US007983173B2
a2y United States Patent (10) Patent No.: US 7,983,173 B2
Finn 45) Date of Patent: Jul. 19, 2011
(54) SYSTEM AND METHOD FOR DETECTING 5959972 A * 9/1999 Hamamic........... 370/228
1L.INK FAILURES 6,032,194 A 2/2000 GGai et al.
6,163,543 A 12/2000 Chin et al.
. |
(75) Inventor: Norman W. Finn, Livermore, CA (US) g:;gg:ﬁi E éggg Eiuuiitrﬁéter """""""" 370/296
_ 6,219,739 B1* 4/2001 Duttetal. 710/311
(73) Assignee: Cisco Technology, Inc., San Jose, CA 6.222.854 B1* 4/2001 DOVE ..oooovevveverereinnrnnn, 370/465
(US) 6,304,546 Bl 10/2001 Natarajan et al.
6,404,733 Bl 6/2002 Shah et al.
e . : - : : 6,457,055 B1* 9/2002 Hwongetal. 709/227
(%) Notice: Subject to any (gszlalmeé’; the germé?‘ftglg 6,538,988 Bl * 3/2003 Natarajan et al. 370/216
patent 1s extended or adjusted under 6,628,624 Bl* 9/2003 Mahajan etal. 370/256
U.S.C. 154(b) by 1136 days. 6,747,957 B1 6/2004 Pithawala et al.
6,782,884 Bl 8/2004 Chen et al.
(21) Appl.NO.: 10/842,618 6,804,712 Bl 10/2004 Kracht
6,882,626 Bl 4/2005 Marathe et al.
(22) Flled May 10. 2004 7,089,383 B2 * 82006 Jietal. ...oocoovvviiiiinail, 711/162
(Continued)
(65) Prior Publication Data
OTHER PUBLICATIONS

US 2005/0249123 Al Nov. 10, 2005

“Notification of transmuttal of the interanational search report or the

(51) Imt. Cl. declaration.” For PCT/US05/15980 with the international filing date

GOIR 31/08 (2006.01) of May 9, 2005.

GO6l’ 11/00 (2006.01) _

GO8C 15/00 (2006.01) (Continued)

gzj§ ﬁ,ﬁj 238828; Primary Examiner — Xavier Szewai Wong

HO4T 1/00 (2006-O:L) (74) Attorney, Agent, or Firm — Cesar1 and McKenna, LLP

HO4L 12/26 (2006.01)

S7 ABSTRACT

HO4L 12/28 (2006.01) (57)

HO4L 12/56 (2006.01) A system and method monitors links in a computer network
(52) US.CL oo, 370/242; 370/401; 714/48 and rapidly detects failures of such links. Network entities
(58) Field of Classification Search 370/247 disposed at opposite ends of a link are provided with failure

370/244-253, 282, 401, 216, 218, 241, 256, detection engines tl}at signal tl}eir presence to each othgr.
370/395.1, 400, 241.1; 714/1, 47, 48, 49 Thgreafter, ez;ch fallu1te detection engine ensures that 1ts
entity transmits a continuous stream to the other entity by

S lication file 1 let h history.
- APPHEAHOR L O COTIpIEE Sedit i ASTOLy sending either data frames or newly defined failure detection

(56) References Cited packets. If an interruption in this continuous stream 1s
detected, then the failure detection engine concludes that the
U.S. PATENT DOCUMENTS link has failed. In response, the failure detection engine pret-
4577970 A * 7/1985 Sweeton 714/47 erably notifies other applications or protocols of the failure,
5,131,010 A * 7/1992 Derrenge etal. ... 375/347 and causes the link to be shut-down.
5,596,715 A * 1/1997 Klemetal. 714/43
5,884,041 A * 3/1999 Hurwitzccoooonneee. 709/228 16 Claims, 9 Drawing Sheets
106

INTERMEDIATE NETWORK DEVICE

" MACENTITY
FAILURE DETECTION ERAME 204
FAST FAILURE
DETECTION OBJECT
LOGIC
PO 211

202a

FAILURE

DETECTION

GENERATOR
212

LINK
ESTABLISHMENT

STATE MACHINE
214

ENGINE
208

US 7,983,173 B2

Page 2
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS

7,092,361 B2* 82006 Puppaetal. ... 370/242 Simpson, W., RFC 1661, entitled The Point-to-Point Protocol (PPP),

7,120,834 B1* 10/2006 Bisharacc.ooovvverinn, 714/43 Tul. 1994 141

7,286,467 B1* 10/2007 Sylvaincocccoevvveennn.. 370/216 o » PP- '

7,317,691 R? 1/2008 Millsetal. 370/252 IEEE Draft P802.3ah/D3.3 (AJnendment to IFFE Std 8023-2002),
2002/0021671 A1 2/2002 Quinlan Apr. 19, 2004.
2002/0049933 Al 4/2002 Nyu Clause 57 of IEEE Draft P802.3ah/03 .3, entitled Operations, Admin-
2002/0114272 Al 8/2002 Stewart istration and Maintenance, Apr. 1, 2003,
2002/0178411 A1 11/2002 Kohda Tolley, Bruce, IEEE 802.3ah Ethernet in the First Mile Update:
2003/0009511 Al* 1/2003 Giottaetal. 709/201 Technology and Standards Update, Catalyst 4000 Enhances Control
2003/0035368 Al* 2/2003 Tanada 370/216 Announcement—SpS—01.02, Oct. 1, 2002, p. 1-13.
2003/0161262 Al* 82003 HOSOl ...cccevvvvvviniinnnnnnee, 370/228 Daines, Kevin, EFM OAM Tutorial (Current as of IEEE P802 .3ah/
2004/0062254 Al1* 4/2004 Kuzhiyiletal. 370/401 D1.732), May 15, 2003, page.
2004/0085894 Al1* 5/2004 Wangetal. 370/216 Tolley, Bruce, Cisco White Paper entitled Ethernet in the First
2004/0160904 Al1* 8/2004 Enomoto etal. 370/256 Middle, Cisco Systems, Jun. 17, 2005, p. 1-18.
2004/0218548 Al1* 11/2004 Kennedyetal. 370/254
2007/0022331 Al1* 1/2007 Jamiesonetal. 714/712 * cited by examiner

US 7,983,173 B2

Sheet 1 0of 9

Jul. 19, 2011

U.S. Patent

pOL —

NHOMLIN-8MAS

oow\\

L Ol

7il

¢0}

2901

AHOMLAN-ENS

¢ Ol

US 7,983,173 B2

_ 80¢ :
| INaWHSnavLs3 |~
ANI] _

| INIHOY 3LYLS |
HdOLVHANAS

NOILO31d(
4[] 11V

Sheet 2 0of 9

112

| || nowdstza
NOLiH03 aNY | N I EECIRAEEAE

_ zo_mmw%m_w_«% _ zo:om_%zmw%.:i __
] 07 uNa o e

Jul. 19, 2011

y0C

A0IA40 MHOMLAN JdLVIAIWETLNI

901

U.S. Patent

U.S. Patent Jul. 19, 2011 Sheet 3 of 9 US 7,983,173 B2

e 300

DISABLING }~-305

ENABLING] FAILED

__ ~-308
302

-304

FIG. 3

US 7,983,173 B2

Sheet 4 of 9

Jul. 19, 2011

U.S. Patent

QLY
A

A

0z

Qzh TOYLNOD OVIN 074

(INVO)
JONVYNILNIVIN ONY
NOILVYHLSININQY ‘NOILYH3dO

INAWHSHEGVYLSI MNIT

(077) TOHLNOD HIAVT MNIT

INAANHSITTEVLST NI

TVOISAHd

MNITVLVQ

HUOMLIN

LMOdSNY¥L

- NOISS3S |

NOILVINISTHd

| NOLLYOIddY

00

444

1441%

90F

80v

OL¥

A%

viv

U.S. Patent Jul. 19, 2011 Sheet 5 of 9 US 7,983,173 B2

| INITIALIZE (POWER-UP) LINK 002

ENABLE MAC SERVICE 504

|- 506

ATTEMPT LINK ESTABLISHMENT

508

IS LINK
ESTABLISHMENT JNO

~\ 56

_ g 564
— FAILURE DETECTION ™
~_ENABLED _—~

Y

INITIATE FAILURE DETECTION ~ }~516
TRANSITION PORT TO ENABLING STATE |~ 918

GENERATE AND SEND ONE OR MORE L~ 520
| FAILURE DETECTION PACKETS |

TOFIG. 5B

F1G. DA

U.S. Patent Jul. 19, 2011 Sheet 6 of 9 US 7,983,173 B2

FROM FIG. 5A
522

~“ANY FAILURE . p—
- NO TRANSITION PORTTO |
DETECTION PACKETS > | DISABLING STATE _ |

BEEN RECEIVED ~534
536

YES 7523 aq__| STOP SENDING FAILURE |

COMMENCE CONTINUOUS TRANSMISSION OF EITHER DATA |- 504
FRAMES OR WORKING-TYPE FAILURE DETECTION PACKETS |

520

-~ AWORKING-TYPE ™
<FAILURE DETECTION PACKET =
~ BEEN .

NO

YES 528

TRANSITION PORT TO WORKING STATE o0

ENABLE FAST FAILURE DETECTOR

540~ _~" HAS ™\ 548
NETWORK
-~ DEVICE FAILED TO
~RECEIVE EITHER A DATA FRAMENNO
“\ORAFAILURE DETECTION
« PACKETWITHIN

N TlME

946

HAS -
_ A FAILED-TYPE
“"FAILURE DETECTION PACKET ~>
~_ BEENRECEVED _~

YES) o2 VEQ 1550

DECLARE LINK FAILURE - 544

074

TO FIG. 5C C1G. 5B

U.S. Patent Jul. 19, 2011 Sheet 7 of 9 US 7,983,173 B2

FROM FIG. 5B

TRANSITION PORT COUPLED TO FAILED |- 552
LINK TO FAILED STATE .

GENERATE AND SEND FAILED-TYPE |- 554
' FAILURE DETECTION PACKETS

DROP CARRIER AND SHUT-DOWN LINK |~ 556

- 558

KEEP FAILED LINK SHUT-DOWN FOR |
HOLD-DOWN TIME il

566

HAS

_—ADISABLING-TYPE™

<FAILURE DETECTION PACKET >
~~BEEN RECEIVED_—~

YES

TRANSITION PORT TO DISABLING STATE |~ 968

| STOP SENDING FAILURE DETECTION |
PACKETS FROM RESPECTIVE PORT -f

US 7,983,173 B2

adAL-oNnavsia | L | 9 9Ol

JdA-aTIvd |

JdAL-ONINHOM

&N
=
v -
S
7).
& | _od . 3dAL | ssavaav| ssawaav |
= | 30N3no3s | ONIAQYd | 3LYLSNOILOALIA IWNMIVA | 3000 | dvNs/oTr |, 3L | SO | | Seoeey
= |103HO v . B M_ oI
p | _

919 619 plL9 210 809 909 b09 209

U.S. Patent

US 7,983,173 B2

H N- | mv _ II.—
[aioweon | 10

AdAL-ONIT8VYNI E

#
P A}
/s

Sheet 9 of 9

(504)
| dONJNO3S |
xomxomz,q&

Jul. 19, 2011

m _ | ss3ayaay | ssawaay |
ONIAAYd | 3LVLS NOILDZLIA 3¥NTIVE | IdAL 3508 | NOILYNILS3a

91/ G4 Vil 904 v0. AV

U.S. Patent

US 7,983,173 B2

1

SYSTEM AND METHOD FOR DETECTING
LINK FAILURES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to computer net-
works, and more specifically, to a method and apparatus for
quickly and efficiently detecting link failures.

2. Background Information

Many organizations, including businesses, governments
and educational institutions, utilize computer networks so
that employees and others may share and exchange informa-
tion and/or resources. A computer network typically com-
prises a plurality of entities interconnected by means of one or
more communications media. An entity may consist of any
device, such as a computer, that “sources” (1.e., transmits) or
“sinks” (1.e., receives) messages, such as data frames, over the
communications media. A common type of computer net-
work 1s a local area network (“LAN”") which typically refers
to a privately owned network within a single building or
campus. LANs typically employ a data communication pro-
tocol (LAN standard), such as Ethernet, FDDI or token ring,
that defines the functions performed by data link and physical
layers of a communications architecture (1.e., a protocol
stack).

Entities coupled on an Ethernet LAN may employ the
Institute of . Engineers (IEEE) 802

Electrical and Electronics
family of protocols to communicate with each other over the
LAN. Architecturally, an IEEE 802 LAN reference model
includes a physical layer and a data-link layer which are often
called Layer 1 (LL1) and Layer 2 (LL.2) of the reference model,
respectively.

The physical layer deals with transmitting and receiving a
carrier that supports a data-bearing signal across a transmis-
sion medium. Functions performed at the physical layer typi-
cally include encoding/decoding signals, generating/remov-
ing preamble information used for synchronization, and
transmitting and receiving bits on the transmission medium.
The data-link layer handles data frames, and performs flow
and error control. The data-link layer typically comprises a
medium access control (MAC) layer and a logical link control
(LLC) sub-layer. The MAC sub-layer assembles data to be
transmitted 1nto a frame with address and error detection
ficlds, disassembles received frames, performs address rec-
ognition and error detection, and governs access to the LAN
transmission medium. The LLC sub-layer provides an inter-
face to higher layers and performs flow and error control.

One or more intermediate network devices are often used
to couple LANSs together and allow the corresponding entities
to exchange information. For example, a bridge may be used
to provide a “bridging” or “switching” function between two
or more LANs or end stations. Typically, the bridge 1s a
computer and includes a plurality of ports that are coupled via
LLANSs either to other bridges, or to end stations such as routers
or host computers. Ports used to couple bridges to each other
are generally referred to as trunk ports, whereas ports used to
couple bridges to end stations are generally referred to as
access ports. The bridging function includes receving data
from a sending entity at a source port and transierring that
data to at least one destination port for forwarding to one or
more receiving entities.

Most computer networks include redundant communica-
tions paths so that a failure of any given link or network device
does notisolate any portion of the network. Such networks are
typically referred to as meshed or partially meshed networks.

The existence of redundant links, however, may cause the

10

15

20

25

30

35

40

45

50

55

60

65

2

formation of circuitous paths or “loops” within the network.
Loops are highly undesirable because data frames may
traverse the loops indefinitely. Furthermore, bridges replicate
frames whose destination 1s not known. If loops are present,
the traific that results when frames are replicated can over-
whelm the network.

To avoid the formation of loops, most bridges and switches
execute a spanning tree protocol which allows them to calcu-
late an active network topology that 1s loop-iree (1.e., a tree)
and yet connects every pair of LANs and/or end stations
within the network (1.e., the tree 1s spanning). The Institute of
Electrical and Electronics Engineers (IEEE) has promulgated
a standard (IEEE Std. 802.1D-1998™) that defines a span-
ning tree protocol to be executed by 802.1D compatible
devices. In general, by executing the 802.1D spanning tree
protocol, bridges elect a single bridge within the bridged
network to be the “Root Bridge”. The 802.1D standard takes
advantage of the fact that each bridge has a unique numerical
identifier (bridge ID) by speciiying that the Root Bridge 1s the
bridge with the lowest bridge ID. In addition, for each LAN
coupled to any bridge, exactly one port (the “Designated
Port”) on one bridge (the “Designated Bridge™) 1s elected.
The Designated Bridge 1s typically the one closest to the Root
Bridge. All ports on the Root Bridge are Designated Ports,
and the Root Bridge 1s the Designated Bridge on all the LANSs
to which 1t has ports.

Each non-Root Bridge also selects one port from among 1ts
non-Designated Ports (its “Root Port”) which gives the low-
est cost path to the Root Bridge. The Root Ports and Desig-
nated Ports are selected for inclusion 1n the active topology
and are placed in aforwarding state so that data frames may be
forwarded to and from these ports and thus onto the LANs and
links interconnecting the bridges and end stations of the net-
work. Ports not included within the active topology are placed
in a blocking state. When a port 1s in the blocking state, data
frames will not be forwarded to or received from the port. A
network administrator may also exclude a port from the span-
ning tree by placing it in a disabled state.

To obtain the information necessary to run the spanning
tree protocol, bridges exchange special messages called con-
figuration bridge protocol data unit (BPDU) messages or
simply BPDUSs. BPDUs carry information, such as assumed
root and lowest root path cost, used in computing the active
topology. More specifically, upon start-up, each bridge 1ni-
tially assumes itself to be the Root Bridge and transmits
BPDUs accordingly. Upon receipt of a BPDU from a neigh-
boring device, 1ts contents are examined and compared with
similar information (e.g., assumed root and lowest root path
cost) stored by the recerving bridge 1n memory. If the infor-
mation from the received BPDU 1s “better” than the stored
information, the bridge adopts the better information and uses
it 1n the BPDUS s that it sends (adding the cost associated with
the recerving port to the root path cost) from 1ts ports, other
than the port on which the “better” information was recerved.
Although BPDUSs are not forwarded by bridges, the identifier
of the Root Bridge 1s eventually propagated to and adopted by
all bridges as described above, allowing them to select their
Root Port and any Designated Port(s).

In order to adapt the active topology to changes and fail-
ures, the Root Bridge periodically (e.g., every hello time)
transmits BPDUs. In response to receiving BPDUSs on their
Root Ports, bridges transmit their own BPDUs from their
Designated Ports, if any. Thus, BPDUs are periodically
propagated throughout the bridged network, confirming the
active topology. As BPDU information 1s updated and/or
timed-out and the active topology 1s re-calculated, ports may
transition from the blocking state to the forwarding state and

US 7,983,173 B2

3

vice versa. That 1s, as a result of new BPDU information, a
previously blocked port may learn that 1t should be 1n the

forwarding state (e.g., it 1s now the Root Port or a Designated
Port).
Rapid Spanning Tree Protocol

Recently, the IEEE promulgated a new standard (the IEEE
Std. 802.1W-2001™ specification standard) that defines a

Rapid Spanning Tree Protocol (RSTP). The RSTP similarly
selects one bridge of a bridged network to be the Root Bridge
and defines an active topology that provides complete con-
nectivity among the LANs and/or end stations while severing,
any loops. Each individual port of each bridge 1s assigned a
role according to whether the port 1s to be part of the active
topology. The roles defined by the 802.1w specification stan-
dard include Root, Designated, Alternate and Backup. The
bridge port offering the best, e.g., lowest cost, path to the Root
Port 1s assigned the Root Port Role. Each bridge port offering
an alternative, e.g., higher cost, path to the Root Bridge 1s
assigned the Alternate Port Role. For each LAN, the one port
providing the lowest cost path to the Root Bridge from that
LAN 1s assigned the Designated Port Role, while all other
ports coupled to the LAN are assigned the Root, Backup or, in
some cases, the Alternate Port Role. At the Root Bridge, all
ports are assigned the Designated Port Role.

Those ports that have been assigned the Root Port and
Designated Port Roles are placed i the forwarding state,
while ports assigned the Alternate and Backup Roles are
placed 1n a discarding or blocking state. A port assigned the
Root Port Role can be rapidly transitioned to the forwarding
state provided that all of the ports assigned the Alternate Port
Role are placed in the blocking state. Similarly, 1T a failure
occurs on the port-currently assigned the Root Port Role, a
port assigned the Alternate Port Role can be reassigned to the
Root Port Role and rapidly transitioned to the forwarding
state, provided that the previous Root Port has been transi-
tioned to the discarding or blocking state. A port assigned the
Designated Port Role, or a Backup Port that 1s to be reas-
signed to the Designated Port Role, can be rapidly transi-
tioned to the forwarding state, provided that the roles of the
ports of the downstream bridge are consistent with this port
being assigned the Designated Port Role. The RSTP provides
an explicit handshake to be used by neighboring bridges to
coniirm that a new Designated Port can rapidly transition to

the forwarding state.
Like the STP described 1n the 802.1D specification stan-

dard, bridges running RSTP also exchange BPDUs 1n order to
determine which roles to assign to the bridge’s ports. The
BPDUs are also utilized in the handshake employed to rapidly
transition Designated Ports to the forwarding state.

With RSTP, bridges can now recover from failures quickly.
Nonetheless, delays may still be caused due to the time 1t
takes for the failures to be detected. That 1s, the process of
converting a port assigned to the Alternate Port Role to
become the new Root Port will not even begin until the failure
at the existing Root Port 1s detected. Current techniques for
overcoming these limitations to Layer 1 link failure detection
either consume significant resources, such as processor or
memory resources and/or bandwidth, or take so long to detect
link failures as to reduce the etficiency of RSTP. Accordingly,
a need exists for a technique to detect link failures quickly and
eificiently.

SUMMARY OF THE INVENTION

Brietly, the present invention 1s directed to a system and
method for monitoring operation of links 1n a computer net-
work and for rapidly and efficiently detecting failures of those

10

15

20

25

30

35

40

45

50

55

60

65

4

links. In an illustrative embodiment, the computer network
includes a plurality of intermediate network devices, includ-
ing two network devices, such as bridges, that are intercon-
nected by a point-to-point link having a carrier that supports
a data-bearing signal. Each bridge has a link establishment
entity and 1s further configured to include a failure detection
engine that 1s 1n communication with the respective bridge
port coupled to the point-to-point link. The failure detection
engine includes a message generator, one or more state
machines and fast failure detector logic. In the illustrative
embodiment, the state machine transitions selected ports
among the enabling, working, disabling and failed states.
Upon establishment of the point-to-point link and thus the
carrier, the two failure detection engines generate and
exchange failure detection packets, thereby signaling their
presence to each other. Thereafter, each failure detection
engine ensures that 1ts respective bridge transmits continu-
ously on the link. Specifically, if the bridge has a network
message to send on the link, the message 1s sent. If the bridge
has no network message to send, the failure detection engine
generates and sends a failure detection packet. Accordingly,
the link remains fully utilized 1in both directions, carrying
either network messages or failure detection packets. It a
break 1n communication, 1.€., an interruption 1n the receipt of
network messages and/or {failure detection packets 1s
detected, then the failure detection engine concludes that the
point-to-point link has failed. In response, the failure detec-
tion engine generates and sends a failure detection packet that
contains a “force_down” message or signal. The failure
detection engine subsequently causes the carrier to be
dropped and the link to be shut-down. The bridge receiving
the “force_down” failure detection packet similarly drops

carrier and shuts down the link, assuming 1t has not already
done so. Preferably, the two failure detection engines keep the

link shut-down for a hold-down period. Upon expiration of
the hold-down period, the failure detection engines permait the
link establishment entity to run 1n an effort to re-establish the
point-to-point link between the two bridges. If the link 1s
re-established, the failure detection engines again exchange
failure detection packet to signal their presence to each other.

In another aspect of the invention, the failure detection
engine can be directed to terminate 1ts failure detection opera-
tions. To do so, the failure detection engine generates and
sends a failure detection packet containing a “disabling” mes-
sage. After 1ssuing the failure detection packet with the “dis-
abling” message, the sending bridge stops issuing failure
detection packets. Upon recerving the failure detection packet
with the “disabling” message, the receiving bridge no longer
expects to receive failure detection packets from the other
bridge. The recerving bridge does not, however, conclude that
the 1nterruption 1n failure detection packets 1s a result of a
tailure of the link.

In a further aspect of the invention, a failure detection
engine can be directed to shut-down the link, even though no
failure has been detected. In this case, the failure detection
engine generates and sends a failure detection packet that
contains a “force_down” message. The bridge then drops
carrier and shuts down the link. In response to receving a
failure detection packet with the “force_down™ message, the
receiving bridge drops carrier and shuts the link down for the
hold-down period. At the expiration of the hold-down period,
the bridge can again attempt to re-establish the link.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention description below refers to the accompany-
ing drawings, of which:

FIG. 1 1s a highly schematic illustration of a computer
network;

FIG. 2 15 a partial functional block diagram of an interme-
diate network device configured in accordance with the
present invention;

US 7,983,173 B2

S

FIG. 3 1s a highly schematic 1llustration of a state diagram
in accordance with the present invention;

FI1G. 4 1s a highly schematic 1llustration of a communica-
tion architecture organized as layers;

FIGS. 5A-C 1s a flow chart of a preferred method 1n accor- 5
dance with the present invention;

FIG. 6 1s a highly schematic illustration of a preferred
format of a failure detection packet in accordance with the
present invention; and

FIG. 7 1s a highly schematic 1llustration of an alternate 10
format of a failure detection packet 1n accordance with the
present invention.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT 15

FIG. 1 1s a highly schematic illustration of a computer
network 100 that includes two sub-networks, e.g., sub-net-
work A 102 and sub-network B 104. Computer network 100
turther includes a plurality of, e.g., two, intermediate network 20
devices 106, 108. Network device 106 1s coupled by link 110
to sub-network 102, and network device 108 1s coupled by
link 112 to sub-network 104. In addition, the two network
devices 106, 108 are interconnected by a point-to-point link
114. Coupled to each network device 106, 108 may be one or 25
more local area networks (LANs) and/or end stations. For
example, a server 116 1s coupled to network device 106 via
link 115, while a workstation or personal computer 118 1s
coupled to network device 108 via link 117. The two sub-
networks 102, 104 preferably include a plurality of intercon- 30
nected LANSs, end stations and intermediate network devices
(not shown).

Each network device 106, 108 has a plurality of ports 202,
and 1s configured to switch or forward network messages that
are received on a first port 202 to a second port 202 so thatend 35
stations 116 and 118 may communicate with each other and
with other end stations disposed in the sub-networks 102,
104. Each network device 106, 108 1dentifies 1ts own ports
202, e.g., by port numbers, such as port zero (P0), port one
(P1), porttwo (P2), port three (P3), etc. Network devices 106, 40
108 are thus able to associate specific ones of their ports with
the LANs, end stations and/or network devices coupled
thereto.

It should be understood that the computer network 100 of
FIG. 1 1s meant for illustrative purposes only and that the 45
present mvention will operate with other networks having
possibly far more complex topologies. It should further be
understood that network devices 106, 108 might be hubs,
bridges, switches or routers, or devices supporting various
combinations of the functionality thereof. The present inven- 50
tion, moreover, can be advantageously utilized with other
network entities besides intermediate network devices. For
example, the invention can be used with end stations, such as
servers, workstations, personal computers, etc., and nothing
herein 1s intended to limit the application of the invention. 55

FIG. 2 1s a partial functional block diagram of the network
device 106 of FIG. 1. In particular, FIG. 2 1llustrates just one
port, 1.¢., port PO 2024, and 1its associated components. Asso-
ciated with each port, such as port PO, 1s a Media Access
Control (MAC) entity 206. In accordance with the invention, 60
cach MAC entity 206 has a failure detection engine 210. Each
failure detection engine 210, moreover, preferably has a plu-
rality of subcomponents, including fast failure detection logic
211, a failure detection packet generator 212 and a state
machine 214. In addition to the MAC entity 206, there 1s also 65
a link establishment engine 208. One or more {frame trans-
mission and reception objects, such as object 204, 1s associ-

6

ated with port 2025 such that network messages, including
data and control frames, received at port P1 may be captured,
and frames to be transmitted by network device 106 may be
delivered to port P1. Frame reception and transmission object
204 1s typically a message storage structure, such as a priority
queue.

Network device 106 may have a single link establishment
engine 208 for all of 1ts ports or 1t may have multiple engines

208.

Although only a single port is 1llustrated in FIG. 2, those
skilled 1n the art will understand that network device 106
typically includes a plurality of ports each of which 1s pref-
erably 1dentified by a number (e.g., P0-P2). Furthermore, the
plurality of ports at device 106 may be established through
one or more line cards and/or network interface cards (NICs).
Device 106 may also have one or more or central processing
unmits (CPUs) and/or microprocessors, and associated
memory devices for performing calculations and one or more
bus structures. Device 106 may also (but need not) have other
components, such as a forwarding engine, one or more filter-
ing databases, a Spanning Tree Protocol (STP) engine, eftc.

FIG. 3 1s a highly schematic state diagram 300 1n accor-
dance with the present mvention. In the preferred embodi-
ment, a port 202 may be 1n any one of five possible failure
detection states: an enabling state 302, a working state 304, a
disabling state 306 and a failed state 308. The enabling state
302 1s entered when a port first begins to run the failure
detection protocol of the present invention. The working state
304 1s entered when the two ports connected by a point-to-
point link have established and are running the failure detec-
tion protocol. The disabling state 306 1s used when failure
detection operations are to be terminated, and the failed state
308 1s used when a failure has been detected and the link 1s
about to be brought down.

In the 1llustrative embodiment, the failure detection engine
210 1s implemented 1n hardware, such as through one or more
Application Specific Integrated Circuits (ASICs) and/or Field
Programmable Gate Arrays (FPGAs) having registers and
combinational logic configured and arranged to produce
sequential logic circuits and state machines, or through other
fabrication techniques. Nonetheless, those skilled in the art
will recognize that the present invention may be implemented
in the form of one or more software modules or libraries
containing program instructions capable of being stored on
clectronic, magnetic and/or optical media, and also capable of
being transmitted electronically and/or optically. The pro-
gram 1nstructions pertain to the methods described herein,
and are executable by one or more processing elements (not
shown) of network device 106. Various combinations of hard-
ware, soltware and firmware may also be utilized.

Suitable intermediate network device platforms for use
with the present invention include, but are not limited to, the
commercially available Catalyst 4000 and 6000 series of
switches from Cisco Systems, Inc. of San Jose, Calif.

Computer networks, including network 100, typically uti-
lize a communication architecture or protocol stack to sup-
port communication among the end nodes of the network.
The protocol stack 1s organized, at least logically, into a
plurality layers, and the end nodes and network devices have
hardware, software and firmware components configured to
operate at various of these layers. Among other things, the
layers of the protocol stack specity the format of data being
transierred between a source station and a destination station
disposed within the computer network. Each layer also pro-
vides predetermined services as the data 1s passed through
that layer. In general, the lower layers are standardized, and

US 7,983,173 B2

7

are typically implemented 1n hardware and {firmware,
whereas the higher layers are often implemented 1n software.

FI1G. 4 15 a highly schematic 1llustration of a protocol stack
400 1n accordance with the Open Systems Interconnection
(OSI) model. This model defines seven layers, which are
termed, 1n ascending order, physical 402, data link 404, net-
work 406, transport 408, session 410, presentation 412 and
application 414. The physical layer 402 1s concerned with the
actual transmission ol signals across the communication
channel, such as a wire, and defines e.g., the types of cabling,
plugs and connectors used in connection with the channel.
The data link layer 404, also referred to as Layer 2 (LL2), 1s
responsible for data transmission. The network layer 406,
also referred to as Layer 3 (LL3) provides network routing. The
transport layer 408, also referred to as Layer 4 (IL4), supports
end-to-end reliability.

The session layer 410 allows users on different machines to
establish sessions between them. A session may support ser-
vices beyond those provided by the transport layer, such as
allowing a user to log-1n to a remote timesharing system. The
presentation layer 412 1s used to perform commonly
requested functions, such as encoding data in a particular
manner. The application layer 414 contains high-level appli-
cations, such as virtual terminal software, file transfer soft-
ware, electronic mail, etc.

As shown 1n FIG. 4, the data link layer 404 1s divided into
a plurality of sub-layers, including a link layer control (LLC)
sub-layer 416, and a Media Access Control (MAC) sub-layer
418. Recently, 1n a drait protocol standard, known as IEEE
Draft P802.3ah (the current version of which 1s Draft 3.3
dated Apr. 19, 2004), which 1s hereby incorporated by refer-
ence 1n 1ts entirety, the Institute of Electrical and Electronic
Engineers (IEEE) has defined several additional sub-layers
within the data link layer 404. Specifically, the IEEE has
defined an Operation, Administration and Maintenance
(OAM) sub-layer 420 and a MAC Control sub-layer 422 both
of which are disposed between the LLC and MAC sub-layers
416 and 418. In accordance with the present invention, a new
sub-layer 1s provided within the data link layer 404. Specifi-
cally a Failure Detection sub-layer 424 1s provided that 1s
preferably disposed between the OAM and the MAC control
sub-layers 420 and 422. As described herein, the failure
detection engine 210 (FIG. 2) of the MAC entity 206 prefer-
ably operates within this new Failure Detection sub-layer
424. In addition, a link establishment sub-layer 430 1s pret-
crably disposed between the LLC and OAM sub-layers,
although those skilled i the art will recognize that 1t may
located 1n other positions, such as above the LLC sub-layer
416, as shown 1n dotted line format 430a.

Network devices may operate at various levels of the pro-
tocol stack 400. For example, a bridge may operate at the data
link layer or layer 2. Data frames at the data link layer typi-
cally include a header containing the MAC address of an
entity sourcing the message, referred to as the source address,
and the MAC address of an entity to whom the message 1s
being sent, referred to as the destination address. To perform
the bridging function, layer 2 bridges examine the MAC
destination address of each data frame received on a source
port, and switch the frame onto the destination port(s) that
have been associated with that MAC destination address.

Other network devices, commonly referred to as routers,
may operate at higher commumication layers, such as the
network or layer 3 of the OSI or TCP/IP Reference Models.
Data frames at 1.3 layer also include a header. The header of
a L3 data frame include an IP source address and an IP
destination address. Routers or L3 switches may re-assemble
or convert recerved data frames from one LAN standard (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

8

Ethernet) to another (e.g. token ring). Thus, L3 network
devices are often used to interconnect dissimilar subnet-
works.

In the illustrative embodiment, network devices 106 and
108 are preferably bridges operating at 2. Nonetheless,
those skilled 1n the art will recognize that network devices
106 and/or 108 may operate at hugher layers of the protocol
stack 400, such as switches or routers operating at .3, L4 or
even higher.

The failure detection technique of the present mnvention 1s
designed for use on point-to-point links extending between
any two network entities, such as but not limited to link 114
extending between network devices 106 and 108, link 115
extending between network device 106 and server 116, and
link 117 extending between network device 108 and work-
station 118. It 1s not to be used on a shared medium, such as
a LAN segment containing more than two devices that share
the LAN segment.

As described herein, the failure detection technique of the
present invention allows failures to be 1identified much sooner
than otherwise possible with the prior art approaches. In
addition, the failure detection techmique of the present inven-
tion can be terminated without having to shut down or sus-
pend operation of the link.

FIGS. 5A-C 1s a flow diagram of a preferred method 1n

accordance with the present invention. First, a network
device, such as network device 106, initializes the subject
link, e.g., link 114, as indicated at block 502 (FIG. 5A). This
typically includes powering up the link and establishing the
carrier upon which the data signals will be sent, which may be
a function of the frame transmission and reception object 204.
Next, the respective port’s MAC service 1s enabled, as indi-
cated at block 504. Network device 106 causes the link estab-
lishment engine 208 to attempt to establish communication
across link 114, as indicated at block 506. Link establishment
engine 208 utilizes a conventional protocol to establish the
link 114. Suitable link establishment protocols include the
Port Aggregation Protocol described i commonly-owned
U.S. Pat. No. 5,959,968 to Chin et al., the UnmiDirectional
Link Detection (UDLD) Protocol from CISCO Systems, Inc.,
and IEEE Standards 802.1X (Port Access) or 802.3 ad (Lmk
Aggregation Control Protocol). As part of the link establish-
ment process, engine 208 determines bi-directionality, deter-
mines or assumes co-termination and may determine right-
to-use features, among others, of link 114.

As 1ndicated at decision block 508, the MAC entity 206
next determines whether the link 114 has been successtully
established. If so, the MAC enftity determines whether the
tailure detection engine 210 (for the port associated with the
link) 1s enabled, as indicated by the Yes arrow 510 leading to
decision block 512. More specifically, the MAC Control sub-
layer 422 can be configured, as part of its start-up process, to
enable or disable the failure detection engine 210 operating at
sub-layer 424, as indicated by arrow 426 (FI1G. 4), which
illustrates the flow of commands from the MAC Control
sub-layer 422 to the Failure Detection sub-layer 424. In an
illustrative embodiment, a network administrator may adjust
the settings at or configuration of network device 106 so as to
cause the failure detection sub-layer 424 of device 106 to be
enabled or disabled. Assuming failure detection has been
enabled at device 106, failure detection 1s 1nitialized as indi-
cated by Yes arrow 514 leading to block 516.

As indicated by block 518, the failure detection engine 210
directs the state machine 214 to transition to the enabling state
302 (FIG. 3), thereby associating part 2025 with the enabling
failure detection state. The failure detection engine 210 also

US 7,983,173 B2

9

generates and sends one or more enabling-type failure detec-
tion packets from the port P1 2025, as indicated at block 520.

FIG. 6 1s a highly schematic illustration of a preferred
format of a failure detection packet 600. Failure detection
packet 600 1s made up of a plurality of fields, including a
destination address (DA) field 602, a source address (SA)
ficld 604, a length/type field 606 a LLC/SNAP (sub-network
access protocol) field 608, a code field 612, a failure detection
state field 614, a padding field 615 and a frame check
sequence (FCS) field 616. The destination address field 602,
which may be si1x octets, 1s preferably loaded with hexadeci-
mal 01-80-C2-00-00-01. The source address field 604, which
may be six-octets, 1s loaded with the MAC address associated
with the port, e.g., port P1 2025, from which the respective
failure detection packet 600 1s being transmitted. The length/
type field 606 1s preferably a two-octet field, which 1s loaded
with a value that specifies the length of packet 600. The
LLC/SNAP field 608 1s preferably a six-octet field which 1s
loaded with a LLC value of hexadecimal AAAAOC, and an
organization unique identifier (OUI) value of hexadecimal
00000C. The code field 612 1s preferably a two-octet field,
which 1s loaded with a predefined value that indicates the
packet 600 as a failure detection packet. The failure detection
state field 614 1s preferably a one-octet field, which 1s loaded
with a predetermined value, e.g., “00”, mndicating that this
failure detection packet 600 1s an enabling-type packet. The
padding field 615 contains a suificient number of “padding”™
octets to preferably make the total length of the packet 64
octets. Preferably, the octets contained in the padding field
615 are loaded with a value of zero. The FCS field 616 1s
loaded with an error correction value computed for the packet
600.

FIG. 7 1s a highly schematic illustration of an alternate
format of a failure detection packet 700 configuration that
may be used with the present invention. Packet 700 contains
a destination address field 702, a source address field 704, a
type field 706, a failure detection state field 714, a padding,
field 715 and a FCS field 716. The destination address 702,
source address 704, failure detection state 714, padding 715
and FCS 716 fields are preferably loaded with information as
described above for the destination address 602, source
address 604, failure detection state 614, padding 615 and FCS
616 fields, respectively. The type field 1s a 2-octet field, which
1s loaded with a special “Ethernet type” code (obtained from
the IEEE Registration Authority) that identifies the packet as
a failure detection packet.

Those skilled 1n the art will recognize that other packet
formats may be used.

In addition to generating and transmitting one or more
enabling-type failure detection packets 600, the failure detec-
tion engine 210 at device 106 also “listens” for any failure
detection packets 600 that may be received from network
device 108 via link 114, as indicated by decision block 522
(FIG. 5B).

Considering network device 108, the one or more
enabling-type failure detection packets 600 from device 106
are received at 1ts port P2 coupled to link 114 and, due to the
destination address and length/type values contained in the
received failure detection packets 600, they are passed to the
failure detection engine disposed at device 108. Suppose that
the failure detection engine of device 108 has also been
enabled and 1imitialized. Then, the receipt of an enabling-type
tailure detection packet causes the failure detection engine at
device 108 to conclude that device 106 supports the failure
detection protocol. In response, the failure detection engine at
device 108 transitions the state machine associated with 1ts
port P2 to the working state 304, and generates and sends one

10

15

20

25

30

35

40

45

50

55

60

65

10

or more working-type failure detection packets to device 106
via link 114. A working-type failure detection packet 600 1s
similar to the enabling-type packet described above, except
that the failure detection state field 614 1s loaded with a
different value, e.g., 017, indicating that this failure detec-
tion packet 600 1s a working-type packet. The working-type
failure detection packet 600 from network device 108 is
received at device 106, and passed to the failure detection
engine 210.

Upon recerving a failure detection packet 600 from net-
work device 108 via link 114, the failure detection engine 210
at device 106 concludes that device 108 participates 1n the
fallure detection protocol of the present invention. In
response, network device 106 starts sending a continuous
stream of network messages to device 108 via link 114,
thereby keeping link 114 1n a fully utilized condition. Spe-
cifically, the MAC entity 206 and failure detection engine 210
cooperate to ensure that device 106 continuously transmits
something, 1.e., either data (or control) frames or working-
type failure detection packets 600, from port P1 2025 for
receipt by device 108 via link 114, as indicated by block 524
(FIG. 5B). In other words, as transmission of each frame
finishes, MAC entity 206 at device 106 looks to see 1f 1t has
another data/control frame, such as a data frame received
from an upper layer of the protocol stack, for transmission to
network device 108 via port P1 2025 and link 114. If 1t has
another such data/control {frame, then that frame 1s transmiut-
ted. If the MAC entity 206 does not have another data/control
frame for transmission, then the failure detection engine 210
generates a working-type failure detection packet 600 for
transmission to network device 108. In this way, the MAC
entity 206 and the failure detection engine 210 keep link 114
tully and continuously utilized, e.g., saturated, in the direc-
tion from network device 106 to device 108.

An exemplary data frame 1s a message sourced by server
116 (or by an entity disposed in sub-network A 102) and
destined for workstation 118 (or for an enftity disposed 1n
sub-network B 104). An exemplary control frame 1s a con-
figuration bridge protocol data unit (BPDU).

Meanwhile, the failure detection engine 210 at device 106
also constantly checks for the receipt of a working-type fail-
ure detection packet 600 from device 108, as indicated by
decision block 526. Once device 106 receives its first work-
ing-type failure detection packet 600 from device 108, the
failure detection engine 210 transitions the state machine to
the working state 304, as indicated by Yes arrow 328 leading
to block 530. Engine 210 also enables 1ts fast failure detector
logic 211, as indicated by block 532. In a similar manner, the
failure detection engine at device 108 enables its fast failure
detection logic 212 upon recerving a working-type failure
detection packet 600 from device 106. At this point, fast
failure detection 1n accordance with the present invention has
been enabled on link 114 of network 100.

It should be understood, 1f network device 106, before
sending any failure detection packets of 1ts own, receives an
enabling-type failure detection packet from device 108, that
device 106 starts-out sending working-type failure detection
packets. In addition, failure detection engine 210 preferably
notifies one or more higher level protocols that port P1 20256
1s 1n the working state, and that failure detection has been
enabled, as indicated by communication arrow 428 (FI1G. 4).

Returning to decision block 522 (FIG. 3B), 1f network
device 106 does not receive any failure detection packets
from device 108, then the failure detection engine 210 con-
cludes that device 108 i1s not configured to run the failure
detection protocol of the present invention. In response, the
failure detection engine 210 for port P1 20256 at device 106

US 7,983,173 B2

11

preferably transitions port P1 2025 to the disabling state 306,

as mdicated by the No arrow 3534 leading to block 536. The
failure detection engine 210 also stops sending failure detec-
tion packets 600 to device 108, as indicated at block 538.
Engine 210 may also notify one or more of the higher-level 5
protocols that failure detection was not enabled.

It should be understood that the steps of blocks 516-530
and 536-538 represent an auto-negotiation process or phase
through which two network devices at opposite ends of a
point-to-point link can automatically determine that they are 10
cach configured and enabled to run the failure detection pro-
cess of the present invention, or that one of them 1s not so
configured.

Once enabled, the fast failure detector logic at devices 106
and 108 monitor the health of link 114. In the illustrative 15
embodiment, the fast failure detector logic monitors the
health of link 144 1n two ways. First, they confirm that a
continuous stream of network messages, 1.¢., etther data, con-
trol or failure detection packets, are being received by the
respective network device via link 114. Any interruption in 20
this continuous stream will be immediately detected and con-
sidered to be a failure of the link 114. As indicated above,
tailure detection packets 600 recerved by anetwork device are
processed 1ts failure detection engine 210, which 1s config-
ured to operate at the new failure detection sublayer 424. Data 25
(and other control) frames, on the other hand pass through the
failure detection sub-layer 424 up to the MAC Control sub-
layer 422. Accordingly, by having the failure detection engine
operate at its own sub-layer that 1s disposed between the MAC
418 and MAC Control 422 sub-layers, the fast failure detector 30
logic 211 of engine 210 “sees” a continuous stream of net-
work messages being recerved on port P1 20256 from device
108 via link 114.

Preferably, upon receiving a data frame or a failure detec-
tion packet 600, the fast failure detector 211 at each network 35
device starts a timer (not shown), which may be programmed
with a preset limit, e.g., “F”. Each time the fast failure detec-
tor 211 recerves another data frame or failure detection packet
600, it re-starts this timer. As indicated by decision block 540
(FIG. 5B), 1f the timer expires before network device 106 40
receives another data frame or failure detection packet on this
port, then the fast failure detection logic 211 declares a link
failure, as indicated by Yes arrow 342 leading to block 544. If
another data, control or failure detection packet 1s receive
before the timer expires, the timer 1s re-started and no link 45
failure 1s declared, as indicated by No arrow 546, which
loops-back on decision block 540.

Link failures are preferably declared under other condi-
tions as well. For example, another way 1n which the fast
fallure detection logic 211 declares a link failure 1s 1 50
response to a loss of the carrier signal. Preferably, the loss of
the carrier signal 1s reported to the failure detection logic 211,
which declares a link failure as indicated at block 544. Yet
another way 1n which the fast failure detection logic 211
monitors the health of link 114 1s by checking for the receipt 55
of any failed-type failure detection packets 600 from device
108, as indicated by decision block 548. As illustrated 1n FIG.

4, a failed-type failure detection packet 600 preferably has 1ts
failure detection state field 614 set to a predetermined value,
e.g., “10”. Failure detection engines are configured to recog- 60
nize such packets as failed-type packets. If such a failure
detection packet 1s recerved, the fast failure detection logic
211 declares a link failure, as indicated by Yes arrow 350 also
leading to block 544.

Upon declaring a link failure, the failure detection engine 65
210 transitions the state machine associated with the port to

the failed state 308, as indicated at block 5352 (FIG. 5C). The

12

failure detection engine 210 at device 106 also notifies the
network device, e.g., device 108, at the other end of the failed
link, e.g., link 114, of the failure. Specifically, the failure
detection engine 210 generates one or more, €.g., two, failed-
type failure detection packets 600, and transmits them from
its port coupled to the failed link, e.g., link 114, for receipt by
the other device, e.g., device 108, as indicated at block 554.
Next, the failure detection engine 210 causes the carrier to be
dropped and the link 114 to be shutdown, as indicated at block
556. In the 1illustrative embodiment, the failure detection
engine 210 also prevents the link from being re-activated for
a hold-down time that may be preset, as indicated at block
5358. A suitable value for the hold-down time 1s on the order of
3.0 seconds, although those skilled in the art will recognize
that other values may be utilized. The failure detection engine
210 may also notily one or more higher layer protocols, such
as the Spannming Tree Protocol, of the failure, as 1llustrated by
communication arrow 428 (FI1G. 4).

Upon receiving the failed-type failure detection packets
600 from device 106, the failure detection engine at device
108 similarly declares the link to be failed, drops carrier, and
shuts-down the link. The failure detection engine at device
108 also keeps the failed link shut-down for at least the
hold-down time.

Upon expiration of the shut-down time, the network
devices 106 and 108 may attempt to re-start the failed link
114. That 1s, the link establishment engines of devices 106
and 108 power-up the link, enable the MAC service and
attempt link establishment, as indicated by previously
described blocks 502-506 (FIG. 5A). Referring to decision
block 508 (F1G. 5A), 1T link establishment 1s unsuccessiul, the
failure detection techmque of the present invention 1s prefer-
ably not enabled, as indicated by No arrow 560 leading to end
block 562. In other words, 11 the link cannot be successtully
established, then the failure detection engines are never
enabled. Furthermore, 1f failure detection 1s not enabled at the
respective network device, processing similarly terminates as
indicated by No arrow 564 also leading to end block 562.

In a further aspect of the present invention, a failure detec-
tion engine, such the engine at device 108, can also disable or
“turn-oil” failure detection while a link, such as link 114, 1s up
and running. For example, suppose an application or protocol
operating at a higher level than the failure detection sub-layer
424 1ssues a command to the failure detection engine at
device 108 directing 1t to stop running failure detection. In
response, the failure detection engine at device 108 prefer-
ably generates and transmits one or more failed-type failure
detection packets 600 to device 106. The failed-type failure
detection packets has the same format as the other failure
detection packets, except that the failure detection state field
1s loaded with a predefined value, e.g., “11”, indicating that 1t
1s a disabling-type packet 600.

The failure detection engine 210 at device 106 watches for
the receipt of any disabling-type failure detection packets
600, as indicated by decision block 566 (FIG. 5C). When
device 106 receives the disabling-type failure detection
packet 600, 1t preferably causes the state machine associated
with port P1 2025 to transition to the disabling state 306, as
indicated by block 568. Engine 210 also stops generating and
sending working-type failure detection packets 600 to device
108 via link 114, as indicated by block 570. Thus, 1f device
106 has no data or control packets to send to device 108 via
link 114, the link 114 will be become i1dle. That 1s, device 106
will no longer be transmitting a continuous stream ol network
messages to device 108 via link 114. The failure detection
engine at device 108, after transmitting the one or more dis-
abling-type failure detection packets, also stops sending fail-

US 7,983,173 B2

13

ure detection packets to device 106. Thus, device 106 will
also no longer be recerving a continuous stream of data,
control or failure detection packets from device 108. None-
theless, with the state machine associated with port P1 2025
of device 106 in the disabling state 306, any such 1nterrup-
tions or breaks in the receipt of network messages from
device 108 via link 114 will no longer cause a link failure to
be declared, as indicated by block 572. In this way, the failure
detection engines can terminate operations without having to
shut-down or suspend link 114.

In addition to stopping the transmission of failure detection
packets, the failure detection engine may also notily one or
more higher-level protocols that failure detection operations
have ceased on link 114.

In yet another aspect of the present invention, a link can be
intentionally failed. Suppose, for example, that a protocol or
application at device 106 detects a failure, such as a loss of
carrier, too many CRC errors, etc. and/or wishes to have link
114 shutdown. The protocol or application can cause a com-
mand to be sent to the failure detection engine 210, e.g., as
indicated by arrow 426. In response to this command, the
tailure detection engine 210 declares a link failure, as indi-
cated by arrow 574 (F1G. 3B) entering block 544. The failure
detection engine 210 then performs the steps illustrated by
previously described blocks 552-558, resulting 1n the link
being shutdown and kept shutdown for the hold-down time.

The IEEE 802.3X specification standard defines a Pause
frame. If a device sends a Pause frame to another device, the
receiving device stops sending frames. In the preferred
embodiment of the present invention, failure detection pack-
cts continue to be sent notwithstanding the receipt of the
Pause frame. This may be achieved by placing the failure
detection engine 210 below the 802.3X Pause engine in the
MAC stack. In this way, the Pause frame only affects frames
above the 802.3X Pause engine, e.g., data/control frames, 1n
the MAC stack.

It should be understood that rather than having a single set
of states as 1illustrated 1n FIG. 3, there may be plurality of
receive and transmit states. For example, the receive states
may include a notifying, which is used to notify higher layer
protocols that the transmission and recognition of failure
detection packets have stopped, an enabling state, which 1s
used when enabling-type failure detection packets are being
transmitted and the failure detection engine 1s awaiting
receipt a failure detection from the device at the other end of
the link, a disabled state, which 1s used when the failure
detection engine has yet to be activated, a working state,
which 1s used after at least one enabling-type or working-type
failure detection packet has been received from the device at
the other end of the link, a disabling state, which 1s used when
a higher layer protocol has 1ssued a command to disable
failure detection and at least one disable-type failure detec-
tion packet has been sent, a fai1l_detected state, which 1s used
when a link failure has been detected so as to trigger the
transmission of a failed-type failure detection packet, and a
fai1l_forced state, which 1s used when a failed-type failure
detection packet has been recerved.

Similarly, the transmit states may include a reset state,
which 1s used as a holding state until a reset varnable 1s
released, a waiting_for_idle state, which 1s used while wait-
ing for the transmitter to fimish transmitting a frame, a trans-
mit_data state, which 1s used to 1nitiate transmission of a data
or control frame and remembers that a data or control frame as
opposed to a failure detection packet was the last thing sent, a
decrement state, which 1s used count the failure detection
packet that 1s about to be sent, a transmit_failure_detection
state, which 1s used to initiate the transmission of a failure

10

15

20

25

30

35

40

45

50

55

60

65

14

detection packet and remembers that a failure detection
packet was the last thing to be sent, a resetting state, which 1s
used drop carrier, shutdown the link and start the hold-down
timer, and a stop state, which 1s used after carrier has been
dropped to notity upper layers so that re-establishment of the
link can be attempted.

The transmuit_data, transmit_failure detection, and decre-
ment states may be used along with predefined variables to
ensure that a network device alternates between data or con-
trol frames and failure detection packets during the auto-
negotiation phase. This ensures that failure detection nego-
tiation occurs and will not be preempted by, e.g., a
continuously running stream of data and/or control frames.

Those skilled in the art will further recognize that the
failure detection process of the present invention may be
configured to inter-operate 1n various ways with existing pro-
tocols and network device operation. For example, the failure
detection engine 210 may be configured to abort the trans-
mission of a data or control frame in order to send a failed-
type failure detection packet. Similarly, the transmission of
IEEE 802.3X Pause frames may inhibit the transmission of
tailure detection packets during auto-negotiation.

It should be noted that in the above-described illustrated
embodiment, the inventive technique 1s described as applied
to a point-to-point link 114 (FIG. 1) between two intermedi-
ate nodes. This 1s not, however, intended to be a limitation of
the invention. Other point-to-point links between other types
ol network entities may take advantage of the present mven-
tion. For example, the inventive technique may be employed
by end stations, such as end stations 116 and 118, to monitor
the operation of their respective links, such as links 115 and
117, and to detect failures of those links.

The foregoing description has been directed to specific
embodiments of this invention. It will be apparent, however,
that other variations and modifications may be made to the
described embodiments, with the attainment of some or all of
their advantages. For example, other formats of the failure
detection packets may be used. In particular, failure detection
packets could be modified to include information as to why
the link was failed, e.g., too many CRC errors. Therefore, 1t 1s
an object of the appended claims to cover all such vanations
and modifications as come within the true spirit and scope of
the mvention.

What 1s claimed 1s:

1. In a network entity configured to be disposed within a
computer network and to be connected by a point-to-point
link to a second network entity, a method for detecting fail-
ures 1n the point-to-point link, the method comprising:

exchanging signals with the second network entity,

wherein the signals are utilized to auto-negotiate that the

network entity and the second network entity both sup-

port failure detection processes and, 1in response thereto,

to enable failure detection by the failure detection pro-

cesses at the two network entities, the exchanging to

include

generating one or more first type of failure detection
packets,

sending the one or more first type of failure detection
packets to the second network entity via the point-to-
point link,

receiving from the second network entity on the point-
to-point link one or more second type of failure detec-
tion packets,

1n response to recerving the one or more second type of
tailure detection packets from the second network
entity, generating one or more second type of failure
detection packets, and

US 7,983,173 B2

15

sending the one or more second type of failure detection
packets to the second network entity;
transmitting to the second network entity a continuous
stream of network messages on the point-to-point link;
receiving Irom the second network entity a continuous
stream ol network messages on the point-to-point link;
detecting an iterruption 1n the continuous stream of net-
work messages being received on the point-to-point link

from the second network entity; and
in response to detecting the interruption, declaring the

point-to-point link failed.

2. The method of claim 1 wherein,

the first type of failure detection packets indicate that a
failure detection process exists at the network entity
transmitting the first type of failure detection packets,
and

the second type of failure detection packets indicate that

the failure detection process at the network entity trans-
mitting the second type failure detection packet has con-
cluded that failure detection processes exist at both of
the network entities and are to be enabled.

3. The method of claim 1 further comprising notifying a
protocol of the failure of the point-to-point link.

4. The method of claim 3 wherein the notified protocol 1s a
Spanning Tree Protocol.

5. The method of claim 1 wherein the network entity 1s one
of an end station and an intermediate network device.

6. The method of claim 1 further comprising exchanging
second signals with the second network entity, wherein

the second si1gnals are utilized to terminate operation of the

failure detection processes at the two network entities,
and

operation of the failure detection processes are terminated

without having to shut-down the point-to-point link.

7. The method of claim 1, wherein the point-to-point link
has a carrier for transmitting information and the method
turther comprises:

after declaring the point-to-point link failed, dropping the

carriet.

8. The method of claim 1 wherein the continuous stream of
network messages transmitted between the first and second
network entities comprises data packets or control packets or
both, as well as failure detection packets,

wherein the failure detection packets are transmitted when

data packets or control packets are not being transmatted
to ensure a continuous stream 1s being transmitted.

9. The method of claim 1 further comprising, in response to
detecting the interruption, notifying the second network
entity that the point-to-point link has failed.

10. The method of claim 1, wherein the point-to-point link
has a carrier for transmitting information, and the method
turther comprises:

following the step of declaring the point-to-point link to

have failed, dropping the carrier;

causing the point-to-point link to be shut-down; and

preventing the point-to-point link from being re-estab-

lished for a hold-down time.

11. An apparatus comprising:

at least one port for sending and receiving network mes-

sages, wherein the at least one port 1s configured to
connect to a second apparatus via a point-to-point link;
and

10

15

20

25

30

35

40

45

50

55

60

16

a failure detection engine in communicating relationship
with the at least one port, the failure detection engine
configured to auto-negotiate that the apparatus and the
second apparatus both support failure detection and, in
response thereto, to enable failure detection at the appa-
ratus and the second apparatus, the failure detection
engine ncluding:

a packet generator configure to produce one or more
tallure detection packets for transmission over the
point-to-point link to the second apparatus to indicate
that the failure detection engine disposed at the appa-
ratus 1s operational, wherein the one or more failure
detection packets generated to indicate that the failure
detection engine at the apparatus 1s operational are of
a first type, and

fast failure detector logic configured to listen for one or
more failure detection packets to be recerved from the
second apparatus over the point-to-point link to indi-
cate that the failure detection engine disposed at the
second apparatus 1s operational, the one or more fail-
ure detection packets to be recerved from the second
apparatus to indicate that the failure detection engine
disposed at the second apparatus 1s operational are of
a second different type, and 1n response to receipt of
the one or more failure detection packets, to thereafter
l1sten for a continuous stream of network messages to
be recetved from the second apparatus, and to identify
a failure in the point-to-point link 1n response to an
interruption in the stream of network messages being
received from the second apparatus.

12. The apparatus of claim 11 further comprising:

at least one forwarding engine for identifying one or more
destination ports from which a recerved network mes-
sage 1s to be sent.

13. The apparatus of claim 11 wherein the point-to-point

link operates according to an Ethernet specification standard.

14. The apparatus of claim 11 wherein the continuous
stream of network messages received from the second appa-
ratus comprises data packets or control packets or both, as
well as failure detection packets,

wherein the failure detection packets are recerved when
data packets or control packets are not, as part of the
continuous stream of network messages.

15. The apparatus of claim 11 wherein the failure detection
engine further comprises a state machine configured to tran-
sition among a plurality of states depending on operation of
the failure detection engine, the plurality of states including
an enabling state entered into when failure detection 1s opera-
tional at the apparatus, and a working state entered 1nto when
failure detection 1s operational at both the apparatus and the
second apparatus.

16. The apparatus of claim 11, wherein the point-to-point
link has a carrier for transmitting information, and the fast
tailure detector logic 1s further configured to drop the carrier
in response to i1dentification that the point-to-point link has
failed, cause the point-to-point link to be shut-down, and
prevent the point-to-point link from being re-established for a
hold-down time.

	Front Page
	Drawings
	Specification
	Claims

