United States Patent

US008005792B2

(12) (10) Patent No.: US 8.005,792 B2
Green et al. 45) Date of Patent: Aug. 23, 2011
(54) SYSTEM AND METHOD FOR MANAGING 6,226,788 B1* 5/2001 Schoening et al. 717/107
VERSIONS OF METADATA 6,289,358 B1* 9/2001 Mattisetal. 707/203
6,366,917 B1* 4/2002 St. John Herbert, III 707/100
_ 6,502,108 B1* 12/2002 Dayetal. 707/203
(75) Inventors: Russell John Green, San Carlos, CA 6.564.263 B1* 5/2003 Bergmanetal. 709/231
(US); Subhransu Basu, Fremont, CA 6,584,476 B1* 6/2003 Chatterjecetal. 707/203
(US); Shrikanth Shankar, Mountain 6,718,436 B2 4/2004 Kim et al.
View, CA (US); Kumar Rajamani 6,839,724 B2* 1/2005 Manchanda etal. 707/203
’ ’ . " 6,915,313 B2* 7/2005 Ya0 ..oocooioorirvrrirerinrann. 707/203
Santa Clara, CA (US); Ho Chak Hung, 7,028,057 B1* 4/2006 Vasudevan etal. 707/203
Redwood City, CA (US); Jaebock Lee, 7,092,972 B2* 82006 Kashyap ... 707/203
Sunnyvale, CA (US) 7,130,957 B2* 10/2006 RAO ..oocoovoovverveiirrinrinnnnn 711/3
7,174,372 B1* 2/2007 Sarkarcoooooeonnnin 709/223
(73) Assignee: Oracle International Corporation, 2003%200639;;83 22: jggg; IEIODg et al. pr gggggg
1 arang etal.
Redwood Shores, CA (US) 2003/0110175 AL* 6/2003 Y20 ..o 707/100
_ _ _ _ _ 2003/0120868 Al* 6/2003 R tal. ...l 711/133
(*) Notice: Subject to any disclaimer, the term of this _ RN
patent 1s extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 307 days.
OTHER PUBLICATIONS
(21) Appl. No.: 11/129,717
Office Action Dated Nov. 24, 2008 for U.S. Appl. No. 11/129,617.
22) Filed: May 13, 2005 ,
(22) File Y (Continued)
(65) Prior Publication Data
US 2006/0004836 Al Jan. 5, 2006 Primary Examiner — Pierre M Vital
o Assistant Examiner — Christopher P Noifal
Related U.5. Application Data (74) Attorney, Agent, or Firm — Vista IP Law Group, LLP
(60) Provisional application No. 60/571,361, filed on May
14, 2004, provisional application No. 60/571,362,
filed on May 14, 2004. (57) ABSTRACT
(51) Int. Cl. Versioned metadata allows multiple versions of metadata for
GO6F 7/00 (2006.01) a given object to exist concurrently on a system thereby
(52) UuS.Cle oo, 707/638 supporting the parallel execution of operations which would
(58) Field of Classification Search 707/1,2, otherwise be mutually exclusive. Metadata updates are per-
707/4, 9, 100, 102, 200, 201, 203: 709/200, mitted while other objects maintain access to another version
700/213 of the metadata through a versionming inirastructure. The ver-
See application file for complete search history. sioning infrastructure allows the creation of new versions of
metadata, maintains obsolete versions 1n the system as long as
(56) References Cited they are being used by any object, and deletes the obsolete

U.S. PATENT DOCUMENTS

5,325,523 A * 6/1994 Beglinetal. 707/200
6,112,024 A * 82000 Almondetal. 717/122

RECEIVE

1052 RED
i FOR A
RESOURLE

104

IS REG TO
CREATE
NEYY
VERSICN?

SEARCH FOR
MOST RECENT 10

VERSION //

VERSION
CBSCLETE

112

versions once they are no longer 1n use.

27 Claims, 5 Drawing Sheets
100
e
/ 106 108
OBSOLETE CFIE.{I'E NEW
CURKRENT EXECUTION
EXECUTICGH REPRESEMTATION

REFRESENTATION VERSION
VERSION

. =

114

/

CREATE AND LINK TO NEW
EXECUTION REFRESENTATION

?

LINK TO CURREMT
EXECUTICN
REPRESENTATION VERSION

= ¢

™ VER3ION

US 8,005,792 B2
Page 2

2003/0195866
2003/0212717
2004/0107183
2004/0210582
2004/0210607
2005/0125461
2005/0149583
2006/0020620
2006/0190500
2006/0253497
2006/0259518
2007/0050366

U.S. PATENT DOCUMENTS

Al™* 10/2003 Longetal.cee 707/1
Al* 11/2003 Kashvapcccccooeeenl, 707/203
Al* 6/2004 Manganoeeeeeeenn, 707/2
Al* 10/2004 Chatterjeeetal. 707/9
Al* 10/2004 Manchanda et al. 707/203
Al* 6/2005 Filzcoooooiiiiiiinl, 707/203
Al* 7/2005 Baskaranetal. 707/203
Al* 1/2006 Iyeretal. 707/102
Al* 8/2006 Raoetal 707/203
Al* 11/2006 Abalietal. 707/200
Al* 11/2006 Lometetal. 707/201
Al* 3/2007 Bugiretal. 707/9

2007/0050382 Al* 3/2007 Bugiretal. 707/100

2007/0162486 Al* 7/2007 Brueggemann etal. 707/102

2007/0297458 Al* 12/2007 Narayananetal. 370/503

2008/0005184 Al* 1/2008 Myllylaetal. 707/200
OTHER PUBLICATIONS

Office Action Dated Jun. 18, 2008 for U.S. Appl. No. 11/129,617.

Non Final Of

11/129,617.

ice Action Dated May 27, 2009 for U.S. Appl. No.

Notice of Allowance Dated Nov. 9, 2009 for U.S. Appl. No.

11/129,617.

* cited by examiner

U.S. Patent Aug. 23, 2011 Sheet 1 of 5 US 8,005,792 B2
100
RECEIVE | /
102 REQ
SN FOR A
RESOURCE 106 108
OBSOLETE CREATE NEW
04 CURRENT EXECUTION
EXECUTION REPRESENTATION
ISREQT REPRESENTATION VERSION
CREgTEO YES VERSION I
|
NEW vVersion

VERSION?

(A+1)

SEARCH FOR
MOST RECENT
VERSION

110

(

Version A

112

VERSION

OBSOLETE
?

YES

NO

LINK TO CURRENT

EXECUTION
REPRESENTATION VERSION

Vesn |

116

Fig. 1

114

CREATE AND LINK TO NEW

EXECUTION REPRESENTATION
VERSION

Version (A+1)

U.S. Patent Aug. 23, 2011 Sheet 2 of 5 US 8,005,792 B2

FREEABLE 202
DEPENDENT
200

\ 204

1S
N
LAST °

DEPENDENT

OBJECT ?
RESUME
OTHER
YES ACTIVITY | 214
206

NO

212
208
NO
1S MARK “CAN
OBSOLETE BE FREED”
?
YES

FREE
210 META
DATA

Fig. 2

US 8,005,792 B2

Sheet 3 of 5

Aug. 23,2011

U.S. Patent

4

A%}

£}

- O T o ey 2 e -
Ay e EE s iy

¢ "ol

ore
Eqadn

142>
A%

144>

gLe

olLe

43>

2

9ct

A4S

14012

0}

US 8,005,792 B2

Sheet 4 of S

Aug. 23, 2011

U.S. Patent

p S

<

2] €3

asus18yay Asuspuadag e

g9of aJnNjon.}S Aduspuada G

aouasey Aouspuadag B(QW

POy ainjonis Aouapuadaq po

ainjonas Asuapuadaq 9
aimonus Asuapuadaqg ¢D

¢}

L

aoualajay Aouspusdag QI

vy @injonng Aduspuadaq GO

aouatsjey Aouspuadag QN

PP 21nonas Aduspuadaqg #0

]

20y oouallsjoy Aduspusdag edin

ainanng Asuspuadag o
ainonng Asuaspuadaq vo

7¥b oolUala}9y Aduspuadad .EaiN

aauasagey Aduspuadag eqQIN

gty 2InjonJiS Aduspuadaq £D

aouasajey Aduspuadeq QN

__

g5 SINIONIG AOUSPUAEQ 20

9IuU8I8j9y Aouspuadag eI

-

.
FCy oInjon)s ASuspuadsg qan

—

aimonig Aouspuasdsq £9
anonig Aouapuadaq gD

ainjonng Aouspuadad qQQIA

2P 2@oUualajoy AdUuspuasGa(] EQIN

I

aoualajay Aduspuadaq .eQn

|
v BINPNIS ouspuadsg v

ainpns Asuspuadaq v

ZZP oouaiasjey Aouapuadad .ediN

aoualsjay Aouapuadag egin

gLy aInpning Aduapuaded £

aoualajey Aouapuedaq eQy
gLy <4nions Aduapusdaq ¢d

aoualsjay Auapuadag eqQil

b

v 1 ¥ 9INjoniS Aduspuade aan

aImnong Acuspuadag £9
e1mons Aouapuadaq 29

asnjns Asuspuadag ggnl

ZLp 20uaiajey Aouspuadag eqdiN <o¥ aoUal9}ay Aduspuadeg eQW

0}

souaisjey Aouspuadag eV | W

i N
807 °.npPnas Asuspuadad €9
a8v
aousi3jay Asuapuadaq egW
90Y 2.NMoni)S Asuspuadad ¢o CoPy
aoualajay Aouapuadaqg egin
C ,. 14%1 4

yop 2.monns Aduspuadad agln

anpns Asuapuadag €9
anpnig Asuapuadag zo
ainpnie Asuapuadaq gl

£8p
cp
27

U.S. Patent Aug. 23, 2011 Sheet 5 of 5 US 8,005,792 B2

Fig. 5
1400
Storage
_ ROM Device
Display 1409 ' 1410
1411 i i
Bus 1406
Inpu_t Data Processor(s) Communications
Device Interface 1407 Interface
1412 1433 - 1414
1415
Communications
Link

1431

US 8,005,792 B2

1

SYSTEM AND METHOD FOR MANAGING
VERSIONS OF METADATA

CROSS-REFERENCED AND RELAT
APPLICATIONS

T
.

This application claims the benefit of U.S. Provisional
Application Ser. No. 60/571,361 filed on May 14, 2004. This
application 1s related to co-pending U.S. Application Ser. No.

11/129,617 filed on May 13, 2005 entitled “System {for
Allowing Object Metadata to be Shared Between Cursors for
Concurrent Read Write Access,” which claims the benefit of
U.S. Provisional Application Ser. No. 60/571,362 filed on
May 14, 2004. These applications are hereby incorporated by
reference 1n their entireties as if fully set forth herein.

BACKGROUND AND SUMMARY

This mvention related to computer systems, more particu-
larly to managing versions of metadata.

Versioned metadata allows for multiple versions of meta-
data for a given object to exist concurrently on a system. This
1s required to support the parallel execution of operations
which would otherwise be mutually exclusive. For, example,
a system cache can serve as a global repository of cached
metadata for objects such as tables and indexes. When a
request 1s received to access a resource, the database system
converts the request through compilation 1into a program unit,
or cursor. When a program unit accesses an object, a lock can
be placed on the metadata for that object. This lock prevents
any changes to the metadata so that the program unit can
execute the desired operation without mid-execution changes
from other program units that may cause the program unit to
tail or may invalidate the result. This means that long running
program units may lock the metadata for a long period of
time, potentially blocking object changes that cause metadata
updates even if those updates were known to have no affect on
the executing program unit. This inherently limits scalability
and performance as all activity on an object must be com-
pleted before that object, and consequently, before 1ts meta-
data, can be modified. A solution 1s required which will allow
programming units to execute while concurrently allowing
object updates.

One embodiment of managing versions ol metadata
includes linking a dependent object for a resource to the most
recent metadata version of the resource, maintaining any
metadata version while 1n use, and deleting any metadata
version when no longer 1n use.

In one system embodiment, the versioning infrastructure
includes a search and create process, an aging-out process,
and a dependency mechanism. In another embodiment the
dependency mechanism 1s not included. The search and cre-
ate process manages new and obsolete versions of metadata.
The aging-out process maintains the obsolete metadata ver-
sions 1n the system while needed. The dependency mecha-
nism allows a client or another object to declare interest 1n, or
dependency on, a metadata object. In another embodiment, a
viewing process allows the viewing of any and/or all active
versions of a metadata. Further details are described below in
the detailed description, drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s a representation of the search and create process.
FIG. 2 1s a representation of the aging-out process.
FI1G. 3 1s a representation of versioned metadata over time.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 1s a representation of the dependency mechanism
over time.

FIG. 5 1s a representation of a system in which managing
transient versions of metadata takes place.

DETAILED DESCRIPTION OF INVENTION

A system, method, and computer program have been cre-
ated which allow for the creation and management of ver-
sioned metadata. In the following description, for the pur-
poses ol explanation, one or more embodiments having
specific combinations of elements are set forth 1n order to
provide a thorough understanding of the solution. It will be
apparent, however, to one skilled 1n the art that the embodi-
ments may be practiced without these specific combination of
clements.

Versioned metadata allows an the creation of a new version
of metadata as needed for execution of an intended operation
that would otherwise be prohibited. For example, a client can
1ssue a write request to modily an object. However, if the
object 1s 1n use the metadata would be locked, preventing
object edits. By allowing the creation of an additional version
of that object’s metadata, the write request can execute. In
other words, by using versioned metadata clients are permat-
ted to modily an object even 11 that object 1s 1n use by another
client. Program units using the metadata of a modified object
can maintain access to the previous version of metadata.

One embodiment of managing versions ol metadata
includes linking a dependent object to the most recent meta-
data version of the resource, maintaining the metadata ver-
sion while 1n use, and deleting the metadata version when no
longer 1n use.

In one system embodiment, the versioning infrastructure
includes a search and create process, an aging-out process,
and a dependency mechanism. In another embodiment the
dependency mechanism 1s not included. The search and cre-
ate process manages new and obsolete versions of metadata.
The aging-out process maintains the obsolete metadata ver-
sions 1n the system while needed. The dependency mecha-
nism allows a client or another object to declare interest in, or
dependency on, a metadata object. In another embodiment, a
viewing process allows the viewing of any and/or all active
versions of a metadata.

When an operation 1s requested for an object, the metadata
for the object 1s accessed. The search and create process
details how the appropriate metadata version 1s accessed.
FIG. 1 depicts a representation of the search and create pro-
cess 100 according to one embodiment. For the purpose of
this example, assume that two types of requests may be 1ssued
to access the metadata. A first type of request 1s to create a new
version of the metadata (e.g., a write or update operation
request). A second type of request will not create a new
version of the metadata but uses the current version (e.g., a
read operation request). The request may 1dentily a resource,
or object, of the system to be operated upon. A request to
access a resource occurs at process action (102). It 1s deter-
mined at process action (104) 11 the request 1s a request for a
new version of the metadata, 1.e., a write request. If the
request 1s for a new version, the current version of the meta-
data 1s marked obsolete (106), and a new version of metadata
1s created (108). If 1t 1s determined at (104) that the request 1s
not a request for a new version of the metadata, 1.e., a read
request, then a search (110) 1s conducted for the most recent
version ol the metadata. It 1s determined at process action
(112) 11 the retrieved metadata version has been marked obso-
lete. If 1t 1s determined at process action (112) that the
retrieved metadata version has been marked obsolete, then a

US 8,005,792 B2

3

new version of metadata 1s created and the request 1s linked to
the new version at process action (114). It 1t 1s determined at
(112) that the retrieved metadata version has not been marked
obsolete, then 1t can be assumed that the most recent version
of the metadata has been found, and the process links the
request (116) to the current metadata version.

For example, suppose a request to create a new partition in
a table was 1ssued. Process action (104) determines that the
request 1s a request for a new version of metadata. The exist-
ing version of the table metadata 1s marked as obsolete (106)
and the new version of the table metadata based on the modi-
fied table 1s created (108).

In another example, suppose a client request to select data
in a table 1s 1ssued. Process action (104) determines that the
request 1s not a request for a new version of metadata. Process
action (110) searches for and locates the most recent version
ol the table metadata. If the metadata version found is not
obsolete (112), then 1t 1s returned to the client.

In another scenario, the metadata version returned in pro-
cess action (110) 1s obsolete. This situation might occur if a
previous operation to create a new version had failed, but the
operation to obsolete the old previous version has already
been performed. Consequently, a new metadata version was
never created but the previous version was already marked
obsolete. In this case, process action (114) would then create
a new metadata version and return it to the client.

Using the search and create process 200, a system can have
multiple concurrent versions of metadata. FIG. 3 1s a repre-
sentation of concurrent versions ol metadata over time
according to some embodiments. For purposes of this
example, the metadata 1s represented by rectangular struc-
tures labeled MDx, where “x” represent the object that the
metadata describes, such as metadata MDa at t0 302, MDb at
t0 304, and metadata MDa' at t1 322. Each metadata structure
has a “0” or *“1” 1n an 1nset rectangle 1n the lower lett corner.
The 1nset rectangle represents the current version tlag. A “1”
in the current version flag indicates the metadata has not been
marked obsolete, 1.e., 1s current. A 0’ 1n the current version
flag indicates that the metadata has been marked obsolete.
The structures connected to metadata MDa by double arrow
lines represent objects, linked to the metadata. In this
example, another metadata 1s linked to metadata MDa, as are
two cursors, the ovals C2 306 and C3 308. Although cursors
C2 and C3 are shown as ovals and metadata are shown as
rectangles, cursors are an example of metadata and may be
shown by the same type of drawing element. Cursors having
dashed lines indicate the cursor has completed its operation
and has become freeable. Cursors removed from the drawing
over time 1ndicate the cursor 1s freed. Cursors added to the
drawing over time indicate a new client request was 1ssued
and the resulting cursor was linked to the metadata. Metadata
shown with dashed lined indicates the metadata has become
freeable. Metadata removed from the drawing over time 1ndi-
cates the metadata was no longer needed and has been freed.

In some embodiments, linked objects are tracked using a
dependency mechanism. FIG. 4 1s a representation of an
embodiment of the dependency mechanism of versioned
metadata over time. The dependency mechanism provides
data storage devices containing information regarding the
relationship between parent objects and child objects. The
dependency mechanism storage devices are represented by
rectangular structures containing data fields. Each parent
object stores dependency information 1n a Dependency Ret-
erence and each child object stores dependency information
in a Dependency Structure. For example, each parent Depen-
dency Reference contains a pointer to the Dependency Struc-
ture of each child (e.g., cursor or metadata) with which it 1s

10

15

20

25

30

35

40

45

50

55

60

65

4

linked. Each child Dependency Structure contains a pointer to
the Dependency Retference with which 1t 1s linked. An object
can be both a parent and a child and can therefore have both
a Dependency Relference and a Dependency Structure. This
will become more clear as the figures are explained further.

FIG. 3 and FIG. 4 will be discussed 1n the following para-

graphs 1n relation to the creation and linking process shown 1n
FIG. 1.

At time t0, three clients have requested access to object “a”.
For each request the search and create process 100 performs
the following: searches 1n process action (110) and finds
metadata version MDa 302, determines that metadata MDa

302 is not obsolete 1n process action (112) but is the current
most recent metadata version indicated by the “1” 1n the

current version tlag 310, and links the object to the metadata

in process action (116). Metadata MDb 304, and cursors C2
306, and C3 308 are shown linked to the current version of

MDa inthe representation of an embodiment shown in FIG. 3.

At this point there are three child objects MDb 304, C2 306,

and C3 308 acting upon object “a”, and accessing metadata
MDa 302. The three objects will have access to metadata
MDa until they complete their operation. If another read
request comes 1n at this time, 1ts object would also be linked
to metadata MDa 302 as a result of the search and create
process 100.

In another embodiment, MDb 304 and cursor C2 306 are
currently accessing object MDa 302 when another read
request to access object “a” such as cursor C3 308 1s recerved.
Since 1t 1s aread request and does not modity the metadata, C3
308 would share the current version of Mda. In this 1instance,
cursor C3 308 has not yet accessed object “a” but 1s in a queue
waiting to obtain access as indicated by the dashed link 390 to
MDa 302. In other words, cursor C3 has declared interest 1in
metadata MDa using the dependency mechanism but 1s wait-
ing to obtain an active link and begin executing. In yet another
embodiment, nested linking 1s permitted. For example, MDb
304, C2 306, and C3 308 may have another object linked to
them.

Also at time t0, the Dependency Reference for parent MDa
402 contains pointers 481, 482, and 483 to each of the child
dependency structures: MDb Dependency Structure 404, C2
Dependency Structure 406, and the C3 Dependency Structure
408, respectively. Each of MDb Dependency Structure 404,
C2 Dependency Structure 406, and C3 Dependency Structure
408 contain a pointer, 484, 485, and 486 respectively, to the
MDa Dependency Reference 402 for parent object metadata
MDa.

At time t1, all three objects MDb 314, C2 316, and C3 318
remain linked to MDa 312. The MDa Reference at t1 412 and
chuld Dependency Structures 414, 416, and 418 remain
unchanged. However, a client requested for a new version of
metadata such as C4 324, was received in process action
(104), 1.¢., a request to modily object “a”. As a result, meta-
data version MDa at time t1 312 1s marked obsolete in process
action (106) and a new metadata version MDa' 322 1s created
in process action (108). Current version flag 320 contains a
“0” showing that metadata version MDa 312 1s obsolete and
1s no longer the current most recent metadata version. Meta-
data version MDa' 322 1s shown at time t1 1n FIG. 3 witha *“1”
in the current version flag 326, indicating that metadata MDa'
322 1s not obsolete but 1s the current most recent metadata
version. Since metadata MDa' 1s the most recent not obsolete
metadata, cursor C4 324 1s linked to metadata MDa' 322.
Along with a new metadata and cursor, also created are new
parent object MDa' Dependency Retference 422 containing
the pointer to the child C4 Dependency Structure 424, and

US 8,005,792 B2

S

child C4 Dependency Structure 424 containing the pointer to
the parent MDa' Dependency Reference 422.

At this point there 1s a current metadata version MDa' 322,
and an obsolete metadata version MDa 312. Objects MDb
314, C2 314 and C3 318 will maintain access to the obsolete
metadata 312 until each 1s finished executing, or no longer
needs to access the metadata. Cursor C4 324 will maintain
access to the current metadata version 322 until C4 1s finished
executing. No new client requests will obtain access to the
obsolete metadata 312. All client requests will be linked to
metadata MDa'322 by the search and create process 100
(unless another request for a new metadata version 1s
received). Multiple versions of metadata can be created 1n this
environment, and each one would be maintained while
needed.

At time t2, objects MDb 334, C2 336 and C3 338 arc
finished executing. They are unlocked, and no longer need
access to MDa 332, although they still maintain a dependency
on 1t. When an object having no dependents 1s no longer 1n
use, 1t 1s marked freeable. As such, each object linked to MDa
1s marked freeable as 1llustrated in FIG. 3 by the dashed lines
of the child objects MDb 334, C2 336, and C3 338. Since
Objects MDb, C2 and C3 still depend on metadata MDa 332,
they are described as freeable dependents and are subject to
the aging-out process, process 200 shown 1n FIG. 2. Process
200 1s described later. In addition, no new cursors are linked
to version MDa 332 because MDa 1s not the current metadata
version and it 1s marked obsolete.

FIG. 3 at time t2 also depicts that a client requested a
resource 1n search and create process 100 that 1s not a request
for a new version (104). The resulting child, cursor C5 346 1s
linked to metadata version MDa' 342 1n process action (116)
because MDa' 342 1s the most recent metadata version (110)
that 1s not obsolete (112). Metadata version MDa' 342 shows
cursor C4 344 remains linked and new cursor C5 346 1is
linked. As such, parent Mda' Dependency Reference att2 442
contains pointers for the child cursor C4 Dependency Struc-
ture 444, and the new child cursor C5 Dependency Structure
446. Each of cursor C4 Dependency Structure 444 and cursor
CS Dependency Structure 446 contain a pointer for the parent
object, MDa' Dependency Reference 442,

At this point metadata Mda' 342, 1s the most recent meta-
data version, 1s not obsolete, and has two active dependents,
C4 344 and C35 346. Metadata Mda 332 1s obsolete and has no
active dependents. There are three frecable dependents, MDb
334, C2 336, and C3 338 which will be handled by the
aging-out process described further below.

At time t3, version MDa' 362 1s shown as the current
metadata version with cursor C5 364 linked. The child C5
Dependency Structure 466 contains the pointer for the parent
MDa' Dependency Reference 462. And the parent MDa'
Dependency Reference 462 contains the pointer for the child
C3 Dependency Structure 466. Cursor C4 364 1s no longer
executing and 1s marked freeable, shown by dashed lines 1n
FIG. 3. FIG. 4 also shows the pomter to MDa' Dependency
Reference in the C4 Dependency Structure 464 and the
pointer to the C4 Dependency Structure 1n the MDa' Depen-
dency Reference 462. C4 364 and metadata MDa 352 have
been marked freecable as indicated by the dashed structures.
Children MDb, C2, and C3 have been freed via the aging-out
process 200 as indicated by the removal of them from the
drawing. As such, the MDb, C2, and C3 memory can be
reallocated as needed.

As mentioned previously, dependency structures are used
to track the relationship between parent and child objects. A
Dependency Reference 1s used by the parent to track each
chuld object. A child Dependency Structure 1s used by each

10

15

20

25

30

35

40

45

50

55

60

65

6

chuld to track each parent. The pointers 1n the dependency
structures indicate mterest or dependency. Each version of the
metadata remains 1n the system while any client 1s interested
in 1t or dependent on 1t. FIG. 2 depicts the aging-out process
200 that 1s triggered upon a dependent becoming freeable. For
example, aging-out process 200 would be triggered in time 2
when objects MDb, C2, and C3 become freeable dependents,
and 1n time t3 when cursor C4 becomes a freeable dependent.

At time 12, objects MDb, C2 and C3 become Ifreecable
dependents. In this example, assume they become freeable
dependents in written order. The first one to become a freeable
dependent, MDb, will trigger the metadata aging-out process
200 at process action (202). The process determines 1f the
freeable dependent was the last dependent of the metadata
version in process action (204). Since there are three objects
with a dependency on MDa, the first two times through pro-
cess 200, process action (204) determines that objects MDb
and C2 are not the last dependents and the system will resume
other activities (214). When cursor C3, the third and final
dependent, 1s marked freeable and goes though the metadata
aging-out process 200, process action (204) determines that 1t
1s the last dependent. Process action (206) determines if the
metadata 1s locked by any other object. If the metadata 1s
locked, the system will resume other processing activities
(214). In this example the metadata 1s not locked by another
object, and so the process continues. Process action (208)
determines 11 the metadata 1s obsolete. I 1t 1s not obsolete the
metadata 1s marked “can be freed” 1n process action (212).
Another object could request a resource and still be linked to
a metadata that 1s marked *“‘can be freed” because it 1s still the
most recent metadata version that has not been marked obso-
lete. In this instance, metadata MDa 1s obsolete, and 1s freed
in process action (210). Methods for handling freed metadata
resources are performed by the resource allocation subsystem
and are known to those of ordinary skill in the art.

In another embodiment, a viewing mechanism provides a
client a way to view of all metadata versions obsolete or not.
System Architecture Overview

The execution of the sequences of 1nstructions required to
practice the mvention may be performed 1n some embodi-
ments by a computer system 1400 as shown i FIG. 5. In an
embodiment, execution of the sequences of instructions
required to practice the invention 1s performed by a single
computer system 1400. According to other embodiments, two
or more computer systems 1400 coupled by a communication
link 1415 may perform the sequence of instructions 1n coor-
dination with one another. In order to avoid needlessly
obscuring the explanation, a description of only one computer
system 1400 will be presented below; however, 1t should be
understood that any number of computer systems 1400 may
be employed.

A computer system 1400 according to an embodiment will
now be described with reference to FIG. 5, which 1s a block
diagram of the functional components of a computer system
1400. As used herein, the term computer system 1400 1s
broadly used to describe any computing device that can store
and independently run one or more programs.

Each computer system 1400 may include a communication
interface 1414 coupled to the bus 1406. The communication
interface 1414 provides two-way communication between
computer systems 1400. The communication interface 1414
ol a respective computer system 1400 transmits and receives
clectrical, electromagnetic or optical signals, that include
data streams representing various types of signal information,
¢.g., mstructions, messages and data. A commumnication link
1415 links one computer system 1400 with another computer
system 1400. For example, the communication link 14135 may

US 8,005,792 B2

7

be the internet in which case the communication interface
1414 may be a telephone line, a cable or a wireless modem, or
the communication link 1415 may be a LAN, 1n which case
the communication interface 1414 may be a LAN card, or the
communication link 1415 may be a PSTN, in which case the
communication interface 1414 may be an integrated services
digital network (ISDN) card or a modem.

A computer system 1400 may transmit and receive mes-
sages, data, and instructions, including program, 1.e., appli-
cation, code, through 1ts respective communication link 1413
and communication interface 1414. Received program code
may be executed by the respective processor(s) 1407 as 1t 1s
received, and/or stored in the storage device 1410, or other
assoclated non-volatile media, for later execution.

In an embodiment, the computer system 1400 operates in
conjunction with a data storage system 1431, e.g., a data
storage system 1431 that contains a database 1432 that 1s
readily accessible by the computer system 1400. The com-
puter system 1400 communicates with the data storage sys-
tem 1431 through a data interface 1433. A data interface
1433, which is coupled to the bus 1406, transmaits and recerves
clectrical, electromagnetic or optical signals, that include
data streams representing various types of signal information,
e.g., mstructions, messages and data. In embodiments of the
invention, the functions of the data interface 1433 may be
performed by the communication interface 1414.

Computer system 1400 includes a bus 1406 or other com-
munication mechanism for communicating instructions,
messages and data, collectively, information, and one or more
processors 1407 coupled with the bus 1406 for processing
information. Computer system 1400 also includes a main
memory 1408, such as a random access memory (RAM) or
other dynamic storage device, coupled to the bus 1406 for
storing dynamic data and instructions to be executed by the
processor(s) 1407. The main memory 1408 also may be used
for storing temporary data, 1.e., variables, or other intermedi-
ate information during execution of instructions by the pro-
cessor(s) 1407.

The computer system 1400 may further include aread only
memory (ROM) 1409 or other static storage device coupled to
the bus 1406 for storing static data and instructions for the
processor(s) 1407. A storage device 1410, such as a magnetic
disk or optical disk, may also be provided and coupled to the
bus 1406 for storing data and instructions for the processor(s)
1407.

A computer system 1400 may be coupled via the bus 1406
to a display device 1411, such as, but not limited to, a cathode
ray tube (CRT), for displaying information to a user. An input
device 1412, e.g., alphanumeric and other keys, 1s coupled to
the bus 1406 for communicating information and command
selections to the processor(s) 1407.

According to one embodiment of the mvention, an 1ndi-
vidual computer system 1400 performs specific operations by
their respective processor(s) 1407 executing one or more
sequences of one or more 1nstructions contained 1n the main
memory 1408. Such instructions may be read into the main
memory 1408 from another computer-usable medium, such
as the ROM 1409 or the storage device 1410. Execution of the
sequences of instructions contained in the main memory 1408
causes the processor(s) 1407 to perform the processes
described herein. In alternative embodiments, hard-wired cir-
cuitry may be used in place of or in combination with sofit-
ware mstructions to implement the invention. Thus, embodi-
ments ol the mmvention are not limited to any specific
combination of hardware circuitry and/or software.

The term “computer-usable medium,” as used herein,
refers to any medium that provides information or 1s usable by

10

15

20

25

30

35

40

45

50

55

60

65

8

the processor(s) 1407. Such a medium may take many forms,
including, but not limited to, non-volatile, volatile and trans-
mission media. Non-volatile media, 1.e., media that can retain
information 1n the absence of power, includes the ROM 1409,
CD ROM, magnetic tape, and magnetic discs. Volatile media,
1.e., media that can not retain information in the absence of
power, imncludes the main memory 1408. Transmission media
includes coaxial cables, copper wire and fiber optics, includ-
ing the wires that comprise the bus 1406. Transmission media
can also take the form of carrier waves; 1.¢., electromagnetic
waves that can be modulated, as 1n frequency, amplitude or
phase, to transmit mformation signals. Additionally, trans-
mission media can take the form of acoustic or light waves,
such as those generated during radio wave and infrared data
communications.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention. For example, the
reader 1s to understand that the specific ordering and combi-
nation of process actions shown 1n the process flow diagrams
described herein 1s merely illustrative, and the invention can
be performed using different or additional process actions, or
a different combination or ordering of process actions. The
specification and drawings are, accordingly, to be regarded 1n
an 1llustrative rather than restrictive sense.

We claim:

1. A computer implemented method for managing versions
of metadata on a system, the method comprising:

recerving a first set of one or more first requests to operate

on an object, wherein a first metadata version 1s associ-
ated with the object;
tulfilling the first set of one or more first requests by per-
forming one or more first database operations associated
with the one or more first requests against the object;

while the first metadata version associated with the object
1s being maintained for the one or more first requests,
receiving a second set of one or more second requests to
operate on the object, wherein a second metadata ver-
s1on 1s associated with the object,
wherein the first metadata version 1s obsolete and the sec-
ond metadata version 1s not obsolete, the first metadata
version and second metadata version concurrently exist
for the object on the system so that the one or more {irst
requests finish the one or more first database operations
using the first metadata version while the one or more
second requests uses the second metadata version;

tulfilling the second set of one or more second requests by
performing one or more second database operations
associated with the one or more second requests against
the object;

maintaining, by using a processor, the first metadata ver-

s1on and the second metadata version with a dependency
reference to track dependent objects accessing the first
metadata version, wherein the act of maintaining com-
prises: marking a state of the first metadata version to
indicate a lack of the dependent objects;

deleting the first metadata version associated with the

object if the state of the first metadata version 1s marked
so that the first metadata version no longer needs to be
maintained for the first set of one or more first requests to
perform the one or more first database operations asso-
ciated with the one or more {first requests; and

storing the second metadata version 1n a volatile or non-

volatile computer usable medium or displaying the sec-
ond metadata version on a display device.

US 8,005,792 B2

9

2. The computer implemented method of claim 1, further
comprising: linking a dependent object to the second meta-
data version comprises:

determining that at least one of the one or more second

requests 1s a write request;

modilying a persistent metadata version based at least 1n

part upon the write request; and

creating a new metadata version based at least 1n part upon

the modified persistent metadata.

3. The computer implemented method of claim 1, further
comprising: linking a dependent object to the second meta-
data version comprises:

determining that at least one of the one or more second

requests 1s a read request;

locating the second metadata version for the resource; and

determining that the second metadata version for the
resource 1s not obsolete.
4. The computer implemented method of claim 1, further
comprising:
linking a dependent object to the second metadata version
COmprises:
determining that at least one of the one or more second
requests 1s a read request; and
creating the second metadata version.
5. The computer implemented method of claim 1, further
comprising:
allocating memory consumed by the second metadata ver-
S101;
determining that the second metadata version 1s not obso-
lete; and
continuing to use previously allocated memory consumed
by the second metadata version.
6. The computer implemented method of claim 1, further
comprising;
allocating memory consumed by the second metadata ver-
S101;
determining that the first metadata version has no linked
dependent objects;
determining that the first metadata version 1s obsolete; and
releasing previously allocated memory consumed by the
first metadata version.
7. The computer implemented method of claim 6, further
comprising:
marking a state of the first metadata version to indicate a
lack of linked dependent objects.
8. A system for managing versions of metadata, compris-
ng:
a processor configured for:
receiving a first set ol one or more {irst requests to operate
on an object, wherein a first metadata version 1s associ-
ated with the object;
tulfilling the first set of one or more {irst requests by per-
forming one or more first database operations associated
with the one or more first requests against the object;
while the first metadata version associated with the object
1s being maintained for the one or more first requests,
receiving a second set of one or more second requests to
operate on the object, wherein a second metadata ver-
s10n 1s associated with the object,
wherein the first metadata version 1s obsolete and the sec-
ond metadata version 1s not obsolete, the first metadata
version and second metadata version concurrently exist
for the object on the system so that the one or more first
requests finish the one or more first database operations
using the first metadata version while the one or more
second requests uses the second metadata version;

10

15

20

25

30

35

40

45

50

55

60

65

10

tulfilling the second set of one or more second requests by
performing one or more second database operations
associated with the one or more second requests against
the object;

maintaining, by using a processor, the first metadata ver-
ston and the second metadata version with a dependency
reference to track dependent objects accessing the first
metadata version, wherein the act of maintaining com-
prises: marking a state of the first metadata version to
indicate a lack of the dependent objects;

deleting the first metadata version associated with the
object 11 the state of the first metadata version 1s marked
so that the first metadata version no longer needs to be
maintained for the first set of one or more first requests to
perform the one or more first database operations asso-
ciated with the one or more first requests; and

a volatile or non-volatile computer usable medium for stor-
ing the second metadata version or a display device for

displaying the second metadata version.

9. The system of claim 8, wherein the processor 1s further
coniigured for:

determining that at least one of the one or more second

requests 1s a write request;

moditying a persistent metadata version based at least 1n

part upon the write request; and

creating a new metadata version based at least 1n part upon

the modified persistent metadata.

10. The system of claim 8, wherein the processor 1s further
coniigured for:

determining that at least one of the one or more second

requests 1s a read request;

locating the second metadata version for the resource; and

determining that the second metadata version for the

resource 1s not obsolete.

11. The system of claim 8, wherein the processor 1s further
coniigured for:

determining that at least one of the one or more second

requests for the resource 1s a read request; and

creating the second metadata version.

12. The system of claim 8, wherein maintaining further
COmMprises:

allocating memory consumed by the second metadata ver-

s10N;

determining that the second metadata version 1s not obso-

lete; and

continuing to use previously allocated memory consumed

by the second metadata version.

13. The system of claim 8, wherein the processor 1s further
coniigured for:

allocating memory consumed by the second metadata ver-

s10N;

determining that the first metadata version has no linked

dependent objects;

determiming that the first metadata version 1s obsolete; and

releasing previously allocated memory consumed by the

first metadata version.

14. The system of claim 13, wherein the processor 1s fur-
ther configured for:

marking a state of the first metadata version to indicate a

lack of the linked dependent objects.

15. A computer program product embodied on volatile or
non- volatile computer usable medium, the computer usable
medium having stored thereon a sequence of instructions
which, when executed by a processor, causes the processor to
execute a method for managing versions of metadata on a
system, the method comprising:

US 8,005,792 B2

11

receiving a first set of one or more first requests to operate
on an object, wherein a first metadata version 1s associ-
ated with the object;

fulfilling the first set of one or more first requests by per-
forming one or more first database operations associated
with the one or more first requests against the object;

while the first metadata version associated with the object
1s being maintained for the one or more first requests,
receiving a second set of one or more second requests to
operate on the object, wherein a second metadata ver-
s1on 1s associated with the object,

wherein the first metadata version 1s obsolete and the sec-
ond metadata version 1s not obsolete, the first metadata
version and second metadata version concurrently exist
for the object on the system so that the one or more first
requests finish the one or more first database operations
using the first metadata version while the one or more
second requests uses the second metadata version;

fulfilling the second set of one or more second requests by
performing one or more second database operations
associated with the one or more second requests against
the object;

maintaiming, by using a processor, the first metadata ver-
s1on and the second metadata version with a dependency
reference to track dependent objects accessing the first
metadata version, wherein the act of maintaining coms-
prises: marking a state of the first metadata version to
indicate a lack of the dependent objects;

deleting the first metadata version associated with the
object 11 the state of the first metadata version 1s marked
so that the first metadata version no longer needs to be
maintained for the first set of one or more {irst requests to
perform the one or more first database operations asso-
ciated with the one or more first requests; and

storing the second metadata version or displaying the sec-
ond metadata version on a display device.

16. The computer program product of claim 15, further

comprising;

linking a dependent object to the second metadata version
COMPrises:

determining that at least one of the second one or more
requests 1s a write request;

modilying a persistent metadata version based at least 1n
part upon the write request; and

creating a new metadata version based at least 1n part upon
the modified persistent metadata.

17. The computer program product of claim 15, further

comprising;

linking a dependent object to the second metadata version
COmprises:

determining that at least one of the second one or more
requests 1s a read request;

locating the second metadata version for the resource; and

determining that the second metadata version for the
resource 1s not obsolete.
18. The computer program product of claim 13, further
comprising:
linking a dependent object to the second metadata version
Comprises:
determining that at least one of the second one or more
requests 1s a read request; and
creating the second metadata version.
19. The computer program product of claim 15, further
comprising;
allocating memory consumed by the second metadata ver-
S101;

5

10

15

20

25

30

35

40

45

50

55

60

65

12

determiming that the second metadata version 1s not obso-

lete; and

continuing to use previously allocated memory consumed

by the second metadata version.

20. The computer program product of claim 15, turther
comprising;

allocating memory consumed by the second metadata ver-

s101;

determining that the first metadata version has no linked

dependent objects;

determining that the first metadata version 1s obsolete; and

releasing previously allocated memory consumed by the

first metadata version.

21. The computer program product of claim 20, the method
further comprising:

marking a state of the first metadata version to indicate a

lack of linked dependent objects.

22. A system for managing obsolete versions ol metadata
comprising:

storage for storing metadata versions of an object, the

storage 1s associated with a search and create process to
locate and create the metadata versions for the object;
and
a processor for executing an aging-out process to maintain
or release obsolete versions of metadata using a depen-
dency reference to track dependent objects accessing the
metadata versions, the aging-out process comprises:

determining if one of the metadata versions of the object
has any dependent objects that are 1n use by marking a
state of the one of the metadata versions to indicate a
lack of the dependent objects; and

deleting the one of the metadata versions of the objectifthe

dependent objects are no longer 1n use after completing
a request to perform one or more database operations
corresponding to the dependent object.

23. The system of claim 22, further comprising a viewing,
module to view any active metadata versions.

24. A computer program product embodied on volatile or
non- volatile computer usable medium, the computer usable
medium having stored thereon a sequence of instructions
which, when executed by a processor, causes the processor to
execute a method for managing obsolete versions of metadata
on a system, the method comprising;

searching and creating to locate and create metadata ver-

stons for an object;
aging-out obsolete versions of metadata using a depen-
dency reference to track dependent objects accessing the
metadata versions, the act of aging-out comprises:

determining if one of the metadata versions of the object
has any dependent objects that are 1n use by marking a
state of the one of the metadata versions to indicate a
lack of the dependent objects; and

deleting the one of the metadata versions of the objectifthe

dependent objects are no longer 1n use after completing,
a request to perform one or more database operations
corresponding to the dependent object; and

storing the metadata versions or displaying the metadata

versions on a display device.

235. The computer program product of claim 24, the method
turther comprising:

viewing any active metadata versions.

26. A computer implemented method for managing obso-
lete versions of metadata on a system comprising:

searching and creating to locate and create metadata ver-

stons for an object;

US 8,005,792 B2

13 14
aging-out obsolete versions ol metadata with a dependency a request to perform one or more database operations
reference to track dependent objects accessing the meta- corresponding to the dependent object; and
data versions, the act of aging-out comprises: storing the metadata versions 1n a volatile or non-volatile
determining 11 one of the metadata versions of the object computer usab}e med1u11:1 or displaying the metadata
has any dependent objects that are in use by marking a . VEISIOns Of d dls.play device. .
state of the one of the metadata versions to indicate a 27. The computer implemented method of claim 26, fur-

ther comprising:

lack of the dependent objects; and T , _
viewing any active metadata versions.

deleting the one of the metadata versions of the object if the
dependent objects are no longer 1n use after completing * %k ok k

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

APPLICATION NO. : 11/129717
DATED : August 23, 2011
INVENTOR(S) : Russell John Green et al.

It is certified that error appears In the above-identified patent and that said Letiers Patent is hereby corrected as shown below:

On the Title Page

Under Inventors: after Jacbock Lee’s residence:
Delete “Sunnyvale, CA” and nsert -- Foster City, CA --, therefor.

Under Related U.S. Application Data:

Delete “Provisional” and 1nsert -- Co-pending utility --, therefor.
Delete “60/571,361” and msert -- 11/129.617 --, theretor.

Delete “May 14, 2004 and 1nsert -- May 13, 20035, also claims the benefit of --, therefor.

In the Specification

Under Cross-Referenced Related Applications: in Column 1, Lines 7-8 (approximately):
Delete “““This application claims the benefit of U.S. Provisional Application Ser. No. 60/571,361 filed
on May 14, 2004 .”, theretor.

In Column 2, Line 17:
Delete “an the” and 1nsert -- the --, therefor.

In the Claims

In Column 10, Line 63, 1n Claim 135:
Delete “non- volatile” and 1nsert -- non-volatile --, therefor.

In Column 12, Line 41, 1n Claim 24:
Delete “non- volatile” and 1nsert -- non-volatile --, therefor.

Signed and Sealed this
T'wenty-fifth Day of September, 2018

Andreil Iancu
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

