United States Patent

US007996837B2

(12) (10) Patent No.: US 7.996.837 B2
Chesebro et al. 45) Date of Patent: Aug. 9, 2011

(54) RECOVERY MECHANISM FOR 6,895,529 B2* 5/2005 Egolfetal. ... 714/15
6,996,614 B2* 2/2006 Halllmanetal. 709/226

(75)

(73)

(%)

(21)

(22)

(65)

(1)

(52)
(58)

(56)

TRANSACTIONS

Inventors: Brian Christopher Chesebro,
Londonderry, NH (US); James William
Gish, Sudbury, MA (US); Chinnappa
Ganapathy Codanda, Boston, MA (US)

Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1498 days.

Appl. No.: 11/416,906

Filed: May 3, 2006

Prior Publication Data

US 2007/0261054 Al Nov. 8, 2007

Int. CI.

GO6Ll 9/46 (2006.01)

US.CL 718/100; 719/316
Field of Classification Search 718/101,

718/104, 100; 714/2, 4, 100, 6.12, 135, 20;

719/310, 318
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS
5,278,982 A * 1/1994 Danielsetal.cccocovivniini. 1/1
5,410,703 A 4/1995 Nilsson et al.
5,465,328 A 11/1995 Dievendortt
5,963,911 A * 10/1999 Walkeretal. 705/7
6,052,695 A * 4/2000 Abeetal.oooiiiininnl, 1/1
6,154,847 A * 11/2000 Schofieldetal. 714/4
6,338,146 B1* 1/2002 Johnsonetal. 714/4
6,429,860 Bl 8/2002 Hughes
6,493,826 Bl * 12/2002 Schofieldetal. 726/22
6,557,168 B 4/2003 Czajkowski
6,823,519 B 11/2004 Baurd

o
|

7,080,145 B2 7/2006 Srivastava
7,089,584 Bl 8/2006 Sharma

7,290,056 B1* 10/2007 McLaughlin, Jr. 709/230
7,346,905 B2* 3/2008 Dorranceetal. 718/104
7,373,555 B2* 5/2008 Adkissonetal. 714/43
7,418,718 B2 8/2008 Liu et al.

7,448,035 B2* 11/2008 Dorrance etal. 718/101

7,484,224 B2 1/2009 Potter et al.
7,506,338 B2 3/2009 Alpern et al.
7,506,342 B2 3/2009 Mousseau et al.
7,644,403 B2 1/2010 Atsatt

2001/0029519 Al* 10/2001 Hallinanetal. 709/104
2002/0099837 Al* 7/2002 Oeetal.oon 709/229
2002/0147971 A1 10/2002 Adams
2003/0061515 Al 3/2003 Kindberg
2003/0093470 Al 5/2003 Upton
2004/0015859 Al 1/2004 Potter et al.
2004/0158819 Al 8/2004 Cuomo et al.
2004/0187127 Al 9/2004 Gondi

(Continued)

OTHER PUBLICATIONS

Kniesel, G. et al., IMangler—A Framework for Load-Time Trans-
formation of Java Class Files, IEEE, Aug. 6, 2002, 11 pages.

(Continued)

Primary Ikxaminer — Van Nguyen
(74) Attorney, Agent, or Firm — Fliesler Meyer LLP

(57) ABSTRACT

In accordance with embodiments, there are provided mecha-
nisms and methods for recovering from an incomplete trans-
action. These mechanisms and methods can enable embodi-
ments to detect incomplete transactions when recovering
from a server crash or other catastrophic event. Some embodi-
ments can automatically re-establish interrupted connections
when incomplete transactions have been detected. The ability
of embodiments to detect incomplete transaction can allow
recovery to initiate substantially immediately upon server
restart and adapter redeployment.

12 Claims, 4 Drawing Sheets

Craate a dummy résource and register tha dummy
resource with a Transaction Manager using a name that
would have been used by a previous use of a Resource
Adapter before a sarver crash

302

Check, by the Transaction Manager, the name to
determine wheather the name was involved in an
unresolved transaction

304

306

C RETURN)

Invoke the dummy resource to initiate recovery when the
Transaction Manager has determined that the name was
involved in an unresolved transaction

US 7,996,837 B2
Page 2

2004/0255294
2005/0003850
2005/0015425
2005/0187891
2006/0112379
2006/0129983
2006/0218200
2006/0224633

2006/0259526

U.S. PATENT DOCUMENTS

A A AN A

1 =&

12/2004

1/2005
1/2005
8/2005
5/2006
6/2006
9/2006

10/2006
11/2006

Spotwood

Tsuda
Kumar

Johnson

Chirakansakcharoen et al.

Feng

Factor et al.

Fahmy

.................. 707/200

Boozetal.coivni. 707/202

2006/0271814 Al* 11/2006 Fungetal. 714/4
2007/0043784 Al* 2/2007 Parkinson 707/202
2007/0061795 Al 3/2007 Atsatt
2007/0061796 Al 3/2007 Atsatt
2007/0061798 Al 3/2007 Atsatt
2010/0070960 Al 3/2010 Atsatt

OTHER PUBLICATIONS

Gong, L., Secure Java Class Loading, IEEE, Dec. 1998, pp. 56-61.

* cited by examiner

U.S. Patent Aug. 9, 2011 Sheet 1 of 4 US 7,996,837 B2

Application Server

110
Transaction Manager
" 112
Application A
Component
140
y
l Resource Resource
Manager Manager
122a 1240
Resource Adaptor A Resource Adaptor B
120a 120b
- |
<___ =
130a 130b
R — —

U.S. Patent Aug. 9, 2011 Sheet 2 of 4 US 7,996,837 B2

Y 201

An application starts the transaction

202

Transaction Manager registers and enlists
Resource Manager 1 with the transaction

203

Transaction Manager registers and enlists
Resource Manager 2 with the transaction

204

The application performs operations that invoke
changes that are intended to be persisted using
Resource Manager 1 and Resource Manager 2

205
The application commits the transaction
206
The Transaction Manager calls prepare on
Resource Manager 1. The Resource Manager 1
returns a status code indicating success or failure
207
The Transaction Manager calls prepare on
Resource Manager 2. The Resource Manager 2
returns a status code indicating success of failure
208
Either
Resource Manager returns
l No failure during the prepare ves
_) _ 210 call? 209
The‘Transaction Manager Transaction Manager rolls back
commits Resource Manager 1 the transaction for both Resource
Managers
211 9

v

< RETURN >
FIGURE 2

The Transaction Manager
commits Resource Manager 2

U.S. Patent Aug. 9, 2011 Sheet 3 of 4 US 7,996,837 B2

START

Create a dummy resource and register the dummy
resource with a Transaction Manager using a name that
would have been used by a previous use of a Resource

Adapter before a server crash

Check, by the Transaction Manager, the name to
determine whether the name was involved in an
unresolved transaction

— 306

Invoke the dummy resource to initiate recovery when the
Transaction Manager has determined that the name was
involved in an unresolved transaction

C RETURN)

FIGURE 3

US 7,996,837 B2

Sheet 4 of 4

Aug. 9, 2011

U.S. Patent

sweidolJ J2yuiQ

cLy

27| waisAg dunerad(
AIOWIdA] SUINIO A\

oLy

I9pBIY WINIPIJA 388I01S
J[qepeay 1nduwo))

Gov

WINIPIJA 938I0)S

dqepedy Iandwon

90y

p THOIL

ATOWDIA

60v 80¥

(S)a01A3(q IndhnQ

1401 %

(8)201A9(T Indug

A

90RJIIU]

SUOIIBOTUNUIUIO)

L0V

($)10SS3201

cOv

L0V

00V

US 7,996,837 B2

1

RECOVERY MECHANISM FOR
TRANSACTIONS

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which 1s subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as 1t appears 1n the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

CROSS REFERENCE TO RELATED
APPLICATIONS

The following commonly owned, co-pending United
States patents and patent applications, including the present
application, are related to each other. Each of the other pat-
ents/applications are incorporated by reference herein in their
entirety:

U.S. patent application Ser. No. 11/282,060 entitled PRO-
DUCTION REDEPLOYMENT, by James William Gish, et
al., filed on Nov. 17, 2005;

U.S. patent application Ser. No. 11/281,968 entitled
RESOURCE ADAPTOR CLASSLOADING, by Codanda
Ganapathy Chinnappa, et al., filed on Nov. 17, 2005;

U.S. patent application Ser. No. 11/281,831 entitled SUS-
PENDABLE RESOURCE ADAPTOR INTERFACE, by
James William Gish, et al., filed on Nov. 17, 2005; and

U.S. patent apphcatlon Ser. No. 11/416, 906 entitled
RECOVERY MECHANISM FOR TRANSACTIONS, by
Brian Christopher Chesebro, et al., filed on May 3, 2006.

FIELD OF THE INVENTION

The current invention relates generally to techniques for
providing interconnectivity between one or more application
servers and one or more enterprise information systems, and
more particularly to a mechanism for recovering from an
incomplete transaction.

BACKGROUND

Since 1ts mception 1 1995, the Java™ programming lan-
guage has become increasingly popular. (Java™ 1s a trade-
mark of Sun Microsystems, Inc.) Java, which 1s an interpreted
language, enabled the creation of applications that could be
run on a wide variety of platforms. This ability to function
across a variety of different client platiorms, 1.e., platform
independence, and Java’s relatively easy implementation of
network applications has resulted in the use of Java, as well as
other programming languages that provide platform indepen-
dence, 1n endeavors as basic as personal web pages to endeav-
ors as complex as large business-to-business enterprise sys-
tems.

However, since applications, as well as the Enterprise
Information Systems (EIS) to which the applications connect,
may be provided by many different vendors, a mechanism
that enables these disparate computational entities to commu-
nicate with one another was needed. The Java 2 Platform
Enterprise Edition (J2EE) 1s a specification that addresses
such needs.

I2EE Connector Architecture provides a mechanism for
integrating I2EE-compliant application servers with enter-

prise information systems. The J2EE Connector Architecture

defines a Common Client Interface (CCI) for EIS access. The

10

15

20

25

30

35

40

45

50

55

60

65

2

CClI defines a client API that enables clients to interact with
heterogeneous enterprise mformation systems. Application
servers, 1.€., servers onto which applications may be
deploved, and Enterprise Information Systems need only fol-
low a J2EE Connector Architecture specification 1n order to
interconnect with one another.

Unfortunately, the J2EE specification does not resolve all
interconnection 1ssues. For example, one area of concern 1s
detecting and remedying incomplete transactions that can
occur 1n the event of a server crash or other unforeseen inter-
ruption. Transactional applications often employ various
approaches attempting at coordinating the processing for a
transaction. Such conventional approaches, however, can fail
to detect the presence ol an imcomplete transaction for a
period of time. Additionally, since such conventional
approaches may create unneeded connections during the pro-
cess of checking for an incomplete transaction.

What 1s needed 1s an improved mechanism for recovering,
from an incomplete transaction.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s functional block diagram of an example comput-
ing environment 1n which techniques for recovering from an
incomplete transaction 1n an embodiment may be 1mple-
mented.

FIG. 2 illustrates an overview of a two phase commit
process for committing transactions.

FIG. 3 1s an operational tlow diagram illustrating a high
level overview of a technique for recovering from an incom-
plete transaction 1n an embodiment.

FIG. 4 1s a hardware block diagram of an example com-
puter system, which may be used to embody one or more
components 1n an embodiment.

DETAILED DESCRIPTION

The mvention 1s 1llustrated by way of example and not by
way of limitation in the figures of the accompanying drawings
in which like references indicate similar elements. Refer-
ences to embodiments in this disclosure are not necessarily to
the same embodiment, and such references mean at least one.
While specific implementations are discussed, 1t 1s under-
stood that this 1s done for i1llustrative purposes only. A person
skilled 1n the relevant art will recognize that other compo-
nents and configurations may be used without departing from
the scope and spirit of the invention.

In the following description, numerous specific details are
set forth to provide a thorough description of the invention.
However, i1t will be apparent to those skilled 1n the art that the
invention may be practiced without these specific details. In
other instances, well-known features have not been described
in detail so as not to obscure the invention.

Although a diagram may depict components as logically
separate, such depiction 1s merely for illustrative purposes. It
can be apparent to those skilled 1n the art that the components
portrayed can be combined or divided into separate soitware,
firmware and/or hardware components. For example, one or
more of the embodiments described herein can be 1mple-
mented 1n a network accessible device/appliance such as a
router. Furthermore, 1t can also be apparent to those skilled in
the art that such components, regardless of how they are
combined or divided, can execute on the same computing
device or can be distributed among different computing
devices connected by one or more networks or other suitable
communication means.

US 7,996,837 B2

3

In accordance with embodiments, there are provided
mechanisms and methods for recovering from an incomplete
transaction. These mechanisms and methods can enable
embodiments to detect incomplete transactions when recov-
ering from a server crash or other catastrophic event. Some
embodiments can automatically re-establish interrupted con-
nections when incomplete transactions have been detected.
The ability of embodiments to detect incomplete transaction
can allow recovery to 1nitiate substantially immediately upon
server restart and adapter redeployment. Creating real adapter
connections unnecessarily for recovery can be avoided.

In an embodiment, a method for recovering from an 1ncom-
plete transaction 1s provided. One method embodiment
includes creating a dummy resource and registering the
dummy resource with a Transaction Manager using a name
that would have been used by a previous use of a Resource
Adapter before a server crash. The Transaction Manager
checks the name to determine whether the name was involved
in an unresolved transaction. The Transaction Manager
invokes the dummy resource to mnitiate recovery when the
Transaction Manager has determined that the name was
involved 1n an unresolved transaction. This processing can
enable embodiments to provide a notification mechanism by
which a Transaction Manager 1s enabled to determine that
recovery 1s needed. In an embodiment, the method can also
include creating, by the Transaction Manager, a real connec-
tion via the Resource Adapter. The recover request 1s passed
on to a Resource Manager associated with the Resource
Adapter.

Embodiments employing the X A protocol, which 1s a two-
phase commit protocol defined by the X/Open DTP group,
will be described 1n order to provide illustrative examples of
the techniques provided by the present invention. XA 1s
natively supported by many databases (like Oracle™) and
transaction monitors (like Tuxedo™). For further details
regarding the X A protocol, reference may be had to “Distrib-
uted Transactional Processing: The XA Specification” by The
Open Group (1992) which defines the requirements for both
transaction managers and resource managers mmvolved 1n an
XA transaction. While the present invention 1s described with
reference to an embodiment 1n which techniques for recov-
ering from an interrupted connection are implemented 1n
conformance with the XA protocol, the present invention 1s
not limited to the XA protocol. Embodiments may be prac-
ticed using other interconnectivity specifications or program-
ming languages, 1.¢., JSP and the like without departing from
the scope of the embodiments claimed. (Java™ 1s a trademark
of Sun Microsystems, Inc.)

FI1G. 1 1s functional block diagram of an example comput-
ing environment implementing a connector architecture in
which techniques for recovering from an incomplete transac-
tion in an embodiment may be implemented. As shown in
FIG. 1, a connector architecture implementation 100 includes
application server 110, resource adaptors 120a, 1205,
resources 130a, and 13056 and application component 140. As
used herein, the term application server 1s defined broadly as
a server computer in a computer network dedicated to running
certain software applications. Application server 110 exists in
conjunction with a web server (not shown i FIG. 1 for
brevity) or between a web server and an enterprise informa-
tion system (not shown in FIG. 1 for brevity) to provide
middleware functionality for an enterprise. As used herein,
the term resource adapter 1s defined broadly to include any
segment of code that represents a resource. Resources can
include applications, services, databases web sites and other
computer based resources. As used herein, the term applica-
tion component 1s defined broadly as any data entry, update,

10

15

20

25

30

35

40

45

50

55

60

65

4

query or program that processes data on behall of a user.
Users may be human or computational entities, including
proxies and the like. Requestors may be users, proxies or
automated entities. As used herein, the term environment 1s
intended to be broadly construed to include a set of any
characteristics of a computer configuration, including hard-
ware and software characteristics, such as without limitation,
operating system, Central Processor Unit (CPU) model, data
communications systems, database systems, programming
languages and any applicable standards. As used herein, the
term residing 1s intended to be broadly construed to include
applications loaded 1nto active memory, persisted 1n storage,
being executed by a processor and other associations between
applications and environments known 1n the computing arts.
Embodiments implement connector architecture 100 to
enable one or more connections to be established between the
application component 140 and the resources 130a, 1305.

In one embodiment, the connector architecture implemen-
tation 100 1s compatible with the Java 2 Enterprise Edition
(J2ZEE) Connector Architecture. This architecture provides
for an EIS vendor-provided resource adaptor and an applica-
tion server, to which the resource adaptor interfaces. The
J2EE Connector Architecture defines a set of contracts, such
as transactions, security, and connection management, which
both the resource adaptor and application server require to
communicate with one another. The connector architecture
100 may be implemented 1n an application server and a
resource adaptor.

Application server 110 embodiments can be configured
from a variety of hardware and software products. The appli-
cation server 110 may run Java or other programming lan-
guage environment, and may be configured to provide access
to resources 1nternal to the server, as well as resources reach-
able by the application server 110. Resources 130q, 13056 can
include applications, services, databases web sites and other
computer based resources. These resources may be part of an
Enterprise Information System (FIS) or independent
resources reachable by network or other communications
mechanisms. In one embodiment, the application server 110
utilizes WebLogic® Server from BEA systems of San Jose,
Calif.

As further 1illustrated by FIG. 1, application server 110
includes an application server transaction manager 112 for
managing transactions initiated by application component
140. A Transaction Manager embodiment comprises tech-
niques for recovering from an incomplete transaction. In an
embodiment, recovering from an incomplete transaction can
include creating a dummy resource and registering the
dummy resource with the Transaction Manager 112 using a
name that would have been used by a previous use of a
Resource Adapter 120 before a server crash or other unfore-
seen event. The Transaction Manager 112 checks the name of
the dummy resource to determine whether the name was
involved 1n an unresolved transaction. When the Transaction
Manager 112 determines that the name was involved 1n an
unresolved transaction, the dummy resource 1s 1nvoked to
initiate a recovery. Embodiments can provide a notification
mechanism by which Transaction Manager 112 1s enabled to
determine that recovery 1s needed. A process for recovering
from an incomplete transaction will be described in further
detail below with reference to FIGS. 2-3.

Resource adaptors 120a, 1205 comprise system level soft-
ware drivers used by application server 110 to connect to
resources 130aq, 130b, respectively. In an embodiment,
resource adaptors 120a, 1206 comprise Java code and any
native components required to facilitate interconnection
between the application server 110 and the resources 130a,

US 7,996,837 B2

S

1305. In one embodiment, the connector architecture 100
supports resource adaptors developed by vendors and third
party application developers that can be deployed 1in any
application server according to the J2EE platform specifica-
tion.

As turther illustrated by FI1G. 1, Resource Adaptors 1204,
1206 include Resource Managers 122a and 1225, respec-
tively. Resource Managers 122a, 1225 register their respec-
tive resources with the transactions manager 112.

Application component 140 may be at least a subset of an
application that initiates transactions. Application component
may be implemented for example and without limitation,
using an enterprise java bean (EJB), Java Server Page (JSP),
servlet, or any combination thereof, that 1s deployed, man-
aged, or executed on the application server 110.

The connector architecture 100 of FIG. 1 further includes
system level contracts (not shown i FIG. 1 for brevity).
System level contracts govern the interactions between the
resource adaptor 120 and the application server 110. The
contracts may relate to connection management or other
aspects of the connector architecture. Connection manage-
ment contracts allow an application server the ability to pro-
vide a pool of connections that enable application compo-
nents to connect to various resources 130a, 13054. In one
embodiment of the present invention, the connection man-
agement relates to connection pool configuration, connection
pool management, and connection management.

An example employing the XA protocol recovery process
by which atomicity of transactions 1s ensured even when a
server failure occurs while 1n the middle of completing a
transaction will next be described to illustrate some of the
features and benefits available to embodiments. The XA
recovery process 1s relevant to two-phase transactions. Two-
phase transactions are useful when more than one Resource
Manager 1s involved 1n the transaction. In one embodiment,
the Transaction Manager 112 conducts optimization by
switching to a one-phase commit protocol instead of a two
phase commit protocol 1n the event that there 1s only one
Resource Manager involved. Processing for performing a
two-phase commit transaction will next be described with
reference to FIG. 2.

FIG. 2 illustrates an overview of a two phase commit
process for committing transactions. As shown 1n FIG. 2, the
commit process commences with an application starting the
transaction (block 201). The Transaction Manager registers
and enlists Resource Manager 1 with the transaction (block
202). The Transaction Manager registers and enlists Resource
Manager 2 with the transaction (block 203). The application
performs operations that invoke changes that are intended to
be persisted using Resource Manager 1 and Resource Man-
ager 2 (block 204). The application commits the transaction
(block 205). The Transaction Manager calls prepare on
Resource Manager 1. The Resource Manager 1 returns a
status code indicating success or failure (block 206). The
Transaction Manager calls prepare on Resource Manager 2.
The Resource Manager 2 returns a status code indicating
success of failure (block 207). If either Resource Manager
returns failure during the prepare call, the Transaction Man-
ager rolls back the transaction for both Resource Managers
(blocks 208-209). Otherwise both Resource Managers are
committed: The Transaction Manager will commit Resource
Manager 1 11 both Resource Managers returned prepare suc-
cess (block 210) and commit Resource Manager 2 i1 both
Resource Managers returned prepare success (block 211).

In this way, atomicity 1s maintained so that 1t a change to
one resource 1s made, it 1s ensured that the corresponding
change will be made to all other resources 1n the transaction.

10

15

20

25

30

35

40

45

50

55

60

65

6

A recovery mechanism 1s desired, however, in the event
where this process 1s interrupted by a server crash for example
at the point 1n the process between block 210 and block 211
shown above by FIG. 2. Should such a failure occur, one set of
changes has been committed via Resource Manager 1, but the
corresponding change has not been made by Resource Man-
ager 2.

The application server transaction manager 112 maintains
the state of the transaction persistently 1n a file called the
transaction Log. After a server crash and restart, the Transac-
tion Log will contain the information that the Transaction was
not fully completed. It cannot be known however which
Resource Managers were fully committed or not, since it may
have crashed after sending the request but before receiving a
response from the Resource Manager. It 1s the responsibility
of the Resource Manager to indicate which changes are 1n a
prepared but not yet committed state. When the recovery
process 1s 1nitiated by the Transaction Manager, 1t sends a
request to the Resource Managers asking for a list of trans-
action Ids, that were prepared but not yet committed. The
Resource Managers return the list of changes 1n this state, and
the Transaction Manager can then complete the transactions
by committing the remaining resources.

One of the problems with conventional two phase commit
processing 1s the process by which the application server
Transaction Manager 112 initiates the recovery process for an
incomplete transaction. The Transaction Manager does not
check what needs to be recovered until an RM 1s registered (as
done 1 blocks 202 and 203 illustrated by FIG. 2. When an
RM 1s registered with a given name, the Transaction Manager
then checks the transaction log to see 11 there were any unre-
solved transactions that mnvolved a Resource Manager of the
same name. IT so, the Transaction Manager will call the
recover method on the newly registered Resource Manager.
This 1s a problem because the Connector Container has no
knowledge if any resources for a Resource Adapter need to be
recovered, and the Transaction Manager will not mvoke
recovery until there 1s a registration of such a resource.

IT the resource adapter 1s not used for a long period, the
registration may not occur until this time. One solution 1s for
the Connector Container to always create a connection to the
backend via the Resource Adapter and to register the connec-
tion with the Transaction Manager 1n order to allow any
needed recovery to be initiated. This would work, but in the
case where recovery 1s not needed i1t will cause a connection
to be unnecessarlly created.

FIG. 3 1s an operational tlow diagram illustrating a high
level overview of a technique for recovering from an incom-
plete transaction in an embodiment. The techni que for recov-
ering from an incomplete transaction shown in FIG. 3 1s
operable with an application server, application component
and resource adaptor, such as application server 110, appli-
cation component 140 and resource adaptor 120 of FIG. 1, for
example. As shown in FIG. 3, a dummy resource 1s created
and registered with the Transaction Manager using a name
that would have been used by a previous use of a Resource
Adapter before a server crash (block 302). The Transaction
Manager checks the name to determine whether the name was
involved 1 an unresolved transaction (block 304). The
dummy resource can be mvoked to mitiate recovery when the
Transaction Manager has determined that the name was
involved 1n an unresolved transaction (block 306). Accord-
ingly, the dummy resource can then be used as a notification
mechanism by which 1t can be determined that recovery 1s
needed. In an embodiment, a real connection will be created
via the Resource Adapter, and the recover request passed on
to the real underlying Resource Manager for the Resource

US 7,996,837 B2

7

Adapter. The processing of blocks 302-306 can enable
embodiments to avoid creating real adapter connections
unnecessarily for allowing recovery to initiate immediately
upon server restart and adapter redeployment.

In other aspects, the invention encompasses 1 some
embodiments, computer apparatus, computing systems and
machine-readable media configured to carry out the forego-
ing methods. In addition to an embodiment consisting of
specifically designed integrated circuits or other electronics,
the present invention may be conveniently implemented
using a conventional general purpose or a specialized digital
computer or microprocessor programmed according to the
teachings of the present disclosure, as will be apparent to
those skilled 1n the computer art.

Appropnate software coding can readily be prepared by
skilled programmers based on the teachings of the present
disclosure, as will be apparent to those skilled in the software
art. The invention may also be implemented by the prepara-
tion of application specific integrated circuits or by 1ntercon-
necting an appropriate network ol conventional component
circuits, as will be readily apparent to those skilled 1n the art.

The present invention includes a computer program prod-
uct which 1s a storage medium (media) having nstructions
stored thereon/in which can be used to program a computer to
perform any of the processes of the present invention. The
storage medium can include, but 1s not limited to, any type of
rotating media including floppy disks, optical discs, DVD,
CD-ROMs, microdrive, and magneto-optical disks, and mag-
netic or optical cards, nanosystems (including molecular
memory ICs), or any type of media or device suitable for
storing 1nstructions and/or data.

Stored on any one of the machine readable medium (me-
dia), the present invention includes software for controlling
both the hardware of the general purpose/specialized com-
puter or microprocessor, and for enabling the computer or
microprocessor to interact with a human user or other mecha-
nism utilizing the results of the present invention. Such soft-
ware may include, but 1s not limited to, device drivers, oper-
ating systems, and user applications.

Included 1n the programming (software) of the general/
specialized computer or microprocessor are software mod-
ules for implementing the teachings of the present invention,
including, but not limited to providing mechanisms and meth-
ods for recovering from an incomplete transaction as dis-
cussed herein.

FIG. 4 illustrates an exemplary processing system 400,
which can comprise one or more of the elements of FIG. 1.
Turning now to FIG. 4, an exemplary computing system 1s
illustrated that may comprise one or more of the components
of FI1G. 1. While other alternatives might be utilized, it will be
presumed for clarity sake that components of the systems of
FIG. 1 are implemented in hardware, software or some com-
bination by one or more computing systems consistent there-
with, unless otherwise indicated.

Computing system 400 comprises components coupled via
one or more communication channels (e.g., bus 401) includ-
ing one or more general or special purpose processors 402,
such as a Pentium®, Centrino®, Power PC®, digital signal
processor (“DSP”), and so on. System 400 components also
include one or more mput devices 403 (such as a mouse,
keyboard, microphone, pen, and so on), and one or more
output devices 404, such as a swtable display, speakers,
actuators, and so on, 1n accordance with a particular applica-
tion. (It will be appreciated that input or output devices can
also similarly include more specialized devices or hardware/
software device enhancements suitable for use by the men-
tally or physically challenged.)

10

15

20

25

30

35

40

45

50

55

60

65

8

System 400 also includes a machine readable storage
media reader 405 coupled to a machine readable storage
medium 406, such as a storage/memory device or hard or
removable storage/memory media; such devices or media are
turther indicated separately as storage 408 and memory 409,
which may include hard disk variants, floppy/compact disk
variants, digital versatile disk (“DVD”) variants, smart cards,
read only memory, random access memory, cache memory,
and so on, 1n accordance with the requirements of a particular
application. One or more suitable communication interfaces
407 may also be included, such as a modem, DSL, infrared,
RF or other suitable transceiver, and so on for providing
inter-device communication directly or via one or more suit-
able private or public networks or other components that may
include but are not limited to those already discussed.

Working memory 410 further includes operating system
(““O8”") 411 elements and other programs 412, such as one or
more ol application programs, mobile code, data, and so on
for implementing system 400 components that might be
stored or loaded therein during use. The particular OS or OSs
may vary in accordance with a particular device, features or
other aspects 1n accordance with a particular application (e.g.
Windows®, WindowsCE™, Mac™, [1nux, Unix or Palm™
OS varnants, a cell phone OS, a proprietary OS, Symbian™,
and so on). Various programming languages or other tools can
also be utilized, such as those compatible with C varnants
(e.g., C++, C#), the Java™ 2 Platform, Enterprise Edition
(“J2EE”) or other programming languages in accordance
with the requirements of a particular application. Other pro-
grams 412 may further, for example, include one or more of
activity systems, education managers, education integrators,
or interface, security, other synchronization, other browser or
groupware code, and so on, including but not limited to those
discussed elsewhere herein.

When implemented 1n software (e.g. as an application pro-
gram, object, agent, downloadable, servlet, and so on 1n
whole or part), a learning integration system or other compo-
nent may be communicated transitionally or more persis-
tently from local or remote storage to memory (SRAM, cache
memory, etc.) for execution, or another suitable mechanism
can be utilized, and components may be implemented 1n
compiled or iterpretive form. Input, intermediate or result-
ing data or functional elements may further reside more tran-
sitionally or more persistently 1n a storage media, cache or
other volatile or non-volatile memory, (e.g., storage device
408 or memory 409) 1n accordance with a particular applica-
tion.

Other features, aspects and objects of the invention can be
obtained from a review of the figures and the claims. Iti1sto be
understood that other embodiments of the mvention can be
developed and fall within the spirit and scope of the invention
and claims. The foregoing description of preferred embodi-
ments ol the present invention has been provided for the
purposes of 1llustration and description. It 1s not intended to
be exhaustive or to limit the invention to the precise forms
disclosed. Many modifications and variations will be appar-
ent to the practitioner skilled in the art. The embodiments
were chosen and described in order to best explain the prin-
ciples of the invention and 1ts practical application, thereby
enabling others skilled in the art to understand the ivention

for various embodiments and with various modifications that
are suited to the particular use contemplated. It 1s intended
that the scope of the imvention be defined by the following
claims and their equivalence.

US 7,996,837 B2

9

The mvention claimed 1s:

1. A method for recovering from an incomplete transaction,
the method comprising:

creating a dummy resource to represent a real connection

to a real resource and registering the dummy resource
with a Transaction Manager using a name that would
normally be used by said real connection to the real
resource before a server crash;

checking, by the Transaction Manager, the name of the

dummy resource to determine whether the name was
involved 1n an unresolved transaction; and

creating the real connection to the real resource and per-

forming recovery of the unresolved transaction using the
real connection 1f the Transaction Manager determines
that the name of the dummy resource was involved in the
unresolved transaction, otherwise 1f the Transaction
Manager determines that the name of the dummy
resource was not involved 1n the unresolved transaction,
avolding creation of said real connection; and

thereby providing a notification mechanism by which the

Transaction Manager 1s enabled to determine that the
recovery 1s needed,

wherein creating a dummy resource and registering the

dummy resource further includes:

causing the Transaction Manager to initiate recovery pro-

cessing by registering a non-existent Resource Adapter
with the Transaction Manager.

2. The method of claim 1, further comprising;

creating, by the Transaction Manager, the real connection

via a Resource Adapter to the real resource; and passing
a recover request to a Resource Manager associated with
the Resource Adapter.
3. The method of claim 1, wherein checking, by the Trans-
action Manager, the name of the dummy resource to deter-
mine whether the name was imvolved 1n an unresolved trans-
action includes:
checking a transaction log to determine whether there were
any unresolved transactions which involved a Resource
Manager of the same name.

4. The method of claim 1, further comprising:

detecting, by a Connector Container, the notification
mechanism 1ndicating that recovery 1s needed; and

creating said real connection via a Resource Adapter and
passing on a recover request to a Resource Manager
associated with the Resource Adapter.

5. A non-transitory machine-readable storage medium
storing one or more sequences of instructions for recovering
from an incomplete transaction, said instructions, when
executed by one or more processors, causing the one or more
processors to perform a set of steps including:

creating a dummy resource to represent a real connection

to a real resource and registering the dummy resource
with a Transaction Manager using a name that would
normally be used by said real connection to the real
resource before a server crash;

checking, by the Transaction Manager, the name of the

dummy resource to determine whether the name was
involved 1n an unresolved transaction; and

creating the real connection to the real resource and per-

forming recovery ol the unresolved transaction using the
real connection 1f the Transaction Manager determines
that the name of the dummy resource was involved 1n the
unresolved transaction, otherwise 1f the Transaction
Manager determines that the name of the dummy
resource was not involved in the unresolved transaction,
avoiding creation of said real connection; and

10

15

20

25

30

35

40

45

50

55

60

65

10

thereby providing a notification mechanism by which the
Transaction Manager 1s enabled to determine that the
recovery 1s needed,

wherein the instructions for carrying out the step of creat-

ing a dummy resource and registering the dummy
resource with a Transaction Manager further include
instructions for carrying out the step of:

causing the Transaction Manager to 1nitiate recovery pro-

cessing by registering a non-existent Resource Adapter
with the Transaction Manager.

6. The non-transitory machine-readable storage medium as
recited 1n claim 5, further comprising instructions for carry-
ing out the step of:

creating, by the Transaction Manager, the real connection

via a Resource Adapter to the real resource; and passing
a recover request to a Resource Manager associated with
the Resource Adapter.

7. The non-transitory machine-readable storage medium as
recited in claim S, wherein the 1nstructions for carrying out
the step of checking, by the Transaction Manager, the name of
the dummy resource to determine whether the name was
involved 1in an unresolved transaction further include mstruc-
tions for carrying out the step of:

checking a transaction log to determine whether there were

any unresolved transactions which mvolved a Resource
Manager of the same name.
8. The non-transitory machine-readable storage medium as
recited 1n claim 5, further comprising instructions for carry-
ing out the step steps of:
detecting, by a Connector Container, the notification
mechanism indicating that recovery 1s needed; and

creating the real connection via a Resource Adapter and
passing on a recover request to a Resource Manager
associated with the Resource Adapter.
9. A system for recovering {from an incomplete transaction,
the system comprising:
one or more processors; and
one or more stored sequences of mstructions which, when
executed by the one or more processors, cause the one or
more processors to perform a set of steps including:

creating a dummy resource to represent a real connection
to a real resource and registering the dummy resource
with a Transaction Manager using a name that would
normally be used by said real connection to the real
resource before a server crash;

checking, by the Transaction Manager, the name of the

dummy resource to determine whether the name was
involved 1n an unresolved transaction; and

creating the real connection to the real resource and per-

forming recovery ol the unresolved transaction using the
real connection 1f the Transaction Manager determines
that the name of the dummy resource was involved 1n the
unresolved transaction, otherwise 1f the Transaction
Manager determines that the name of the dummy
resource was not involved 1n the unresolved transaction,
avoiding creation of said real connection; and

thereby providing a notification mechanism by which the

Transaction Manager 1s enabled to determine that the
recovery 1s needed,

wherein creating a dummy resource and registering the

dummy resource further includes:

causing the Transaction Manager to initiate recovery pro-

cessing by registering a non-existent Resource Adapter
with the Transaction Manager.

10. The system of claim 9, further comprising nstructions
processed by the one or more processors to perform a step of:

US 7,996,837 B2

11

creating, by the Transaction Manager, the real connection
via a Resource Adapter to the real resource; and passing
a recover request to a Resource Manager associated with
the Resource Adapter.

11. The system of claim 9, wherein checking, by the Trans-
action Manager, the name of the dummy resource to deter-
mine whether the name was imnvolved 1n an unresolved trans-
action further includes:

checking a transaction log to determine whether there were

any unresolved transactions which involved a Resource

Manager of the same name.

5

12

12. The system of claim 9, further comprising instructions

processed by the one or more processors to perform the steps

of:

detecting, by a Connector Container, the notification
mechanism indicating that recovery 1s needed; and

creating said real connection via a Resource Adapter and
passing on a recover request to a Resource Manager

associated with the Resource Adapter.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,996,837 B2 Page 1 of 1
APPLICATION NO. : 11/416906

DATED : August 9, 2011

INVENTOR(S) : Chesebro et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 10, line 30, before “steps of”” delete “step”.

Signed and Sealed this
Fifteenth Day of November, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

