US007991788B2
a2y United States Patent (10) Patent No.: US 7,991,788 B2
Dettinger et al. 45) Date of Patent: Aug. 2, 2011
(54) ABSTRACT DATA MODEL FILTERS 6,847,981 B2* 1/2005 Songetal. 707/104.1
6,928,431 B2* 82005 De”@nger etal. ..., 1/1
(75) Inventors: Richard D. Dettinger, Rochester, MN g*gggﬂggg E% 13%882 Bzﬁigz Zt 3'
(US): Jennifer L. LaRocca, Rochester, 7.024425 B2 4/2006 Krishnaprasad et al.
MN (US); Richard J. Stevens, 7,031,962 B2* 4/2006 MOSES ...ovvvvvvrirrriarann, 707/783
Mantorville, MN (US) 7,096,229 B2 8/2006 Dettinger et al.
7,171,399 B2* 1/2007 Kapooretal. 1/1
(73) Assignee: International Business Machines 2004/0254916 Al* 12/2004 Dettinger etal. 707/3
Corporation, Armonk, NY (US) 2005/0097099 Al* 5/2005 Kapooretal.c...... 707/3
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this |
patent is extended or adjusted under 35 Dettinger et al., IBM U.S. Appl. No. 10/083,075, filed Feb. 26, 2002,
U.S.C. 154(b) by 2133 days “Improved Application Portability and Extensibility Through Data-
base Schema and Query Abstraction”.
(21) Appl. No.: 10/401,293 Llama, “Search Your Database”, Jan. 18, 2002, Codewalkers, pp. 1-4.
o ’ Meng, Wiyl, et al, “A Theory of Translation from Relational Queries
11 to Hierarchical Queries”, Apr. 1995, IEEE, pp. 228-245.
(22) Filed: Mar. 27, 2005 Office Action History for U.S. Appl. No. 10/083,075 from Nov. 26,
: . s 2004 to Sep. 1, 2005.
(65) Prior Publication Data Office Action History for U.S. Appl. No. 11/226,181 from Mar. 23,
US 2004/0193568 Al Sep. 30, 2004 2009 to Fe_b* L1, 2011.
Office Action History for U.S. Appl. No. 10/460,589 from Feb. 3,
(51) Int. Cl. 2006 to Dec. 29, 2010.
GOo6l 17/30 (2006.01) * cited by examiner
(52) US.CL ..., 707/783; 707/999.009
(58) Field of Classification Search 707/1-10, Primary Examiner — Marc R Filipczyk

(56)

707/101, 104.1, 754, 783, 787,789, 999.003,

707/999.006, 999.009; 709/203-205

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,253,362 A
5,734,887 A
5,761,463 A
0,327,593 B
0,363,477

6,460,043
0,553,368
0,601,065
6,725,227
6,803,927
0,820,076

TEE T W EE

(74) Attorney, Agent, or Firm — Patterson & Sheridan, LLP

(57) ABSTRACT

The present invention generally 1s directed to methods,
articles of manufacture and systems for presenting, to a user,
a limited subset of fields of an underlying base data model.
The limited subset of fields may be generated by applying one

1071993 Nolan et al. or more filters to select, exclude and/or modity the fields of
3/1998 Kingberg et al. :
6/1908 Allon the base data model. The base data model may contain

12/2001 Goiffon abstract representations of fields 1n a data repository and may,

* 3/2002 Fletcheretal. ... 709/224 therefore, serve as a data definition framework allowing data

10/2002 " Tabbara et al. from the fields to be accessed independent of the particular
4/2003 - Martin et al. manner (e.g., SQL, XML, etc.) in which the data is physically
7/2003 Nelson et al. : .

412004 T represented in the data repository.

10/2004 Sahoo

11/2004 Bailey et al. 21 Claims, 9 Drawing Sheets

5 214 7ok
oonoon |pg LOGKAUMBSTRACT | PHYSCALRUNTIME [‘gaes
REPRESENTATION i REPRESENTATION {?@WWE%MW*WWF
| <Idiagnostis>
ISSUES i s - NS Wt
* : -:!H_'ng::
ABSTRACT QUERY |2 ; cha>
L XML QUERY XML DATA REPRESENTATION
: f_namej|_name | diag |testval | testdale
149 QUERY .
[I EXECUTION SQL - Mary (McGoon|Anemia| 10 | 02/15/55
FILTERED DATA REPOSITORY RUNTIME
ABSTRACTION | i
7 150 | 2142 | RELATIONAL DATA REPRESENTATION
| FILTER(S) - |
158 (INCLUDE/EXCLUDE i _
BASE DATA REPOSITORY 21431
ABSTRACTION [~148 OTHER DATA REPRESENTATION

US 7,991,788 B2

bl STETRIE
1300N
el V1Y

ge | NALSAS ONILVY3d0
&N
S NOILYD13193dS AUIND NOILYINddV
5 OFL NOILYDIddY
i
7).

ININOJWO) WILNNY
_ ININOdN0J AOLISOdTY
= V1va QIYILTH
~ o1 ININOJWOD NOLLDVLSEV
=, AYOLISOdTY V1va ISV
- 3/ R4AND LOVALSEY
of 1

251—{_W3AY3S dLIH
Z€1 ASONIW NIV
_ Nd) 1~0EL d3N3S

U.S. Patent

0tl

Ol C0L

NJOMLIN

9L

[Ol

| s

¢OL ¢0L

3/I }dOMLIN —8lL1

1JIA30 1Nd1INO [~—6LL

A0 INdNI |—9L1
JIVAOLS ~rlL

W31SAS INHVYEIdO

SHALINVHYd
NOILYOIddvAIIsN || g7}

J9VSILNI AYIND Al
(S)NOILYINddY 0zl
AJOWIN |—2LL

[nd) }~0LL INIIMD

(0L

US 7,991,788 B2

Sheet 2 0of 9

Aug. 2, 2011

U.S. Patent

NOLLYINISJid3d VIvd 43H10

tyLZ

NOILVINISJdd1d vIVd TVNOILVIJE | ¢ bLZ

§5/511€0
JIEPISa)

JNIINNY
ey <108 = NOLLNIIX

Ve O

0SL

gyL~ NOLLOVYLSEY
ANO1ISOdTd Y140 ISV8

ll/"ll\\\\\l\\.

(AJIQ0W
3aN719X3/3ANTINI) act
(S)y3L4

NOILLIVILSHY

AYIN0

alwieu | [dweu |

NOLLYIN3SIHd3Y ¥1Y¥Q TN

<[eAIS9I> 0} <§5/51/20="3NEP [EAIS9)>

<bunsay>

<sasouberp/>
<sisoufep; >entauy <, 65/1,0/60, =1ep sisoubep>
<smsoubep>

<IWeulSe|/> UGN <IWeulse>
<aweusiy>Key<awensy>| L

<uneds|

AY3ND TWX |

NOLLYIN1S J4d3d
JNIINNY/ TVIISAH

4%/

T Y T S S S ahbir bl s s W e R I B BT T B e hls sshis ks TS SIS S RS DS S

NOILLYIN3SJddid
LIS/ IVIID01

AYO1ISOd3d Y1va d34411id

)

bl

207 A4IND LIVYLSaY

SINSSI

0¢ _.* NOILYIIddY _

U.S. Patent Aug. 2, 2011 Sheet 3 of 9 US 7,991,788 B2

DATA REPOSITORY ABSTRACTION 148

Field
Name = "First Name" —~— 210,
Access Method = "Simple" ~— 212 :

Table = "contact’
Column = "f_name"
Queryable = "Yes" ~———215

FILTER NAME = CONTACT INFO

Include:
Field Name = First Name
Field Name = Last Name
Field Name = City
Field = Street

Queryable = "Yes"

208 4

Field
Name = "Last Name" ———210,

Access Method = "Simple” ~—_ 212 , FIG. 2C
Table = "contact’
Column = "|_name" 208 5
Queryable = "Yes" ———215
Field
REPOSITORY ABSTRACTION

Access Method = "Filtered” ~— 219 :
Table = "contact”
Column = “city"

Queryable = "Yes' ————215

Field
Name = "First Name" ————210,

Access Method = "Simple” ~_ 212
Table = "contact’ * 1

208 5

Field) “ 203I
Name = “Street’ —~—2104 Column = Llnamf
Access Method = "Simple” ~— 212 4 _ Queryable = Yes' —~——2135
Table = "contact” Field
Column = "street’ 208 5 | Name = "Last Name" ————210,
Queryable = “No* ———215, Access Method = "Simple” ~—_ 212,
Field [able = "contact’
Name = "Birthdate" ————210¢ Column = *|_name” 208,
Access Method = "Simple” ~— 212 __(ueryable = "Yes” 213
Table = “contact” Field
Column = “dob" 208 - | Name = "City’ 2105
Queryable = "Yes" ————215 Access Method = “Filtered” ——_ 2123
Field Table = "contact”
Name = “"Age InYears" — 210 Column = “city’ 2083

Queryable = "Yes" ———215

Access Method = "Composed” ~ 212

Expression = Years(Birthdate) Field
Queryable = “Yes'" 215. 1208 ¢ | Name ="Street” ——210,
' Access Method = "Simple” ~ 212 ,

Table = "contact”

Field
Name = "Age In Decades” ——210+
Access Method = "Composed” ~— 212 .
Expression = Years(Birthdate)/10
Queryable = "Yes" 215, 1208 5

Column = "street”
Queryable = "Yes'

£1G. 25

US 7,991,788 B2

Sheet 4 of 9

Aug. 2, 2011

U.S. Patent

NOILOVYLSaY
A401ISOd 1Y

vivd d4dil1id

brl

EIVLELER

& Ol

ININOdWOI NOILLIVHLSEV
AYOLISOd3Y Vivd AJadLlid v NOILIVY1S8Y

JIVYINI9 OL ININOAWO) je&—--—------ A¥0LISOdTY
NOLLIVHLSEY AYOLISOdTY SYiL1id Y1va 3svg
ISvd OL SYIL T4 A1ddY AlddV

gyl

S4313JNVYYd JH1 NO @3Svd
Sd31 14 FH40N 40 INO 1I3 145 19313S

Sd1lINVIvd

NOILYII1ddv/daSn 149

US 7,991,788 B2

Sheet S of 9

Aug. 2, 2011

U.S. Patent

NUEIR
—— NINOT

AYOLISOdIY NOHLIVILSEY
viva 1Svd

gyl

Ve i

431114 3LISOdINO)
LgG1 Ngg|

| N
LEIRIE LEINIE

b4l

80¢

513l
—— W0

AYO1ISOd3d NOILIVY1SaY
vivd djdind

bVl

JIVIAIINI

LT onaTing A¥3nD

0L NOILYIIddY

US 7,991,788 B2

Sheet 6 of 9

Aug. 2, 2011

U.S. Patent

80¢

NUEIE
A0

NOLLIVALSEY
A401ISOd 3
VivQd ISvd

8l

LgG)L

LEINE

gy i

6l 8¢C

NUIEIE
WIAI0T

JAILISNIS-NON

NUE(E
W0
JAILISNIS

L

NOILIVYLSEY A4O1IS0d
vivd G3d3Ld

LobL

(Q3ZROHLNY)

REN|

>

_
_
L

8Le

T__J

dillid]

.

Sa13id
MO

JAILISNIS-NON

4
NOILIVY1SAV A401ISOddd
viva 344114

b e

US 7,991,788 B2

Sheet 7 0of 9

Aug. 2, 2011

U.S. Patent

80¢

NUEIR
MAID0T

A40LIS0d3Yd NOILIVILSEY

viva 15vd

ghl

v Il

851

diliid

84l

EINIE

SG13id
TWINO1

Q1LV134-1541

/

NOILIVYLSEY AdOLIS0d 1Y
v1va a34411

NRE IS
NI
A31V13d ONITIE

|

NOILJVY1SaY AYOLISOd
V1va 4331

byl

bvl

NOILYII1ddY

HXIV1S1d

ird]

NOLLYII1ddY

INLINNOJIV

Loel

US 7,991,788 B2

Sheet 8 0f 9

Aug. 2, 2011

U.S. Patent

C0¢

AY3N0O

LvdlSay
(314IJOW

3155

G OId

851

e

SIGEE
S1INS3Y
JAOW3H

091

NI-9Nd

dO1VvdITvA

4004

A43N0

1VALSaY

3NSSI

STVILINIQ3YD ¥3sn

NOILOVHL1SaY
Ad01150d34

vivd dda4114

JOV4d31NI
ONIQTING AYINO

NOILVOI'1ddY

¢Cl

0Z}

U.S. Patent

Aug. 2, 2011 Sheet 9 of 9

600

RECEIVE USER CREDENTIALS
RECEIVE QUERY

SELECT ONE OR MORE FILTERS
BASED ON USER CREDENTIALS

APPLY THE ONE OR MORE
FILTERS TO REMOVE ONE

OR MORE RESULT FIELDS
FROM THE QUERY

ISSUE MODIFIED QUERY

£IG. 6

602

604

606

608

610

US 7,991,788 B2

US 7,991,788 B2

1
ABSTRACT DATA MODEL FILTERS

CROSS RELATED APPLICATIONS

The present mnvention 1s related to the commonly owned, 3
co-pending application Ser. No. 10/083,075, entitled
“Improved Application Portability And Extensibility
Through Database Schema And Query Abstraction,” filed

Feb. 26, 2002.
10

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present mmvention generally relates to data processing
and more particularly to applying filters to limit the numberof 15
data model fields presented to a user during a query building
process.

2. Description of the Related Art

Databases are computerized information storage and
retrieval systems. A relational database management system 20
1s a computer database management system (DBMS) that
uses relational techniques for storing and retrieving data. The
most prevalent type of database 1s the relational database, a
tabular database 1n which data 1s defined so that 1t can be
reorganized and accessed 1n a number of different ways. A 25
distributed database 1s one that can be dispersed or replicated
among different points 1n a network. An object-oriented pro-
gramming database 1s one that 1s congruent with the data
defined 1n object classes and subclasses.

Regardless of the particular architecture, in a DBMS, a 30
requesting entity (e.g., an application or the operating system)
demands access to a specified database by 1ssuing a database
access request. Such requests may include, for instance,
simple catalog lookup requests or transactions and combina-
tions of transactions that operate to read, change and add 35
specified records 1n the database. These requests are made
using high-level query languages such as the Structured
Query Language (SQL). Illustratively, SQL 1s used to make
interactive queries for getting information from and updating
a database such as International Business Machines” (IBM) 40
DB2, Microsoit’s SQL Server, and database products from
Oracle, Sybase, and Computer Associates. The term “query”
denominates a set of commands for retrieving data from a
stored database. Queries take the form of a command lan-
guage that lets programmers and programs select, nsert, 45
update, find out the location of data, and so forth.

One of the 1ssues faced by data mining and database query
applications, 1 general, 1s their close relationship with a
given database schema (e.g., a relational database schema).
This relationship makes 1t difficult to support an application 50
as changes are made to the corresponding underlying data-
base schema. Further, the migration of the application to
alternative underlying data representations is inhibited. In
today’s environment, the foregoing disadvantages are largely
due to the reliance applications have on SQL, which presumes 55
that a relational model 1s used to represent information being
queried. Furthermore, a given SQL query 1s dependent upon
a particular relational schema since specific database tables,
columns and relationships are referenced within the SQL
query representation. As a result of these limitations, a num- 60
ber of difficulties arise.

One difficulty 1s that changes 1n the underlying relational
data model require changes to the SQL foundation that the
corresponding application 1s built upon. Therefore, an appli-
cation designer must either forgo changing the underlying 65
data model to avoid application maintenance or must change
the application to reflect changes 1n the underlying relational

2

model. Another difficulty 1s that extending an application to
work with multiple relational data models requires separate
versions of the application to retlect the unique SQL require-
ments driven by each unique relational schema. Yet another
difficulty 1s evolution of the application to work with alternate
data representations because SQL 1s designed for use with
relational systems. Extending the application to support alter-
native data representations, such as XML, requires rewriting,
the application’s data management layer to use non-SQL data
access methods.

A typical approach used to address the foregoing problems
1s soltware encapsulation. Software encapsulation involves
using a software interface or component to encapsulate access
methods to a particular underlying data representation. An
example 1s found 1n the Enterprise JavaBean (EJB) specifi-
cation that 1s a component of the Java 2 Enterprise Edition
(J2EE) suite of technologies. In accordance with the EIB
specification, entity beans serve to encapsulate a given set of
data, exposing a set of Application Program Interfaces (APIs)
that can be used to access this information. This 1s a highly
specialized approach requiring the software to be written (1n
the form of new entity EJBs) whenever a new set of data 1s to
be accessed or when a new pattern of data access 1s desired.
The EJB model also requires a code update, application built
and deployment cycle to react to reorganization of the under-
lying physical data model or to support alternative data rep-
resentations. EJB programming also requires specialized
skills, since more advanced Java programming techniques are
involved. Accordingly, the EJB approach and other similar
approaches are rather inflexible and costly to maintain for
general-purpose query applications accessing an evolving
physical data model.

Another shortcoming of the prior art, 1s the manner 1n
which information can be presented to the user. A number of
soltware solutions support the use of user-defined queries, 1n
which the user 1s provided with a “query-building” tool to
construct a query that meets the user’s specific data selection
requirements. In an SQL-based system, the user 1s given a list
of underlying database tables and columns to choose from
when building the query. The user must decide which tables
and columns to access based on the naming convention used
by the database administrator, which may be cryptic, at best.

Further, while the number of tables and columns presented
to the user may be vast, only a limited subset may actually be
of interest. Therefore, nonessential content 1s revealed to the
end user, which may make 1t difficult to build a desired query,
as the nonessential content must be filtered out by the user. In
other words, 1n a conventional data model, a single database
schema encompasses all the data for an entity, although 1ndi-
vidual groups within the entity (teams, workgroups, depart-
ments, etc.) are typically only interested in a limited portion
of the data. For example, in a medical research facility, a
hemotology research group may only be interested 1n a lim-
ited number (e.g., 20-40) of medical tests, while an entity-
wide data model may encompass thousands of tests. Accord-
ingly, when building a query, members of the hemotology
research group may spend a lot of effort just to filter through
the large number of tests for which they have no interest.

Therefore, there 1s a need for an improved and more tlex-
ible method for presenting, to a user, a limited subset of all

possible fields to choose from when building a query. Prefer-
ably, the limited subset of fields will only include fields of

interest to the user.

SUMMARY OF THE INVENTION

The present invention generally provides methods, articles
of manufacture and systems for presenting, to a user, a limited
subset of all possible fields of a data model, for use when
building a query.

US 7,991,788 B2

3

For some embodiments, a computer implemented method
for generating a filtered data repository abstraction compo-
nent describing, and used to access, data 1n a data repository
generally includes providing a base data abstraction compo-
nent containing logical fields mapped to corresponding
physical fields of the data repository, applying one or more
filters to select a limited subset of the logical fields contained
in the base data abstraction component, and generating a first
filtered data abstraction component containing the limited
subset of the logical fields.

For some embodiments, the article of manufacture gener-
ally includes a computer-readable medium containing a pro-
gram which, when executed by a processor, performs opera-
tions for generating a filtered data repository abstraction
component describing, and used to access, data 1n a data
repository. The operations generally include providing a base
data abstraction component containing logical fields mapped
to corresponding physical fields of the data repository, apply-
ing one or more filters to select a limited subset of the logical
fields contained 1n the base data abstraction component, and
generating a first filtered data abstraction component contain-
ing the limited subset of the logical fields.

For some embodiments, the system generally includes a
data repository, a base data abstraction component compris-
ing logical fields mapped to corresponding physical fields of
the data repository, one or more data model filters, and an
executable component. The executable component 1s gener-
ally configured to apply at least one of the data model filters
to the base data repository to generate a first filtered data
abstraction component comprising a limited subset of the
logical fields specified by the data model filter.

For some embodiments, a computer implemented method
for limiting access to data generally includes receiving one or
more user credentials, recerving a query from a requesting,
entity, selecting one or more filters based on the user creden-

tials, and applying the one or more filters to the query to
remove one or more fields from a results portion of the query.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features,
advantages and objects of the present invention are attained
and can be understood 1n detail, a more particular description
of the mvention, briefly summarized above, may be had by
reference to the embodiments thereof which are illustrated in
the appended drawings.

It 1s to be noted, however, that the appended drawings
illustrate only typical embodiments of this invention and are
therefore not to be considered limiting of 1ts scope, for the
invention may admit to other equally effective embodiments.

FI1G. 1 1s a computer system illustratively utilized 1n accor-
dance with the present invention.

FIG. 2A 1s a relational view of software components,
including a filtered data repository abstraction component, of
one embodiment of the present invention.

FIGS. 2B, 2C, and 2D 1illustrate an exemplary base data
repository abstraction component, an exemplary data model
filter, and an exemplary filtered data repository abstraction
component, respectively, according to one embodiment of the
present invention.

FIG. 3 1s a flow chart illustrating exemplary operations for
generating a filtered data repository abstraction component
according to aspects of the present invention.

FIGS. 4A-4C 1llustrate the generation and use of filtered
data repository abstraction components, according to various
embodiments of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. S1illustrates an alternative application for abstract data
model filters according to one embodiment of the present
invention.

FIG. 6 1s a flow chart illustrating exemplary operations for

applying abstract data model filters in accordance with the
embodiment 1llustrated 1n FIG. 5.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

PR.

(L]
By

ERRED

The present mvention generally 1s directed to methods,
articles of manufacture and systems for presenting, to a user,
a limited subset of fields of an underlying base data model.
The limited subset of fields may be selected according to any
appropriate technique and, for some embodiments, may be
generated by applying one or more filters to select, exclude
and/or modily the fields of the base data model. By filtering
the fields of the base data model, a limited subset of fields that
are of interest to the user may be automatically generated, 1n
elfect, providing the user with a custom data model tailored to
the particular needs of the user. As used herein, the term filter
generally refers to any data object that indicates the subset of
fields (e.g., by explicit/implicit inclusion or exclusion) to be
presented to the user.

In one embodiment of the present invention, the data model
1s implemented as a data repository abstraction (DRA) com-
ponent containing a collection of abstract representations of
physical fields of the database (heremnafter “logical fields™).
Thus, this data abstraction model provides a logical view of
the underlying database, allowing the user to generate
“abstract” queries against the data warechouse without requir-
ing direct knowledge of its underlying physical properties. A
runtime component (€.g., a query execution component) per-
forms translation of abstract queries (generated based on the
data abstraction model) into a form that can be used against a
particular physical data representation.

The concepts of data abstraction and abstract queries are
described in detail 1n the commonly owned, co-pending
application Ser. No. 10/083,075, entitled “Improved Appli-
cation Portability And Extensibility Through Database
Schema And Query Abstraction,” filed Feb. 26, 2002, herein
incorporated by reference 1n i1ts entirety. While the data
abstraction model described herein provides one or more
embodiments of the mvention, persons skilled 1n the art will
recognize that the concepts provided herein can be 1imple-
mented without such a data abstraction model while still
providing the same or similar results.

Exemplary Application Environment

FIG. 1 shows an exemplary networked computer system
100, 1n which embodiments of the present invention may be
utilized. For example, embodiments of the present invention
may be implemented as a program product for use with the
system 100, to generate a filtered data repository abstraction
(DRA) component 149 by applying one or more data model
filters 158 to a base DRA component 148 (used to represent
fields 1n one or more databases 156, ., orgamized as a
database management system 154). The filtered DRA com-
ponent 149 may present a user (e.g., a user of an application
120 running on a client computer 102) with a limited subset of
fields from the base DRA component 148 in order to access
data from the one or more databases 156, .

The program(s) of the program product defines functions
of the embodiments (including the methods described herein)
and can be contained on a variety of signal-bearing media.
[lustrative signal-bearing media include, but are not limited

US 7,991,788 B2

S

to: (1) information permanently stored on non-writable stor-
age media (e.g., read-only memory devices within a computer

such as CD-ROM disks readable by a CD-ROM drive); (11)

alterable information stored on writable storage media (e.g.,
floppy disks within a diskette drive or hard-disk drive); or (i11)
information conveyed to a computer by a communications
medium, such as through a computer or telephone network,
including wireless communications. The latter embodiment
specifically includes information downloaded from the Inter-
net and other networks. Such signal-bearing media, when
carrying computer-readable 1nstructions that direct the func-
tions of the present invention, represent embodiments of the
present invention.

In general, the routines executed to implement the embodi-
ments of the invention, may be part of an operating system or
a specific application, component, program, module, object,
or sequence of instructions. The software of the present
invention typically 1s comprised of a multitude of instructions
that will be translated by the native computer into a machine-
readable format and hence executable 1nstructions. Also, pro-
grams are comprised of variables and data structures that
either reside locally to the program or are found 1n memory or
on storage devices. In addition, various programs described
hereinafter may be 1dentified based upon the application for
which they are implemented 1n a specific embodiment of the
invention. However, 1t should be appreciated that any particu-
lar nomenclature that follows 1s used merely for convenience,
and thus the 1invention should not be limited to use solely 1n
any specific application i1dentified and/or implied by such
nomenclature.

As 1llustrated 1n FI1G. 1, the system 100 generally includes
client computers 102 and at least one server computer 104,
connected viaanetwork 126. In general, the network 126 may
be a local area network (LLAN) and/or a wide area network
(WAN). In a particular embodiment, the network 126 is the
Internet.

As illustrated, the client computers 102 generally include a
Central Processing Unit (CPU) 110 connected via a bus 130
to a memory 112, storage 114, an input device 116, an output
device 119, and a network iterface device 118. The 1nput
device 116 can be any device to give mput to the client
computer 102. For example, a keyboard, keypad, light-pen,
touch-screen, track-ball, or speech recognition umt, audio/
video player, and the like could be used. The output device
119 can be any device to give output to the user, e.g., any
conventional display screen. Although shown separately
from the mput device 116, the output device 119 and 1nput
device 116 could be combined. For example, a client 102 may
include a display screen with an integrated touch-screen or a
display with an integrated keyboard.

The network interface device 118 may be any entry/exit

device configured to allow network communications between
the client 102 and the server 104 via the network 126. For
example, the network interface device 118 may be a network
adapter or other network interface card (NIC). If the client
102 1s a handheld device, such as a personal digital assistant
(PDA), the network 1ntertace device 118 may comprise any
suitable wireless interface to provide a wireless connection to
the network 126.

Storage 114 1s preferably a Direct Access Storage Device
(DASD). Although 1t 1s shown as a single unit, it could be a
combination of fixed and/or removable storage devices, such
as fixed disc drives, tloppy disc drives, tape drives, removable
memory cards, or optical storage. The memory 112 and stor-
age 114 could be part of one virtual address space spanning
multiple primary and secondary storage devices.

10

15

20

25

30

35

40

45

50

55

60

65

6

The memory 112 1s preferably a random access memory
(RAM) sufficiently large to hold the necessary programming,
and data structures of the invention. While the memory 112 1s
shown as a single entity, it should be understood that the
memory 112 may 1n fact comprise a plurality of modules, and
that the memory 112 may exist at multiple levels, from high
speed registers and caches to lower speed but larger DRAM
chips.

[lustratively, the memory 112 contains an operating sys-
tem 124. Examples of suitable operating systems, which may
be used to advantage, include Linux and Microsoit’s Win-
dows®, as well as any operating systems designed for hand-
held devices, such as Palm OS®, Windows® CE, and the like.
More generally, any operating system supporting the func-
tions disclosed herein may be used.

The memory 112 1s also shown containing a query building,
interface 122, such as a browser program, that, when executed
on CPU 110, provides support for building queries based on
the data repository abstraction component 148. In one
embodiment, the query interface 122 includes a web-based
Graphical User Interface (GUI), which allows the user to
display Hyper Text Markup Language (HTML) information.
More generally, however, the query interface 122 may be any
program (preferably GUI-based) capable of exposing a por-
tion of the DRA component 148 on the client 102 for use in
building queries. As will be described 1n greater detail below,
queries built using the query interface 122 may be sent to the
server 104 via the network 126 to be 1ssued against one or
more databases 1356.

The server 104 may be physically arranged in a manner
similar to the client computer 102. Accordingly, the server
104 1s shown generally comprising a CPU 130, a memory
132, and a storage device 134, coupled to one another by a bus
136. Memory 132 may be a random access memory suili-
ciently large to hold the necessary programming and data
structures that are located on the server 104.

The server 104 1s generally under the control of an operat-
ing system 138 shown residing in memory 132. Examples of
the operating system 138 include IBM OS5/400®, UNIX,
Microsoit Windows®, and the like. More generally, any oper-
ating system capable of supporting the functions described
herein may be used. As illustrated, the server 104 may be
configured with an abstract query interface 146 for 1ssuing
abstract queries (e.g., received from the client application
120) against one or more of the databases 156.

In one embodiment, elements of a query are specified by a
user through the query building interface 122 which may be
implemented as a browser program presenting a set of GUI
screens for building queries. The content of the GUI screens
may be generated by application(s) 140. In a particular
embodiment, the GUI content 1s hypertext markup language
(HTML) content which may be rendered on the client com-
puter systems 102 with the query building interface 122.
Accordingly, the memory 132 may include a Hypertext
Transfer Protocol (http) server process 138 (e.g., a web
server) adapted to service requests from the client computer
102. For example, the server process 152 may respond to
requests to access the database(s) 156, which illustratively
resides on the server 104. Incoming client requests for data
from a database 156 invoke an application 140 which, when
executed by the processor 130, perform operations necessary
to access the database(s) 156. In one embodiment, the appli-
cation 140 comprises a plurality of servlets configured to
build GUI elements, which are then rendered by the query
interlace 122.

Referring back to the client 102, the memory 112 may also
contain one or more parameters 128 that may be used to

US 7,991,788 B2

7

identify the application 120 and/or a user of the application
120. The parameters 128 may therefore be accessed to deter-
mine which of the data model filters 158 to apply to the base
DRA component 148 1n order to create a filtered DRA com-
ponent 149 containing subset of logical fields tailored to the
particular needs of an application 120 or a user thereof. For
example, as previously described, the applications 120 may
be used by different groups (departments, workgroups, etc.)
within the same entity to query the databases 156 represented
by the base DRA component 148, although each group may
only be interested 1n a limited portion of data stored therein.
Accordingly, 1n an effort to limit the number of logical fields
presented to users of each group, select filters 158, chosen
according to a particular application 120, may be applied to
the base DRA component 148 to generate a filtered DRA
component 149 containing a limited subset of logical fields
specific to the particular application 120.

An Exemplary Runtime Environment

Before describing generation of the filtered DRA compo-
nent 149 1n detail, however, operation of the abstract query
interface 146 will be described with reference to FIGS. 2A
and 2B. FI1G. 2 A illustrates a relational view of a client appli-
cation 120, DRA component 148, filtered DRA component
149, and query execution component 150, according to one
embodiment of the invention. As shown, the application 120
may 1ssue an abstract query 202, which may be executed by
the query execution component 150. The abstract query 202
may be generated by specitying query conditions (criteria)
and results mvolving logical fields contained 1n the filtered
DRA component 149.

An 1llustrative abstract query corresponding to the abstract
query 202 1s shown 1n Table I below. By way of illustration,
the abstract query 202 is defined using XML. However, any
other language may be used to advantage.

10

15

20

25

30

8

are to be returned as a result of query execution. A result
specification in the abstract query may consist of a field name
and sort criteria.

i

T'he logical fields used to compose the abstract query 202
are defined by the filtered DRA component 149, which may

be generated by applying one or more filters 158 to include,
exclude and/or modily logical fields contained in the base
DRA component 148. As previously described, the logical
fields are defined independently of the underlying data rep-
resentation being used 1n the DBMS 154, thereby allowing
queries to be formed that are loosely coupled to the underly-
ing data representation. For example, as illustrated i FIG.
2B, the DRA component 148 includes a set of logical field
specifications 208 that provide abstract representations of
corresponding fields in a physical data representation 214 of
data in the one or more databases 156 shown 1n FIG. 1.

Each logical field specification 208 may include various
information used to map the specified logical field to the
corresponding physical field, such as field names 210, table
names, and access methods 212 describing how to access
and/or manipulate data from the corresponding physical field
in the physical data representation 214. The physical data
representation may be an XML data representation 214, a
relational data representation 214, or any other data repre-
sentation, as 1llustrated by 214 .. Therefore, regardless of the
actual physical data representation, a user may generate, via
the query building interface 122 (shown in FIG. 1) of the
client application 120, an abstract query 202 including query
conditions based on the logical fields defined by the logical
field specifications 208, 1n order to access data stored therein.

Referring back to FIG. 2A, the query execution component
150 1s generally configured to execute the abstract query 202
by transforming the abstract query 202 1nto a concrete query
compatible with the physical data representation (e.g., an

TABLE]

QUERY EXAMPLE
001 <7xml version="1.0"7>
002 <!--Query string representation: (FirstName = “Mary” AND LastName =
003 “McGoon”) OR State = “NC”-->
004 <QueryAbstraction>
005 <Selection>
006 <Condition internallD="4"">
007 <Condition field="FirstName” operator="EQ” value="Mary”
008 internallD="1"/>
009 <Condition field="LastName” operator="EQ” value="McGoon”

010 internallD="3" relOperator="AND"></Condition>
</Condition>

relOperator="0OR’*></Condition>
</Selection>
<Results>
<Field name="FirstName™/>
<Field name="LastName’’/>
<Field name="City”/>
</Results>
</QueryAbstraction>

OO0 000 OO o0
O 00 -~ O U DN W b

020

I[llustratively, the abstract query shown 1n Table I includes a
selection specification (lines 005-014) containing selection
criteria and a results specification (lines 015-019). In one
embodiment, a selection criterion consists of a field name (for
a logical field), a comparison operator (=, >, <, etc) and a
value expression (what 1s the field being compared to). In one
embodiment, result specification 1s a list of abstract fields that

60

65

<Condition field="City” operator="EQ” value="NC” internalID="2"

XML query, SQL query, etc). The query execution compo-
nent 150 may transform the abstract query 202 into the con-
crete query by mapping the logical fields of the abstract query
202 to the corresponding physical fields of the physical data
representation 214, based on mapping information in the
filtered DRA component 149. The mapping of abstract que-
ries to concrete queries, by the query execution component

US 7,991,788 B2

9

150, 1s described 1n detail in the previously referenced co-
pending application Ser. No. 10/083,075.

The filtered DRA component 149 may be generated by
applying one or more filters 158 to the base DRA component

10

categories and fields within the category) or may be only
partially included 1n the filtered DRA component 149. In
cither case, a filter 158 may either explicitly include fields
(categories, or subcategories), as shown in the example listing

148. As an 1!lustrat10nj the filter 158 1illustrated 1n FIG. 2C of TABLE 11, or explicitly exclude fields (categories, or sub-
may be applied to the DRA component 143 of FIG. 28, 1o categories) in the filtered DRA component 149. The exact
select a limited subset of the logical field specifications 208 _ 2 _ ‘ _ P |
contained therein, in order to generate the filtered DRA com- implementation may vary with different embodiments, and
ponent 149 1llustrated 1n FIG. 2D. An 1llustrative representa- may depend, for example, on the number ot logical fields 1n
tion corresponding to the filter 158 of FIG. 2C 1s shown in 19 the DRA component 148 relative to the number of logical
lable Il below. By way of 1llustration, the representation fields to include in the filtered DRA component 149. In other
‘ls,hown below ;}S deﬁéled udsmg AML. However, any other w45 if the filtered DRA component 149 will contain a
anguage may be used to advantage. : :
SHAZ J S relatively small number of logical fields when compared to
TABLE 1] 15 the total number of fields 1n the base DRA component 148,
explicitly listing logical fields to include may be more prac-
DAIA MODEL FILIER EXAMPLE tical than explicitly listing logical fields to exclude.
001 <7xml version="1.0"7> An 1llustrative representation corresponding to the filtered
- e A . .
Vo2 Include) - DRA component 149 shown in FIG. 2D 1s shown 1n Table 111
003 <Category name="“Demographic’> 20 _) _ _
004 <Tnelude> below. By way of illustration, the representations are shown
005 <Field name="“First Name’></Field> below are defined using XML. However, any other language
may be used to advantage.
TABLE III
DATA REPOSITORY ABSTRACTION EXAMPLE
001 <7xml version="1.0"7>
002 <DataRepository>
003 <Category name="Demographic’>
004 <Field queryable="Yes” name="F1rstName™ displayable="Yes ">
005 <AccessMethod>
006 <Simple columnName="f name” tableName="contact”></Simple>
007 </AccessMethod>
008 <Type baseType="char’></Type>
009 </Field>
010 <Field queryable="Yes” name="LastName” displayable="Yes ">
011 <AccessMethod>
012 <Simple columnName="]_name” tableName="contact”></Simple>
013 </AccessMethod>
014 <Type baseType="“char’></Type>
015 </Field>
016 <Field queryable="*Yes” name="City” displayable="Yes"">
017 <AccessMethod>
018 <Simple columnName="city” tableName="contact”></Simple>
019 </AccessMethod>
020 <Type baselype="char’></Type>
021 </F1eld>
016 <Field queryable="Yes” name="Street” displayable="Yes ">
017 <AccessMethod>
018 <Simple columnName="street” tableName="contact”></Simple>
019 </AccessMethod>
020 <Type baseType="char’”></Type>
021 </F1eld>
022 </Category>
023 </DataRepository>
TABI E Tl-continued In addition to including and/or excluding logical fields of
the base DRA component 148 for use in generating the {il-
DATA MODEL FILTER EXAMPLE 55 tered DRA component 149, the filter 158 may also modily
006 <Field namectT ast Name></Field> logical fields of the base DRA component 148. F(:)r example,
007 <Field name==City”></Field> as shown, the logical field specifications 208 may include one
008 <Field name="Street” queryable="Yes> or more attributes 215 that indicate whether the correspond-
g?g /é/ Include> ing logical field may be queried (e.g. searched). Various other
</Category~> : _ _
011 neludes 60 type attributes may also be defined for a logical field includ-

ing, but not limited to attributes that indicate whether the field
1s displayable and or whether the logical field i1s read-only.
Regardless, for any field included in the filtered DRA com-
ponent 149, the filter 158 may also modily one or more of the

attributes. As shown 1n FIGS. 2B-2D, the logical field Street,
while not queryable in the base DRA component 148 may be

queryable 1n the filtered DRA component 149. Such modifi-

As 1llustrated, the filter 158 shown 1n TABLE II selects
logical fields 208,-208, from the DRA component 148 for
inclusion in the filtered DRA component 149. As illustrated, 65

logical fields 208 may be organized in individual categories,
which may be included 1n their entirety (including all sub-

US 7,991,788 B2

11

cation of attributes may allow different applications to access
data 1n different ways, without requiring changes to the

underlying base DRA component 148, thus simplifying
maintenance.

Applications of Abstract Data Model Filters

FI1G. 3 1llustrates exemplary operations 300 for generating,
the filtered DRA component 149 from the base DRA compo-
nent 148. For various embodiments, the operations 300 may
be performed by different software components, such as the
query execution component 150, a subcomponent thereof,
one or more other components of the abstract query interface
146, and/or one or more components of the client application
120. The operations 300 may be performed, for example, as
part of an 1mitialization routine the first time the application
120 1s invoked and/or the first time a new user uses the
application 120.

The operations begin at step 302 by obtaining user or
application parameters. At step 304, one or more {ilters are
selected based on the parameters, for example, one or more
filters specific to a user or application indicated by the param-
cters. At step 306, the one or more filters are applied to the
base DRA component 148 to generate the filtered DRA com-
ponent 149.

Asillustrated in FIGS. 4A-4C, filters 1538 may be applied in
various manners to generate one or more filtered DRA com-
ponents 149. For example, as illustrated 1n FIG. 4A, a series
of filters 158,-158.,, may be applied to the base DRA compo-
nent 148 to generate a filtered DRA component 149 contain-
ing a limited subset of logical fields 208' that represents an
intersection of logical fields exposed by each of the filters 158
in the series. In other words, the series of filters may be
regarded as a composite filter 159, where each filter (e.g.,
158,) may further limit the subset of logical fields exposed by
the previous filter (e.g., 158, ;). In a similar manner, multiple
filters 158,-158,, may be applied in parallel to generate a
subset of logical fields 208' that represents a union of logical
fields exposed by each of the filters 158. In either case, an
advantage to this composite filter approach 1s that a set of
modular filters 158 may be defined that each specifies a set of
fields to include/exclude from the base DRA component 148.
These modular filters 158 may then be combined, as desired,
to create the desired subset 208' of logical fields 1n the filtered
DRA component 149.

In some cases, as illustrated in FIG. 4B, for various rea-
sons, a first filtered DRA component 149, may be further
filtered to generate a second filtered DRA component 149,.
For example, the first filtered DRA component 149, may be
generated by applying a first filter 158, to the base DRA
component 148 to select one or more sensitive logical fields
218 and one or more non-sensitive logical fields 228 from the
logical fields 208 of the base DRA component 148. The
sensitive logical fields 218 may contain sensitive data and
may, therefore, only be viewed by authorized users (e.g.,
users having a predetermined security level). A second filter
158, may be applied to the first filtered DR A component 149,
to select only the non-sensitive fields 228 for inclusion 1n the
second filtered DRA component 149,.

Accordingly, as shown, the first filtered DRA component
149, may be accessed by a first user authorized to access the
sensitive logical fields 218 contained therein, while the sec-
ond DRA component 1492 may be accessed by a second user
only authorized to access the non-sensitive logical fields 228.
As another example, a company (such as a legal research
provider) may provide subscription based searches of a pro-
prictary database. The first filtered DRA component 149,

10

15

20

25

30

35

40

45

50

55

60

65

12

may allow the first user (having a first type of subscription) to
access a broader collection of data, while the second DRA
component 149, may allow the second user (having a second
type of subscription) to access a more limited collection of
data.

As shown 1n FIG. 4C, multiple filtered DRA components
may also be generated by applying different filters to the same
base DRA component 148 to select different subsets of logi-
cal fields 208 for specific applications. For example, a first
filter 158, may be applied to the DRA component 148 to
generate a first filtered DRA component 149, containing a
first subset of ficlds 238 related to billing matters (e.g., patient
names, addresses, account information, etc.). In a similar
manner, a second filter 158, may be applied to the DRA
component 148 to generate a second filtered DR A component
149, containing a second subset of fields 248 related to
related to medical tests (e.g., types of tests, test results, test
dates, etc.). As illustrated, the first filtered DRA component
149, may be accessed by an accounting application 120,
while the second filtered DRA component 149, may be
accessed by a research application 120,. Thus, the filtered
DRA components 149 may expose only fields of interest to
the corresponding applications 120, which may greatly sim-
plify the query building process by eliminating the need to
manually filter through unrelated fields.

For some embodiments, abstract data model filters may be
used for purposes other than to generate filtered DRA com-
ponents 149. For example, as illustrated in FI1G. 5, a validation
component 160 may apply one or more abstract data model
filters 158 to remove one or more sensitive fields from a
results portion (e.g., a portion of the query that specifies fields
to include as query results) of an abstract query 202. Of
course, as previously described, the filters 158 may explicitly
l1st fields to include or exclude. In other words, the filters may
define fields that are to be removed from the list of result fields
or may define fields that are allowed to appear in the list of
result fields for a query. Regardless, the validation component
160 may validate a user’s credentials (e.g., supplied by the
application 120) prior to returning certain (e.g., sensitive)
data as query results. The validation component 160, for
example, may be implemented as a plug-1n component to the
query execution component 150 shown i FIG. 2A. For one
embodiment, the validation component 160 may be generally
configured to perform exemplary operations 600 1llustrated 1n
FIG. 6.

At step 602, the validation component 160 receives user
credentials, for example, indicative of a security level (user
group, etc.) of a user of the application 120. At step 604, the
validation component 160 receives an abstract query 202
issued by the application 120. The abstract query 202 may be
generated, for example, via the query building interface 122,
based on logical fields contained 1n the filtered DRA compo-
nent 149. At step 606, the validation component 160 selects
one or more filters based on user credentials. At step 608, the
validation component 160 modifies the abstract query 202 by
applying the one or more filters 158 to remove one or more
fields from the query. For example, if the user’s credentials
show the user 1s not authorized to view one or more fields, the
validation component may select a filter 138 to exclude those
fields from the query results (e.g., by removing one or more
results fields such as those listed in lines 16-18 of TABLE I).
At step 610, the modified query (i.e., with one or more fields
removed from the query results) 1s 1ssued.

It should be noted that the same filter (as applied 1n step
608) could have been applied when generating the filtered
DRA component 149, to exclude the sensitive field(s) there-
from. However, providing validation after a query 1s built may

US 7,991,788 B2

13

provide a greater degree of flexibility, allowing the filtered
DRA component 149 to support a larger number of applica-
tions and/or users, while still providing secure access to data
by excluding unauthorized users from viewing sensitive

fields. In other words, unauthorized viewers may be aware of 5

the sensitive fields, but they are still prolibited from viewing
data stored therein. It should be further noted, that the concept
of validation and moditying a query to remove results fields 1s
not limited to abstract queries, and may be applied to “con-
crete” queries involving physical fields.

CONCLUSION

A base data repository abstraction (DRA) component may
include logical field specifications that map abstract logical
fields to corresponding fields of data having a particular
physical representation. A filtered DRA component, specific
to a particular application or group of users, may be generated
by applying one or more filters to the base DRA component to
select a limited subset of the logical fields contained therein.
The filtered DRA component may greatly simplify the query
building process by limiting the number of fields presented to
a user to those of interest.

While the foregoing 1s directed to embodiments of the
present mvention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof 1s determined by the
claims that follow.

What 1s claimed 1s:
1. A computer implemented method for generating a {il-
tered data repository abstraction component describing, and
used to access, data 1n a data repository, comprising:
providing a base data repository abstraction component
containing logical fields, wherein each logical field ret-
erences an access method specitying a method for
accessing a set of data maintained 1n the data repository;

selecting one or more of the logical fields contained 1n the
base data repository abstraction component; and

generating a first filtered data repository abstraction com-
ponent containing the selected one or more ofthe logical
fields, wherein the one or more logical fields are avail-
able for use 1 building an abstract query processed by a
runtime component.

2. The method of claim 1, turther comprising generating a
second filtered data repository abstraction component by
selecting different one or more of the logical fields contained
in the base data repository abstraction component.

3. The method of claim 1, further comprising generating a
second filtered data repository abstraction component by
selecting one or more of the logical fields contained 1n the first
filtered data repository abstraction component.

4. The method of claim 3, wherein the first filtered data
repository abstraction component, but not the second filtered
data repository abstraction component, comprises one or
more logical fields that map to data in the data repository
containing data viewable only by an authorized user.

5. The method of claim 1, wherein selecting the one or
more of the logical fields comprises applying one or more
filters to base data repository abstraction component.

6. The method of claim 5, wherein applying the one or
more filters to select the one or more of the logical fields
contained 1n the base data repository abstraction component
comprises modilying an attribute of at least one of the one or
more of the logical fields.

7. The method of claim 6, wherein the modified attribute
provides an 1ndication of at least one of whether the associ-
ated logical field 1s queryable or viewable.

10

15

20

25

30

35

40

45

50

55

60

65

14

8. The method of claim 5, wherein at least one of the filters
indicates one or more logical fields of the data abstraction
component to exclude from the first filtered data repository
abstraction component.

9. The method of claim 3, further comprising;

obtaining one or more parameters; and

selecting the one or more filters based on the one or more

parameters.

10. The method of claim 9, wherein the one or more param-
cters provide an indication of at least one of a user security
level or the 1dentity of a particular application.

11. The method of claim 5, wherein the first filtered data

repository abstraction component comprises an intersection
of logical fields selected by each of the one or more filters.

12. A computer readable storage medium containing a
program which, when executed, performs operations for gen-
erating a filtered data repository abstraction component
describing, and used to access, data 1n a data repository, the
operations comprising:

providing a base data repository abstraction component
containing logical fields, wherein each logical field ret-
erences an access method that specifies a method for
accessing a set of data maintained in the data repository;

applying one or more filters to select one or more of the
logical fields contained in the base data repository
abstraction component; and

generating a first filtered data repository abstraction com-
ponent containing the selected one or more of the logical
fields, wherein the one or more logical fields are avail-
able for use 1n building an abstract query processed by a
runtime component.

13. The computer readable storage medium of claim 12,

wherein the operations further comprise:

obtaining one or more parameters; and

selecting the one or more filters based on the one or more
parameters.

14. The computer readable storage medium of claim 13,
wherein at least one of the parameters 1s indicative of a user
security level, indicated by user credentials, used to deter-
mine which logical fields of the base data repository abstrac-
tion component that an individual may include 1n an abstract
query.

15. The computer readable storage medium of claim 12,
wherein the operations further comprise generating a second
filtered data repository abstraction component by applying a
different one or more filters to the base data repository
abstraction component.

16. The computer readable storage medium of claim 12,
wherein the operations further comprise generating a second
filtered data repository abstraction component by applying a
different one or more filters to the first filtered data repository
abstraction component.

17. A data processing system, comprising:

at least one processor;

a data repository;

a base data repository abstraction component comprising,
logical fields, wherein each logical field references an
access method that specifies a method for accessing an
actual set of data maintained 1n the data repository;

one or more filters, each specilying one or more of the
logical fields; and an executable component, which
when executed by the at least one processor, 1s config-
ured to apply one or more of the filters to the base data
repository to generate a first filtered data abstraction
component comprising one or more of the logical fields,

US 7,991,788 B2

15

wherein the one or more logical fields are available for
use 1n building an abstract query processed by a runtime
component.

18. The data processing system of claim 17, wherein the
executable component 1s further configured to generate a
second filtered data repository abstraction component.

19. The data processing system of claim 18, further com-
prising:
a first application configured to generate queries based on

logical fields of the first filtered data repository abstrac-
tion component; and

a second application configured to generate queries based
on logical fields of the second filtered data repository
abstraction component.

10

16

20. The data processing system of claim 18, wherein the
executable component 1s configured to generate the second
filtered data repository abstraction component by applying a
one or more filters to the base data repository abstraction
component, different from the one or more filters applied to
generate the first filtered data repository abstraction compo-
nent.

21. The data processing system of claim 18, wherein the
executable component 1s configured to generate the second

filtered data repository abstraction component by applying a
one or more filters to the first filtered data repository abstrac-
tion component, different from the one or more filters applied
to generate the first filtered data repository abstraction com-
ponent.

	Front Page
	Drawings
	Specification
	Claims

