12 United States Patent

US008001526B2

(10) Patent No.: US 8.001.526 B2

Morgan 45) Date of Patent: Aug. 16, 2011
(54) HIERARCHICAL PROPERTY STORAGE 6,725,421 Bl 4/2004 Boucheretal. 715/205
6,732,090 B2 5/2004 Shanahanetal. 707/3
_ 6,772,170 B2 8/2004 Pennocketal. 707/102
(75) Inventor: Ashley L. Morgan, Santa Clara, CA 6,778,079 B2 82004 Grefenstette etal. 707/3
(US) 6,820,075 B2 11/2004 Shanahanetal. 707/3
6,986,123 B2* 1/2006 Finocchioc.......... 717/116
(73) Assignee: Microsoft Corporation, Redmond, WA 7,055,132 B2* 5/20060 Bogdanetal. 717/116
(US) 7,412,658 B2* 8/2008 Gilboaoooeiiini 715/762
7,499,055 B2 3/2009 Kaoetal 707/202
: : : . . 7,707,550 B2* 4/2010 Resnicketal. 717/121
(s) Notice: Sllb‘]eCJ[' {0 daIly dlsclalmer,; the term of this 7,721,205 B2 5/2010 Me;lgj;n :t ;ll “““““““““ 715/273
patent 1s extended or adjusted under 35 7,757,212 B2* 7/2010 Wagner etal. 717/120
U.S.C. 154(b) by 1621 days. 7,783,971 B2 8/2010 Villaronetal. 715/248
2003/0078913 Al 4/2003 McGreevycoooveviiiiinnnnnn, 707/3
: 2003/0078935 Al 4/2003 Zibmnetal. 707/101
(21) Appl. No.: 11/228,617 2004/0002991 Al* 1/2004 Bogdan etal. 707/102
: 2004/0003138 Al* 1/2004 Finocchioooocoven, 709/328
(22) Filed: Sep. 15, 2005 2004/0189667 Al* 9/2004 Bedaetal. 345/619
(65) Prior Publication Data (Continued)
US 2007/0061343 Al Mar. 15, 2007 OTHER PUBLICATIONS
(51) Int.Cl “Modular typechecking for hierarchically extensible datatypes and
nt. 81 functions”, Millstein et al., Oct. 2002, pp. 110-122, <http://delivery.
GO6t 9/44 (2006.01) acm.org/10.1145/590000/581489/p110-millstein.pdf>.*
GO6F 3/00 (2006.01)
(52) US.CL ... 717/120;717/105; 717/116; 717/163; Primary Examiner — Thuy Dao
7177166 7157700, 715/713; 715/762 (74) Attorney, Agent, or Firm — Merchant & Gould
(58) Field of Classification Search None
See application file for complete search history. (57) ABSTRACT
(56) References Cited A property storage structure 1s prc:mded that 1s configured to
store properties for a display object. The property storage
U.S PATENT DOCUMENTS structure include:s a property object that corresponds to a
property of the display object. The property storage structure
4,498,145 A 21985 Bakeretal.c...... 707/202 1s 1dentified according to a key (e.g., the key identifies the
5,682,468 A 10/1997 Fortenbery et al. ... 345/419 _ S Y &8 Y
5,850,507 A 12/1998 Ngaietal. ..ooocoovvovvv.. T14/16 property object as a fill s}yle objec?t that corresponds to a fill
6,282,547 Bl 8/2001 Hirschccooeevvennn, 707/102 style property for the display object). The property object
6,374,251 Bl 4/2002 Fayyadetal. 707/101 hierarchically includes a value designating what type of
6,330,954 Bl 4/2002 Gunther ..., 715/764 object for the property object identified by the key (e.g., the
6,493,826 B1 12/2002 Schofield etal. 726/22 11 stvle obiect includ lue that desi tes the fill 1
6,539,396 Bl 3/2003 Bowman-Amuah ... 707/103 R style object mcludes a value that designates the Lill style
6,618,851 Bl 9/2003 Zundel etal. 713/103 Oobject as a solid color fill type).
6,654,757 Bl 11/2003 Sterncocovvvvvvivnniinnnnnn, 707/101
6,711,577 Bl 3/2004 Wongetal. 707/101 20 Claims, 6 Drawing Sheets
304

s 300

302 k
306 FillStyle
Ll_—’ SolidFill

LineStyle
PatternLine

Hierarchical
Property Storage

US 8,001,526 B2

Page 2
U.S. PATENT DOCUMENTS 2006/0242591 Al 10/2006 Van Dok et al. 715/762

2004/0220954 Al 11/2004 Zhou et al.coovn...... 707/101 200770001345 AL 52007 Morgancoceveeveie 707/100

| 2007/0061351 Al 3/2007 Villaron etal. 707/101
2004/0230888 Al 11/2004 Krameretal. 715/501.1 |

| 2007/0074156 Al* 3/2007 Nelsonetal.co.......... 717/107
2004/0230900 Al* 11/2004 Relyeaetal. ..o............ 715/513 |

| 2007/0094607 Al* 4/2007 Morgan etal. 715/762
2005/0015729 Al 1/2005 Fernandez etal. ... 715/765 -

| . 2007/0106952 Al 5/2007 Matas et al.cooo......... 715/764
2005/0171967 Al 8/2005 Yuknewicz et al. 707/101 0070174307 A1l 95007 Villaron of al Z07/100
2005/0216883 Al* 9/2005 Ishimitsuetal. ... 717/105 ; L
2005/0278625 Al 12/2005 Wessling et al. 715/62 | |
2006/0230311 Al 10/2006 Kaoetal.ccoeeennn... 707/202 * cited by examiner

U.S. Patent

Aug. 16, 2011 Sheet 1 of 6

US 8,001,526 B2

104

ROM/RAM

OPERATING
SYSTEM

APPLICATIONS

PROPERTY
STORAGE
MANAGEMENT

_/

PROGRAM DATA

HIERARCHICAL
PROPERTY
STORAGE

_-'_1-_1

N T & &z 2 R el Wi AT TS ST A A A . A e A

O
C
—
U
C
—]
U
m
S
O
m
o
n
o

COMMUNICATION |
CONNECTION(S)

TN EEES T EEEy gEEs gl

. I S A A S a.S A A ek S sl S . S

COMPUTING
DEVICES

U.S. Patent Aug. 16, 2011 Sheet 2 of 6 US 8,001,526 B2

T 200

202

204 Patternkill

206 ColorfFill
FillValid

208 TextureURL

Pattern|D
210

Property Set

U.S. Patent Aug. 16, 2011 Sheet 3 of 6 US 8,001,526 B2

304 300
302 [

306 FillStyle
SolidFll

LineStyle

PatternLine

Hierarchical
Property Storage

U.S. Patent Aug. 16, 2011 Sheet 4 of 6 US 8,001,526 B2

/’“ 400
402

404

Obtain Shape Property
Bag

406 Obtain Shape Property

Object

408 Update Shape Property

Object with Value(s)

410 Insert Shape Property

Object into Shape
Property Bag

412
End

Fig. 4

U.S. Patent Aug. 16, 2011 Sheet 5 of 6 US 8,001,526 B2

‘//f,___ 500

502

Shape Property

Bag
A

504 >06
Shape Property Shape Property
Bag Bag
B C
508

Shape Property

Bag
D

FIg. 5

U.S. Patent Aug. 16, 2011 Sheet 6 of 6 US 8,001,526 B2

/‘ 600
602

604

Query for Shape

Property Object

606 Generate

Visitor Object

Operate on Shape
Property Object
According to Visitor
Operation

608

610 Get Effect on Shape

From Visitor Operation

RS

Fig. 6

US 8,001,526 B2

1
HIERARCHICAL PROPERTY STORAGE

BACKGROUND

il

A number of different properties may be used to describe a
display object, whether the display object is a graphical object
that includes shapes or another type of display object. A
display object may include shape properties as well as text
character properties, text paragraph properties, text body
properties, group shape properties, and the like. Shape prop-
erties form a “language” for describing a visual object we
think of as a shape. A shape has a transform (location, scale,
rotation, skew, etc.), a path (rectangle, oval, star, banner, etc.),
a 111l style (none, solid color, texture, etc.), a line style (none,
solid color, texture, etc.) and several other properties. The set
of shape properties 1s often referred to as the Shape Property
Bag (SPB). Some solutions store the set of properties related
to an object as a flat list fields that encompassed all possible
values of a particular concept. For example, the fill styleon a
shape could be either a solid color or a texture, but even when
the fill was a solid color, an entry 1n the flat table was still
supplied for the texture type of fill. This storage structure may
create a security concern of stale information sitting around 1n
properties not being used. Also, the flat storage may cause
cross-references between properties or additional properties
to be included 1n the flat storage structure that are included to
simply reference the valid shape property that 1s to be applied
to the shape.

SUMMARY

Aspects of the system, data structure, and methods
described herein are generally related to providing a hierar-
chical property storage structure. The hierarchical structure
reflects the mutual exclusiveness of certain properties and
climinates the cross-references among properties in the stor-
age structure. For example, a structure storing shape proper-
ties may include a fill style property. A fill style property 1s a
set selection of a solid color fill, a gradient {ill, a textured fill,
or no fill and may only be one of those selections at a time. If
the fill 1s currently a solid color fill, the data stored in the
hierarchical data structure 1s limited to data indicating the
solid color fill selection. If a change to the fill style 1s made to
a textured fill selection, the data for the solid color fill 1s
removed and replaced with data for the textured fill selection.
Since the properties are hierarchically structured, cross-ret-
erences among properties or additional properties are not
needed to determine which properties are valid. Properties
considered invalid simply do not exist in the hierarchical
structure to be queried. Accordingly, the hierarchical data
structure 1mproves the complexity of querying properties as
well as reducing the working set of properties since 1t 1s the
“in use” properties that are stored, rather than all possible
properties.

In addition to the aspects associated with the hierarchical
structure of the property storage structure, the present inven-
tion also provides the structure according to code that 1s
compile-time type-safe. The type-sale code assists 1n discov-
ering errors at compile time, rather than later at runtime.

Although descriptions of the hierarchical property storage
are provided 1n contrast to previous flat storage structures, the
claimed subject matter as described herein 1s not limited to
implementations that solve any or all of the noted disadvan-
tages attributed to the flat storage structures.

This Summary 1s provided to mtroduce a selection of con-
cepts 1n a simplified form that are further described below 1n
the Detailed Description. This Summary 1s not intended to

10

15

20

25

30

35

40

45

50

55

60

65

2

identify key features or essential features of the claimed sub-
ject matter, nor 1s 1t intended to be used as an aid 1n determin-
ing the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the
present invention are described with reference to the follow-
ing figures, wherein like reference numerals refer to like parts
throughout the various views unless otherwise specified.

FIG. 1 illustrates an exemplary computing device that may
be used 1n one exemplary embodiment of the present inven-
tion.

FIG. 2 shows a functional block diagram of an exemplary
flat property storage.

FIG. 3 illustrates a functional block diagram of an exem-
plary hierarchical property storage;

FIG. 4 shows a logical flow diagram of an exemplary
process for populating a hierarchical property storage;

FIG. 5 illustrates a functional block diagram of an exem-
plary hierarchy of hierarchical storage structures; and

FIG. 6 shows a logical flow diagram of an exemplary
process lor translating a property object for rendering, in
accordance with one embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments of the present invention are described more
tully below with reference to the accompanying drawings,
which form a part hereot, and which show specific exemplary
embodiments for practicing the invention. However, embodi-
ments may be implemented 1n many different forms and
should not be construed as limited to the embodiments set
forth herein; rather, these embodiments are provided so that
this disclosure will be thorough and complete, and will tully
convey the scope of the invention to those skilled 1n the art.
Embodiments of the present invention may be practiced as
methods, systems or devices. Accordingly, embodiments of
the present mvention may take the form of an entirely hard-
ware implementation, an entirely software implementation or
an 1mplementation combining soiftware and hardware
aspects. The following detailed description 1s, therefore, not
to be taken 1n a limiting sense.

The logical operations of the various embodiments of the
present invention are implemented (1) as a sequence of com-
puter implemented steps running on a computing system
and/or (2) as interconnected machine modules within the
computing system. The implementation 1s a matter of choice
dependent on the performance requirements of the computing
system 1mplementing the imvention. Accordingly, the logical
operations making up the embodiments of the present inven-
tion described herein are referred to alternatively as opera-
tions, steps or modules.

[lustrative Operating Environment

With reference to FIG. 1, one exemplary system for imple-
menting the mvention includes a computing device, such as
computing device 100. Computing device 100 may be con-
figured as a client, a server, mobile device, or any other
computing device. In a very basic configuration, computing
device 100 typically includes at least one processing unit 102
and system memory 104. Depending on the exact configura-
tion and type of computing device, system memory 104 may
be volatile (such as RAM), non-volatile (such as ROM, flash
memory, etc.) or some combination of the two. System
memory 104 typically includes an operating system 105, one
or more applications 106, and may include program data 107.

US 8,001,526 B2

3

In one embodiment, application 106 includes a property stor-
age management application 120 for implementing the sys-
tem of the present mnvention. Additionally, program data 107
includes the hierarchical property storage generated for a
display object by the storage management application. This
basic configuration 1s 1llustrated 1n FIG. 1 by those compo-
nents within dashed line 108.

Computing device 100 may have additional features or
functionality. For example, computing device 100 may also
include additional data storage devices (removable and/or
non-removable) such as, for example, magnetic disks, optical
disks, or tape. Such additional storage 1s illustrated in FIG. 1
by removable storage 109 and non-removable storage 110.
Computer storage media may 1nclude volatile and nonvola-
tile, removable and non-removable media implemented in
any method or technology for storage of information, such as
computer readable instructions, data structures, program
modules, or other data. System memory 104, removable stor-
age 109 and non-removable storage 110 are all examples of
computer storage media. Computer storage media includes,
butis not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,
or any other medium which can be used to store the desired
information and which can be accessed by computing device
100. Any such computer storage media may be part of device
100. Computing device 100 may also have mput device(s)
112 such as keyboard, mouse, pen, voice input device, touch
mput device, etc. Output device(s) 114 such as a display,
speakers, printer, etc. may also be mcluded.

Computing device 100 also contains communication con-
nections 116 that allow the device to communicate with other
computing devices 118, such as over a network. Communi-
cation connection 116 1s one example of communication
media. Communication media may typically be embodied by
computer readable instructions, data structures, program
modules, or other data in a modulated data signal, such as a
carrier wave or other transport mechanism, and includes any
information delivery media. The term “modulated data sig-
nal” means a signal that has one or more of 1ts characteristics
set or changed 1n such a manner as to encode information 1n
the signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network or
direct-wired connection, and wireless media such as acoustic,
RF, mfrared and other wireless media. The term computer
readable media as used herein includes both storage media
and communication media.

[llustrative Embodiments for Providing a Hierarchical Shape
Property Storage

Embodiments described herein are generally related to
generating a hierarchical property storage structure that may
be used 1n storing the properties for a display object. The
hierarchical structure of the property storage allows for an
climination of redundant information that was associated
with flat storage structures. Additionally, cross-references
and additional properties that previously needed to be
included in the property storage are no longer necessary to
identify which properties are valid. Although the description
and figures 1n the following discussion concentrates on a
hierarchical storage structure for storing shape properties, or
a hierarchical shape property storage, the present invention 1s
not limited to a storage for shape properties. The present
invention may provide the hierarchical storage structure to
store a variety of properties that may be associated with a
graphical object or other type of display object, such as text

10

15

20

25

30

35

40

45

50

55

60

65

4

character properties, text paragraph properties, text body
properties, group shape properties, and the like.

FIG. 2 shows a functional block diagram of an exemplary
tlat property storage. Flat storage 200 includes multiple nodes
(e.g., 202) that represent a property set for a particular shape.
The property set shown includes example nodes directed to
{11l properties (202, 204, 206) as well as other properties
associated with textures (208) and patterns (210). Properties
other than those shown may also be included 1n flat storage
200.

As shown, flat storage 200 includes multiple properties for
f11l styles that correspond to a shape. Node 202 corresponds to
a pattern type fill property (PatternFill). Node 204 corre-
sponds to a color type fill property (ColorFill). When only one
f1ll type may be associated with a particular shape, one of
these f1ll type properties represents redundant, unnecessary
information. The redundant fill type property 1s included 1n
flat storage 200 even though 1t does not currently apply to any
shape within a graphical object.

In addition, tlat storage 200 also includes validation prop-
erty 206 for the fill properties (FillValid). This validation
property 1s included for the purpose of indicating which of the
f1ll type properties (202 or 204) of tlat storage 200 are valid for
the shape associated with the storage structure. Still other
nodes are dedicated to including a uniform resource locator
(URL) for a particular texture (node 208) or an identifier for
a particular pattern that 1s used for fills, lines, or other portions
ol a shape. For example, instead of referencing the type of
pattern to use directly, pattern type fill property 202 may
instead indicate a pattern 1dentifier. A query for the property
would then be redirected to node 210 wherein the pattern that
corresponds to the pattern identifier 1s declared. However, 1t
may be that this pattern 1s not locally stored 1n association
with the graphical object containing the shape or the native
application that generated the graphical object. Instead, the
pattern corresponds to a texture file that 1s located elsewhere.
Accordingly, the query for the property 1s again redirected to
node 208 to where the location of the texture file 1s given.

As may be seen from the example above, discerning the
properties to be applied to from flat storage 200 may become
increasingly difficult as the cross-references and additional
nodes increase i number. A developer desiring to edit flat
storage directly may be unable to successtully trace the prop-
erty to obtain all of 1ts related information given the current
structure.

FIG. 3 1llustrates a functional block diagram of an exem-
plary hierarchical property storage in accordance with one
embodiment of the present invention. In this particular
example, hierarchical property storage 300 corresponds to
shape properties and may be refered to as shape property bag
(SPB) 300. Hierarchical property storage 300 includes prop-
erty objects (e.g., 302) that have hierarchical classes/keys and
values 1instead of flat nodes. For example, fill style object 302
includes a key 304 and a value 306. Key 304 indicates the
class of the shape property object. For example, the key for
property object 302 1s the fill style class 304 i1dentifying
property object 302 as a fill style object. Value 306 indicates
that the fill style property of the shape associated with hier-
archical property storage 300 1s solid fill type property (Solid-
Fill). The objects that may be included 1n hierarchical prop-
erty storage 300 are not limited to fill styles and line styles as
shown and may include any property that may be associated
with a particular shape. Furthermore, hierarchical property
storage 300 may be associated with properties other than
shape properties, such text properties or the like.

In one embodiment, the objects of hierarchical property
storage 300 are written according to an extensible markup

US 8,001,526 B2

S

language (XML) that lends to the hierarchical structure. The
object acts as bucket or container for storing a particular value
associated with the property. In one embodiment, hierarchical
property storage 300 knows intrinsically which values (e.g.,
306) are included 1n the property objects (e.g., 302) so that
queries 1nto hierarchical property storage 300 may be
responded to with the correct property information. The
information in the objects corresponds to the value for the
property that 1s currently associated with the shape. If the
shape has a solid color fill, then the value included in the fill
type object indicates a SolidFill value. If instead the shape has
a pattern fill, then the fill type object indicates a PatternFill
value. Other objects have multiple values, for example a
geometry type object may include various values for defining
the geometry of a shape. Since the values included 1n the
objects are 1ntrinsically known by hierarchical property stor-
age 300, there 1s no requirement for additional flags or prop-
erties within hierarchical property storage 300 for locating
the property information.

As stated, the hierarchical shape storage structures or shape
property bags (SPBs) may be used to store the properties
related to a particular shape. A graphical object may have
multiple shapes and therefore may have multiple SPBs asso-
ciated with those shapes. Furthermore, each shape may have
multiple SPBs associated with the shape. FIG. 5 describes in
greater detail a particular hierarchical relationship that 1s
available for SPBs due to the hierarchical structure provided
by the present invention.

In one embodiment, the hierarchical storage structure for
the properties 1s provided according to code that 1s considered
more “strongly typed” than the code for the flat tables previ-
ously provided. “Strongly typed” code refers to code where
type checking of the code cannot be meaningtully circum-
vented. Also, “strongly typed” code 1s often equated with
“statically typed” code that generally enforces that the code 1s
type-sale a compile time rather than at runtime. Type check-
ing at compile time allows errors to be caught earlier in the
code development process. Previously, with the flat table,
type checking on the properties was generally not done at
compile time. Previous designs for property storage relied on
a key/value approach for retrieving properties. The key, was
usually an 1integer or enumeration value, and the ‘value’ was
either a polymorphic data structure (e.g., a variant) or the
storage structure mterface had multiple accessor methods that
were value type specific (e.g., Getlnteger Value(int key, int&
value) and GetFloatValue(int key, float& value), etc.) This
type of design cannot be validated at compile time. Develop-
ers may incorrectly call Getlnteger Value(someKey, mylnte-
ger) to attempt to retrieve an integer value associated with
‘someKey’, even if 1t’s really a floating point value that
should be associated with ‘someKey’. Detection of this type
of error may only happen at runtime which makes detection of
the error more difficult.

Runtime errors are only found if the code 1s executed,
which depends on the breadth of the testing being done. One
way to achieve type-matching between key and value at com-
pile time was achieved 1n the past by not using a generic data
type (like an 1integer) for the key, and 1nstead creating specific
methods to retrieve the properties (e.g., GetPropValuel
(int&), GetPropValue2(tloat&), GetPropValue3(string&)).
The specific methods enforce that whenever an attempt 1s
made to get ‘Prop 1’ from the property storage, a correct type
must be provided to recerve the value (in this case an integer).
However, such a design 1s not generic and 1s instead speciiic
to the set of properties being stored. Code sharing between
two different property stores becomes extremely difficult or
devolves 1nto the key/value pair 1ssue above.

10

15

20

25

30

35

40

45

50

55

60

65

6

The present invention improves the type-satety of the code
by providing this type matching between key and value at
compile time, but at the same time remaining generic. The
present invention uses C++ templates and instead of using a
generic type like an integer for all keys, a type (1.e. a class) 1s
used as the key. Thus, each key 1s distinguishable from other
keys. Inside the class, there’s a typedet that tells the property
storage data structure the type used for the value. The devel-
oper creates these “key types” while designing the set of
properties to be stored. Once decided, the rest of the property
storage data structure code enforces that the correct value
type 1s used for a given key.

When the get operation 1s called, the compiler knows the
types of objects associated with a particular type list and also
knows the type of object that should be returned in response
to the get operation. If code 1s written that attempts to get a
property that 1s not valid for this property set, the code won’t
compile. Similarly, the code won’t compile 11 the requested
return object 1s an incorrect type for the property identified by
the get operation. Since the code 1s required to be correct at
compile time, the robustness of the code 1s increased by
making the code more statically written and results in more
strongly typed code.

FIG. 4 shows a logical flow diagram of an exemplary
process for populating a hierarchical property storage in
accordance with one embodiment of the present invention.
Process 400 1s described with relation to storing shape prop-
erties as shape property objects within an SPB, but may also
apply to storing other properties as other property objects 1n
different hierarchical property storage structures. Process
400 starts at block 402 where a shape 1s included 1n a graphi-
cal object. Processing continues at block 404.

Atblock 404, an SPB 1s obtained that 1s associated with the
shape. The SPB may be obtained by newly creating the SPB
or 1dentiiying an existing SPB that 1s associated with the
shape. For example, a shape newly inserted into the graphical
object may have no associated SPB and require one to be
generated. Alternatively, the shape may be copied, or
obtained from a listing of default shapes, and therefore
already has an associated SPB which can be referenced. Addi-
tionally, the shape may be already mserted into the graphical
object but 1s having one or more of its properties changed. The
default properties are inserted into the SPB 1n a similar man-
ner that other new properties are mserted into the SPB from
edits to the shape or that existing properties of an SPB are
changed. In one embodiment, the SPB may correspond to a
C++ template. Once the SPB 1s obtained, processing contin-
ues at block 406.

At block 406, a shape property object 1s obtained for a
property associated with the shape. The shape property object
may correspond to a default property or other new property
being applied to the shape and therefore be newly con-
structed. In an alternative embodiment, the shape property
object of interest may already be included 1n the SPB. If the
shape property object 1s already present 1n the SPB, then a get
operation 1s performed that passes 1n the object’s identifier to
the SPB to retrieve the object. Once the shape property object
1s obtained, either by constructing a new object or obtaining
the object from the SPB, processing continues at block 408.

At block 408, the shape property object 1s populated with
its associated values or edited to include an updated value. A
set operation 1s called on the shape property object that sets
the value(s) included 1n the object. In one embodiment, a first
value (e.g., SolidFill) of the shape property object 1s mutually
exclusive of a second value (e.g., PatternFill). In an additional
embodiment, a new shape property object may be populated
with a value that corresponds to a default property of the

US 8,001,526 B2

7

shape. For example, a shape mserted into a graphical object
may have default fill styles, default line thicknesses, detault
colors, or the like. The shape property object may be associ-
ated with one or more of these default properties. These
properties may be associated with the document 1n which the
shape 1s inserted or with the shape itself. If the shape property
object 1s being edited, the set operation replaces the existing
value(s) include 1n the object with the updated value(s). Pro-
cessing continues at block 410.

At block 410, the shape property object 1s 1inserted 1nto the
SPB. In one embodiment, a typesate (i.e., strongly typed) set
operation 1s called to set the shape property object as a mem-
ber of the SPB. With the shape property object included into
the SPB, the SPB becomes intrinsically aware of the object
and 1ts values. Accordingly, when template access operations
are called on the SPB with regard to the property of the shape
property object, the SPB 1s able to respond to the operations.
Processing then continues to block 412 where process 400
ends or moves on to other tasks.

In one embodiment, the steps described according to pro-
cess blocks 406-410 may be repeated for as many properties
as are associated with the shape or that have been changed 1n
the SPB. Furthermore, the SPB may be associated with other
SPBs such that the properties included 1n the SPB correspond
to only those properties unique to the shape to which the SPB
applies.

FIG. 5 1llustrates a functional block diagram of an exem-
plary hierarchy of hierarchical storage structures in accor-
dance with the present invention. Hierarchy 500 1s described
with relation to storing shape properties within an SPB, but
may also apply to other properties included 1n different hier-
archical property storage structures. Hierarchy 500 includes
SPBs A 502, B 504, C 506, and D 508.

In one embodiment, the SPBs lower 1n the hierarchy have
one or more shape properties that depend from the SPB higher
in the hierarchy. For example, if SPB A 3502 includes a fill
style property that corresponds to a solid color fill, SPB B 504
or SPB C 506 may not include 1ts own value for the fill style
property. Instead these SPBs lower 1n the hierarchy may have
the shape property object for the fill style include a reference
to the shape property object corresponding to the fill style
property in SPB A 502. Additionally, a SPB may have a
property that depends from another SPB that in turn depends
from yet another SPB as shown by SPB D 508. In still another
embodiment, an SPB may have multiple dependencies to
other SPBs. For example, SPB C 506 has at least one property
dependent from SPB A 502 and another property dependent
from SPB D 508. Chaiming the SPBs together reduces the
memory needed to store the property information for multiple
similar shapes 1n a graphical object. For example, if one
thousand shapes were included 1n a graphical object that were
essentially the same shape except for their location on the
screen (e.g., points on a scatter plot), 1t would be a waste of
memory space to store the properties for each of these shapes
individually.

FIG. 6 shows a logical tlow diagram of an exemplary
process for translating a property object for rendering in
accordance with one embodiment of the present invention.
Process 600 1s described with relation to storing shape prop-
erties as shape property objects within an SPB, but may also
apply to storing other properties as property objects in differ-
ent hierarchical property storage structures. Process 600
starts at block 602 where an SPB has been created and popu-
lated with shape property objects. Processing continues at
block 604.

At block 604, a query 1s made for a shape property object
according to which effect of interest 1s to be applied to the

10

15

20

25

30

35

40

45

50

55

60

65

8

rendered shape. The effect refers to the graphical representa-
tion of the property. For example, the effect of a pattern fill
property 1s a pattern that fills 1n the area of a particular shape
when the shape 1s viewed on a display device, or when the
shape 1s output to a printer, or when the shape 1s otherwise
output and viewable to a user. In one embodiment, the query
for the shape property object 1s made according to a get
operation that retrieves the shape property object. Once the
shape property object 1s retrieved, processing continues to
block 606.

At block 606, a visitor object 1s generated for the shape
property object retrieved. For example, a fill style visitor
object1s generated for aretrieved fill style object. The fill style
visitor object has methods for handling each type of fill style
for the shape. For example, one of these methods may corre-
spond to an operation such as “OnSolidColorFill()” that
provides a set of functions for handling the fill style object
when the {ill style object corresponds to a solid color fill.

Once the visitor object 1s generated, processing continues to
block 608.

At block 608, the shape property object 1s operated on
according to the visitor object generated. This visitor opera-
tion executes the code or functions that are related to the
current value for the retrieved shape property object. For
example, when a fill style object corresponds to a solid color
{111, the functions associated with the “OnSolidColorFill{)
visitor operation 1s executed. The visitor operation translates
the shape property object into instructions for handling the
property. Once the visitor operation 1s executed, processing
continues at block 610.

At block 610, the effect from the wvisitor operation 1is
applied to the shape associated with the SPB. In one embodi-
ment, a get operation obtains the effect from the executed
visitor operation. With the effect applied to the shape, pro-
cessing continues to block 612 where process 600 ends or
moves on to other tasks.

The processes described in FIGS. 4 and 6 may be repeated
as necessary, and may have their process steps rearranged,
certain process steps deleted, or additional process steps
added without departing from the spirit or scope of the mven-
tion. For example, multiple SPBs may be generated for a
number of different shapes and associated with one another as
described in FIG. 5 betfore each property for a particular shape
1s translated for 1ts effect on the shape when the shape is
rendered. Furthermore, the entire property set ol the SPB may
be translated at any given time for 1ts effect on the shape so
that process 600 1s repeated for each shape property object
included in the SPB.

As previously stated, the discussion above concentrates
mainly on shape property storage. However, the hierarchical
storage structure provided by the present invention 1s not
limited to storing shape properties and may store other prop-
erties such as group shape properties, text properties, text
character properties, text paragraph properties, text body
properties, and other properties that may be associated with a
display object.

Although the invention has been described 1n language that
1s specific to structural features and/or methodological steps,
it 1s to be understood that the invention defined in the
appended claims 1s not necessarily limited to the specific
features or steps described. Rather, the specific features and
steps are disclosed as forms of implementing the claimed
invention. Since many embodiments of the mnvention can be
made without departing from the spirit and scope of the
invention, the invention resides in the claims hereinafter
appended.

US 8,001,526 B2

9

What 1s claimed 1s:

1. A computer-implemented method for providing hierar-
chical storage of properties associated with a display object,
the method executed by a central processing unit (CPU) com-
prising;:

obtaining a property storage structure that 1s configured to

hierarchically store shape properties for each shape that
1s associated with a display object; wherein the property
storage structure 1s stored separately from a definition of
the shape;

obtaining a shape property bag for each shape that 1s asso-
ciated with the display object, wherein each shape prop-
erty bag within the property storage structure can refer-
ence one or more other shape property bags within the
property storage structure;

obtaining a property object that 1s associated with one of
the properties of the display object, wherein the property
object 1s 1dentified according to a key;

updating the property object with a hierarchically stored
value such that the hierarchically stored value indicates
a type for the property object identified by the key; and

iserting the property object into the property storage
structure such that the shape property objects nserted
into the property storage structure provide a listing of the
properties associated with the display object.

2. The computer-implemented method of claim 1, wherein
obtaining the property storage structure further comprises
newly generating the property storage structure to correspond
to the display object.

3. The computer-implemented method of claim 1, wherein
obtaining the property storage structure further comprises
identifying the property storage structure previously associ-
ated with the display object.

4. The computer-implemented method of claim 1, wherein
obtaining the property object further comprises newly gener-
ating the property object.

5. The computer-implemented method of claim 1, wherein
obtaining the property object further comprises performing a
get operation that passes the key of the property object into
the property storage structure and returns the property object.

6. The computer-implemented method of claim 1, wherein
updating the property object with a hierarchically stored
value further comprises calling a set operation that sets the
hierarchically stored value.

7. The computer-implemented method of claim 1, wherein
updating the property object with a hierarchically stored
value further comprises turther comprises setting the hierar-
chical stored value to correspond to a default value.

8. The computer-implemented method of claim 1, wherein
the hierarchically stored value 1s mutually exclusive of other
hierarchically stored values that indicate other types of prop-
erty objects identifiable by the key.

9. The computer-implemented method of claim 1, wherein
inserting the property object into the property storage struc-
ture further comprises calling a typesalfe operation that sets
the property object as a member of the property storage struc-
ture such that the property storage structure 1s intrinsically
aware of the key and the hierarchically stored value.

10. The computer-implemented method of claim 1, further
comprising chaining an additional property storage structure
to the property storage structure, such that the additional
property storage structure references the property object.

10

15

20

25

30

35

40

45

50

55

60

65

10

11. The computer-implemented method of claim 1, further
comprising:

querying for the property object once the property object

includes the key and hierarchically stored value such

that the property object 1s retrieved from the property
storage structure;

generating a visitor object that corresponds to the property
object, wherein the visitor object includes a set of func-

tions for handling each type of property objects identi-
fiable by the key;

operating on the property object according to a function 1n
the set of Tunctions that corresponds to the type indicated
by the hierarchically stored value; and

applying an effect to the display object, wherein the effect
corresponds to a result obtained from the function.

12. A computer-readable storage medium having stored
thereon instructions that when executed implements the com-
puter-implemented method of claim 1.

13. A computer-readable storage medium having stored
thereon a data structure, the data structure comprising:

a property storage structure that 1s configured to hierarchi-
cally store shape properties for each shape that 1s asso-
ciated with a display object; wherein the property stor-
age structure 1s stored separately from a definition of the
shape; wherein each of the shape properties are set to a
single value that 1s selected from mutually exclusive
values for each of the shape properties; wherein a sepa-
rate property storage structure 1s associated with each
shape that comprises a display object;

a shape property bag for each shape that 1s associated with

the display object;
wherein each shape property bag within the property storage
structure can reference one or more other shape property bags
within the property storage structure, wherein each shape
property bag comprises:

a property object included 1n the property storage structure,
wherein the property object corresponds to one of the
shape properties of the display object;

a key that 1s included in the property object, wherein the

key 1dentifies the shape property that 1s included 1n the
property object; and

a value that 1s hierarchically included 1n the property object
corresponding to the key, wherein the value designates a
type associated with the property object, wherein the
value 1s selected from the mutually exclusive values that
are associated with the shape property that is included 1n
the property object.

14. The computer-readable storage medium of claim 13,
wherein the property object references another property stor-
age structure for 1ts value.

15. The computer-readable storage medium of claim 13,
wherein the property storage structure is stored according to
code that 1s considered strongly typed code.

16. The computer-readable storage medium of claim 13,
wherein the property storage structure is stored according to
code configured so that type matching between the key and
value are enforced at compile time.

17. The computer-readable storage medium of claim 13,
wherein the property storage structure corresponds to a coded
template.

18. The computer-readable storage medium of claim 17,
wherein the template 1s passed a coded type list that 1s used to
describe the properties of the display object.

US 8,001,526 B2

11

19. A system for providing hierarchical storage of proper-
ties associated with a display object, comprising:
a computing device; and
a memory associated with the computing device, the
memory having stored thereon a property storage struc-
ture that 1s hierarchical and computer-executable
instructions for managing the property storage structure,
wherein the property storage structure 1s configured to
hierarchically store shape properties for each shape that
1s associated with a display object;
wherein the property storage structure 1s stored separately
from a definition of the shape, the computer-executable
instructions comprising:
retrieving a shape property bag for each shape that 1s asso-
ciated with the display object, wherein each shape prop-
erty bag within the property storage structure can refer-
ence one or more other shape property bags within the
property storage structure;

retrieving a property object that corresponds to one of the
shape properties of the display object from the property

10

15

12

storage structure when the property object includes an
associated key and value, wherein the key 1dentifies the
property object and the value indicates a type for the
property object, wherein each of the shape properties are
set to a single value that 1s selected from mutually exclu-
stve values for each of the shape properties; wherein a
separate property storage structure 1s associated with
cach display object;
generating a set of functions for handling each type of
property objects identifiable by the key,
operating on the property object according to a function
in the set of functions that corresponds to the type of
property object, and
applying an effect to the display object, wherein the
elfect corresponds to a result obtained from the func-
tion.
20. A computer-readable storage medium having stored
thereon 1nstructions that when executed implements the func-
tionality of the system of claim 19.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

