US007992088B2
a2y United States Patent (10) Patent No.: US 7.992.088 B2
Rose 45) Date of Patent: Aug. 2, 2011
(54) METHOD AND SYSTEM FOR COPY AND 2002/0035579 Al* 3/2002 Wangetal.c......... 707/513
2002/0147748 Al1* 10/2002 Huangetal. 707/517
PASTE TECHNOLOGY FOR STYLESHEET 2003/0167254 Al* 9/2003 Suetal.ooooooeiiinn 707/1
EDITING 2005/0021513 Al* 1/2005 Vedulaetal. 707/3
‘ 2009/0089657 Al* 4/2009 Davisc.oceeeevviiinnnnnnn, 715/234
(75) Inventor: Kiristoffer H. Rose, Poughkeepsie, NY 2010/0037130 Al* 2/2010 Jakubowski 715/235
(US) FOREIGN PATENT DOCUMENTS
(73) Assignee: International Business Machines WO 2414122 6/1994
COI‘pOI‘ﬂtiOH, AI'IIIOI]I(, NY (US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Emmanuel Pietriga, VXT: a visual approach to XML transforma-
patent is extended or adjusted under 35 tions, 2001, ACM Press, pp. 1-10.%
(21) Appl. No.: 10/095,737 Primary Iixaminer — Doug Hutton
_ Assistant Ixaminer — Quoc A Iran
(22) Tiled; Mar. 12, 2002 (74) Attorney, Agent, or Firm — Steven M. Greenberg, Esq.;
(65) Prior Publication Data Carey, Rodriguez, Greenberg & Paul
US 2003/0177449 Al Sep. 18, 2003 (57) ABSTRACT
A method (and structure) for editing elements of a first docu-
(1) Int. CL. ment based on elements of a second document, wherein the
GOOF 17/00 (2006.01) clements of the first have a template structure with each
(52) US.Cl ... 715/724; 715/234; 715/236; 715/255 template including at least one match condition, the match
(58) Field of Classification Search 715/523, condition being an expression in the template that describes a
715/513, 724, 234-239; 707/10, 513, 101, subset of nodes that are matched in a tree structure, and
707/514, 1 wherein the elements of the second document have a tree
See application file for complete search history. structure to which this matching 1s applicable, including com-
paring a first user-selected fragment of an element from the
(56) Retferences Cited second document with a second user-selected fragment of an
clement from the second document to determine if a match
U.S. PATENT DOCUMENTS condition exists that describes the relation between templates
5,926,806 A 7/1999 Marshall etal. 707/3 in the first document for which the match condition matches
g%ggiﬁ ; gi) 13? 388 é gol_lgl etal. ... ;}2? gg the two user-selected fragments of the second document and
502, atsley ..ol g : "
656433652 B2 ::I{ 11/2003 Helgeson et al‘ ““““““““ 707/10 permlt:tlng at leaSt One Of a plura;llty Of predEﬁHEd edilt:}ng
6.678.867 B2* 1/2004 Fong etal. 715/573 operations on the first document 1t such a match condition
6,772,165 B2* 82004 O’Carroll 707/101 exists.
2001/0018696 Al* 8/2001 Hometal. 707/513
2001/0032218 A1 10/2001 Huang 18 Claims, 3 Drawing Sheets
20
\}wfﬂé_er Interaction -
‘(/.:"‘
f"{ .
S LI ::;
| l TP
\ View |

I

I\

US 7,992,088 B2
Page 2

OTHER PUBLICATIONS

Roisin et al. “Implementing the Cut and Paste Operation 1n a Struc-
tured Editing System” Published Aug. 19, 1996 (WWW document)
pp. 1-18.%

Becker, [xs1] merging XML documents <eom=>, Jan.31, 2001, pp. 1-2
http://www.xsit.com/html/xsl-l1st/2001-01/msg0153 .html.

Leslie, “Transforming documentation from the XML doctypes used
for the apache website to DITA”, Oct. 21, 2001, ACM Press, New

York, pp. 157-164.
Villard, “Authoring Transformations by Direct Manipulation for
Adaptable Multimedia Presentations”, ACM Press, 2001, pp. 125-

134.

* cited by examiner

US 7,992,088 B2

Sheet 1 of 3

Aug. 2, 2011

U.S. Patent

GBS

Tl ll AT ﬁ:. Llﬂll. -. -
D

e e

. .___
._.._.._____..__..._a ._...“__n.._..“
ey aate!
T L S ey D

....... e A e e T

L
ke

L]
e,
o

-

'I:]

wh

w
\.f-h:'g_:f‘*

4 -

b

W

AN,

LY
I.':'

' an L L] -
’ . [4 i M

i

SN

—User Interaction —

[!

AL
L

ey

U.S. Patent Aug. 2, 2011 Sheet 2 of 3 US 7,992,088 B2

200

Ly Y e P = I Pl N iy

o — oy g P o P L= RPRL A - et e e m T YA T A I L ey e e S ol A U L B el o N AT i g o MR DU
g .

i

j e e L el e T e A T S B TR e L L, T, N A TR T S N T N T I S T Tt M T T S e yagn ey e e o T
e iy

M SEC
{ ﬁF M ELOND Docymear-

> Do

MATeH A _ SOY . ,
- ConDITIONS ‘ éﬁﬂ/ﬁ’%
LM hRIING

PVE’
U JIVPu

Mob ey FpsT
bDecument

Fleuke 2B

US 7,992,088 B2

Sheet 3 of 3

Aug. 2, 2011

U.S. Patent

US 7,992,088 B2

1

METHOD AND SYSTEM FOR COPY AND
PASTE TECHNOLOGY FOR STYLESHEET
EDITING

CROSS-REFERENCE TO RELAT
APPLICATIONS

s
w

The present Application 1s related to the following co-
pending applications:

U.S. patent application Ser. No. 10/095,827, filed on Mar.
12,2002, to Adler et al., entitled “METHOD AND SYSTEM
FOR STYLESHEET-CENTRIC EDITING™;

U.S. patent application Ser. No. 10/095,797, filed on Mar.
12,2002, to Adler et al., entitled “METHOD AND SYSTEM
FOR STYLESHEET RULE CREATION, COMBINATION,
AND REMOVAL TECHNOLOGY™; and

U.S. patent application Ser. No. 10/096,379, filed on Mar.
12,2002, to Clarke et al., entitled “METHOD AND SYSTEM
STYLESHEET EXECUTION INTERACTIVE FEED-
BACK”™,

all assigned to the present assignee, and all incorporated
herein by reference.

1]

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to a method of
providing a familiar word processor copy-and-paste para-
digm for editing template-based programs that transform tree
structures such as documents 1n the eXtensible Mark-up Lan-
guage (XML) format. As an exemplary embodiment, an
XSLT (eXtensible Style Language Transformations)
stylesheet editor incorporates this copy-and-paste method as
one of 1ts additional features.

2. Description of the Related Art

A conventional method of deploying an XML processor
written as an XSL'T stylesheet 1s shown 1n overview in FIG. 1.
An XSLT stylesheet 10 includes a set of rules that describe
how to process elements of an input XML document 11 to
transform these into elements of the XML output document
12. The actual transformation 1s executed by an XSLT-based
transformation engine 13 that reads the rules of the XSLT
stylesheet and executes the corresponding transformation of
11 to 12. In this way the stylesheet 10 and transformation
engine 13 together form an XML processor whose operation
1s Tully defined by the XSLT stylesheet, 1.e., each rule of the
stylesheet 10 matches one or more elements in the input
document and describes the actions to take and the output to
produce when a matching element 1s found.

An XSLT stylesheet expresses directly how a source XML
1s transformed 1nto a result XML for presentation or further
processing. Execution of an XSLT stylesheet 1s non-sequen-
tial. It 1s not like a program written 1n conventional program-
ming languages such as C, C++, Java, Basic, FORTRAN,
Cobol, etc. This, however, makes the development of XSLT
stylesheets very different from development of XML pro-
cessing programs in conventional programming languages
such as C, C++, Java, or Visual Basic. It has a very different
execution paradigm than those to which they are accustomed.

This means that tools for understanding execution of an
XSLT stylesheet can be very different than similar tools for
sequential programming languages, such as “debuggers.”
The major task 1 developing XSLT stylesheets 1s structuring
the stylesheet into rules that fit the source data to be pro-
cessed. Creating or changing the rules 1n an XSLT stylesheet
1s difficult and complex because of the need for the user to

10

15

20

25

30

35

40

45

50

55

60

65

2

understand the relationship between the input document, the
stylesheet rules and the output document.

Current editors for XSLT stylesheets fail to provide fea-
tures and tools that facilitate editing of specific syntax-based
documents such as the tree structure of XML. More specific
to the present mvention, current XSLT stylesheet editors fail
to provide a copy-and-paste feature for editing of an XSLT
stylesheet based on reorganisation of visual elements of the
XML output structure.

SUMMARY OF THE INVENTION

In view of the foregoing problems, drawbacks, and disad-
vantages of the conventional systems, it 1s an object of the
present invention to provide a structure (and method) that
incorporates the familiar word processor copy-and-paste
paradigm for editing template-based programs that transform
tree structures such as eXtensible Mark-up Language (XML)
documents.

It 1s, therefore, an object of the present invention to teach a
structure and method for copy-and-paste editing operations in
a template-based environment.

It 1s another object of the present invention to teach an
exemplary embodiment of this copy-and-paste method as
incorporated 1nto an XSLT stylesheet editor.

To achieve the above goals and objectives, a method (and a
structure and a signal-bearing medium) 1s disclosed herein for
editing elements of a first document based on elements of a
second document, wherein the elements of the first have a
template structure with each template including at least one
match condition, the match condition being an expression in
the template that describes a subset of nodes that are matched
1n a tree structure, and wherein the elements of the second
document have a tree structure to which this matching is
applicable, including comparing a first user-selected frag-
ment of an element from the second document with a second
user-selected fragment of an element from the second docu-
ment to determine 11 a match condition exists that describes
the relation between templates in the first document for which
the match condition matches the two user-selected fragments
of the second document and permitting at least one of a
plurality of predefined editing operations on the first docu-
ment 11 such a match condition exists.

The XSLT editor, as described herein and the copending
applications listed above, provides new ways of looking at an
XSTL stylesheet that allows for better understanding of the
relationship between the input document 11, the stylesheet
rules 10, and the output document 12.

More specifically, as shown 1n FIG. 2A, the new editor
provides a stylesheet centric XSL editor 20 1n which a user
interacts with a GUI that includes a WY SIWY G (“what you
see 1s what you get”) output result view 22 of the output
document 12 as executed by transformation engine 13. The
user also can view a sample view 21 of the input XML source
11. The editor 20 1s based on a model 23 which 1s a logical
construct of the underlying XSL stylesheet 10.

Unlike the conventional paradigm described earlier for
editing XSL stylesheets, the user does not have to directly
modily the text of the stylesheet file. Instead, the user inter-
acts with the stylesheet through stylized GUI representations
21, 22, 24 of the underlying XML documents and the model
23. The present invention provides a useful additional feature
to this basic editor by making it possible for users to employ
the familiar copy-and-paste paradigm within a view of a
generated stylesheet result to effect editing within the used
stylesheet.

US 7,992,088 B2

3

Although the present invention was developed specifically
tor the XSL'T editing environment, there 1s no intent to confine
its applicability thereto. It can be used as an editing tool on
any “template-based” language that processes structured data
such as XML. An example of a different template-based
programming language for transforming tree-structured data
such as XML 1s XDuce.

The present invention combines well with the inventions of
the separately filed disclosures to provide synergy unachiev-
able 1n 1solation. Concerning U.S. patent application Ser. No.
10/096,379 entitled “Method and System for Stylesheet
Execution Interactive Feedback Technology™, the user inter-
action 1s much improved when the result nodes that will be
alfected by a Cut or Copy, as described by the present inven-
tion, are highlighted ina WY SIWY G fashion, as described by
that invention. Concerning U.S. patent application Ser. No.
10/095,7977 entitled “Method and System for Stylesheet Rule
Creation, Combination, and Removal Technology”, the
“refinement” technique of that invention provides a very use-
tul way to restrict the amount of matenial that1s Cut or Copied
by the present invention. Concerning U.S. patent application
Ser. No. 10/095,827 entitled “Method and System for
Stylesheet-Centric Editing”, the Cut, Copy, and Paste opera-
tions of the present invention fit well with the basic editor
described therein.

The present invention provides the familiar wordprocessor
copy-and-paste paradigm 1nto the editing process for “tem-
plate-based” programming languages that transform tree
structures such as eXtensible Mark-up Language (XML)
documents This feature, therefore, greatly enhances the edit-
ing of programs, such as XSL or XSLT stylesheets, 1n these
“template-based” environments.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
will be better understood from the following detailed descrip-
tion of a preferred embodiment of the 1invention with refer-
ence to the drawings, 1n which:

FI1G. 1 shows an overview of XML transiormation using an
XSL stylesheet and the conventional XSL editing process;

FIG. 2A shows an overview of a basic XSL editor into
which the present invention 1s exemplarily incorporated;

FI1G. 2B 1llustrates a flowchart for a preferred embodiment
of the present invention;

FI1G. 3 illustrates an exemplary hardware/information han-
dling system 300 for incorporating the present invention
therein; and

FIG. 4 illustrates a signal bearing medium 400 (e.g., stor-
age medium) for storing steps of a program ol a method
according to the present invention.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT OF THE INVENTION

Referring now to the drawings, and more particularly to
FIG. 2A, an exemplary embodiment of the present invention
will now be described as being an editing tool that extends the
familiar copy-and-paste paradigm common to most word
processors 1nto the editing environment of template-based
programs for transforming tree-structured syntax such as
XML.

An XSLT stylesheet transforms source XML to result
XML. The structure and content of the result are determined
by the source as interpreted, sampled, or elaborated by the
stylesheet.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Source-1+Stylesheet=—=>Result-1

Source-2+Stylesheet=—=>Result-2

An XML contains elements, attributes, and text. A
stylesheet contains rules. Rules match elements, attributes,
and/or text 1in the source. When a rule matches, 1t executes 1n
context of the matched source. It produces some result XML
influenced by that context.

XML may be represented as a “tree” of “nodes.” Each node
of the tree 1s an element or text. The node at the top of the tree

1s the “root.”” All of the nodes connected to the root are the
“children” of the root, which is their “parent.”

o0t

/\

first-child second-child

/ N\

“this 1s a text child” child

An XSLT stylesheet 1s 1tself written as XML. Each rule 1n
the stylesheet 1s a node 1n a tree.

stylesheet

/ N\

first-rule second-rule

match condition match condition

replacement-subtree replacement-subtree

Each rule 1s applicable whenever processing reaches a
source XML node that matches its “match condition”; default
rules are defined by the environment such that all nodes are
matched. Match conditions of XSLT are expressed in the

W3C XPath standard language.

Cut, Copy, and Paste in Stylesheet Output

Traditional cut, copy, and paste operations involve the fol-
lowing steps. For cut or copy operations, the data that 1s

selected 1s copied over 1nto a special “cut butfer”, and for cut
it 1s then deleted from the edited document. For a paste
operation, a copy of what 1s in the “cut bulfer” 1s inserted at
the location of the paste cursor.

The present mvention describes what to store 1n the “cut
buifer” and how to interpret it on paste as a stylesheet modi-
fication to achieve an effect similar to copy and paste 1n the
result XML. Vanant cut and paste situations are dealt with
alterwards.

Belfore enumerating the necessary cases, below 1s given
some definitions relative to the present mvention.

Convention: Any word prefixed with “xsl:” below refers to
an 1nstance of the element of that name 1n the XSLT specifi-
cation.

Definition: A match condition 1s an expression that
describes a subset of all the nodes of the XML sources that are
being processed; 1n that case it 1s said that those source nodes
match the match condition. A match condition corresponds to
the nodes matching an XSLT “LocationPathPattern” match
pattern or the nodes selected by an XPath “AbsoluteLocation-
Path™ node set expression.

Definition: Given two match conditions MC1 and MC2,
the relocation from MC1 to MC2 1s, 1f 1t exists, the XPath
node “RelativelocationPath” (or just “selection”) expression
S that from the source nodes matching MC1 builds the node

US 7,992,088 B2

S

set of the source nodes matching MC2. Conversely 1t can be
said that MC2 1s the result of MC1 relocated by S.

Definition: A template fragment 1s a subtree within the
template body of an xsl:template.

Definition: The match condition of a template or template
fragment 1s defined recursively over XSLT as follows:

For xsl:template rules with a match attribute XPath pattern,
it 1s a match condition describing the nodes that the pattern
matches 1n the source XML.

For any xsl:construction with a select or test attribute with
a RelativeLocationPath XPath node set expression, the match
condition 1s the match condition of the contaiming construc-
tion relocated by the select or test XPath.

For any xsl:construction with a select or test attribute with
an AbsoluteLocationPath XPath node set expression, the
match condition 1s the match condition corresponding to the
AbsoluteLocationPath.

For any other XSLT template fragment, 1t 1s the match
condition of the parent template fragment.

The logic underlying the copy-and-paste actions of the
present invention are described below.

Cut Action

Cut 1s possible with the following state information:

a. A selected stylesheet template fragment; and

b. A selected set of source nodes that must all match the
match condition of the stylesheet template fragment.

On cut, a cut-buiter structure 1s created with information
needed to make 1t possible to create a template fragment that
recreates the XML result nodes generated by the selected
template fragment.

This 1s achieved by storing the following information 1n the
cut-butfer:

a. A proto-paste which 1s a copy of the selected stylesheet
template fragment; and

b. An origin match condition describing the selected set of
source nodes.

After the cut-bufter structure has been created, the selected
stylesheet template fragment 1s removed from the stylesheet.
Copy Action

Copy 1s possible with the following state information:

a. A selected stylesheet template or template fragment; and

b. A selected set of source nodes that must all match the
match condition of the stylesheet template fragment.

On copy a cut-buller structure 1s created with information
needed to make 1t possible to create a template fragment that
recreates a copy of the XML result nodes generated by the
selected template or template fragment. This 1s achieved by
storing the following information in the cut-butfer:

a. A proto-paste depending on the kind of selected template
or template fragment:

1. For an xsl:template rule with a match attribute the proto-

paste 1s an xsl:apply-templates with a select="""
attribute;

10

15

20

25

30

35

40

45

50

6

11. For all other template fragments the proto-paste 1s a copy

of the entire fragment;

b. And, the origin match condition describing the selected
set of source nodes.

Paste Action

Paste 1s possible with the following state information:

a. A cut-buffer structure as above;

b. A paste location “place-holder’” 1n a stylesheet template
body (such as identified by a “cursor™); and

c. A selected set of source nodes that must all match the
match condition of the stylesheet template of template frag-
ment containing the place-holder.

On paste the cut-buffer structure 1s used to insert at the
paste location a template fragment that creates a copy of the
XML result nodes generated by the originally cut or copied
template or template fragment. Specifically a recursive copy
of the proto-paste 1s mserted into the paste location where
every select attribute of each xsl:apply-templates, xsl:for-
cach, xsl:copy-of xsl:value-of, and xsl:copy, 1s adjusted such
that the match condition obtained by the origin match condi-
tion relocated by the original select attribute Xpath 1s the
same as the match condition obtained by the destination
match condition relocated by the replacement select attribute
Xpath.

FIG. 2B shows an exemplary tflowchart 200 of the process
described above. In step 201 a user-input indicates which rule
on the stylesheet 1s to be modified by a cut, copy, or paste
editing operation. In step 202 another user input provides a
fragment from either the XML source or result document.
The selected fragment 1s compared to the match condition of
the selected stylesheet template 1n step 203. If there 1s no
match, the editor can generate an appropriate warning and
allow the user to make another selection (steps 204, 205). If
there 1s amatch, the editor then recerves 1n step 206 a selection
of which editing operation 1s to be executed and performs the
selected operation to the stylesheet 1n step 207.

Remarks

The effect of the above 1s that when the user selects a few
nodes 1 a source XML as well as a template or template
fragment that 1s processing those nodes then they can use
Copy and Paste to create more applications of the rule in the
stylesheet corresponding to more occurrences of the gener-
ated nodes 1n the result XML, and 1t they select a template
fragment that 1s processing those nodes, then they can use Cut

and Paste to move the generation of the result nodes to a
different location 1n the result XML.

EXAMPLES

Following are examples which 1llustrate the concept of the
present invention. An example source XML document 1s first
given below.

<7?xml version="1.0"77>

<flight-list>

<flight>
<number>742</number=>

<leg-list>
<leg>

<dep><city

code="PVD>Providence</city><time>9:24</time></dep>

<arr><city code="ORD”>Chicago</city><time>10:38</time></arr>
<remark>Short transfer time. </remark>

</leg>
<leg>

US 7,992,088 B2

-continued

<dep><city
code="0ORD’>Chicago</city><time>11:14</time></dep>
<arr><city code="SJC”>San Jose</city><time>12:32</time></arr>
</leg>
</leg-list>
</flight>
<flight>
<number>875</number>
<leg-list>
<leg>
21— -- <dep><city code="NRT’>Tokyo</city><time>16:55</time></dep>
<arr><city code="BKK”>Bangkok</city><time>21:30</time></arr>
</leg>
</leg-list>
</flight>
<flight>
<number>904</number>
<leg-list>
<leg>
<dep><city code="JFK”>New
York</city><time>20:453</time></dep>
<arr><city code="LHR”>London</city><time>08:35 </time></arr>
</leg>
</leg-list>
</flight>
<flight>
<number>979</number>
<leg-list>
<leg>
<dep><city code="LHR”>London</city><time>1&8:00</time></dep>
<arr><city code="JFK”>New York</city><time>20:50</time></arr>
</leg>
</leg-list>
</flight>
</flight-list>

Example 1
35
Selecting the “number” node 10 (with 742) 1n the sample
source XML and the <xsl:template match="number”> . . .
</xsl:template> template 11 1n the following stylesheet:

<7xml version="1.0" encoding="ut{-87>

<xsl:style sheet
xmlns="http://www.w3.org/1999/xhtml”
xmlns:xshz="http://www.w3.0rg/1999/XSL/Transform”™
version="1.0"">
<xsl:template match="/tflight-list”>

<html>
<head>
<title>Flights</title>
</head>
<body>
<p~
<h1>Flights: </h1>
<p>
<xsl:apply-templates/>
<h5>Summary</h5>
—————————————————————————— 13
</body>
</html>
</xsl:template>
<xsl:template match="number’> = —--mmmmmmee- 11

<xsl:apply-templates/>
</xsl:template>
</xsl:stylesheet>

enables (just) the copy action. Activating copy and then
selecting the thght-list source node 12 and a paste location 13
(just after the <h5>Summary</h3> 1n the stylesheet) make 65
the paste action active. Activating paste changes the
stylesheet to:

US 7,992,088 B2

<7xml version="1.0" encoding="ut{-87>
<xsl:style sheet
xmlns="http://www.w3.org/1999/xhtml”
xmlns:xshz="http://www.w3.0rg/1999/XSL/Transform”™
version="1.0">
<xsl:template match="/tflight-list”>
<html>
<head>
<title>Flights</title>
</head>
<body>
<p~
<h1>Flights: </h1>
<p~
<xsl:apply-templates/>
<h5>Summary</h5>

<xsl:apply-templates select="flight/number’/> -------------- 14

</body>
</html>
</xsl:template>
<xsl:template match="number’>
<xsl:apply-templates/>
</xsl:template>
</xsl:stylesheet>

with the effect 14 of inserting just the numbers under t

1C

summary heading. The select="tlight/number’ attribute 1s t

1C

relocation from the destination source node’s match condi-
tion that can be written as the XPath/flight-list to the original
selection’s match condition that can be written as the XPath/

tlight-list/flight/number.

Example 2

If imnstead the stylesheet were:

<7xml version="1.0" encoding="utf{-8”7>
<xsl:style sheet
xmlns="http://www.w3.org/1999/xhtmI”
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform”
version="1.0">
<xsl:template match="/tlight-list>
<html>
<head>
<title>Flights</title>
</head>
<body>
<p~
<hl>Flights: </hl>
<p~
<xsl:apply-templates/>
<h5>Summary</h5>
<xsl:for-each select="flight’>

<p><xsl apply-templates select="number’/>; ----------
<xsl:apply-templates select="legs/leg[1]/dep/city’/>to
<xsl:apply-templates select="legs/leg[last()]/arr/city’/></p>

</xsl:for-each>
<h5>Arrival cities</h5> —--mmmmmmm e 20

</xsl:template>
</xsl:stylesheet>

then one way to {ill out “Arrival cities” 20 1s to select a city
source such as Tokyo 21 (which is under a dep under a last leg
on the XML source) along with the <xsl:apply-templates
select="legs/leg|last()]/arr/city’/> stylesheet fragment 22.
Then we can copy and then select flight-list and a paste g5
location 23 1n the empty <p></p> to make paste change the

stylesheet to (see item 24 specifically):

25

30

60

10

US 7,992,088 B2
11

<?7xml version="1.0" encoding="utf-8’7>
<xsl:stylesheet
xmlns="http://www.w3.0rg/1999/xhtml|”
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform”
version="1.0"">
<xsl:template match="/flight-list”>
<html>
<head>
<title>Flights</title>
</head>
<body>
<p>
<h1>Flights: </h1>
<fp>
<xsl:apply-templates/>
<h5>Summary</h5>
<xsl for-each select="tlight’>
<p><xsl:apply-templates select'number’/>:
<xsl:apply-templates select="legs/leg[1]/dep/city’/> to
<xsl:apply-templates select="legs/leg[last()]/arr/city’/></p>
</xsl:for-each>
<h5>Arrival cities</h5>
24-mmmmmmmme <p><xsl:apply-templates select="flight/legs/leg[last()]/ arr/city’/></p>
</body>
</html>
</xsl:template>

</xsl:stylesheet>

where flight/legs/leg[last()]/arr/city 1s the relocation from
/tlight-list to /thight-list/tlight/legs/leg[last()]/arr/city. 30

Example 3

If the stylesheet were:

<7xml version="1.0" encoding="ut{-8"7>
<xsl:stylesheet
xmlns="http://www.w3.org/1999/xhtml”
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform™
version="1.0"">
<xsl:template match="/tlight-list”>
<html>
<head>
<title>Flights</title>
</head>
<body>
<p~
<hl1>Flights: </h1>
</p>
<xsl:apply-templates/>
<h5>Summary</h5>
<xsl:for-each select="flight’>
<p><xsl:apply-templates select="number’/>:
<xsl apply-templates select="legs/leg[1]/dep/city’/>to
<xsl:apply-templates select="legs/leg[last(|/arr/city’/></p>
</xsl:for-each>
<h5>Arrival cities</h5>
<p><xsl:for-each select="flight/legs/leg[last()]/arr’> --------- 30
</xsl :for-each></p>
</body>
</html>
</xsl:template>
<xsl stylesheet>

then the same output 1s achieved by a Copy with the same
source and stylesheet selections as before followed by a Paste
with the same source but the paste location 30 1n <xsl:for- s
cach select="flight/legs/leg[last()]/arr’>. Now the produced
stylesheet 1s (see 1item 31):

12

US 7,992,088 B2

13

<7xml version="1.0" encoding="ut{-87>
<xsl:stylesheet
xmlns="http://www.w3.org/1999/xhtml”
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform”™
version="1.0"">
<xsl:template match="/flight-list”>
<html>
<head>
<title>Flights</title>
</head>
<body>
<p~
<hl>Flights: </hl>
</p>
<xsl:apply-templates/>
<h5>Summary</h5>
<xsl:for-each select="flight’>

<p><xsl:apply-templates select="number’/>:
<xsl:apply-templates select="legs/leg[1|/dep/city’/>to

14

<xsl:apply-templates select="legs/leg[last()]/arr/city’/></p>

</xsl:for-each>

<h5>Arrival cities</h5>

<p></p>

<p><xsl:for-each select="flight/legs/leg[last()]/arr’>

<xsl:apply-templates selecP="city’/> -------mmmmmumm- 31

</xsl:for-each></p>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

Exemplary Hardware Implementation

FIG. 3 illustrates a typical hardware configuration of an
information handling/computer system in accordance with
the invention and which pretferably has at least one processor
or central processing unit (CPU) 311.

The CPUs 311 are mterconnected via a system bus 312 to
a random access memory (RAM) 314, read-only memory
(ROM) 316, mput/output (I/O) adapter 318 (for connecting
peripheral devices such as disk units 321 and tape drives 340
to the bus 312), user interface adapter 322 (for connecting a
keyboard 324, mouse 326, speaker 328, microphone 332,
and/or other user interface device to the bus 312), a commu-
nication adapter 334 for connecting an information handling
system to a data processing network, the Internet, an Intranet,
a personal area network (PAN), etc., and a display adapter 336
for connecting the bus 312 to a display device 338 and/or
printer 339 (e.g., a digital printer or the like).

In addition to the hardware/software environment
described above, a different aspect of the invention includes a
computer-implemented method for performing the above
method. As an example, this method may be implemented in
the particular environment discussed above.

Such a method may be implemented, for example, by oper-
ating a computer, as embodied by a digital data processing
apparatus, to execute a sequence ol machine-readable
instructions. These instructions may reside 1n various types of
signal-bearing media.

Thus, this aspect of the present invention 1s directed to a
programmed product, comprising signal-bearing media tan-
gibly embodying a program of machine-readable instructions
executable by a digital data processor incorporating the CPU
311 and hardware above, to perform the method of the mnven-
tion.

This signal-bearing media may include, for example, a
RAM contained within the CPU 311, as represented by the
fast-access storage for example. Alternatively, the instruc-
tions may be contained 1n another signal-bearing media, such

30

35

40

45

50

55

60

65

as a magnetic data storage diskette 400 (FIG. 4), directly or
indirectly accessible by the CPU 311.

Whether contained in the diskette 400, the computer/CPU
311, or elsewhere, the 1instructions may be stored on a variety
of machine-readable data storage media, such as DASD stor-
age (e.g., a conventional “hard drive” or a RAID array),

magnetic tape, electronic read-only memory (e.g., ROM,
EPROM, or EEPROM), an optical storage device (e.g. CD-

ROM, WORM, DVD, digital optical tape, etc.), or paper
punch” cards, In an 1llustrative embodiment of the invention,
the machine-readable instructions may comprise software
object code, compiled from a language such as “C”, eftc.
While the invention has been described 1n terms of a single
preferred embodiment, those skilled 1n the art will recognize
that the invention can be practiced with modification within
the spirit and scope of the appended claims.

Having thus described my imnvention, what I claim as new
and desire to secure by Letters Patent 1s as follows:
1. A computer-implemented method of editing elements of
a first document based on elements of a second document,
said elements of said first document having a template struc-
ture, each said template comprising at least one match con-
dition, said match condition being an expression 1n said tem-
plate that describes a subset of nodes that are matched in a tree
structure, said second document containing a tree structure to
which said matching 1s applicable, comprising:
comparing a first selected fragment of an element from said
first document with a second selected fragment of an
clement from said second document to determine if a
match condition exists that describes the relation
between templates 1n said first document, said match
condition matching said first selected fragment and said
second selected fragment;
upon said match condition existing, receiving a predefined
editing operation from a user; and
performing the predefined editing operation by modifying
the template structure of the elements of the first docu-
ment, wherein the performing comprises:

US 7,992,088 B2

15

responsive to receiving a copy operation from the user,
determining 11 the first selected fragment 1s a template
rule with a match attribute;

i the first selected fragment 1s a template rule with a
match attribute, storing 1n a cut buffer a apply-tem-
plates rule with a select attribute and an origin match
condition describing the second selected fragment;

if the first selected fragment 1s not a template rule with a
match attribute, storing in a cut butfer a copy of the
first selected fragment and an origin match condition
describing the second selected fragment.
2. A computer having an editor for editing elements of a
first document based on elements of a second document, said
clements of said first document having a template structure,
cach said template comprising at least one match condition,
said match condition being an expression 1n said template that
describes a subset of nodes that are matched 1n a tree struc-
ture, said second document containing a tree structure to
which said matching 1s applicable, said editor comprising;:
an input module for recerving a first selected fragment from
said first document and a second selected fragment from
said second document:
a comparator for comparing a first selected fragment of an
clement from said second document with a second
selected fragment of an element from said second docu-
ment to determine 1f a match condition exists that
describes the relation between templates 1n said first
document, said match condition matching said first
selected fragment and said second selected fragment;
an mput module for recerving a predefined editing opera-
tions from a user upon said match condition existing;
and
an enabling module for performing the predefined editing
operation by modifying the template structure of the
elements of the first document, wherein
said enabling module further
determines 1f the first selected fragment 1s a template
rule with a match attribute responsive to the mput
module receiving a copy operation from the user;

stores 1n a cut buffer a apply-templates rule with a select
attribute and an origin match condition describing the
second selected fragment stores 1f the first selected
fragment 1s a template rule with a match attribute; and

stores 1n a cut buliler a copy of the first selected fragment
and an origin match condition describing the second
selected fragment 11 the first selected fragment 1s not a
template rule with a match attribute.

3. A computer program product including computer-read-
able storage medium having stored therein computer usable
program code for editing elements of a first document based
on elements of a second document, said elements of said first
document having a template structure, each said template
comprising at least one match condition, said match condition
being an expression 1n said template that describes a subset of
nodes that are matched 1n a tree structure, said second docu-
ment containing a tree structure to which said matching 1s
applicable, the computer usable program code, which when
executed by a computer hardware device, causing the com-
puter hardware device to perform

comparing a first selected fragment of an element from said

first document with a second selected fragment of an
clement from said second document to determine if a
match condition exists that describes the relation
between templates in said first document, said match
condition matching said first selected fragment and said
second selected fragment;

10

15

20

25

30

35

40

45

50

55

60

65

16

upon said match condition existing, receving a predefined

editing operation from a user; and

performing the predefined editing operation by modifying

the template structure of the elements of the first docu-
ment

determining if the first selected fragment 1s a template rule

with a match attribute responsive to the input module
receiving a copy operation from the user;
storing 1n a cut buifer a apply-templates rule with a select
attribute and an origin match condition describing the
second selected fragment stores if the first selected frag-
ment 1s a template rule with a match attribute; and

storing 1n a cut butfer a copy of the first selected fragment
and an origin match condition describing the second
selected fragment 11 the first selected fragment 1s not a
template rule with a match attribute.

4. A computer-implemented method {for editing a
stylesheet, the stylesheet including rules, each rule having a
stylesheet match condition, comprising;:

receving a selection of a first template fragment of the

stylesheet, the first template fragment having a first
stylesheet match condition;

receving a selection of a first source node from a source

document;

storing, 1n a cut buffer of a computer hardware device, a

copy of the first template fragment,

storing, 1n the cut butler, an origin match condition describ-

ing the first source node, and

upon the first stylesheet match condition matching the

origin match condition
performing a predefined editing operation upon the
stylesheet, wherein

the source document includes a tree structure having a

plurality of nodes.

5. The method of claim 4, wherein

the predefined editing operation includes removing, {from

the stylesheet, the first template fragment.

6. The method of claim 3, further comprising

recerving a selection of a second template fragment of the

stylesheet, the second template fragment having a sec-
ond stylesheet match condition;

recerving a selection of a second source node from a source

document;

upon the second stylesheet match condition matching a

second origin match condition describing the second

source node

iserting, mto the stylesheet and at a location of the
second template fragment, a third template fragment
configured to create a second result node correspond-
ing to a first result node created by the first template
fragment, wherein

the first result node 1s created by transforming the first

source node with the first template fragment, and

the second result node 1s created by transforming the sec-

ond source node with the third template fragment.

7. The method of claim 4, further comprising

recerving a selection of a second template fragment of the

stylesheet, the second template fragment having a sec-
ond stylesheet match condition;

recerving a selection of a second source node from a source

document;

upon the second stylesheet match condition matching a

second origin match condition describing the second

source node

mserting, mto the stylesheet and at a location of the
second template fragment, a third template fragment

US 7,992,088 B2

17

configured to create a second result node correspond-
ing to a first result node created by the first template
fragment, wherein

the first result node 1s created by transforming the first

source node with the first template fragment, and

the second result node 1s created by transforming the sec-

ond source node with the third template fragment.

8. The method of claim 4, wherein

the source document comprises eXtensible Mark-up Lan-

guage (XML) and

the stylesheet 1s an eXtensible Style Language Transior-

mations (XSLT) stylesheet comprising a tree structure
of XML transformation rules.

9. A computer hardware device for editing a stylesheet, the
stylesheet including rules, each rule having a stylesheet
match condition, comprising;:

a memory;

a processor configured to perform:

receiving a selection of a first template fragment of the
stylesheet, the first template fragment having a first
stylesheet match condition;

receiving a selection of a first source node from a source
document:

storing, in a cut buifer of the memory, a copy of the first
template fragment,

storing, in the cut bufler, an origin match condition
describing the first source node, and

upon the first stylesheet match condition matching the
origin match condition
performing a predefined editing operation upon the

stylesheet, wherein

the source document includes a tree structure having a

plurality of nodes.

10. The computer hardware device of claim 9, wherein

the predefined editing operation includes removing, from

the stylesheet, the first template fragment.

11. The computer hardware device of claim 10, wherein the
processor 1s further configured to perform

receiving a selection of a second template fragment of the

stylesheet, the second template fragment having a sec-
ond stylesheet match condition;

receiving a selection of a second source node from a source

document;

upon the second stylesheet match condition matching a

second origin match condition describing the second

source node

iserting, mto the stylesheet and at a location of the
second template fragment, a third template fragment
configured to create a second result node correspond-
ing to a first result node created by the first template
fragment, wherein

the first result node 1s created by transforming the first

source node with the first template fragment, and

the second result node 1s created by transforming the sec-

ond source node with the third template fragment.

12. The computer hardware device of claim 9, wherein the
processor 1s further configured to perform

receiving a selection of a second template fragment of the

stylesheet, the second template fragment having a sec-
ond stylesheet match condition;

receiving a selection of a second source node from a source

document;

upon the second stylesheet match condition matching a

second origin match condition describing the second

source node

iserting, mto the stylesheet and at a location of the
second template fragment, a third template fragment

10

15

20

25

30

35

40

45

50

55

60

65

18

configured to create a second result node correspond-
ing to a first result node created by the first template
fragment, wherein

the first result node 1s created by transforming the first

source node with the first template fragment, and

the second result node is created by transforming the sec-

ond source node with the third template fragment.

13. The computer hardware device of claim 9, wherein

the source document comprises eXtensible Mark-up Lan-

guage (XML) and

the stylesheet 1s an eXtensible Style Language Transior-

mations (XSLT) stylesheet comprising a tree structure
of XML transformation rules.

14. A computer program product including computer-read-
able storage medium having stored therein computer usable
program code for editing a stylesheet, the stylesheet including
rules, each rule having a stylesheet match condition, the com-
puter usable program code, which when executed by a com-
puter hardware device, causing the computer hardware device
to perform:

receving a selection of a first template fragment of the

stylesheet, the first template fragment having a first
stylesheet match condition;

receving a selection of a first source node from a source

document;

storing, 1n a cut buffer of a computer hardware device, a

copy of the first template fragment,

storing, 1n the cut butler, an origin match condition describ-

ing the first source node, and

upon the first stylesheet match condition matching the

origin match condition
performing a predefined editing operation upon the
stylesheet, wherein

the source document includes a tree structure having a

plurality of nodes.

15. The computer program product of claim 14, wherein

the predefined editing operation includes removing, {from

the stylesheet, the first template fragment.

16. The computer program product of claim 15, further
comprising

recerving a selection of a second template fragment of the

stylesheet, the second template fragment having a sec-
ond stylesheet match condition;

recerving a selection of a second source node from a source

document;

upon the second stylesheet match condition matching a

second origin match condition describing the second

source node

iserting, mto the stylesheet and at a location of the
second template fragment, a third template fragment
configured to create a second result node correspond-
ing to a first result node created by the first template
fragment, wherein

the first result node 1s created by transforming the first

source node with the first template fragment, and

the second result node 1s created by transforming the sec-

ond source node with the third template fragment.

17. The computer program product of claim 14, further
comprising

recerving a selection of a second template fragment of the

stylesheet, the second template fragment having a sec-
ond stylesheet match condition;

recerving a selection of a second source node from a source

document;

upon the second stylesheet match condition matching a

second origin match condition describing the second
source node

US 7,992,088 B2

19

inserting, into the stylesheet and at a location of the
second template fragment, a third template fragment
configured to create a second result node correspond-
ing to a first result node created by the first template

fragment, wherein
the first result node 1s created by transforming the first

source node with the first template fragment, and
the second result node 1s created by transforming the sec-

ond source node with the third template fragment.

5

20

18. The computer program product of claim 14, wherein

the source document comprises eXtensible Mark-up Lan-
guage (XML) and

the stylesheet 1s an eXtensible Style Language Transfor-
mations (XSLT) stylesheet comprising a tree structure
of XML transformation rules.

	Front Page
	Drawings
	Specification
	Claims

