United States Patent

US007984084B2

(12) (10) Patent No.: US 7.984.084 B2
Sinclair 45) Date of Patent: Jul. 19, 2011
(54) NON-VOLATILE MEMORY WITH 5,774,397 A 6/1998 Endohetal. 365/185.19
3,875,477 A 2/1999 Hasbunetal. 711/162
SCHEDULED RECLAIM OPERATIONS 5,896,393 A * 4/1999 Yardetal. 714/710
: : : 6,029,168 A * 2/2000 Freycoooooviiiiiiiniiiiiinnn, 707/10
(75) Inventor: Alan Welsh Sinclair, Maddiston (GB) 6,038,571 A * 3/2000 Numajiriet al. 707/206
6,046,935 A 4/2000 Takeuchietal. 365/185.03
(73) Assignee: SanDisk Technologies, Inc., Plano, TX 6,151,666 A * 11/2000 Blendermannetal. 711/170
(US) 6,373,746 Bl 4/2002 Takeuchietal. 365/185.03
6,426,893 Bl 7/2002 Conleyetal. 365/185.11
_ _ _ _ _ 6,449,625 B1* 9/2002 Wangcccooeevvriinnnnnnn 707/206
(*) Notice: Subject to any disclaimer, the term of this 6,456,528 Bl 9/2002 Chen 365/185.03
patent 1s extended or adjusted under 35 6,522,580 B2 2/2003 Chenetal. 365/185.02
U.S.C. 154(b) by 1201 days. 6,526,421 B1* 2/2003 Houldsworth 707/206
6,571,326 B2 5/2003 Spiegel et al.
(21) Appl. No.: 11/259,439 6,604,168 B2 8/2003 -Ogawa
(Continued)
(22) Filed: Oct. 25, 2005
FOREIGN PATENT DOCUMENTS
(65) Prior Publication Data WO WO 00/60469 10/2000
US 2007/0033325 A1 Feb. 8, 2007 (Continued)
Related U.S. Application Data OTHER PUBLICALTIONS
(60) Provisional application No. 60/705,388, filed on Aug. U.S. Appl. No. 10/917.888, filed Aug. 13, 2005, 171 pages.
3, 2005. (Continued)
(51) Int.CL. Primary Examiner — Greta L Robinson
Goot 7700 (2006.01) Assistant Examiner — Jelirey Chang
Goot 17/30 (2006.01) (74) Attorney, Agent, or Firm — Weaver Austin Villeneuve
(52) U S, Cll e, 707/818 & Sampson I1.1P
(58) Field of Classification Search 707/206,
7077/818; 711/170 (57) ABSTRACT
See application file for complete search history. In a non-volatile memory array, scheduling of reclaim opera-
(56) References Cited tions to occur belore a shortage of erased blocks arises avoids

U.S. PATENT DOCUMENTS

4,864,511 A 9/1989 Moy et al.

5,479,633 A 12/1995 Wells et al.

5,553,201 A 9/1996 Hasbun et al.

5,570,315 A 10/1996 Tanakaetal. 365/185.22
5,602,987 A 2/1997 Hararietal. 714/8
5,640,529 A 6/1997 Hasbun

1
Host System ¥

extended periods of reclaim that could exceed a time limait. A
memory controller uses mnformation regarding the data stored
in the memory array to estimate the additional host data that
may be programmed and the reclaim operations to be per-
formed and schedules the reclaim operations to be evenly
distributed between write operations until the memory 1s full.

7 Claims, 14 Drawing Sheets

Memory System

& Memory
Controller

QL
T
) =
D
it
L=
il
P
O

i

Flash Memory

US 7,984,084 B2

Page 2
U.S. PATENT DOCUMENTS FOREIGN PATENT DOCUMENTS

6,622,200 Bl 9/2003 Hasbun et al. WO WO 2007/019198 2/2007

6,715,027 B2 3/2004 Kimetal. 711/103

6,725,322 B1* 4/2004 Shiraishietal. 711/103

6,763,424 B2 7/2004 Conleycooooevviiiiiinnnnn, 711/103 OIHER PUBLICATIONS

0,771,536 B2 82004 Lietal. .o 305/185.02° 7.5, Appl. No. 11/060,249, filed Feb. 16, 2005, 117 pages.

6,781,877 B2 8/2004 Cerneactal. 365/185.03 |) fled

6,865,122 B2* 3/2005 Srinivasan 365200 ©-S- Appl. No. 11/040,325, filed Jan. 20, 2005, 47 pages.

7.287.145 B1* 10/2007 Simeraletal. 711/202 ISA/EPO; “Notification of Transmittal of the International Search

7.409.489 B2 8/2008 Sinclair et al. Report and the Written Opinion of the International Searching
2003/01009093 Al 6/2003 Hararietal. 438/200 Authority, or the Declaration”; Furopean Patent Office; mailed on
2003/0147278 Al 8/2003 Tanakaetal. 365/185.03 Mar. 4, 2007; in corresponding Int’l. Application No. PCT/US2006/
2004/0073748 Al 4/2004 Rudelicceeeeenn 711/118 030166; 9 pages.
2004/0248612 Al 12/2004 Leeetal. 455/550.1 : R
2005/0141312 Al 6/2005 Sinclair etal. 711/103 gﬂsgz?hogggi ‘ﬁclmg I;aﬂed n related U.5. Appl. No. 11/259,423
2005/0144357 Al 6/2005 Sinclair ...l 711/103 C » 1 Pages. _
2005/0144358 Al 6/2005 Conley etal. ...cocoo....... T11/218 Chang et al., Real-Tlmre: Garbage Collection for Flash-Memory Stor-
2005/0144360 Al 6/2005 Bennett et al. age Systems of Real-Time Embedded Systems, ACM Press, vol. 3,
2005/0144363 Al 6/2005 Sinclair ...l 711/159 pp. 838-863.
2005/0144365 Al 6/2005 Gorobetsetal. 7117103 USPTO, “Notice of Allowance and Fee(s) Due” mailed in related
gggggijgggg i %882 %mclalr PR ;; gg U.S. Appl. No. 11/259,423 on Apr. 2, 2008, 22 pages.

1 aconetal. L1/1 : o : : : P

2005/0166005 Al 7/2005 Nagano et al. 711/103 %151;;30603%0';562““0“ mailed Jan. 8, 2010 in Application No.
2005/0166087 Al 7/2005 Gorobetsoooooiiiiinnnnnn, 711/173 | - _ _ o
2006/0020744 A1 1/2006 Sinclairetal 711/170 Korean Office Action mailed Jan. 26, 2010 in Application No. 2008-
2006/0020745 Al 1/2006 Conleyetal. 711/170 7005059.
2006/0031593 Al 2/2006 Sinclairooeeel 709/251 Chinese Oflice Action mailed May 12, 2010 in Application No.
2006/0184718 Al 8/2006 Sinclairetal. 711/103 200680036085.2.
2006/0184719 Al 8/2006 Sinclairoi 711/203 _ _
2007/0033324 Al 2/2007 Sinclairoceevvvennnenn, 711/103 * cited by examiner

US 7,984,084 B2

-
Q
il
T
>
)
O
3

.4

v— =

I~

=

y—

'

P

e

i

72

o

= f

—

=

~

=

y—

—

=

p—

Host System

U.S. Patent

13[joJ}u0n
AOWBS B
90EeHdU| }JSOH

suoljesl|ddy

SINOIID ~ spnaa)
Indinoandu; ejeq INndinO/indu| eleq

L8

US 7,984,084 B2

_ 1 29 |
(Juasald J|)sdiyo ejeQ
Aowsy 18y oL

SSal1ppy

S}iNJJID) |0JIU0D £8

uwn|o9 LC

m;om
{OJIUOD)

) _ _
= 61
» K610 115 BV 115D 2UoeN | ol oooa) _
.m AIOWSIN AJOWB|\ MO SIS puewwon | SNEIS/|OJUOD
Z "
|
' Ll
_ Gl 0A €L
— E 104}U0D |0J}U0D) #_:_w__m_vo " \ ;
= 92JN0S | L IISM-d ISAA-d Y SRR ! £1
N oWsIN ! sng
o . OUEN ' Wo)SAS
et T R L L L TP _ Gl
_ dIyD ¥no1D "
65 19||01JU0) 07 mom.._..__m—c_
aoelay| _ — .
e o o

}SOH

|
AV, 4
| |
. CE _ NOd R .
Lol 4701 | 393 £& E LE apon J0SSa001d LC G¢C "
" 100d ! 4/:

U.S. Patent

U.S. Patent Jul. 19, 2011 Sheet 3 of 14 US 7,984,084 B2

119

~
~\
N

115

-
-
' ~

116

»

®

. -
QQ
Qo

117

+
‘/
«
‘._“JQ

118

-
O
©

120

e ¥
-
-

8
—
—,

Word Lines 53 to the Row Control Circuits 55
r
|
|
|
|
|
|
|
|
|
I
|
I
|
|
Word Lines 53 to the Row Control Circuits 55

o
-,

Q!
N

i &

L

¢

o,
O
———,
a
609
289
.
)
92
99 ¢
Illq
QO
N\
<
¥ K]

To Column Control Circuits 45

FIG. 3

U.S. Patent Jul. 19, 2011 Sheet 4 of 14 US 7,984,084 B2

137 140

148

145

1371

157

U.S. Patent Jul. 19, 2011 Sheet 5 of 14 US 7,984,084 B2

153 185

o] o Jowa]
—r 4 1569 1857
FIG. 6

Host <— ‘ —» Memory

0 161 ‘
oo | - }File1
File 2
Logical-to-
g‘aetaz — File 3 Physical Address
Translation
File 2
oaa | }File3
Max
Logical
Address
Space

U.S. Patent Jul. 19, 2011 Sheet 6 of 14 US 7,984,084 B2

Page 0

Page 1 T L L e T

Page 3 MMM
9% 9 I

Block 1 Block 2 Block 3

FI G. 8A Before Garbage Collection

Page O
Page 1
Page 2
Page 3

Block 1 Block 2 Block 3

FI G. 8B After Garbage Collection

Block 1 Block 2

Lﬁ—____/

FIG_ QA Before Garbage Collection

Block 1 Block 2

- > e

F’ G. QB After Garbage Collection

US 7,984,084 B2

Sheet 7 of 14

Jul. 19, 2011

U.S. Patent

Block 2

Page 1
Page 2
Page 3

-
O
@)
©

0.

Block 2

Block 1

Block 2

Block 1

N
X
O
Q
a

FI G. 1 1B After Consolidation

U.S. Patent Jul. 19, 2011 Sheet 8 of 14 US 7,984,084 B2

NN

ost
: File 1
Application ! }
201

: 203 Fle-2

Delete ' File 3

File 2 'i> |
: 205 ez
E } File 3 NANNNNNNNNNNY

FIG. 12

Host Host
Data Garbage | Data Jle Garbage
Write Collection Write Collection+
Phase Phase Phase Phase
Host Active
interface

State yaiting

| ‘ Time
e

N3 Pages N4 Pages
Written Written
or
X Blocks
Erased

FIG. 15

US 7,984,084 B2

Sheet 9 of 14

Jul. 19, 2011

U.S. Patent

vi Old

a W

r . "]
-_.--. -----.- I' Ll l- i
L . r a LT » P
o L] | L
T I T Jawe t oAk . EL T R T .
. ! 11 p 1 4 -.-.-- A FE LI L] . r .
L 1-l.__ i, - @ " -l.- .+ W " P S B =, ® L] NI A + .
g g ® L] " - -iu.l . ! - LE 41 L] y 1 y o LI . F P - "
ll-_-l-._-.-l ’ '- - 1T g ’ . T o- * L] LI L T - W't W .t ! * H.I 1al L . =
- FF « "ot " L] 1t r trm g+ e " * « ' - Sl _.. e ! * .ok LOL |
LA] LR , At - . " LI | " . ., . *a * kg ¥] = r Tl L] s L S _-n.._.I__. L I T »
i -v.---. am .-...-_.-l-___.___-._..l_.. T oo " - P N T .-._...-._-..'-n + o -.-._—_-_-_---_.._l... -___.-..__--.-.!._- rat PR
4 - L L] - % [] L] - . - [L] F & [] »
.._lll-.-u v ” -.__.'.__...r..!...-..l..nunv-.!-.-....!.-.-.-..l.- |-.q.m.|-.-..--.-..-..-.l. 'L ..'..-l_-.-.'.!v....-.....- Pkt LN PP .__.._-___-. Y ..._._-.-_...-l.--..
" LT " [I e M A w " ar " M] = . ' . e 4 L] n ¥t - . " s ha 1 T * .
. STty T P T PR] P -] - 3 LA - e s - a " o Wy, . a - I] - 1 - r 1
[L3 + - - -] g U F] + L - TA* » p 1 Fa Fr A Fpw " s _F s B U
. I R B . L L N L O e ! -t - TS + + ¥ - LA a rpa. ¢+ " ‘
T g " = L PR o o P ™ a7 = - - ¥, 5 . . h L, Al .1.-.-.‘ LI b LI] - » L R e a0 - l.-_-I.-l
-] L | -..-h. w0t ’ L L -t =" |.‘.I. ‘ " - " L | 1..... e - L] L] 3 » .. ¥ ™ LA &« a - 4
- . a 1 " a " . - " L T R -, . o . = a b . Foa L " Fm - * 1
-] i, * LI | L LI - s » * ¥ W - * | - - F 1 [- - - oy " - &
PR -.l-.- . =a] i * 4 = a" . .’ e * oFa" age - -t g 4 a .__l__.'. . b _ 0 " e - a a B T E . . = »
._.ln._.i.- ._- - ii-_-.-n .-...I.-l__..__._..._- +-ll__.l.._..__-.-.._-.-.-.___-..-l-.-.'ll -_-.-.- I.-..-.- y .._il__.—_.-..-. -.‘..-I...__ . - ll-_-_l.- -___..-.._-_l-_-..-l .-_ll -.-.-.-..__.-
llI- Il.-I-..-.I.lu_-.i L AL l-ll...l-il-.l-l-.-‘ ' -_-_Ill. . L | ' " a4 ...-.-l- - i....r-l-. !ll-l!..‘.l”!lilu.:I g WE __.ll Il-. -t
e LN e r .__.._...-t_..t__. T ML L .._-..'....._-.._.. LR et A --_-v-.'-ra n-_'l._.-_-uvhu.._._..-_q-i- .
. - L ol .t -yt mia n " "r or . A L L N 1 s T an - " . . " LI L LI -...I-.
.q LA | r “n s." a . . [o A, an n_" - ¥ gy Fom -, t Fa L ug sg - . R * » L bt LI -.-_-_I._. _---_ -_.__-.--.' ¥ !.-..-..
-k - 1 " + 4 L} u + ¥ LJ + - L} r ¥ 'Y L]]
i > ...__.__-- ._____--_- -_...._._l-.- .._-_-.....--l ._._..v__..-_..l... -1|._._...-__._....._l --_.--.._. -.l..-l.- » 1ty .-... -.__l.-.l.-I-. .-_.__-.__lh_-.-_n.ila_.-!.__-..-_- e i-.i.__ I-.-_ln...-.l-.-.__l.-
-
MR T A .‘.. A | 1, "at LR R TR . T ML R . +v+ T AR | * w1 L] R L. Fr L | L ' T
R w1 ' . Lo A LT LR) - . -"a " . M - " rm "] . * Far ¥ r » L e ooy . * P r
! mi-_._.--..-. ' -....-..-_.--l-l.-...-.._ dute .-.-_-_l lr__.--.iv-..__ R N] e ML R .--..__.-.-I_.._..-_..._.I-_ -_.-. 1 N r ‘-_.__‘.__11-_..-.'
- L |] L] - , L] d - + a a a +] * . * " u s = 41 "
.] Y 1 & 1 '] g . M A - - L L] e " M gt 1
--...-_____.._ .-.-_-....._.-... .-._-L‘—I A -.__-l.-.._--.._ T W b .__-....-..-71.1 .l.l -t L e n Fe g Tam ' -.-_ll.-.-l-.....- ¥
hf A R L L L P A . -p’ a - ke Lok .
- - LI S .-._.._f.-_l... - R R I A N 2L tam, e e
- .
.k . . . - * - " .I..-.u.-....__ e T Mg M ' L LI L
¥ -.t..___.-_.. "= . oa el " L . - v LI I a T S, ¥ E R NN
b .--._ -I atl » L] . at L - - *] __.-. - b - - v - .__- s " + - +.-..- L a T *a . -
LT o FR Y Ll o L] T . ._...._ - . g gt or v H . ru__..-.__.- e , " N . L] L .._"-.
4 n e L 2" "o] » » a" PR L] - "= . "t * oy o T 1] + mT T
[L) . a w g r - . a . o " L LI LI L] a n" * L] - » wr_ *r -
] ii liill - " s P F ﬂ i..-.-. L-rl.;. LN - ! 1 . a » - o, " -i . ¥ .-i.- ' . a.' " - R lii- ii--.l N -, .-.l
+ ¥ a g b X 4 a ™ LI r - [] n, F_— . ® l._. L a " P ..-..-_- Ak 1 a ™ L] a = - r " li_-.__.- aTE o .
i [LI R L » e e . ., -] . . - g = T an I A L -ll . P " . - m
- - » P .« L e ga ! ..1.-.- . ") I N g v AT . - al 5 oa m . O . T +*
. --_ LI * .. ._.-._-..I....-.......q.'- . " . - ._..._..._i...- g . [} -.u_...al....ﬂuqm__.,-...__—q
- - 4 - [A - » » - a
. roa o ow T T +- e A Ll .._- L. . v -1|| [- .-.l.. - L -
- . L [}] L] L P Lk .r--.f - A . .._..._.-. -y .—_._.-.--..-'. & a ‘—l..__ LI -.-.._.._ . "] .
[] 4 4 L | L] L] - +* 4 -
n [] L] d "L - L] . L] [3 L] M 'R . * & 0 ™ a
¥ * - * R Ul ".n - ! L W= ot * - Vo =
. - a . u__.lu.__.... T P ! Pt . - a te eyt + *t. I - oF o _...-_.-.__ -
] " r L]
-_ - x - F— - - - re " L] k - a - + - - . ¥ > L] "
] .-..__.....- -_I—_._...‘_-.- ..._.-..-..._._.l.._- ...-._.'- . l._.l-_..._..._.l-_l I._.i . " .) " P, .-l._.--__.._.__.- i_lI.r_.-._.r . m o, l-.li .
r i ¥ ...llli lI-m.-.-.-. L I a g=1 & § l.-.-ll !lil-i P F —.—.-i . Ny -'-I.-.- 4ok II‘ r . Illll.ll et A "
™ : e e L - __.__..-...-_......- et e A T "t " S at . ty LA m.-q...-—___.u.__.-
ama T " - " LIS L 1 L] - LI LA | [I R - LA B e L ! 7+ 1w P LI i p rF4 L » »
L !lll__..._ll r - - . [iim.] -.-l.-_ _-.-li-_.ll.__._.ll L .-1-;.1-_....... ﬁ. i-_-.__ L __—_-l-.l- -- l-ll.-.-. 1 r ._..-. i o o, __.i__.
LI e ! LI Pl L | -y 4 w * P . 1 - a - -4 . L= =" 1 o r iy . a . Wa ., " » " .
- L] m».__‘-i.-.-_ L) e 4 am L L meatn Lt T e L A L T I . - ML L _ LTI - tr . ", ..._-!-u.-._..-
l..__-.l I.‘..—..—_'ll.l.-_-_.ii .-._.li- l.l.l—_.-.-- + 4 r g5 .-.!.-.--_-.lil.ll in.i - - - ._.-._.l.__.-_.__._._-_-.__.._.l...-l.__ -_-____.___..__...__.__.._ -I.-...-.lni-.-..-_l.-l- " L -_-rl_- -y ."- ll.- -_l-._.-l. r-_l-.l ll.__--.._.__-
L] L] - [} @ F o ou B g |] L " PRI) - *] - . - a " mr g4 " - L T O 1 . - LI L -
L P B ¥ * - L] b Foak . e - T, =) "t LI I r el d o ' N 1 ' -t Pl Tt L b - , PR i i T I .
o L - . ~aTtt e ¥ . = O f g, = FEF L + ¥ L T K . IR L P - M., LI T L T - P L L P a2 el . ar ! L P - . .
a L] N p ARt L T ¥ aa] alb g ¥, v s 1 [- w gt st -, LI -y =" T a - - [y [W + " I n gn®a S LI I
a] Fu o T - L " [$ T E B - . ¥ [B . ' a " L _— & LR e W et -._...-l-_-.__.__. . -, . tenaon . T o- -t - b o A et
- ‘+q.'-m._..‘-l' . e LI p 1 b ala L] « ! A s . 1 . =W Ea ‘ f L TEmy W T -t ra, s+ rE e ! - vy, ry Py gt not Tale
4 F L T EAE B L™ - -y m B [* a W1 M 2t L » - - - - a - - - + * P -+ oy) - - * ¥ B + r
"y * ' ¥ e L g n 4, . ., " | I N 1 . p T E - b -'F g4 _F L | - o w T - s - o LA . i * - r L) a ¥ . + r
L] r et TR wt ot ' R wt, " LI " Tra a k& d - . .-.-l._. - a~u e * [L -.__ " - - " oa L U N R 1 . . 1. bl | 1 g*" "% . T Ll
" " " aw" . R N L] L] o+ a1y L L R - T4 a 2 1 a o - - .y w* A T [- ip *] .
. L]]] * 1 - L - & a L3 L] " - a a g Tamy - a an -k - .+ - I " »
r -]] , » = ' s w1 abn = -+ a . aTH 4 & n T . L] 3 * -+ r . L
-] " Dl R R |.-'.-...lnl.__.-.__.__.nL .n_-......-__..-__..‘u__. .vl.lm...._...._.-_-.-....I...-+!...__..-.r..u...._....I..-.._n.._l...--.._.__..-n |.-..-..+_‘|i .u_..._—-_.-__.-.. SR “..l—__l-.._-_-. _-._.-.--.'...nuu
] I k= [- 2 ey " ¥ . P PR P e e -] - - o LI - - - a rw Ll Ll ¥
" [v - " . JTorr L L * & a4 P an = -_l-_.II—.-_ _a " . o M a . L] -t m r . X - L] -
+ 4 + 1 b * L] ¥ - w1 , , = = 1N L] - - ™ ' » [- re L " L]
.) A T R -...“+-.__..+-a.t.-_..t.--iv...___-..__-tn.-iﬁ.. .._..--u_.___.-.._..._..n___. -..__.._._.- -...l-.._n... .¢|.+ -._-t-__..._..__...._.__.u.'...__-l_.-
.
L o' e L n s-+....-.. LI L * [T R . - + g ¥ N TR
! -] R » L L ' . ¥ R | r .) a = - v " p= L T " « a o L P al L LI “ B s T
ALK . * L, W - v.-.-._..-.__.- -y a * ip - ! CE R L_.. LI -F ata For i a -__I+ LI "
__.-.__.I.__.- -_-.__.._1__ . -.;- M - -.._.._... II-_.-.-.-.—..._ | - P - -_-_-___‘u__..-. a a"ra " __.-I__..-l.__-.l .-.li-l
-
] a i..-ll -l-_‘-l...] ! a [] 1 __;-I-. ™ ll...;.l.._ 'L -._.t.-.l L L 4 * -II . L l_l "a o * oa -_-. -_‘If.-
LR " _ o JFm AT [| . [L) Ly ant " i n P .I_ N L wt, -
--._.._.-_.- 1 .-..___. gt AL B n " aq e g e . oa . B T L a Il-ul I-__.l.._ll .._._..__l._.-_ ™
' .__.-i.-...._q.......-._. [b L] -_.__-.-.___....-._..-.- i o LI ' __._.__-....__.-. E _..|.-..._._.“v. b . -.Il |.-.._|___+-_-__.-_--._.
. ' P e e T DL T T A L —— A M -l -l g PR L .
. £ *r - L]] . d 1 L a » P [}] L - L o LN] *
s ! 4 ._..__.._.._ Irm w v T ' " .-.- L .-....__.._.....__._. * -...-.-__.__.fl .ﬂ.-. 1.0 _—— FRLEE - * .._l.._.._....._.__.r.v LR | ol
=k 4 - [- - g 1] 4 [] g T = Ly - - [] L) + . - a4 #'
" " . *.om I [. P e T L) al v A + [| . T "] 1 . By 0w
. . 4] L] + - L L] +* r
....._..._.....-__...._.._..._u_..l.._-__.-___._.-...... ._._..__......__..._.u..-.-__...I_...I_......_.....-....+||.. .l-.._v...-_.r.....! +- -_.._._.._.-_v__..__.-..-n...-r__u.__.r
1 " 1 _— [T + - ¥ L] - 1" _— - L] L] - L] » [1 [] - [r - n L L[] r
T B] ra F LI Y a . a - . s 1 s mr T * =1 - il LI = . LI B = 3 LA] '
« 1 g = 1 L * a 41 L] a5 . L] - - = | B L a * a ' JF . .
E] L] L] 1 I - d + LA] - 4 a 4 oW r -] m T 1 [] n B —— n "
+ 'ER] n [] [] - + a4 ¥ ¥ o, + L I PR 1-' L [s B, » 1 1 L] F a L] r
[] & [] - - r a4 ¥ L] L] L J L Y B "L »
r ..._..-.- .-lil-_.-.-..--lil LIS | L .-l-.-.-- I__I.-s_l-..._.-l'-.._.- ' l_—.-.__l.-.l-l_.-.- .-_._.“....-.._.--.Il.-ll__.l__..__.-.-...-.__.-__.._- a ' __....-.i- " l-_._.-_.--____. .__-_l-_-.-. e r P
- a . - LI L) o+ 4 LI - L] 3 " T LI) LI | . a - LI +T = L] Ty ' L} " m * o
. . s 1 P P ' .o - t ey . . ._.._ll.__ -] -_i.-_-_ B] ' & ad I -l.ll..._l - - . maw r -, "
+#u ¥ rm - ++.__ ' 2 g tem 1 LA r a4 . '..-.—.- n - . F "] r Fw T & a LI 1] s wa ¥ T
=]] a i L mgr bk * i L] L L PHC R | * LB " ¥ * am L] ' + L] 1 » = %
[4 a"a LI | * L] . -y P * + [l B PR e R | » s b L L s] . - - + W &] - - . T » _—
-_1!-.l-| P a o -.- 4 . L L M [am T - a . a » I B B '] a T 4 oa . = - . = i o , uk - ™ - a4 1y -y _--._ PR L] " "ma LI - 1 +
r -+ . b T e P L LI ' R B =T F . T T - DR P B, - L . A ™ . -Ta " . - L - .. ® T
& llilll_ » l-_f LI | » ;..-. + 1 1] [] ¥ ._i.-i L] l_- 1 Pl - F 4 s -.- - ¥ -y ' m i.- L - l.ﬁl | .‘l_ - | - il o - [} - I »
L] L] * F a i] v u , - * L] Al] - a + - g LI -an [
a s 1 . 1y a -_.1-1-..!--l.__.__ -.1__. . - A AR - 1 ._.-l___.. -...-.._..' -.-.'—..-._. ._.._ .-.-..-_- =" Ty Poror o " . P, Y .._||_..._.-.+.r u....... ._.._..._-.1_1......__ o - g -‘..-_._-u-.l.-.-
- - ¥ - p ha -_l.-'__.._..._ . -t .-_.__ iII'-. '--_ PR . . - T LN o -.._._--.- -.-_- I li+i._.--l-- _1'.- Fl . l-_i_..._.__. P LR L o ow -.I__.__.r.Ji! TR a T .
. F * - a g ¥k 3 a L] - d a n . " 4 ak Lt " [] P | - - " T] L] r N 4 oo e - L -] *
* . - - r - ¥ r * a = & l-h_ - - * L I P -.- T - - = a% w0 | 3 [| S . » r]] - - * o g 4 g4 - - L il L]
] . v b M LI L 4 o a K . . n LI 4 hn2 " » [} - s "u ar L]] -y -]
1 a L] *a -....- A" .____..__ll.--.__-.n.__ " -l-..-.-.__--.._._. .-I.r.-. R ln-___.---__.] a wer T .-._._-...__.._.I-l._.. t'--l,._._. T __.-.I.-.-.._-_l.r_-.-
L e L e Tt *a LI LI bl . 0 g ™ e --.._...-1 - % .ow T - ah gt P S I
. B _TEg s N, T FTI b, ._-......_ .-..._+.__ r + " ___....._vt.._... 4 FT TR ar r Y a_" s ¥ F] __.v._._.__..- PR v
' b y Faa 1 WA . LI a R R . . T * . n s - TR b 1= - A - F " a pant - .____....-1-..
LI Lae * N . L L TR Ea o2 o - L | - e Y. nill- "a n e Tt - - ¥ LI | u A _-_-;. [} L l.f.! * ll.- L LI
ot 1. ann! Ty *__...I- s aa ey, R A .-..___.. - T -_...._'.-._.l_..._' I I B * . *
L - A1 » PP s 4] Y r . - a . 3 4 - " i m KT _ 4 ‘
a b u .- . . FIE] g ' 2 1' - - r » k P et . r ¥ ma " L a L
R . L a4 . Ll P f * » .- L | . L] ™ N W F L] a2 "R | [. r "
.-...‘l.- LI - gyt -k n- Y oor -..I._ L -...l-_‘-._. Ml] ' __.-. ..l.ls.- -._..E. .- - L] o L L
. R LU 1w ' [' e Qi L + . R . ., . .
- *a oy et . = r FoB .-I.-i.l . 1 - = __.—_--l_- '._. + ki -.l.—. ._....._._.-_ i--..-_._.l._-_-_-.-. drer B
a "
-+ _..-.-..__._-"l |.'-..__...--.|.vn..___“_--n..+ ¥t --..l L4 -....-.-.- .._.v.!.'v. ..!_..mv...._.-.u ol m- __.__.+_-+ . .-_.__.__.-__.-_.._.__1111...1-..
r 1 - -] a - L]]]
.-.._.-'l__.-l_l_.-_-__.” _-..-.-_._.-.-...-1-.-.-._.-_.._.-_-_-__.-._1.._....- .._.-.-.__....._.._._... 4 4 n.._..-_ll.__.. - P .._._. - 'Il-.._.._.__._. -...__.I.___-._.--
4 I " LA ‘Ib l_--_.-_l. Fepq ™ L Irlitll.ﬂ'l - N L 4 4 !II!I- P I L Ii-i - .-..-L.rila.- -_-H.I;.l
" FEE] - -.-_II.I. LI | rl- + " a . a - 4 » 1T L L] » r e . r LI] [] . " ML
[] a [3 - 1 » [] L] 4 n L] E 1 + L | a " | E om a " = . »
A taret .-_..._.__.-_.._-.'.-_-.._l.r'.__ -..n.._..-._.u. < B .:n_...__.____- tror " _-.-___._r_.- -.__-_r.-.-..__._.f'. T
g .-.-.-.__.-l- - +@ P « " LI ii-..-l!._. __.l-l.- T 1 .I__.I.._-.._I._.i.l - i.-.-_-_.- n.l.__. L FEL I LI l-.-..-_-_l..-__.
-, I-l.ll.-.-_ .llll..l..--.l-.-.-.._..--..-.s.- ., e a ™ .-l.-.-il I -r ok oa .l..__.-.._..r._. » _..-.i . __.l-..-.__.-_-._.l l-...—.l . ua "
I - LY e Tt s R - - ...__-.l S T -, - Ya"oa - * -.‘_n 1 .__.._..__.__._-....-.__. [LI
i 1 a . ¥ [- om s " e - a " a_ ag= 7 " - ., * L - i a aor P ™
» . n q m gt -I..__..- ..__-.._Ii__. . ll-l P - - g 4 ® P T I + b g s " * gt . oo ar
1 l.__._...l- .__.__....-.i.-.‘l-i - L] y " i.-.-l__..r__.l.-.-ll_-.-.__..__.l.-.._l!-._. o H -II!II.I.-.-I r * -.._i--.
' = e a " LI B M . da o " Tp g e ¥ wta " . PR | - e ow PR N
' s ! - = - pomd o A" | " m ., * L Wt - L a e n¥m 4
- L - [. v - 1 haw mon Wl . .t ' Y . .
sar e UL -, " .._._-.-.-_..__._r._. T . R I T R, S gt R .
.._t.__..-i...u L -+¢l.-.'l P L I Te g l_.__-__.... et TET L -..... y .._-.l._ L
'.-.-..__-.-.._ - l._.___. b .-.-I-..v..-....n.. *aor . __..-..__..-..-.-._.._.___-. W) . "a _._v--._.1
-t m g ™ s Y a T rta .__..-_-.-. 1T g """ [R L = LT L AL L L) 11..... LT, .
M oAt a a s oy ¥ a . . - n . -, - T | I r " gy N - gt -
S ._.-._..-.H._..-..._ = g * +.i. -..-._.l.l.-__.- a ®_ TV N LI mr F et " - .._l-. ¥
.._I-.-lll +.—_.-.__.. .-.a_-.-.-l_ - -_-L_h-_.-__._l l.- -.--.-.-.- =tF .—..-..._l-_.-..-.._-.-i..'.-.—.-.-_.- l.—_ll... * I_._.I...i!
- o L .__“-l__._. .__.__- . ..-.r.___.\.nn..u_.._..._a.__.l P, o et L v a -l-.. .-_..._.l.-.-.
= 1 P LA L | a g - a ¥ -« B s % .- e . . F ﬁ. - - -
' a - . P a o+ a” ELEY .n.-u.'.uu - P 1 = uum " n
“oaw * st .._.Ii.—.l-._. = -_l.__l'_.-.'_. “ - » I-.—_-.l-.I-.l
-] [] L =
- +* ot R -_.' I-- l_.--.lIl.n
-
’.I r m ¥
- * Fate
L] - ™ P
- e T . !
' »

519108 \\ .._ .\\\x«&\ \mﬁ\\ 21510500 \m

U.S. Patent Jul. 19, 2011 Sheet 10 of 14 US 7,984,084 B2

Host -e— ‘ —» Memory

File/Offset-to-
Physical Address
Translation

Host | Memory

| :

| |

, |

Application : Blocka
225 | '_F_“e_g Block b :
- : Blockc

! |

Delete \ !
File 2 :)
: ! :

) I | ,

] \ |

| I |

| \ '

| I l

| I |

! | ! 173 !

| ' '

B/E |

US 7,984,084 B2

$300|g
pasel]

SH00|9g
pasei]

- JWI| --—— 3JWi|
/1 Ol Gl
ejeq " " , EleQ
X pifeA " " , PIEA
1= | | _
: -
" ” 2oedg
S|qewWwie|oay | 9|qBWIe|D9Y
- Aelly " " " Aeilyy
: u - " u
m, aoeds | _ | a%edqg
m { m |
"

U.S. Patent

US 7,984,084 B2

Sheet 12 of 14

Jul. 19, 2011

U.S. Patent

142

£

A

}

¢ Old

g Wl |

0¢ i

-—— owi]

cld OlLi

. eleq e

' plleA " plleA

"

./ ooedg

/o|qewie|oay aoedg

1 a|dewlie|ooy

’

{
” Aelly "
) C_ i
" soedq |
" _ .
))
$)00|g . So0|g
pase.l] ' pases3
|

Aelly
ul
aoedsg

US 7,984,084 B2

Sheet 13 of 14

Jul. 19, 2011

U.S. Patent

oWl]

aseyd uolepijosuo’) 3o0|9 aseyd uolos||0n abegies)

]

(dg4)
sabed

3400|9
9|l

(dQ)
sabed

eleq

(dO)
sabed

919]0Sq0

(d3)
sabed

pasel]

(dg3)
sabed

190(9
pasel]

(ddl)
sabed

eyeq
€10]

(dg9d)
safed
430i4
elled

¢¢ Old

(d1)
sabed

€101

$)00(9
9|l

$300|9
ered

s)00|g
pasel]

U.S. Patent Jul. 19, 2011 Sheet 14 of 14 US 7,984,084 B2

Page O
Page 1
Page 2
Page 3

MMM
NN
MM

ZIs

vk "Faa Fara
. []

i, f *

[] r -

Frantr_ ¢

_——
"

-
asn "'l'll-.llnr;.
4 T e N

FIG. 23D

US 7,984,084 B2

1

NON-VOLATILE MEMORY WITH
SCHEDULED RECLAIM OPERATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 60/705,388, entitled “Direct Data File Stor-
age 1n Flash Memories™ filed on Aug. 3, 2003. This applica-
tion 1s related to U.S. patent application Ser. No. 11/259,423,
entitled, “Scheduling of Reclaim Operations in Non-Volatile
Memory,” filed on the same day as the present application,
and hereby incorporated by reference 1n 1ts entirety.

BACKGROUND

This application relates to the operation of re-program-
mable non-volatile memory systems such as semiconductor
flash memory, and, more specifically, to the management of
available space within such memories. All patents, patent
applications, articles and other publications, documents and
things referenced herein are hereby incorporated herein by
this reference in their entirety for all purposes.

In an early generation of commercial flash memory sys-
tems, a rectangular array of memory cells was divided into a
large number of groups of cells that each stored the amount of
data of a standard disk drive sector, namely 512 bytes. An
additional amount of data, such as 16 bytes, are also usually
included in each group to store an error correction code
(ECC) and possibly other overhead data relating to the user
data and/or to the memory cell group 1n which it 1s stored. The
memory cells 1n each such group are the minimum number of
memory cells that are erasable together. That 1s, 1n such
memory systems, the erase unit 1s eflectively the number of
memory cells that store one data sector and any overhead data
that 1s included. Examples of this type of memory system are
described 1n U.S. Pat. Nos. 5,602,987 and 6,426,893. It 1s a
characteristic of flash memory that the memory cells need to
be erased prior to re-programming them with data.

Flash memory systems are most commonly provided in the
form of a memory card or flash drive that 1s removably con-
nected with a variety of hosts such as a personal computer, a
camera or the like, but may also be embedded within such
host systems. When writing data to the memory, the host
typically assigns umique logical addresses to sectors, clusters
or other units of data within a continuous virtual address
space ol the memory system. Like a disk operating system
(DOS), the host writes data to, and reads data from, addresses
within the logical address space of the memory system. A
controller within the memory system ftranslates logical
addresses recetved from the host into physical addresses
within the memory array, where the data are actually stored,
and then keeps track of these address translations. The data
storage capacity of the memory system 1s at least as large as
the amount of data that 1s addressable over the entire logical
address space defined for the memory system.

In later generations of tflash memory systems, the size of
the erase unit was increased to a block of enough memory
cells to store multiple sectors of data. Even though host sys-
tems with which the memory systems are connected may
program and read data 1in small mimimum units such as sec-
tors, a large number of sectors are stored 1n a single erase unit
of the flash memory. It 1s common for some sectors of data
within a block to become obsolete as the host updates or
replaces logical sectors of data. Since the entire block must be
erased before any data stored in the block can be overwritten,
new or updated data are typically stored 1n another block that

10

15

20

25

30

35

40

45

50

55

60

65

2

has been erased and has remaining capacity for the data. This
process leaves the original block with obsolete data that take

valuable space within the memory. But that block cannot be
crased if there are any valid data remaining 1n 1t.

Therefore, 1n order to better utilize the memory’s storage
capacity, 1t 1s common to consolidate or collect valid partial
block amounts of data by copying them into an erased block
so that the block(s) from which these data are copied may then
be erased and their entire storage capacity reused. In this way,
space within a memory that does not contain valid data may
be reclaimed so that 1t can be used for storing data. It 1s also
desirable to copy the data in order to group data sectors within
a block 1n the order of their logical addresses since this
increases the speed of reading the data and transferring the
read data to the host. If such data copying occurs too ire-
quently, the operating performance of the memory system can
be degraded. This particularly affects operation of memory
systems where the storage capacity of the memory 1s little
more than the amount of data addressable by the host through
the logical address space of the system, a typical case. In this
case, data consolidation or collection may be required before
a host programming command can be executed. The pro-
gramming time 1s then increased.

The sizes of blocks are increasing 1n successive genera-
tions of memory systems in order to increase the number of
bits of data that may be stored 1n a given semiconductor area.
Blocks storing 256 data sectors and more are becoming com-
mon. Additionally, two, four or more blocks of different
arrays or sub-arrays are oiten logically linked together into
metablocks 1n order to increase the degree of parallelism in
data programming and reading. Along with such large capac-
ity operating units come challenges in operating them eifi-
ciently.

Therefore, there 1s a need for improved management of
data stored 1n a non-volatile memory. There 1s also a need for
a system of efficiently reclaiming memory space that does not
contain valid data but 1s not currently available for storage of
new valid data. There 1s also a need for a system of carrying
out reclaim operations 1n a way that has little or no adverse
cifect on other memory operations such as the programming
of host data.

SUMMARY

Reclaiming space in a memory array before the memory
runs out of erased blocks may avoid the risk of serious delay
in programming host data that might exceed a time limat.
Space 1n the memory array 1s reclaimed as the memory fills
with host data 1n a manner that ensures that the memory does
not run out of erased blocks until 1t 1s full. Reclaim may be
performed according to a schedule that begins reclaim long
betore there 1s a shortage of erased blocks. The reclaim opera-
tions are interleaved with writing of host data according to an
interleave ratio so that reclaim operations are spread out over
an extended period 1nstead of being done 1n a long continuous
burst. The interleave ratio 1s calculated to be the ratio of all
remaining host writes to all remaining reclaim writes.

Where a file-based host interface connects the memory to a
host, the memory controller may have accurate, up-to-date
information regarding the data stored in the memory array
and can estimate the appropriate interleave ratio from the
amount ol additional host data that can be written to the
memory before 1t 1s full and the amount of reclaim needed
betore the memory 1s full. By spreading the reclaim opera-
tions evenly throughout the remaining time, a constant rate of
programming of host data 1s achieved. In memories having
sector-based or other interfaces, information may be provided

US 7,984,084 B2

3

by the host to allow such estimates to be made so that an
interleave ratio may be similarly calculated.

An interleave ratio may be calculated at intervals or when
there 1s a triggering event such as the deletion of some stored
data by a host. Thus, the interleave ratio 1s updated as appro-
priate so that the ratio 1s adaptive to changing circumstances.

Reclaim may be differently managed in different modes. In
addition to the adaptive reclaim based on estimates of host
data to be written and reclaim operations to be done, there
may be a minimum reclaim mode 1n which space 1s reclaimed
at some low (or zero) rate. Typically, the minimum reclaim
mode applies where there are adequate erased blocks com-
pared to reclaimable space. There may also be a maximum
reclaim mode 1n which space 1s reclaimed 1n an 1nterleaved
manner at some maximum rate. Typically, the maximum
reclaim mode applies where there are few erased blocks, a
situation that generally occurs when the memory 1s nearly
tull. In addition, reclaim may be done 1n a continuous manner
(not interleaved) 1n response to a host command. Reclaim
may also be inhibited 1n response to a host command.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically illustrates a host and a connected
non-volatile memory system as currently implemented;

FIG. 2 1s a block diagram of an example flash memory
system for use as the non-volatile memory of FIG. 1;

FI1G. 3 1s a representative circuit diagram of a memory cell
array that may be used in the system of FIG. 2;

FIG. 4 1llustrates an example physical memory organiza-
tion of the system of FIG. 2;

FI1G. 5 shows an expanded view of a portion of the physical
memory of FIG. 4;

FIG. 6 shows a further expanded view of a portion of the
physical memory of FIGS. 4 and 5;

FIG. 7 illustrates a common logical address interface
between a host and a re-programmable memory system;

FIGS. 8 A and 8B show an example of garbage collection in
a non-volatile memory.

FIGS. 9A and 9B show another example of garbage col-
lection 1n a non-volatile memory.

FIGS. 10A and 10B show an example of compaction 1n a
non-volatile memory.

FIGS. 11A and 11B show an example of consolidation in a
non-volatile memory.

FIG. 12 1llustrates deletion of a file by a host application
where the file 1s stored 1n a non-volatile memory using the
interface of FIG. 7.

FIG. 13 shows an example of how space in a non-volatile
memory may be managed.

FIG. 14 shows another example of how space in a non-
volatile memory may be managed.

FIG. 15 shows mterleaved host write operations and gar-
bage collection operations.

FIG. 16 shows a non-volatile memory having a file-based
interface to a host.

FI1G. 17 1llustrates deletion of a file by a host application
where the file 1s stored 1n a non-volatile memory using the
interface of FI1G. 16;

FIG. 18 1llustrates an example of management of space in
a non-volatile memory having a file-based interface.

FIG. 19 illustrates another example of management of
space 1n a non-volatile memory having a file-based interface,
this example providing a constant rate of programming of
host data until the memory array 1s full.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 20 shows another example of management of space in
a non-volatile memory having a file-based interface having

adaptive scheduling of reclaim that adapts 1n response to
deletion of a file.

FIG. 21 shows another example of management of space in
a non-volatile memory having a file-based interface in three
modes, an mitial mode having a minimal reclaim rate, an
adaptive mode having an adaptively scheduled reclaim rate
and a final mode having a maximum reclaim rate.

FIG. 22 shows a detailed view of management of space in
a non-volatile memory having a file-based interface including
portions of the memory array 1n various conditions and pos-
sible transitions of data between those conditions.

FIGS. 23 A-23D show blocks of amemory array containing,

data undergoing transitions corresponding to those of FIG.
22.

DETAILED DESCRIPTION

A current tflash memory system and a typical operation
with host devices are described with respect to FIGS. 1-8. It 1s
in such a system that the various aspects of the present inven-
tion may be implemented. A host system 1 of FIG. 1 stores
data into and retrieves data from a flash memory 2. Although
the tlash memory can be embedded within the host, the
memory 2 1s 1llustrated to be 1n the more popular form of a
card that 1s removably connected to the host through mating
parts 3 and 4 of a mechanical and electrical connector. There
are currently many different flash memory cards that are
commercially available, examples being the Compact Flash
(CF), the Multimedia Card (IMMC), Secure Digital (SD),
miniSD, Memory Stick, Smart Media and TransFlash cards.
Although each of these cards has a unique mechanical and/or
clectrical interface according to its standardized specifica-
tions, the flash memory included 1n each is very similar. These
cards are all available from SanDisk Corporation, assignee of
the present application. SanDisk also provides a line of flash
drives under its Cruzer trademark, which are hand held
memory systems in small packages that have a Universal
Serial Bus (USB) plug for connecting with a host by plugging,
into the host’s USB receptacle. Each of these memory cards
and flash drives includes controllers that interface with the
host and control operation of the flash memory within them.

Host systems that use such memory cards and tlash drives
are many and varied. They include personal computers (PCs),
laptop and other portable computers, cellular telephones, per-
sonal digital assistants (PDAs), digital still cameras, digital
movie cameras and portable audio players. The host typically
includes a built-in receptacle for one or more types of
memory cards or tlash drives but some require adapters nto
which a memory card is plugged.

The host system 1 of FIG. 1 may be viewed as having two
major parts, insofar as the memory 2 1s concerned, made up of
a combination of circuitry and software. They are an applica-
tions portion 5 and a driver portion 6 that interfaces with the
memory 2. In a personal computer, for example, the applica-
tions portion S can include a processor running word process-
ing, graphics, control or other popular application software.
In a camera, cellular telephone or other host system that 1s
primarily dedicated to performing a single set of functions,
the applications portion 5 includes the software that operates
the camera to take and store pictures, the cellular telephone to
make and receive calls, and the like.

The memory system 2 of FIG. 1 includes flash memory 7,
and circuits 8 that both interface with the host to which the
card 1s connected for passing data back and forth and control
the memory 7. The controller 8 typically converts between

US 7,984,084 B2

S

logical addresses of data used by the host 1 and physical
addresses of the memory 7 during data programming and
reading.

Referring to FIG. 2, circuitry of a typical flash memory
system that may be used as the non-volatile memory 2 of FIG.
1 1s described. The system controller 1s usually implemented
on a single integrated circuit chip 11 that 1s connected 1n
parallel with one or more integrated circuit memory chips
over a system bus 13, a single such memory chip 15 being
shown in FIG. 2. The particular bus 13 that 1s illustrated
includes a separate set of conductors 17 to carry data, a set 19
for memory addresses and a set 21 for control and status
signals. Alternatively, a single set of conductors may be time
shared between these three functions. Further, other configu-
rations of system buses can be employed, such as a ring bus
that 1s described 1n U.S. patent application Ser. No. 10/915,
039, filed Aug. 9, 2004, entitled “Ring Bus Structure and Its
Use 1n Flash Memory Systems.”

A typical controller chip 11 has its own 1nternal bus 23 that
interfaces with the system bus 13 through interface circuits
25. The primary functions normally connected to the bus are
a processor 27 (such as a microprocessor or micro-control-
ler), a read-only-memory (ROM) 29 containing code to 1ni-
tialize (*“boot™) the system, read-only-memory (RAM) 31
used primarily to bufler data being transferred between the
memory and a host, and circuits 33 that calculate and check an
error correction code (ECC) for data passing through the
controller between the memory and the host. The controller
bus 23 interfaces with a host system through circuits 35,
which, in the case of the system of FIG. 2 being contained
within a memory card, 1s done through external contacts 37 of
the card that are part of the connector 4. A clock 39 1s con-
nected with and utilized by each of the other components of
the controller 11.

The memory chip 15, as well as any other connected with
the system bus 13, typically contains an array of memory cells
organized into multiple sub-arrays or planes, two such planes
41 and 43 being illustrated for simplicity but more, such as
four or eight such planes, may instead be used. Alternatively,
the memory cell array of the chip 15 may not be divided into
planes. When so divided however, each plane has 1ts own
column control circuits 45 and 47 that are operable indepen-
dently of each other. The circuits 45 and 47 receive addresses
ol their respective memory cell array from the address portion
19 of the system bus 13, and decode them to address a specific
one or more of respective bit lines 49 and 51. The word lines
53 are addressed through row control circuits 55 in response
to addresses recerved on the address bus 19. Source voltage
control circuits 57 and 59 are also connected with the respec-
tive planes, as are p-well voltage control circuits 61 and 63. IT
the memory chip 15 has a single array of memory cells, and 1T
two or more such chips exist in the system, the array of each
chip may be operated similarly to a plane or sub-array within
the multi-plane chip described above.

Data are transferred into and out of the planes 41 and 43
through respective data input/output circuits 65 and 67 that
are connected with the data portion 17 of the system bus 13.
The circuits 65 and 67 provide for both programming data
into the memory cells and for reading data from the memory
cells of their respective planes, through lines 69 and 71 con-
nected to the planes through respective column control cir-
cuits 45 and 47.

Although the controller 11 controls the operation of the
memory chip 15 to program data, read data, erase and attend
to various housekeeping matters, each memory chip also
contains some controlling circuitry that executes commands
from the controller 11 to perform such functions. Interface

10

15

20

25

30

35

40

45

50

55

60

65

6

circuits 73 are connected to the control and status portion 21
of the system bus 13. Commands from the controller are
provided to a state machine 75 that then provides specific
control of other circuits in order to execute these commands.
Control lines 77-81 connect the state machine 75 with these
other circuits as shown 1 FIG. 2. Status information from the
state machine 75 1s communicated over lines 83 to the inter-
face 73 for transmission to the controller 11 over the bus
portion 21.

A NAND architecture of the memory cell arrays 41 and 43
1s currently common, although other architectures, such as
NOR, can also be used instead. Examples of NAND flash

memories and their operation as part of amemory system may
be had by reference to U.S. Pat. Nos. 5,570,315, 5,774,397,

6,046,935, 6,373,746, 6,456,528, 6,522,580, 6,771,536 and
6,781,877 and U.S. Patent Application Publication No. 2003/
01477278.

An example NAND array is illustrated by the circuit dia-
gram of FI1G. 3, which 1s a portion of the memory cell array 41
of the memory system of FIG. 2. A large number of global bit
lines are provided, only four such lines 91-94 being shown 1n
FIG. 2 for simplicity of explanation. A number of series
connected memory cell strings 97-104 are connected between
one of these bit lines and a reference potential. Using the
memory cell string 99 as representative, a plurality of charge
storage memory cells 107-110 are connected 1n series with
select transistors 111 and 112 at either end of the string. When
the select transistors of a string are rendered conductive, the
string 1s connected between 1ts bit line and the reference
potential. One memory cell within that string 1s then pro-
grammed or read at a time.

Word lines 115-118 of FIG. 3 imndividually extend across
the charge storage element of one memory cell 1n each of a
number of strings of memory cells, and gates 119 and 120
control the states of the select transistors at each end of the
strings. The memory cell strings that share common word and
control gate lines 115-120 are made to form a block 123 of
memory cells that are erased together. This block of cells
contains the minimum number of cells that are physically
crasable at one time. One row of memory cells, those along
one of the word lines 115-118, are programmed at a time.
Typically, the rows of a NAND array are programmed 1n a
prescribed order, 1n this case beginning with the row along the
word line 118 closest to the end of the strings connected to
ground or another common potential. The row of memory
cells along the word line 117 1s programmed next, and so on,
throughout the block 123. The row along the word line 115 1s
programmed last.

A second block 125 i1s similar, its strings of memory cells
being connected to the same global bit lines as the strings in
the first block 123 but having a different set of word and
control gate lines. The word and control gate lines are driven
to their proper operating voltages by the row control circuits
55. If there 1s more than one plane or sub-array in the system,
such as planes 1 and 2 of FIG. 2, one memory architecture
uses common word lines extending between them. There can
alternatively be more than two planes or sub-arrays that share
common word lines. In other memory architectures, the word
lines of individual planes or sub-arrays are separately driven.

As described in several of the NAND patents and published
application referenced above, the memory system may be
operated to store more than two detectable levels of charge 1n
cach charge storage element or region, thereby to store more
than one bit of data in each. The charge storage elements of
the memory cells are most commonly conductive floating
gates but may alternatively be non-conductive dielectric

US 7,984,084 B2

7

charge trapping matenal, as described 1n U.S. Patent Appli-
cation Publication No. 2003/0109093.

FI1G. 4 conceptually illustrates an organization of the flash
memory cell array 7 (FI1G. 1) that 1s used as an example in
turther descriptions below. Four planes or sub-arrays 131-134
of memory cells may be on a single integrated memory cell
chip, on two chips (two of the planes on each chip) or on four

separate chips. The specific arrangement 1s not important to
the discussion below. Of course, other numbers of planes,
such as 1, 2, 8, 16 or more may exist 1n a system. The planes
are individually divided into blocks of memory cells shown 1n
FIG. 4 by rectangles, such as blocks 137, 138, 139 and 140,
located 1n respective planes 131-134. There can be dozens or
hundreds of blocks 1n each plane. As mentioned above, the
block of memory cells 1s the unit of erase, the smallest number
of memory cells that are physically erasable together. For
increased parallelism, however, the blocks are operated 1n
larger metablock units. One block from each plane 1s logi-
cally linked together to form a metablock. The four blocks
137-140 are shown to form one metablock 141. All of the cells
within a metablock are typically erased together. The blocks
used to form a metablock need not be restricted to the same
relative locations within their respective planes, as 1s shown in
a second metablock 143 made up of blocks 1435-148.
Although 1t 1s usually preferable to extend the metablocks
across all of the planes, for high system performance, the
memory system can be operated with the ability to dynami-
cally form metablocks of any or all of one, two or three blocks
in different planes. This allows the size of the metablock to be
more closely matched with the amount of data available for
storage 1n one programming operation.

The individual blocks are i turn divided for operational
purposes 1nto pages ol memory cells, as 1llustrated in FIG. 5.
The memory cells of each of the blocks 131-134, for example,
are each divided into eight pages P0-P7. Alternatively, there
may be 16, 32 or more pages of memory cells within each
block. The page 1s the unit of data programming and reading
within a block, containing the minimum amount of data that
are programmed at one time. In the NAND architecture of
FIG. 3, a page 1s formed of memory cells along a word line
within a block. However, in order to increase the memory
system operational parallelism, such pages within two or
more blocks may be logically linked into metapages. A
metapage 151 1s illustrated in FIG. §, being formed of one
physical page from each of the four blocks 131-134. The
metapage 151, for example, includes the page P2 in of each of
the four blocks but the pages of a metapage need not neces-
sarily have the same relative position within each of the
blocks. Although it 1s preferable to program and read the
maximum amount of data in parallel across all four planes, 1o
high system performance, the memory system can also be
operated to form metapages of any or all of one, two or three
pages 1n separate blocks 1n different planes. This allows the
programming and reading operations to adaptively match the
amount of data that may be conveniently handled 1n parallel
and reduces the occasions when part of a metapage remains
unprogrammed with data.

A metapage formed of physical pages of multiple planes,
as illustrated in F1G. 5, contains memory cells along word line
rows of those multiple planes. Rather than programming all
of the cells 1n one word line row at the same time, they are
more commonly alternately programmed 1n two or more
interleaved groups, each group storing a page of data (in a
single block) or a metapage of data (across multiple blocks).
By programming alternate memory cells at one time, a unit of
peripheral circuits including data registers and a sense ampli-
fier need not be provided for each bit line but rather are
time-shared between adjacent bit lines. This economizes on
the amount of substrate space required for the peripheral
circuits and allows the memory cells to be packed with an

10

15

20

25

30

35

40

45

50

55

60

65

8

increased density along the rows. Otherwise, 1t 1s preferable
to stmultaneously program every cell along a row 1n order to
maximize the parallelism available from a given memory
system. For most data management purposes, metablocks and
metapages may be treated in the same way as blocks and
pages. Examples given in this application 1n terms of meta-
blocks and metapages are generally also applicable to memo-

ries using blocks and pages as the units of erase and program-
ming respectively. Similarly, examples given i terms of

blocks and pages are generally also applicable to memories
using metablocks and metapages.

One challenge to efliciently controlling operation of
memory arrays with very large erase blocks 1s to match and
align the number of data sectors being stored during a given
write operation with the capacity and boundaries of blocks of
memory. One approach 1s to configure a metablock used to
store new data from the host with less than a maximum
number of blocks, as necessary to store a quantity of data less
than an amount that fills an entire metablock. The use of
adaptive metablocks 1s described 1n U.S. patent application
Ser. No: 10/749,189, filed Dec. 30, 2003, entitled “Adaptive
Metablocks.” The fitting of boundaries between blocks of
data and physical boundaries between metablocks 1s
described 1n patent applications Ser. No. 10/841,118, filed
May 7, 2004, and Ser. No. 11/016,271, filed Dec. 16, 2004,
entitled “Data Run Programming.”

With reference to FIG. 3, the simultaneous programming,
of data into every other memory cell along a row 1s most
conveniently accomplished by providing two rows of select
transistors (not shown) along at least one end of the NAND
strings, mstead of the single row that 1s shown. The select
transistors of one row then connect every other string within
a block to their respective bit lines 1n response to one control
signal, and the select transistors of the other row connect
intervening every other string to their respective bit lines 1n
response to another control signal. Two pages of data are
therefore written 1nto each row of memory cells.

The amount of data in each logical page 1s typically an
integer number of one or more sectors of data, each sector
containing 512 bytes of data, by convention. FIG. 6 shows a
logical data page of two sectors 153 and 1535 of data of apage
or metapage. Each sector usually contains a portion 157 of
512 bytes of user or system data being stored and another
number of bytes 159 for overhead data related either to the
data 1n the portion 157 or to the physical page or block 1n
which 1t 1s stored. The number of bytes of overhead data 1s
typically 16 bytes, making the total 328 bytes for each of the
sectors 153 and 155. The overhead portion 159 may contain
an ECC calculated from the data portion 157 during program-
ming, its logical address, an experience count of the number
of times the block has been erased and re-programmed, one or
more control tlags, operating voltage levels, and/or the like,
plus an ECC calculated from such overhead data 159. Alter-
natively, the overhead data 1589, or a portion of 1t, may be
stored 1n different pages 1n other blocks.

As the parallelism of memories increases, data storage
capacity of the metablock increases and the size of the data
page and metapage also increase as a result. The data page
may then contain more than two sectors of data. With two
sectors 1n a data page, and two data pages per metapage, there
are four sectors 1n a metapage. Each metapage thus stores
2048 bytes of data. This 1s a high degree of parallelism, and
can be increased even further as the number of memory cells
in the rows 1s increased. For this reason, the width of flash
memories 1s being extended 1n order to increase the amount of
data 1n a page and a metapage. The physically small re-
programmable non-volatile memory cards and flash drives
identified above are commercially available with data storage
capacity of 512 megabytes (MB), 1 gigabyte (GB), 2 GB and
4 GB, and may go higher.

US 7,984,084 B2

9

FI1G. 7 illustrates a common interface between a host and
such a mass memory system. The host deals with data files
generated or used by application software or firmware pro-
grams executed by the host. A word processing data file 1s an
example, and a drawing file of computer aided design (CAD)
soltware 1s another, found mainly 1n general computer hosts
such as PCs, laptop computers and the like. A document in the

PDF format 1s also such a file. A still digital video camera
generates a data file for each picture that 1s stored on a
memory card. A cellular telephone utilizes data from files on
an internal memory card, such as a telephone directory. A
PDA stores and uses several different files, such as an address

file, a calendar file, and the like. In any such application, the
memory card may also contain soiftware that operates the
host.

In FIG. 7, a continuous logical address space 161 1s large
enough to provide addresses for all the data that may be stored
in the memory system. Typically the logical address space 1s
somewhat smaller than the physical address space of the
memory array so that there 1s some additional space 1n the
memory array. The host logical address space 1s typically
divided into increments of clusters of data. Each cluster may
be designed 1n a given host system to contain a number of
sectors of data, somewhere between 4 and 64 sectors being

typical. A standard sector contains 512 bytes of data.
Three Files 1, 2 and 3 are shown 1n the example of FIG. 7.

An application program running on the host system creates
cach file as an ordered set of data and 1dentifies 1t by a unique
name or other reference. Enough available logical address
space not already allocated to other files 1s assigned by the
host to File 1. File 1 1s shown to have been assigned a con-
tiguous range ol available logical addresses. Ranges of
addresses are also commonly allocated for specific purposes,
such as a particular range for the host operating software,
which are then avoided for storing data even if these addresses
have not been utilized at the time the host 1s assigning logical
addresses to the data.

When a File 2 1s later created by the host, the host similarly
assigns two different ranges of contiguous addresses within
the logical address space 161, as shown in FIG. 7. A file need
not be assigned contiguous logical addresses but rather can be
fragments of addresses 1n between address ranges already
allocated to other files. This example then shows that yet
another File 3 created by the host 1s allocated other portions of
the host address space not previously allocated to the Files 1
and 2 and other data.

The host keeps track of the memory logical address space
by maintaining a file allocation table (FAT), where the logical
addresses the host assigns to the various host files are main-
tained. The FAT table 1s typically stored in the non-volatile
memory, as well as 1 a host memory, and 1s frequently
updated by the host as new {files are stored, other files deleted,
files modified and the like. When a host file 1s deleted, for
example, the host then deallocates the logical addresses pre-
viously allocated to the deleted file by updating the FAT table
to show that they are now available for use with other data
files.

The host 1s not concerned about the physical locations
where the memory system controller chooses to store the
files. The typical host only knows 1ts logical address space
and the logical addresses that 1t has allocated to 1ts various
files. The memory system, on the other hand, through a typi-
cal host/card interface, only knows the portions of the logical
address space to which data have been written but does not
know the logical addresses allocated to specific host files, or
even the number of host files. The memory system controller
converts the logical addresses provided by the host for the
storage or retrieval of data into umque physical addresses
within the flash memory cell array where host data are stored.

10

15

20

25

30

35

40

45

50

55

60

65

10

A block 163 represents a working table of these logical-to-
physical address conversions, which 1s maintained by the
memory system controller.

The memory system controller 1s programmed to store data
files within the blocks and metablocks of a memory array 165
in a manner to maintain the performance of the system at a
high level. Four planes or sub-arrays are used 1n this illustra-

tion. Data are preferably programmed and read with the maxi-
mum degree of parallelism that the system allows, across an

entire metablock formed of a block from each of the planes.
At least one metablock 167 1s usually allocated as a reserved
block for storing operating firmware and data used by the
memory controller. Another metablock 169, or multiple
metablocks, may be allocated for storage of host operating
soltware, the host FAT table and the like. Most of the physical
storage space remains for the storage of data files. The
memory controller does not know, however, how the data
received has been allocated by the host among its various file
objects. All the memory controller typically knows from
interacting with the host 1s that data written by the host to
specific logical addresses are stored 1n corresponding physi-
cal addresses as maintained by the controller’s logical-to-
physical address table 163.

In a typical memory system, a few extra blocks of storage
capacity are provided than are necessary to store the amount
of data within the address space 161. One or more of these
extra blocks may be provided as redundant blocks for substi-
tution for other blocks that may become defective during the
lifetime of the memory. The logical grouping of blocks con-
tained within individual metablocks may usually be changed
for various reasons, including the substitution of a redundant
block for a defective block originally assigned to the meta-
block. One or more additional blocks, such as metablock 171,
are typically maintained 1n an erased block pool. When the
host writes data to the memory system, the controller converts
the logical addresses assigned by the host to physical
addresses within a metablock 1n the erased block pool. Other
metablocks not being used to store data within the logical
address space 161 are then erased and designated as erased
pool blocks for use during a subsequent data write operation.

Data stored at specific host logical addresses are frequently
replaced by new data as the original stored data become
obsolete. The memory system controller, 1n response, writes
the new data 1n an erased block and then changes the logical-
to-physical address table for those logical addresses to 1den-
tify the new physical block to which the data at those logical
addresses are stored. The blocks contaiming the original data
at those logical addresses are then erased and made available
for the storage ol new data. Such erasure often must take place
before a current data write operation may be completed 1t
there 1s not enough storage capacity in the pre-erased blocks
from the erased block pool at the start of writing. This can
adversely impact the system data programming speed. The
memory controller typically learns that data at a given logical
address has been rendered obsolete by the host only when the
host writes new data to their same logical address. Many
blocks of the memory can therefore be storing such ivalid
data for a time.

The sizes of blocks and metablocks are increasing 1n order
to efficiently use the area of the integrated circuit memory
chip. This results 1n a large proportion of individual data
writes storing an amount of data that 1s less than the storage
capacity of ametablock, and in many cases even less than that
of a block. Since the memory system controller normally
directs new data to a metablock from the erased block pool,
this can result 1n portions of metablocks going unfilled. If the
new data are updates ol some data stored in another meta-
block, remaining valid metapages of data from that other
metablock having logical addresses contiguous with those of
the new data metapages are also desirably copied 1n logical

US 7,984,084 B2

11

address order mto the new metablock. The old metablock may
retain other valid data metapages. This results over time 1n
data of certain metapages of an individual metablock being
rendered obsolete and invalid, and replaced by new data with
the same logical address being written to a different meta-

block.

In order to maintain enough physical memory space to

store data over the entire logical address space 161, portions
of the memory that are occupied by obsolete data may be
reclaimed 1n a garbage collection operation. Erased space
may also be reclaimed by consolidation where the erased
space1s 1n blocks that contain valid data and consolidating the
valid data in fewer blocks allows blocks to be added to the
erased block pool. Theretfore, blocks are subject to garbage
collection or consolidation to reclaim memory space for
reuse. It 1s also desirable to maintain sectors of data within the
metablocks in the same order as their logical addresses as
much as practical, since this makes reading data 1n contiguous
logical addresses more efficient. So data consolidation and
garbage collection are typically performed with this addi-
tional goal. Some aspects of managing a memory when
receiving partial block data updates and the use of metablocks
are described 1n U.S. Pat. No. 6,763,424. Garbage collection
and consolidation are collectively referred to in this applica-
tion as “reclaim’ and operations performed as part of garbage
collection or consolidation are referred to as “reclaim opera-
tions.”

Reclaim Examples

During garbage collection, pages of valid data with con-
tiguous or near contiguous logical address ranges are gath-
ered from one or more source blocks contaiming obsolete data
and re-written mto a destination block. The destination block
may be from an erased block pool or may contain some valid
data. When all valid data pages have been copied from the one
or more source blocks, they may be erased for future use.
FIGS. 8A and 8B show an exemplary garbage collection
operation. FIG. 8A shows valid data X, X+1 and X+2 from
pages 0-2 of block 1 being copied from block 1 to block 3 and
valid data X+3 being copied from page 1 of block 2 to block
3. Afterdata X, X+1, X+2 and Y are copied to block 3, blocks
1 and 2 may be added to a pool of blocks that are ready for
immediate erasure and are generally erased shortly after-
wards. FIG. 8B shows the situation after garbage collection
with blocks 1 and 2 erased and block 3 being filled with data.
As a result of this garbage collection operation, the erased
block pool has increased by one block, since blocks 1 and 2
are added to the erased block pool but block 3 1s no longer 1n
the erased block pool. In order to accomplish this data X,
X+1, X+2 and X+3 are copied. The data units of this example
are equal to the contents of a page and may contain one or
more sectors of data. Alternatively, the data may not be in
logical units of sectors so that the contents of a page may not
have separately addressable units of uniform size. Similarly,
other examples of reclaim operations may apply to data that 1s
in logically addressable units of sectors, or in some other
format. In this example, data X, X+1, X+2 and X+3 are copied
so that they are stored sequentially in block 3. In other
examples, datamay be copied to a block where they are stored
non-sequentially.

FIGS. 9A and 9B show another example of garbage col-
lection. Here valid data Y are copied from block 2, which
contains obsolete data in pages 0 and 2, and 1s copied to block
1 which contains only valid data. After data Y has been
copied, only obsolete data remains in block 2, so block 2 1s
erased. FIG. 9B shows the situation after garbage collection
with data' Y stored in the previously erased page 3 of block 1
and with block 2 erased. Thus, 1n this example, no block from
the erased block pool 1s needed. Where dataY 1s the amount

10

15

20

25

30

35

40

45

50

55

60

65

12

of data filling one page of the memory array, only one page 1s
copied and one block is erased 1n this operation, resulting 1n
an additional erase block being added to the erased block
pool. In this example, data Y are not logically related to data
X, X+1, X+2. In other examples data may be copied to blocks
containing data that are logically related.

Data compaction is a particular form of garbage collection

that typically involves reading all valid data pages from a
block and writing them to a new block or blocks, 1gnoring

pages with 1nvalid data 1n the process. The pages with valid
data are also preferably arranged with a physical address
order that matches the logical address order of the data stored
in them. Data compaction may be performed on a block that
has data stored in a non-sequential (chaotic) format so that
alter compaction the data 1s stored 1n a sequential format. The
number of pages occupied in the new block will be less than
those occupied 1n the old block since the pages containing
obsolete data are not copied to the new block. The old block
1s then erased and made available to store new data. The
additional pages of capacity gained by the consolidation can
then be used to store other data.

FIGS. 10A and 10B show an example of data compaction.
FIG. 10A shows block 1 filled with data some of which 1is
obsolete and some of which 1s valid. The data stored 1n block
1 are not 1n sequential order. Block 1 1s typical of a chaotic
update block used 1n some memory designs such as those
described 1n U.S. patent application No. 10/750,155. Pages 2
and 3 of block 1 contain valid copies of data Z+1 and Z+2,
while pages 0 and 1 contain obsolete copies of these data.
Where a chaotic update block 1s mapped to a limited logical
address range, the block 1s compacted whenever 1t becomes
tull so that additional updates are possible within the logical
address range of the block. FIG. 10B shows the situation after
compaction. The valid data Z+1 and Z+2 of pages 2 and 3 of
block 1 have been copied to block 2 and are arranged to be
sequentially stored. One advantage of sequentially storing
data 1s that 1t may not be necessary to maintain an index of the
locations of different sectors, thus reducing the overhead
associated with maintaining such an index. Block 2 contains
crased space 1n pages 2 and 3 that 1s available for storing
additional data. Block 1 1s shown after all valid data have been
copied to block 2 and block 1 has been erased. Thus, as a
result of compaction, the erased block pool still has the same
number of erased blocks, but there 1s space available for
writing data 1n block 2 that was not previously available. Data
from two pages are copied to achieve this compaction.

Data consolidation may be used to make space available
for storage of data. In some memory systems, the erased space
in the memory may not all be usable because it 1s 1n small
portions that are distributed among blocks that also contain
valid data. When new data are recetved that are not logically
related to data stored 1n any block with suificient space to
program the data, it 1s desirable to program it to an erased
block, not a partially full block. Such new data that are not
logically related to already stored data are generally stored 1n
an erased block from an erased block pool. After some time,
there may be multiple blocks thathave erased space that1s not
usable for logically unrelated new data. This results 1n wasted
space. The valid data from such partially written blocks may
be combined. For example, the valid data from two blocks
that contain erased space may be combined so that the com-
bined erased space forms an erased block.

FIG. 11A shows block 1 containing data X, X+1 and X+2
in pages 0-2 while block 2 contains dataY 1n page 0. Data’Y
are not logically related to data X, X+1 and X+2. Blocks 1 and
2 may be kept 1n a condition with erased space for some time
to see 11 additional data are received that are sequential to data
X+2 for block 1 or sequential to data Y for block 2. If no
additional sequential data are received after some threshold
time or after some other condition 1s met, blocks 1 and 2 may

US 7,984,084 B2

13

be marked for consolidation. A list may be maintained of
blocks that are ready for consolidation and blocks may be
selected from the list according to the amount of valid data
they contain so that when combined they fill a block or come
close to filling a block. FIG. 11B shows blocks 1 and 2 after
consolidation. Data’Y has been copied to block 1 and block 2
has been erased. This consolidation only requires copying of
the data from one page (data’Y from page 0 of block 2) in order
to add a block to the erased block pool. It 1s generally desir-

able to consolidate 1n a manner that requires less copying,
thus data' Y are copied to block 1 instead of copying data X,
X+1 and X+2 to block 2.

Data consolidation and garbage collection take time and
can a

ect the performance of the memory system, particu-
larly 11 data consolidation or garbage collection needs to take
place belore a command from the host can be executed. Such
reclaim operations are normally scheduled by the memory
system controller to take place in the background as much as
possible, but this 1s not always possible. An example where
execution of a host command can be delayed 1s where there
are not enough pre-erased metablocks 1n the erased block
pool to store all the data that the host wants to write into the
memory and data consolidation or garbage collection 1s
needed first to clear one or more metablocks of valid data,
which can then be erased. Attention has therefore been
directed to managing control of the memory in order to mini-
mize such disruptions. Many such techniques are described in
the following U.S. patent applications: Ser. No. 10/749,831,
filed Dec. 30, 2003, entitled “Management of Non-Volatile

Memory Systems Having Large Erase Blocks™; Ser. No.
10/750,155, filed Dec. 30, 2003, entitled “Non-Volatile

Memory and Method with Block Management System’; Ser.
No. 10/917,888, filed Aug. 13, 2004, entitled “Non- Velatlle
Memory and Methed with Menlery Planes Alignment”; Ser.
No. 10/917,867, filed Aug. 13, 2004; Ser. No. 10/917,889,

filed Aug. 13 2004, entitled “Nen-Velatlle Menlery and
Method with Phased Program Failure Handling”; and Ser.
No. 10/917,725, filed Aug. 13, 2004, entitled “Non-Volatile
Memory and Methed with Centrel Data Management.”

A memory controller may also use data from the FAT table,
which 1s stored by the host in the non-volatile memory, to
more efficiently operate the memory system. One such use 1s
to learn when data have been identified by the host to be
obsolete by deallocating their logical addresses. Knowing
this allows the memory controller to schedule erasure of the
blocks containing such invalid data before 1t would normally
learn of 1t by the host writing new data to those logical
addresses. This 1s described 1 U.S. patent application Ser.
No. 10/897,049, filed Jul. 21, 2004, entitled “Method and
Apparatus for Maintaining Data on Non-Volatile Memory
Systems.” Other techniques include monitoring host patterns
of writing new data to the memory 1n order to deduce whether
a given write operation 1s a single file, or, i multiple files,
where the boundaries between the files lie. U.S. patent appli-
cation Ser. No. 11/022,369, filed Dec. 23, 2004, entitled “FAT
Analysis for Optimized Sequential Cluster Management,”
describes the use of techniques of this type.

To operate the memory system efficiently, 1t 1s desirable for
the controller to know as much about the logical addresses
assigned by the host to data of 1ts individual files as 1t can.
Data files can then be stored by the controller within a single
metablock or group ol metablocks, rather than being scattered
among a larger number of metablocks when file boundaries
are not known. The result 1s that the number and complexity
of data consolidation and garbage collection operations are
reduced. The performance of the memory system improves as
a result. But 1t 1s difficult for the memory controller to know
much about the host data file structure when the host/memory
interface includes the logical address space 161 (FI1G. 7), as
described above.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

Reclaim with Logical-address-based Interface

FIG. 12 shows the operation of the host/memory interface
of FI1G. 7when a file 1s deleted. An application 201 running on
the host system determines that file 2 should be deleted in the
memory. For example, application 201 running on a PC may
determine that file 2 1s no longer needed, based on user input
or for other reasons. As a result, the application sends an
instruction to delete file 2 to the driver portion of the host. In
this case the storage of data 1s managed using a FAT to

indicate logical addresses used for each file stored in the
memory. For example, File 2 1s shown having two separate
logical address ranges 203 and 2035. Each logical address
range 203 and 205 may mclude multiple sequential clusters.
While file 2 1s shown having just two separate logical address
ranges 203 and 205, files are frequently fragmented into many
logical address ranges with other files mapped to the inter-
vening logical addresses. The instruction to delete file 2
results 1n the FAT being modified so that clusters of logical
address ranges 203 and 2035 that were allocated to file 2 are
deallocated and become available for subsequent allocation
by the host. However, the deallocation of these clusters 1n the
host’s FAT does not generally cause any modification of the
memory management structures used by the memory control-
ler. Logical-to-physical address translation 163 includes a
table maintained by the memory controller that records the
physical addresses where clusters of data are stored. Address
ranges 203 and 205 are mapped to physical address ranges
209 and 211 respectively. This record 1s not altered as a result
of the “delete file 2 command from the application. Thus, the
table maintains entries for logical address ranges 203 and
205. Also, the corresponding physical locations 209 and 207
remain filled with data even though this data 1s no longer
needed by the application. Generally, the memory controller
only changes the logical-to-physical address translation for
logical address ranges 203 and 205 when new data are sent by
the host with these addresses. Because the memory controller
does not know when a cluster 1s deallocated, 1t generally
maintains at least one entry for each logical address and so
sees the entire logical address range as occupied. There 1s
generally more physical space than the logical address range
of the memory so that even with the entire logical address
range filled with apparently valid data, there 1s additional
space that may be erased space or may be occupied by obso-
lete data.

FIG. 13 shows an example of how the physical space 1n a
memory array may be managed as host data 1s written to the
memory. The physical space 1s treated as being mostly full
with valid data that corresponds to the full logical address
range. The remaining space in the memory 1s made up of
erased space and space occupied by obsolete data. As host
data are programmed to the memory array, the amount of
space occupied by obsolete data increases as shown. This 1s
because when a new sector 1s recetved with a particular logi-
cal address 1t 1s stored at a new physical location that is
recorded 1n logical-to-physical translation 163. This replaces
a previously stored sector with the same logical address. The
previously stored sector then becomes obsolete and the physi-
cal location of the previously stored sector 1s recorded as
containing obsolete data. The erased space diminishes as the
amount of obsolete data increases. At some point there 1s not
enough erased space to continue programming host data.
FIG. 13 shows no erased space left in the memory at time t1.
So at time t1 no further host data can be programmed to the
memory array. In other examples, programming may stop
when some mimmum amount of erased space remains in the
memory array. At time tl, a garbage collection operation
begins to reclaim space that 1s occupied by obsolete data. This
operation ends at time t2 when all obsolete space has been
reclaimed and 1s erased space. In other examples, the garbage
collection operation may end before all possible space has

US 7,984,084 B2

15

been reclaimed, for example when just enough space has been
reclaimed to allow programming of host data to continue. At
time t2, programming of host data begins again and at time t3,
writing of host data ceases and another garbage collection
operation begins. The view shown 1n FIG. 13 1s the memory
controller’s view of the condition of the data 1n the memory
and 1s not always the same as the host’s view. While the

memory controller sees the logical space as full, the host may
see the same space as largely free.

Managing the memory in the way shown by FI1G. 13 has the
disadvantage that between time t1 and {2, the memory 1s
unavailable to the host. Therefore, no host data 1s written 1n
the time period from t1 to t2. The time from t1 to {2 may be of
considerable length because of the large number of pages that
may have to be copied. In some cases, this time 1s so great that
1t causes the host to time out. That 1s, the host has a maximum
time for writing a portion of data and the garbage collection
necessary to allow writing of new data when there 1s insuifi-
cient erased space may exceed this maximum.

FIG. 14 shows an alternative method of managing the
memory where garbage collection 1s performed while there 1s
still sufficient erased space to allow writing of host data. In
this example, garbage collection 1s carried out before it 1s
absolutely necessary. Garbage collection may be done
between writing of host data 1n an interleaved manner as
described 1in U.S. patent application No. 11/040,3235. The
trigger for beginning such interleaved garbage collection may
be that the number of erased blocks reaches some threshold.
Interleaved garbage collection operations slow down the pro-
gramming ol host data to the memory. However, the garbage
collection operations may prevent the number of erased
blocks diminishing to a point where host data can no longer be
written. Thus, the risk of the host timing out or aborting the
programming 1s reduced or eliminated. Interleaved garbage
collection may stop when suilicient erased blocks are avail-
able so that programming speed 1s not unnecessarily atiected.
Thus, the amount of erased space varies as interleaved gar-
bage collection 1s turned on and off or the rate of interleaved
garbage collection changes.

FIG. 15 shows a timing diagram of garbage collection
interleaved with writing of host data. N3 pages of host data
are written, then N4 pages of data are written or x blocks are
erased as part of a garbage collection operation. This cycle 1s
repeated. In this way, the overhead associated with garbage
collection 1s spread out over time stead of being concen-
trated at one time, which could cause a time-out. Consolida-
tion, other reclaim operations or other housekeeping opera-
tions that may also be interleaved in this manner.
Housekeeping operations 1n this context refers to operations
that are initiated by the memory controller to maintain data in
the memory array. Such operations may include wear leveling,
and data scrub operations.

Reclaim with File-based Interface

With some memory interfaces, additional information may
be available to the memory controller to allow more efficient
reclaim. Examples of such memory interfaces are described
in the following U.S. patent applications: Ser. No. 11/060,249
entitled “Direct Data File Storage in Flash Memories”; Ser.
No. 11/060,174, entitled, “Direct File Data Programming and
Deletion 1n Flash Memories”; Ser. No. 11/060,248, entitled
“Direct Data File Storage Implementation Techniques in
Flash Memories™ all filed on Feb. 16, 2005 and Provisional
Patent Application No. 60/7035,388, entitled “Direct Data File
Storage 1n Flash Memories™ filed on Aug. 3, 2003. Files are
sent from the host to the memory without being mapped to
logical addresses of a logical address range defined for the
memory. Such a memory may be considered to have a file-
based interface. In the memory, a file i1s stored mainly in
metablocks that are dedicated to thatfile. The locations where
the file 1s stored are recorded using a file 1dentifier and offsets.

10

15

20

25

30

35

40

45

50

55

60

65

16

FIG. 16 shows a memory interface using such direct data file
storage, with files being sent to the memory and file/otlset-
to-physical address translation 173 taking place in the
memory. Such memories may maintain files in a way that
reduces fragmentation so that most metablocks contain data
from only one file. In such memories, the memory controller
has more information available regarding the data being

stored. In particular, because the memory controller identifies
the data by file, 1t 1s able to store files 1n a manner that 1s

file-based.

FIG. 17 shows what happens when an application deletes a
file that 1s stored 1n a memory system using the interface of
FIG. 16. Application 225 sends a command indicating that
file 2 should be deleted. This command 1s sent from the host
to the memory without any need to 1identify the file by logical
sector address. A file 1dentifier may be used by the host to
identify the file. File 2 was mapped to blocks a, b and ¢ and the
mapping recorded by file/offset-to-physical translation 173.
The command causes file/offset-to-physical translation 173
to be updated to retlect that file 2 1s deleted. As a result, blocks
a, b and ¢ are scheduled for garbage collection so that they can
be reused for new data. Thus, garbage collection may be
initiated by the deletion of a file by an application nstead of
waiting until replacement data are to be stored 1n the memory
array as 1s the case for memories using logical sector
addresses. The memory controller does not always see a full
logical address space 1n this case. Instead, the memory con-
troller has accurate information regarding validity of data
stored in the memory. At some times, the memory controller
may recognize that the memory array contains little or no
valid data. At other times, the memory controller may see the
memory array as full or almost full with valid data. With such
information regarding valid and obsolete data 1n the memory
array, reclaim may be managed in more etficient ways than
betore.

FIG. 18 shows an example of a memory reclaim system
operating on a memory that uses a direct data file interface.
FIG. 18 shows the condition of the memory array over time as
host data are written. The view shown represents the control-
ler’s view, which 1n this case 1s consistent with the host’s
view. Here, only a relatively small part of the memory 1s seen
as containing valid data with the rest of the memory consist-
ing of erased blocks and reclaimable space. Reclaimable
space consists of space that 1s occupied by obsolete data and
also space that 1s erased but 1s not 1n erased blocks. While 1n
some memories such scattered portions of erased space may
be used to store additional data, 1n other systems such erased
space 1s consolidated 1nto erased blocks, which are then used
to store data. F1G. 18 shows a steady increase 1n the amount of
valid data until a time t5. During this time, the amount of
reclaimable space stays constant because no reclaim opera-
tion 1s performed. The space 1n erased blocks diminishes as
valid data are written to erased blocks during this period. At
time t5, one or more files are deleted and the data from those
files stored 1n the memory array becomes obsolete. Thus, the
amount of space occupied by valid data 1s diminished and the
amount of reclaimable space 1s increased accordingly. Then,
from time t3 to t6, more data 1s programmed to the memory
array, again increasing the amount of valid data and reducing
the space 1n erased blocks. At time t6, the memory reaches a
point where a reclaim operation 1s considered necessary to
allow programming of further data. This point may be
reached when the space 1n erased blocks reaches some thresh-
old or may be based on some other criteria. From time t6 to t7,
reclaim operations are performed to convert some of the
reclaimable space to erased blocks. During these reclaim
operations, no new data are written to the memory array so
that the amount of space occupied by valid data remains
constant. At time t7, reclaim operations cease and program-
ming of new data begins again. This system 1s similar to

US 7,984,084 B2

17

systems described before, where reclaim operations are per-
formed only when necessary. One disadvantage of such a
system 1s that the time from t6 to t7 may exceed a time limait
so that the host aborts a write operation. Instead of performing
reclaim operations only when necessary, 1t 1s possible to
perform reclaim operations before they are necessary inaway
that does not have a great impact on host write operations.

Especially in memories that have more complete information
about the amount of obsolete data stored 1n the memory array,

such as those using a direct data file storage system, it 1s
possible to schedule reclaim operations 1n an intelligent man-
ner so that they have little impact on host write operations.
FIG. 19 shows a model of how space may be managed 1n a
memory array. Valid data increases at a constant rate until the
memory array 1s filled with valid data. At the same time,
reclaimable space diminishes as reclaim operations convert
reclaimable space to erased blocks. A system to manage space
1n a memory array in this way carries out reclaim operations
according to a schedule so that individual reclaim operations
are distributed between individual host write operations to
provide a constant speed of writing host data. To do this, the
controller may estimate the amount of additional valid data
that 1t would take to fill the memory array and estimate the
number of reclaim operations needed before the memory
would be full. The reclaim operations are then scheduled at a
rate that spreads out reclaim operations evenly over the
remaining time. This ensures that the memory does not run
out of erased blocks prematurely. Reclaim operations may be
interleaved between operations that program new data to the
memory array as before. Reclaim operations include copying
portions of data from one block to another and erasing blocks
that contain no valid data. The rate of reclaiming space may
be determined by an interleave ratio, the ratio of a number of
reclaim operations to a number of host write operations. In
some cases, block erase operations are 1gnored for calculating
this ratio because there are many more copy operations than
erase operations.

Then the ratio becomes a ratio of write
operations for reclaim to write operations for new data.

FI1G. 201llustrates what happens in such a system when one
or more liles are deleted at time t10. Prior to t10, space
occupied by valid data 1s increasing and both reclaimable
space and the space 1n erased blocks are diminishing as the
amount of valid data increases. The reclaimable space is
being reclaimed at a rate that ensures all reclaimable space
would be reclaimed when the memory becomes full as 1ndi-
cated by the broken lines. At time t10, one or more files are
deleted so that space that was previously occupied by valid
data 1s occupied by obsolete data and so becomes reclaimable
space. After 110 the memory array 1s capable of storing more
valid data, but requires additional reclaim operations to do so.
Therefore, the controller recalculates the rate at which
reclaim operations should be performed. This provides an
adaptive scheduling system that responds to changes 1n the
status of data stored 1n the memory array. The rate of reclaim-
ing 1s modified as a result and the rate of programming valid
data 1s also changed because the rate of reclaiming affects the
rate of programming valid data. An adaptive reclaim sched-
uling system may recalculate an interleave ratio periodically
or when triggered by a host command or triggered by some
other event.

FIG. 21 shows another example of memory management
where there are three different modes of reclaim. In a first
mode, before t12, no reclaim operations are performed during,
writing of host data. The amount of valid data increases at the
same rate that the amount of space 1n erased blocks decreases.
The amount of reclaimable space remains approximately the
same because no data 1s made obsolete during this time. Some
blocks may have valid data stored in a way that leaves a
portion of the block erased and unused. These erased portions
may be reclaimed by consolidating the valid data so that the

10

15

20

25

30

35

40

45

50

55

60

65

18

erased space 1s consolidated 1n one or more erased blocks.
Thus, there may be some increase in reclaimable space 1n this
mode even where no data becomes obsolete. In some
examples, a minimum rate of reclaim may be maintained 1n
this first mode so that the reclaim rate 1s never at zero. Because
the reclaim rate 1s low or zero, the rate of programming host
data 1s high 1n this first mode.

In a second mode, from t12 to t13, reclaim operations are
performed according to an adaptive schedule as shown in
FIGS. 19 and 20. Thus, the rate of reclaim 1s calculated and
reclaim operations are interleaved between programming of
new data so that the reclaimable space diminishes as the
memory fills. The rate of programming new data 1s slightly
lower 1n the second mode than 1n the first mode because of the
interleaved reclaim operations. The second mode may begin
when the valid data 1n the memory exceeds a threshold, when
the space 1n erased blocks drops below a threshold or based on
some other criteria.

In a third mode, after t13, reclaim operations are performed
at a maximum rate so that there are erased blocks available for
writing new data. The increase 1n the rate of reclaim opera-
tions causes a decrease 1n the rate of programming of host
data. The third mode may begin when the amount of valid data
exceeds a threshold or when the amount of space 1n erased
blocks drops below a threshold or based on some other crite-
ria.

Adaptive Scheduling-detailed Example

Managing a non-volatile memory so that 1t carries out
reclaim operations according to an adaptive scheduling sys-
tem while maintaining a constant rate of programming of host
data will now be described 1n detail using an example where
the memory has a direct data file storage interface. This
example shows how an appropriate interleave ratio may be
calculated from parameters that are monitored by a memory
controller. The different conditions of pages of memory space
over time for such a memory are illustrated 1n detail 1n FIG.
22. Also shown are a number of transitions that are possible
for pages or blocks 1n a memory array. The memory array 1s
comprised of blocks and each block contains multiple pages.
The terminology “blocks™ and “pages™ will be used for this
example, but the example also works 1n memories having
metablocks and metapages as units of erase and programming
respectively. Blocks are treated as being 1n one of three con-
ditions at any time and pages within these blocks are treated
as being in one of five conditions. The numbers of pages 1n
cach of these five conditions over time are represented 1n FIG.
22.

Classifications of Blocks for Data Storage

File blocks: File blocks are full of host data and contain no
obsolete data. In practice, a file block may be allowed to
contain a minimal number of unprogrammed pages, for

example 2.

Partial blocks: Partial blocks contain some host data and also
some erased pages and/or obsolete pages.
Erased blocks: Fully erased blocks 1n the erased block pool.

In addition to these three categories, some blocks may be
tull of obsolete data. For example, immediately after a file 1s
indicated to be deleted or erased by a host, the blocks con-
taining the file are scheduled for garbage collection. Some of
these blocks are full of data. However, because such blocks
are rapidly erased without requiring a lot of resources, these
blocks are not considered for purposes of the present calcu-
lation.

Classifications of Pages for Data Storage

The following 1s a list of terms used to classily pages of the
memory array according to the condition of the page and the
other pages 1n the same block. The number of pages 1n each
condition 1s shown in FIG. 22.

US 7,984,084 B2

19

File block pages (FBP): This 1s the number of pages of valid
host data contained 1n file blocks.

Data pages (DP): This 1s the number of pages of valid host
data contained 1n partial blocks.

Obsolete pages (OP): This 1s the number of pages of obsolete
host data contained 1n partial blocks.

Erased pages (EP): This 1s the number of erased pages con-

tained 1n partial blocks. Obsolete Pages (OP) and Erased
Pages (EP) together may be considered to form the

reclaimable space 1n the memory array.

Erased block pages (EBP): This 1s the number of erased pages
contained 1n erased blocks. Pages that may exist in blocks
containing only obsolete data are ignored in this list
because such pages do not exist for long and do not present
a significant burden 1n terms of garbage collection neces-
sary to reclaim them.

In addition to the five mutually exclusive categories listed

above, two other numbers that relate to pages 1n a memory

array are total pages and total data pages. These terms
describe pages that are in the above categories. These num-
bers are tracked by the memory controller.

Total pages (TP): This 1s the total number of pages in the
device available for data storage, and represents the data
capacity of the device.

Total data pages (TDP): This 1s the number of pages contain-
ing valid host data, at any time. Data pages may be 1in either
file blocks or partial blocks.

Phases of data copy operations: There are two phases of
data copy operations, but they do not need to be considered
separately 1n the analysis of adaptive scheduling below.

(1) Garbage collection phase: Obsolete pages exist in the
device, and garbage collection operations are performed to
climinate them.

(2) Block consolidation phase: Block consolidation opera-
tions are performed to recover erased capacity tied up 1n
partial blocks.

Generally, 1t 1s better to do garbage collection first and
defer block consolidation because blocks containing only
valid and erased space may still be used without consolidation
if the host writes data to the same file as the valid data. Even
where a file 1s closed, the file may be reopened and the data
written to the program block. A block with obsolete data must
be garbage collected before 1t can be used again so that there
1s no advantage to deferring such garbage collection.

Page Transitions Resulting from Device Operations
The following page transitions are shown in FIG. 22:

Obsolete page to Frased block page (1): Occurs when a block
containing obsolete pages 1s erased after valid data pages
have been copied from it.

Data page to Datapage (2): Relates to data pages being copied
from a source block to a destination block

Erased page to Erased block page (3): After all valid data
pages have been copied from a source block to destination
blocks, erased pages that were programmed 1n the destina-
tion blocks effectively become erased block pages 1n the
source block when the source block 1s erased.

Erased block pages to Erased pages (4): After valid data pages
are copied from a source block to an erased block, the
remaiming erased block pages 1n the erased block become
crased pages

Data pages to File block pages (5): Valid data pages 1n a
partial block become file block pages when the block
becomes full.

Erased block pages to File block pages (6): An erased block
page becomes a File block page when the block has been
filled by data written by a host.

FI1G. 23 shows examples of how these transitions occur in
blocks of a memory array. FIG. 23A shows four blocks A-D
in a memory array, with different blocks having different
amounts of data 1n different conditions. Block A 1s filled with

10

15

20

25

30

35

40

45

50

55

60

65

20

valid data because pages 0-3 each contain valid data (indi-
cated by shading). Therefore, Block A 1s considered to be a
File Block. Block B includes page 0 that contains valid data
(data X), pages 1 and 2 that contain obsolete data (indicated
by hatching) and page 3 that 1s 1n an erased state. Because

block B contains some valid data, but 1s not full of valid data,
block B 1s considered a Partial Block. Block Chas pages 0 and

1 that are filled with valid data and pages 2 and 3 that are 1n an
erased state. Block C 1s also considered to be a Partial Block

because 1t contains some valid data, but 1s not full of valid

data. Block D 1s fully erased, contaiming no data and 1s there-
fore considered an Frased Block.

Because block A of FIG. 23 A 1s the only File Block, the
number of File Block Pages (FBP) 1s equal to the number of
pages in block A, that 1s, four. The number of Data Pages (DP)
1s the number of valid pages in blocks B and C and 1s therefore
equal to three. The number of Obsolete Pages (OP) 1s the
number of pages filled with obsolete data 1 blocks B and C
and 1s equal to two. The number of Frased Pages (EP) 1s the
number of pages in an erased state 1n blocks B and C and 1s
equal to three. Because block D 1s the only Erased Block, the
number of Erased Block Pages (EBP) 1s the number of pages
in block D and 1s equal to four. The Total Pages (1P) 1n this
example i1s simply the total number of pages 1n all blocks, here
sixteen pages. The Total Data Pages (TDP) 1s the number of
pages containing valid data, here seven pages.

FIG. 23 A shows valid data X from page 0 of block B being,
copied to page 2 of block C. This 1s an example of a transition
of type (2) DP to DP. Subsequently, in FIG. 23B only obsolete
data remain 1n block B so that block B may be put in a queue
for erase at this point. New valid data’Y are written to block D
in FIG. 23B so that page 0 of block D becomes a Data page.
Pages 1-3 of block D change from being Erased Block Pages
to being Erased Pages 1n a type (4) transition. FI1G. 23C shows
blocks A-D after block B 1s erased. Pages 0-2 are converted
from Obsolete Pages to Erased Block Pages 1n a transition of
type (1). Page 3 of block B changes from being an Frased
Page 1n a partial block to being an Erased Block Page 1n an
erased block 1n FIG. 23C. This 1s an example of a type (3)
transition. Also 1n FIG. 23C, valid data Y are copied from

page 0 of block D to page 3 of block C, resulting 1n block C
becoming full of valid data as shown in FIG. 23D, Thus, block

C of FIG. 23D 1s considered a File Block. Pages 0-2 of block
C that were previously Data Pages become File Block Pages
when block C becomes a File Block 1n a type (3) transition.
Also 1n FIG. 23D, block B 1s programmed with valid data that
f1lls block B. The pages ol block B change from being Erased
Block Pages to being File Block Pages 1n a type (6) transition.

One objective of the present adaptive scheduling scheme 1s
to interleave host writes and reclaim operations to provide a
constant rate of programming of host data. Thus the rate of
increase ol Total Data Pages (TDP) i1s constant until Total
Data Pages (TDP) equals Total Pages (TP), 1.e. until the
memory 1s Tull. Certain approximations are made 1n calculat-
ing various parameters in the present example. However,
other examples may be based on other assumptions or may
carry out calculations in other ways. In the present calcula-
tion, the data group structure of the data being copied 1s
ignored. Therefore, data groups may be split when copied.
Data pages may be copied from a source block to fill available
crased pages 1n a destination block, then the remainder may
be copied to a separate destination block.

The controller maintains certain parameter values that are
used to calculate the appropriate interleave ratio between
reclaim operations and new data writes. The calculation pre-
sented here uses pages as the fundamental unit of data for
calculating, however other umits, such as blocks or meta-
blocks may also be used. An interleave ratio may be calcu-
lated using only the parameter values maintained by the con-

US 7,984,084 B2

21

troller, Total Pages (TP), Total Data Pages (TDP), Partial
Block Pages (PBP) and Erased Block Pages (EBP) as
described below.
Derivation of (Host Data):(Copy Data) Interleave Ratio

The number of additional pages of host data that can be
written to the device before the device becomes full 1s given
by the expression

Host data to be written=TP-TDP

The number of Erased Pages (EP) and Data Pages (DP) can

also be written using the parameters monitored by the con-
troller as follows.

Erased pages(EP)=TP-TDP - OP - EBP

Data pages(DP) = PBP—- EP—- OP
= PBP—- (TP-TDP—- OP - EBP)-OP
=TDP+ PBP+ EBP-TP

The amount of valid data that must be copied 1s determined
based on the approximation that all partial blocks contain the
same number of valid Data Pages. I N 1s the total number of
pages 1n a block, the average number of valid pages 1n a partial
block 1s N*DP/PBP.

Only a fraction of the data pages existing 1n partial blocks
need to be copied. The remainder exist 1n partial blocks that
become destination blocks to which data i1s copied. It 1s
assumed that partial blocks are used as destination blocks for
all copying and that erased blocks do not have to be used. The
number of blocks from which data must be copied 1s equal to
the number of erased blocks that will be produced since each
partial block that 1s erased has valid data copied from 1t first.
The number of erased blocks produced=(PBP-DP)/N.

Thus, multiplying the number of blocks to be erased by the
average number of valid pages per block gives an approxima-
tion for the amount of data to be copied to reclaim all reclaim-
able space in the memory array.

Data to be copied ={N «* DP/PDP}«{(PBP— DP)/N}

= DP«(PBP— DP)/ PBP
= (TDP + PBP+ EBP — TP) «

(PBP— TDP — PBP— EBP + TP)/ PBP
= (IDP+ PBP+ EBP - TP) «

(TP — TDP — EBP)/ PBP

Note that this over-estimates the amount of data to be copied,
as source blocks for copy operations are actually selected as
blocks with the lowest amount of valid data to be copied. The
rate of copying data based on the simplification that all partial
blocks contain the same proportion of data pages will there-
fore be slightly higher than necessary.

host data):(copy data
():(copy) = (host data to be written)/

interleave ratio

(data to be copied)
= (IfP-TDP)« PBP/
(TDP+ PBP+ EBP-TP)/

(TP — TDP — EBP)

10

15

20

25

30

35

40

45

50

55

60

65

22

This gives an interleave ratio that allows programming of host
data to continue at a constant rate until the memory 1s full. The
ratio may be updated periodically or 1n response to some
triggering event. This ratio 1s one example of a formula that
may be used to schedule reclaim operations to allow a con-
stant rate of host data programming. Other formulae may also
be used. A formula to calculate an interleave ratio may be

based on calculations such as those above or may be based on
experience 1n actual memories. A formula may be simplified

by making additional assumptions about which factors to
ignore 1n the calculation. Alternatively, a more complex for-
mula could take into account additional factors such as the
time taken by erasing blocks or the possibility that erased
blocks might be needed as destination blocks for garbage
collection.

While the memory of the above example has a file-based
host interface, aspects of the present invention may be applied
in memories that use a sector-based host interface or some
other host interface. While some memories with sector-based
interfaces may lack suificient information to benefit greatly
from applying the techniques described, some improvement
in performance may be achieved. In addition, some memories
having sector-based interfaces may analyze the FAT or oth-
erwise gain additional information about the condition of the
stored data. Some hosts may use additional commands to
provide information to the controller regarding the stored
data. Such information may be used to schedule reclaim at an
carlier time than would otherwise be possible.

Host Operation

In some examples, reclaim operations in a non-volatile
memory may be managed differently 1n different modes. As
described previously, reclaim operations may operate at some
minimum rate (including zero in some examples) 1 a first
mode, operate in an adaptive manner in a second mode and
operate at a maximum rate in a third mode. The reclaim mode
may be selected by the memory controller according to pre-
determined criteria. The reclaim mode may also be controlled
by a host 1n some examples. The host may determine which of
the three described modes 1s selected. In addition, the host
may have commands to select the appropriate reclaim mode
based on present host activity or expected host activity. A host
system may be physically separate from the memory system
as shown in FIG. 1. Alternatively, a processor within the
memory card that 1s executing an on-card application may be
considered as a host. Such a configuration 1s described 1n U.S.
Provisional Application No. 60/705,388.

A first host command regarding the reclaim mode of a
memory 1s a “Reclaim_on” command that allows continuous
reclaim operations instead of interleaved operations. Reclaim
operations done 1n this way are considered background
operations because they do not cause any delay to execution
of host commands and are transparent to the host. The
“Reclaim_on” 1s equivalent to an “1dle” command that tells
the memory that the host will not send additional commands
for some time. In some systems these may be the same com-
mand. The resulting reclaim_on mode ends whenever another
host command 1s received.

A “Reclaim_normal” command allows the memory to
operate 1n a default reclaim mode. This may mean reclaiming
according to an adaptive schedule or may mean giving control
of reclaim mode selection to the memory controller that then
chooses the reclaim mode based on some predetermined cri-
terita. The memory may default to this mode when a host
command 1s recetved that causes a reclaim-on mode to ter-
minate.

A “Reclaim_off” command causes reclaim operations to
be inhibited and only host operations to be performed. This
mode may be chosen to provide maximum host data write
performance. This mode 1s terminated by either reclaim_on
or reclaim normal commands.

US 7,984,084 B2

23

A hierarchy of possible reclaim modes in descending order
of reclaim rate 1s:

Reclaim_on: The device performs continuous reclaim opera-
tions until another command 1s recetved.

Maximum 1nterleave: Reclaim operations are interleaved
with host data write operations, at a fixed maximum inter-
leave ratio. This 1s an upper limait for the adaptive interleave
ratio.

Adaptive interleave: Reclaim operations are interleaved with

host data write operations according to an adaptive inter-

leave ratio.

Mimmum interleave: Reclaim operations are interleaved with
host data write operations, at a fixed mimmum 1nterleave
ratio. This 1s a lower limit for the adaptive iterleave ratio.

Reclaim_off: Reclaim operations are inhibited, and only host
data write operations are performed.

It should be noted that the above description refers to
writing host data at a constant rate. The constant rate provided
by 1nterleaved reclaiming 1s observed over multiple cycles.
When observed atthe level of individual cycles, the writing of
host data takes place 1n periodic bursts of host write opera-
tions interspersed with bursts of reclaim operations. How-
ever, the rate of host data writing per cycle or over a number
of cycles may remain constant at a rate that 1s estimated so that
it can be maintained until the memory array 1s full.

In the above description, the rate at which reclaimable
space 1s converted to erased blocks 1in the memory array 1s
shown to be constant. However, even though the number of
reclaim operations per cycle, or per umt of time, may be
constant, the rate at which erased blocks are produced by
reclaim operations may not be constant. This 1s because
blocks to be reclaimed may be selected so that blocks that are
casier to reclaim are reclaimed first. Thus, when adaptive
reclaim begins, a block may be reclaimed for every R pages of
data that are copied because the blocks being reclaimed have
R pages of valid data. Later, blocks may be reclaimed that
have 2R pages of valid data so that it takes 2R copy operations
for every erased block produced. Thus, the rate at which
erased blocks are produced by reclaim 1s reduced to half the
carlier rate. In other examples, the rate at which erased blocks
are produced may vary 1n other ways according to the order 1n
which blocks are reclaimed. If blocks are reclaimed without
regard to the amount of valid data contained in them, the rate
at which erased blocks are produced by reclaim will be fairly
constant.

5

10

15

20

25

30

35

40

24

Although the various aspects of the present invention have
been described with respect to exemplary embodiments
thereof, 1t will be understood that the present mvention 1s
entitled to protection within the full scope of the appended
claims.

The mvention claimed 1s:

1. A memory system, comprising;:

a non-volatile memory array that includes a plurality of
blocks, a block being the minimum unit of erase;

a memory controller operable to maintain a record of logi-
cal-to-physical mapping for host data stored in the non-
volatile memory array, the record having a plurality of
entries, an idividual entry indicating a logical address
by a unmique file 1dentifier and an offset, the memory
controller further operable to determine whether stored
data 1s valid or obsolete according to mnformation sup-
plied by a host, the memory controller further operable
to copy valid data at a rate that depends on the amount of
data to be copied to reclaim remaining reclaimable space
and on the total amount of additional host data that may
be written before the memory array becomes full.

2. The memory system of claim 1 wherein the memory
controller 1s further operable to calculate the rate in response
to a host command.

3. The memory system of claim 1 wherein the memory
controller 1s further operable to calculate the rate to provide a
constant rate of programming of host data until the memory 1s
filled with valid host data.

4. The memory system of claim 1 wherein the memory
system 1s embodied 1n a removable memory card that 1s
operable to communicate with the host through a standard
interface.

5. The memory system of claim 1 wherein the information
supplied by the host includes information regarding host files
using unique file identifiers to refer to host files.

6. The memory system of claim 1 wherein the memory
controller 1s further operable to determine the rate by an
interactive ratio.

7. The memory system of claim 6 wherein the interactive
ration 1s the ration of (a) programming of host data received
from a host to the non-volatile memory to (b) copying of
previously stored valid data from one block to another.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,984,084 B2 Page 1 of 1
APPLICATION NO. : 11/259439

DATED : July 19, 2011

INVENTOR(S) . Alan Welsh Sinclair

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

CLAIMS:
In line 2 of claim 7 (column 24, line 38) “ration 1s the ration of”” should read --ratio 1s the ratio of--.

Signed and Sealed this
ourth Day of October, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

