, a copy of the session object 1s written
730 to shared memory. A “soft reference” 1s created 740 from
the session manager to the session object i local memory.
With the object 1in local memory being softly referenced, the
GC will only remove this object i physical memory 1s low. As
long as local memory 1s suificient, this object will remain
through the client’s session.

Then, the client again invokes 750 the session with the VM.
The VM first looks 1 local memory to see if the softly
referenced session object still exists 760 (e.g. the object was
not deleted by the GC.) If there 1s a softly referenced session
object 1n local memory that 1s usable, the VM verifies the
contents of the object 1n local memory to the object 1n shared
memory. If their contents are the same 765, the VM can reuse
the object from local memory, aiter reactivating it. Changes to
the client’s session state are written 770 back to the object.
The session object 1s deactivated 787 and written back 790 to
shared memory. Lastly, a “soft reference’ 1s created 793 from
the session manager to the session object 1n local memory.

I1 there 1s no soitly referenced object in local memory, or 1t
there 1s but 1t contains different contents than the object in
shared memory, the VM reads the object 780 1n shared
memory back to local memory. The VM then reactivates the
object and writes the changes 785 from the client session’s
state to the session object 1n local memory. Next, the session
object 1s deactivated 787 and copied back 790 to shared
memory. Lastly, a “soft reference” 1s created 7935 from the
session manager to the session object 1n local memory. Pro-
cedures 750 to 795 would continuously occur each time
another client revives the session (e.g., with another request).

The server may be Java 2 Enterprise Edition (“J2EE”)
server nodes, which support Enterprise Java Bean (“EJB”)
components and EJB containers (at the business layer) and
Servlets and Java Server Pages (“JSP”) (at the presentation
layer). Of course, other embodiments may be implemented 1n
the context of various different software platforms including,
by way of example, Microsoft .NET, Windows/NT, Microsoit

US 8,015,561 B2

11

Transaction Server (MTS), the Advanced Business Applica-
tion Programming (“ABAP”) platforms developed by SAP
AG and comparable platforms.

Processes taught by the discussion above may be per-
formed with program code such as machine-executable
instructions, which cause a machine (such as a “virtual
machine”, a general-purpose processor disposed on a semi-
conductor chip or special-purpose processor disposed on a
semiconductor chip) to perform certain functions. Alterna-
tively, these functions may be performed by specific hardware
components that contain hardwired logic for performing the
functions, or by any combination of programmed computer
components and custom hardware components.

An article of manufacture may be used to store program
code. An article of manufacture that stores program code may
be embodied as, but 1s not limited to, one or more memories
(e.g., one or more flash memories, random access memories
(static, dynamic or other)), optical disks, CD-ROMs, DVD
ROMs, EPROMs, EEPROMsSs, magnetic or optical cards or
other type of machine-readable media suitable for storing
clectronic 1nstructions. Program code may also be down-
loaded from a remote computer (e.g., a server) to a requesting
computer (e.g., a client) by way of data signals embodied 1n a
propagation medium (e.g., via a communication link (e.g., a
network connection)).

FIG. 8 1llustrates a block diagram of a computing system
800 that can execute program code stored by an article of
manufacture. It 1s important to recognize that the computing
system block diagram of FIG. 8 1s just one of various com-
puting system architectures. The applicable article of manu-
facture may include one or more fixed components (such as a
hard disk drive 802 or memory 805) and/or various movable
components such as a CD ROM 803, a compact disc, a mag-
netic tape, etc. In order to execute the program code, typically
instructions of the program code are loaded into the Random
Access Memory (RAM) 805; and, the processing core 806
then executes the instructions. The processing core may
include one or more processors and a memory controller
function. A virtual machine or “interpreter” (e.g., a Java Vir-
tual Machine) may run on top of the processing core (archi-
tecturally speaking) in order to convert abstract code (e.g.,
Java bytecode) into instructions that are understandable to the
specific processor(s) of the processing core 806.

It 1s believed that processes taught by the discussion above
can be practiced within various soitware environments such
as, for example, object-oriented and non-object-oriented pro-
gramming environments, Java based environments (such as a
Java 2 Enterprise Edition (J2EE) environment or environ-
ments defined by other releases of the Java standard), or other
environments (e.g., a .NET environment, a Windows/NT
environment each provided by Microsoft Corporation).

In the foregoing specification, the mvention has been
described with reference to specific exemplary embodiments
thereof. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader spirit and scope of the invention as set forth
in the appended claims. The specification and drawings are,
accordingly, to be regarded in an illustrative rather than a
restrictive sense.

What 1s claimed 1s:

1. A method for managing a session with a client, compris-
ng:

receiving from said client a request, said request being part

of said session, said session handled with a first virtual
machine;

placing session state mnformation for said session into an

object located in local memory of said first virtual

10

15

20

25

30

35

40

45

50

55

60

65

12

machine, said session state information including a
change of a state of said session after a successiul han-
dling of said request by said first virtual machine and
betfore a successtul handling of an additional request by
said first virtual machine said additional request being
part of said session;

writing mto a shared memory said object, said shared

memory shared by said first virtual machine and a sec-
ond virtual machine, said writing being performed dur-
ing said session after said successiul handling of said
request by said first virtual machine and before said
successiul handling of said additional request by said
first virtual machine;

creating a reference from said object in said shared

memory to said object 1n said local memory of said first
virtual machine;

in response to a failure that renders said first virtual

machine unable to handle said session, reading said
object from said shared memory and placing said object
into a local memory of said second virtual machine;
recerving from said client said additional request; and
handling said additional request with said second virtual
machine based on said object.

2. The method of claim 1 wherein said first and second
virtual machines are both Java virtual machines.

3. The method of claim 2 wherein said first virtual machine
interprets code for a first Java container and said second
virtual machine interprets code for a second Java container.

4. The method of claim 1 wherein said method further
comprises placing said object 1n said local memory of said
first virtual machine into a deactivated state before said writ-
ng.

5. The method of claim 4 wherein said method further
comprises deleting said object 1n said local memory of said
first virtual machine while 1t 1s 1n said deactivated state.

6. The method of claim 1 wherein at least one of said first
virtual machine and said second virtual machine 1s running on
a computing system having more virtual machines than pro-
CEeSSOrs.

7. The method of claim 1, wherein said object 1s a member
of a shared closure.

8. An article of manufacture including program code
which, when executed by a machine, causes the machine to
perform a method, the method comprising;:

recerving from a client a request, said request being part of

a session, said session handled with a first virtual
machine;

placing session state information for said session into an

object located in local memory of said first virtual
machine, said session state information including a
change of a state of said session after a successtul han-
dling of said request by said first virtual machine and
betore a successiul handling of an additional request by
said first virtual machine, said additional request being,
part of said session;

writing nto a shared memory said object, said shared

memory shared by said first virtual machine and a sec-
ond virtual machine, said writing being performed dur-
ing said session after said successiul handling of said
request by said first virtual machine and before said
successiul handling of said additional request by said
first virtual machine;

in response to a failure that renders said first virtual

machine unable to handle said session, reading said

object from said shared memory and placing said object

into local memory of said second virtual machine;
recerving from said client said additional request; and

US 8,015,561 B2

13

handling said additional request with said second virtual

machine based on said object.

9. The article of manufacture of claim 8 wherein said first
and second virtual machines are both Java virtual machines.

10. The article of manufacture of claim 9 wherein said first
virtual machine interprets code for a first Java container and
said second virtual machine interprets code for a second Java
container.

11. The article of manufacture of claim 8 wherein said
method further comprises placing said object 1n said local
memory of said first virtual machine into a deactivated state
betfore said writing.

12. The article of manufacture of claim 11 wherein said
method further comprises deleting said object 1n said local
memory of said first virtual machine while it 1s 1n said deac-
tivated state.

13. A method for managing a session with a client, com-
prising:

receiving from said client a request, said request being part

of said session, said session handled with a first virtual
machine;

placing session state mnformation for said session into an

object located in local memory of said first virtual
machine, said session state information including a
change of a state of said session after a successtul han-
dling of said request by said first virtual machine and
betore a successiul handling of an additional request by
said first virtual machine, said additional request being
part of said session;

writing into a shared memory said object, said shared

memory shared by said first virtual machine and a sec-
ond virtual machine, said writing being performed dur-
ing said session after said successiul handling of said
request by said first virtual machine and before said
successiul handling of said additional request by said
first virtual machine;

creating a relference from said object in said shared

memory to said object in said local memory of said first
virtual machine;

in response to a failure that renders said first virtual

machine unable to handle said session, reading said
object from said shared memory and placing said object
into a local memory of said second virtual machine; and

5

10

15

20

25

30

35

40

14

recerving from said client said additional request with said

second virtual machine based on said object;

handling said additional request with said second virtual

machine based on said object.

14. The method of claim 13 wherein said first and second
virtual machines are both Java virtual machines.

15. An article of manufacture including program code
which, when executed by a machine, causes the machine to
perform a method, the method comprising:

receving from a client a first request, said request being

part of said a session, said session handled with a first
virtual machine;

placing session state information for said session into an

object located 1n local memory of said virtual machine,
said session state information including a change of a
state of said session after a successiul handling of said
request by said first virtual machine and before a suc-
cessiul handling of an additional request by said first
virtual machine, said additional request being part of
saild session;

writing mto a shared memory said object, said shared

memory shared by said first virtual machine and a sec-
ond virtual machine, said writing being performed dur-
ing said session after said successiul handling of said
request by said first virtual machine and before said
successiul handling of said additional request by said
first virtual machine;

creating a reference from said object in said shared

memory to said object 1n said local memory of said first
virtual machine;

in response to a failure that renders said first virtual

machine unable to handle said session, reading said
object from said shared memory and placing it into a
local memory of said second virtual machine;
recerving from said client said additional request; and
handling said additional request with said second virtual
machine based on said object.

16. The article of manufacture of claim 15 wherein said
first and second virtual machines are both Java virtual
machines.

	Front Page
	Drawings
	Specification
	Claims

