12 United States Patent
El-Mahdy et al.

US007979672B2

US 7,979,672 B2
Jul. 12, 2011

(10) Patent No.:
45) Date of Patent:

(54) MULTI-CORE PROCESSORS FOR 3D ARRAY
TRANSPOSITION BY LOGICALLY
RETRIEVING IN-PLACE PHYSICALLY
TRANSPOSED SUB-ARRAY DATA

(75) Inventors: Ahmed H. M. R. El-Mahdy, Alexandria
(EG); Ali A. EI-Moursy, Cairo (EG);
Hisham ElShishiny, Giza (EG)
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.
(21) Appl. No.: 12/180,468
(22) Filed: Jul. 25, 2008
(65) Prior Publication Data
US 2010/0023728 Al Jan. 28, 2010
(51) Int.CL
GO6F 15/80 (2006.01)

(52) US.CL .., 712/17; 708/401
(58) Field of Classification Search None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,151,971 A * 9/1992 Jousselinetal. 706/41
5,644,517 A * /1997 HO .oooovrrvieiiieniiiinn, 708/401
5,842,034 A * 11/1998 Bolstadetal. 712/11
7,031,994 B2* 4/2006 Laoetal. 708/400
2002/0032710 Al1* 3/2002 Saulsburyetal. 708/400
2006/0010181 Al 1/2006 Eleftheriou et al.
2006/0161607 Al1* 7/2006 Gustavsonetal. 708/200
20-5\
14
\
1
N
11
Original cuboid
Lx M xN dimensions
1< 13
/J &
Read @ X2 XNpar
iInto local memory
14

OTHER PUBLICATIONS

P. Wapperoma, et al., A new transpose split method for three-dimen-
sional FFTs: performance on an Origin2000 and Alphaserver cluster,

Parallel Computing 32, 2006, pp. 1-13.

L. Chen, et al., Optimizing the Fast Fourier Transform on a Multi-

core Architecture, Int’l Parallel and Distributed Processing Sympo-
sium, Mar. 2007, pp. 1-8.

H.S. Cohl et al, Parallel Implementation of a Data-Transpose Tech-
nique for the Solution of Poisson’s Equation in Cylindrical Coordi-
nates, Proc. 8th SIAM Cont. PPSC, Mar. 1997, 1-8.

Jaeyoung Choi et al., Parallel Matrix Transpose Algorithms on Dis-

tributed Memory Concurrent Computers, In Proc. of Scalable Paral-
lel Libr. Conf., Oct. 1993, pp. 1-32.

IBM/Sony, Cell Broadband Engine Architecture, Handbook, Version
1.01, Oct. 3, 2006, pp. 1-352, http://cell.scel.co.jp/e__download.
html. Tokyo, Japan.

* cited by examiner

Primary Examiner — Kenneth S Kim

(74) Attorney, Agent, or Firm — Kenneth L. Sherman, Esq.;

Michael Zarrabian, FEsq.; Myers Andras Sherman &
Zarrabian LLP

(57) ABSTRACT

A method and system for transposing a multi-dimensional
array for a multi-processor system having a main memory for
storing the multi-dimensional array and a local memory 1s
provided. One implementation nvolves partitioning the
multi-dimensional array into a number of equally sized por-
tions 1n the local memory, in each processor performing a
transpose function including a logical transpose on one of
said portions and then a physical transpose of said portion,
and combiming the transposed portions and storing back 1n
their original place 1n the main memory.

19 Claims, 13 Drawing Sheets

13

Chopped into PXPXN barg

12

‘}3
L

chop bar into PP X P cubes

T
12

Perform 3D transpose for
each cube

U.S. Patent Jul. 12, 2011 Sheet 1 of 13 US 7,979,672 B2

[O\
Minor (X) Minor (X)
S —
o —> =
O D
= S
= S
YZX transpose Y\
Pre-transpose Post-transpose

F1G. 1

U.S. Patent

20\

14

Original cuboid
LxMxN dimensions

Read P*PxNpar
into local memory

Jul. 12, 2011 Sheet 2 of 13 US 7,979,672 B2
b M
1" 7 E— S
Chopped into PXP XN pars
12
13
g

chop bar into PXP X P cubes

14

N
12

Perform 3D transpose for

each cube

FIG. 2

U.S. Patent Jul. 12, 2011 Sheet 3 of 13 US 7,979,672 B2

13 ;/3
p X p X p cubes are used to build Write p x p x N bar
pxpxNbar into main memory

p x p x p transposed Cuboid
L x M x N dimensions

FIG. 3

U.S. Patent Jul. 12, 2011 Sheet 4 of 13 US 7,979,672 B2

40\
| Chop cuboid into Q bars each of ~41
dimension pxp x N
| Distribute the bars evenly among S | _—42
| processors eachtake Q/ S bars |
| For each processor ;

For each bar

Read bar from main memory into 43
' processor local memory -

Chop bar into N/p small cubes of | _—44
. dimensionpxpxp

>~ For each small cube
| Perform transpose operation based | _—45
= on axes swapping criteria

Mrge small cubes togeher 46
to reconstruct bar

| Store bar back from processor local 47
memory to main memory

FIG. 4

U.S. Patent Jul. 12, 2011 Sheet 5 of 13 US 7,979,672 B2

| oad small cube into temporal space in local memory B
(May involve major-midale axis swapping -
Depends on swapping criteria)

For each p face of

small cube S52a
Perform 2D matrix transpose on p x p face 52b
(middle-minor swapping) -
Store small cube Into original space in local memory 57

(May involve major-middle axis swapping
Depends on swapping criteria)

FIG. S

U.S. Patent Jul. 12, 2011 Sheet 6 of 13 US 7,979,672 B2

LY X

Rows of each face are stored in different order to achieve zy swapping
using vector store libraries

X L

B

YZX YXZ

xz face is transposed using vector shuffling & permutation libraries

FIG. ©

U.S. Patent Jul. 12, 2011 Sheet 7 of 13 US 7,979,672 B2

70\

- Load small cube into temporal space in local memory | _~71
without major-middle swapping (ZY X->ZY X)

For each p face of

small cube [2a

Perform 2D matrix transpose on p x p face L _-72b
(ZYX->ZXY) '

Store small cube into original space in local memory

with major-middle swapping (ZXY->XZY') L 73

FIG. 7

U.S. Patent Jul. 12, 2011 Sheet 8 of 13 US 7,979,672 B2

80
. X v X
ZY X YZX

Rows of each face are stored in different order to achieve zy swapping
using vector store libraries

X z

>

YZX , YXZ

xz face is transposed using vector shuffling & permutation libraries

FIG. 8

U.S. Patent Jul. 12, 2011 Sheet 9 of 13 US 7,979,672 B2

90\

| | oad small cube into temporal space in local memory
with major-middle swapping (ZYX->YZX) _.

For each p face of

small cube ~ 923

Perform 2D matrix transpose on p x p face 92b
(YZX->YXZ)
Store small cube into original space in local memory | _-93

without major-middle swapping (YXZ->YXZ)

FIG. O

U.S. Patent Jul. 12, 2011 Sheet 10 of 13 US 7,979,672 B2

Load small cube into temporal space in local memory | _~101
without major-middle swapping (ZY X->ZY X) _

For each p face of
small cube

-102a

Perform 2D matrix transpose on p x pface | 102b
(ZYX->ZXY)
Store small cube into original space in local memory 103

without major-middie swapping (ZXY-> ZXY)

FIG. 10

U.S. Patent Jul. 12, 2011 Sheet 11 of 13 US 7,979,672 B2

’E’IO\

E Load small cube into temporal space in local memory l/—ﬁ'i
i with majcu-'riddae swappirg (ZY X->YZX)

For each p face of

small cube 112a

Perform 2D matrix transpose on p x p face - _~112b
(YZX->YXZ) |
Store small cube into original space In local memory 113

without major-middle swapping (YXZ->XY/Z)

FIG. 11

U.S. Patent Jul. 12, 2011 Sheet 12 of 13 US 7,979,672 B2

120~
=

| oad small cube into temporal space in local memory 121
with major-middle swapping (ZYX->YZX)

Store small cube into original space in local memory | _129
without major-middle swapping (YXZ->Y XZ)

FIG. 12

US 7,979,672 B2

odellalu|

19S()
—_ JRejdsiq [
- stof A
3 e
7 (shg) aInonISelU]

LOEDIUNWILION
= ot
& —
ol 90BLIaU]
= SUOHEBIILNWWOY

6l

U.S. Patent

r----------—_—_'_--_—.—_—-—ﬂﬂ_u----------------_-___-----ﬂ

S 'Ol4 "
3dS 3dS
Nds
S4IA -
PEl
Gel
DN DN i
d> dS dS 3d <t
Jds €€} 3dS 3dS
N-0El

US 7,979,672 B2

1

MULTI-CORE PROCESSORS FOR 3D ARRAY
TRANSPOSITION BY LOGICALLY

RETRIEVING IN-PLACE PHYSICALLY
TRANSPOSED SUB-ARRAY DATA

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to multi-dimen-
sional data processing applications and 1n particular to trans-
posing three dimensional (3D) arrays for multi-core proces-
SOIS.

2. Background Information

Transposing three dimensional (3D) arrays 1s a fundamen-
tal primitive operation used 1n many multi-dimensional data
processing applications. Examples include seismic, medical
imaging, media industry for 3D TV, biomedical, and 3D Fast
Fourier Transform (FFT) applications. 3D FFT 1n turn 1s used
in solving many mathematical problems including Poisson’s
equation 1n cylindrical coordinates, partial differential equa-
tions and x-ray difiraction data processing. Conceptually, 3D
transpose simply changes the order of axis along dimensions;
for example, given 3D data ordered 1n XY 7 axis order, one 3D
transpose operation would be to change the order to ZXY.
However, with large data sets, as typical in above applica-
tions, such operation i1s challenging even for a massively
parallel computing system. The operation 1s memory bound
rather than computation bound; 1t mnvolves much data com-
munication and displacement rather than processing.

Conventional approaches to 3D transpose operations may
be grouped into two approaches: The first approach physi-
cally reorders the data while the second approach performs
reordering logically without moving any data. The latter
approach does not require any data movement operation;
however, 1t 1s not necessarily as efficient as the first approach,
especially when memory 1s organized 1n a hierarchical struc-
ture. Memory hierarchy favors accessing data in blocks,
thereby decreasing communication latencies. Moreover, usu-
ally the transposed data are later “stream” processed, which
again require accessing data in blocks. Logical transpose
accesses data 1n small granular level (at element level) fash-
ion, which does not interface well with the underlying
memory and processing architecture. Further, there 1s an
associated mapping overhead. Therefore, physical transpose
1s usually preferred.

Performing physical transpose however has several short-
comings. One shortcoming involves the fact that 1t 1s usually
sought to have the data transposed in-place to conserve
memory (given large data size). This introduces complexity
on the order of transpose and may limit the effective memory
bandwidth, especially on shared-memory parallel systems. A
second shortcoming involves the fact that all the data 1s trans-
posed even 1f only a small subset 1s required (that will be the
case 1f data access later on 1s sparse).

SUMMARY OF THE INVENTION

The invention provides a method and system for transpos-
ing a multi-dimensional array for a multi-processor system
having a main memory for storing the multi-dimensional
array and a local memory. One embodiment mnvolves parti-
tioming the multi-dimensional array 1nto a number of equally
s1ized portions in the local memory, 1 each processor per-
forming a transpose function including a logical transpose on
one of said portions and then a physical transpose of said
portion, and combining the transposed portions and storing,
back in their original place 1n the main memory.

10

15

20

25

30

35

40

45

50

55

60

65

2

Partitioning the multi-dimensional array into a number of
equally si1zed portions 1n the local memory may include par-
tittoning the multi-dimensional array ito a number of
equally sized portions, wherein the number of portions 1s
equal to the number of processors 1 said multi-processor
system.

Partitioning the multi-dimensional array into a number of
equally sized portions 1in the local memory may further
include partitioning the multi-dimensional array into a num-
ber of equally sized rows, wherein the number of rows 1s
equal to the number of processors 1 said multi-processor
system.

Partitioning the multi-dimensional array into a number of
equally sized portions 1n the local memory further may fur-
ther include associating each row with a processor among the
processors of said multi-core processor system.

Performing a transpose function in each processor may
include partitioning each associated row into plural matrices
in the local memory, and transposing each matrix in the local
memory.

Combining the transposed portions and storing back in
their original place 1n the main memory may further include
combining the transposed matrices mto a new row 1n said
local memory, and storing back the new row from local
memory to i1ts original position in the main memory. The

multi-dimensional array may comprise a three dimensional
(3D) array.

Other aspects and advantages of the present invention will
become apparent from the following detailed description,
which, when taken 1n conjunction with the drawings, illus-
trate by way of example the principles of the mvention.

BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature and advantages of
the mnvention, as well as a preferred mode of use, reference
should be made to the following detailed description read 1n
conjunction with the accompanying drawings, 1n which:

FIG. 1 shows axes of an example multi-dimensional array,
naming and usage, according to an embodiment of the inven-
tion.

FIGS. 2-3 show graphical illustrations of three dimen-
sional (3D) data restructuring for in-place transpose, accord-
ing to an embodiment of the invention.

FIG. 4 shows a tlowchart of a transpose process for 3D data
restructuring for in-place transpose of a 3D-array, according,
to an embodiment of the invention.

FIG. 5 shows a flowchart of a transpose process for 3D data
restructuring of a cube portion of the 3D array, according to an
embodiment of the mnvention.

FIGS. 6 and 7 show graphical and process illustrations,
respectively, of clockwise rotation for transposing a cube,
according to an embodiment of the invention.

FIGS. 8 and 9 show graphical and process illustrations,
respectively, of counter clockwise rotation for transposing a
cube, according to an embodiment of the invention.

FIGS. 10-12 show a process for axis swapping in a trans-
pose operation, according to an embodiment of the invention.

FIG. 13 shows a functional block diagram of a multi-core
processor implementing an embodiment of the in-place
multi-dimensional transpose, according to an embodiment of
the mvention.

DESCRIPTION OF THE PR.
EMBODIMENTS

(L]
Y

ERRED

The following description 1s made for the purpose of 1llus-
trating the general principles of the invention and 1s not meant

US 7,979,672 B2

3

to limit the inventive concepts claimed herein. Further, par-
ticular features described herein can be used 1n combination
with other described features 1n each of the various possible
combinations and permutations. Unless otherwise specifi-
cally defined herein, all terms are to be given their broadest
possible interpretation including meanings implied from the
specification as well as meanings understood by those skilled
in the art and/or as defined 1n dictionaries, treatises, etc.

The 1mvention provides a method and system for in-place
multi-dimensional transpose for multi-core processors with
soltware-managed memory hierarchy. One embodiment pro-
vides a three dimensional (3D) transpose operator for multi-
core (multi-node) processors with software managed
memory hierarchy, for target domain of shared-memory
architecture 1n a multi-core paradigm.

The 3D transpose operator performs logical transpose on
sub-parts (e.g., cubes) of the 3D array, rather than the entire
3D array. The operator then performs a physical transpose on
cach cube. Such two-level decomposition matches the
requirements of logical and physical transpose approaches.
Utilizing cubes as logical access units removes a substantial
amount of logical mapping, and performing transposes only
when needed (1.e., lazy transpose) decreases on-chip memory
communication bandwidth requirements. Physical transpose
ol intra-cube elements allows for high memory access band-
width and properly orders data for single instruction multiple
data (SIMD) stream processing.

Preferably, said transpose levels (logical and physu:al) are
processed 1n parallel wherein each processor core 1s associ-
ated with a cube 1n which a physical transpose 1s performed.
An application programming interface (API) function 1s then
responsible for the logical mapping, which 1n turn 1s executed
in parallel. Transposing performed on multi-core processors
with software managed memory hierarchy. Transpose 1s per-
formed lazily wherein transposing the entire 3D array 1s not
performed when the array is sparsely accessed. This reduces
on-chip memory bandwidth requirements. Transpose opera-
tions occur at the itra-cube level, providing eflicient memory
access and allowing for streaming SIMD processing. Further,
transpose operations occur in-place, which contrasts with
conventional physical transpose approaches where parallel
in-place operation 1s complex.

An implementation 1s now described for a Cell Broadband
Engine (BE) processor manufactured by IBM. An example
multi-core processor with software managed memory hierar-
chy 1s a Cell BE processor by IBM (A version of the Cell BE
processor 1s described 1n IBM Cell BroadBand Engine Archi-
tecture, Hand book, Version 1.01, October 2006, incorporated
herein by reference). The Cell BE processor includes a multi-
core chip comprising a 64-bit Power Architecture processor
core and eight synergistic processor cores, capable ol massive
floating point processing, optimized for compute-intensive
workloads and broadband rich media applications. A high-
speed memory controller and high-bandwidth bus interface
are also integrated on-chip. The Cell BE software-managed
parallel processing system 1s typically used in the application
domains where 3D transpose operation 1s significant. The
Cell BE 1s a multi-core processor that provides for a large
centralized shared memory (off chip), and small local memo-
ries for 8 synergistic processing elements (SPEs). Such archi-
tecture, as well as similar software-managed memory hierar-
chies, provide for memory transiers and process computation
to operate 1n parallel.

An example 3D transpose operation on such a processor
involves transposing a 3D array (3D matrix) as a “cuboid”,
according to an embodiment of the invention. A cuboid has
the dimensions of LxMxN corresponding to the axes X, Y,
and Z, respectively. The values L, M, N need not be the same.
As shown by example transpose 10 in FIG. 1, a transpose
operation changes the order of the cuboid axes X, Y, and Z.

10

15

20

25

30

35

40

45

50

55

60

65

4

The axes X and Y of the cuboid before the transpose are in the
plane of the drawing page while the Z axis 1s perpendicular to
the plane of the drawing page. The axes X and Z of the cuboid
alter transpose are 1n the plane of the drawing page while the
Y axis 1s perpendicular to the plane of the drawing page.

A three-letter string 1s used herein to specity the sought
axes order. For example, the transpose YZX operation

exchanges axis Y and Z in original ZYX order. To avoid
confusion from original and desired axis names, a distinction
1s made between cuboid axis and baseline axes. The latter are

fixed and labeled as major, middle, and minor, corresponding
to the original cuboid X, Y, Z axes order, respectively. FIG. 1
shows the use of such naming while performing an YZX
transpose.

A cuboid 11 (FIG. 2) includes multiple rows. The cuboid
11 1s divided 1nto plural small cubes 12 (3D matrix), each of
dimension pxpxp. As such, the cuboid dimensions L., M, N
are divisible by p. A row (in the minor axis direction) of each
cuboid 1s referred to as a bar 13. The cuboid 1s assumed to be
stored 1n the processor (computer) main memory 1n major-
middle-minor axes order. Middle-minor planes (for cuboid,
bars, and cubes) are qualified as faces 14. As noted, cube
comprises a 3D matrix, smaller than the 3D array (e.g., for a
3D matrix of size 256x128x64, a possible cube size may be
4x4x4; thus the 3D array would be decomposed into 32768
cubes). Each element of the cube (or 3D matrix) 1s a scalar
number (value).

A process for transposing a cuboid (3D array) in a multi-
core processor system, according to an embodiment of the
invention 1s now described. The multi-core processor system
includes a main memory for storing the 3D array, and a local
memory. Generally the process 1nvolves partitiomng (divid-
ing) the 3D array into a number of equally sized bars (rows),
wherein the number of bars 1s equal to the number of proces-
sors (cores) 1n said multi-core processor system. Each bar 1s
associated with a given processor among the processors of
said multi-core processor system. Each given processor 1s
programmed to: partition (divide) each associated bar into
plural matrices (e.g., cubes) 1n the local memory, transpose
cach cube, combine the transposed cubes into a bar 1n said
local memory, and to store back the bar from local memory to
its original position in the main memory.

Table 1 below shows an example pseudo-code process for
said transpose operation. The 3D array 1s in main memory and
bars are moved to local memory (step 5 of Table 1), and cubes
are extracted from local stores.

TABL.

L1

1

Transpose Cuboid Operation Steps

1: Chop the cuboid into bars each of dimensions p x p x N,

2: Distribute the bars evenly among processors,

3: Each processor perform the following steps 3-10 in parallel:
4: For each bar associated with this processor do:

{

5: Read bar from main memory into local memory,
6: Chop the bar mnto p x p x p cubes inside local memory,
7 For each cube do:

1
8: Transpose Cube

h
9: Combine cubes mmto a bar,

10: Write back the bar from local memory mnto its original
place in main memory

L

FIG. 2 shows a graphical example 20 of the transpose steps
1-8 above, wherein a cuboid is transposed 1n place. FIG. 3
shows a graphical example 30 of the transpose steps 9 and 10
above. FIG. 4 shows a flowchart of an example transpose
process 40 for 3D data restructuring for m-place transpose

US 7,979,672 B2

S

according to the imvention. Process block 41 begins by chop-
ping the cuboid into bars of equal dimensions pxpxIN. Each
bar face 1s stored contiguously inside main memory (stride-1
order). Such order 1s eificient 1n data transfer from main
memory to local memories. In current multi-cores, the larger
the stride-1 access pattern 1s, the higher the achieved memory
bandwidth. In block 42, after obtaining bars, the process
utilizes the parallel processors to speedup the transpose
operation. That 1s achieved by distributing bars to processors.

Each processor transposes 1ts share of bars. In block 43,
cach bar1s loaded from main memory and stored 1into the local
memory of the corresponding processor. The loading opera-
tion 1s rapid due to bar organization as mentioned above. In
block 44 the processor then chops the bar into cubes. The
chopping into cubes occurs 1n local memory and 1n parallel
(ecach processor 1s performing the same for 1ts corresponding
bar). Moreover, memory transier and processor processing,
occurs 1n parallel, thus chopping and loading bars may be
overlapped. Therefore, the chopping operation does not intro-
duce overheads. In block 45, each processor now has a current
bar chopped into cubes, and proceeds to transpose each cube
in local memory. In block 46 each processor combines trans-
posed cubes 1nto bars, then 1n block 47 stores back the bar into
its original position. Operations 1n blocks 46 and 47 are the
opposite to the bar reading and chopping operations 1n blocks
43 and 44, respectively.

Upon completion, data imnside each cube 1s transposed, but
not cube locations. Post-transpose programs that access the
cuboid may utilize a logical mapping to access a particular
cube. Such mapping 1s trivial (merely require reordering cube
coordinates as per transpose string) and may be provided by
a simple cube mapping function, or coded directly by a pro-
grammer. Moreover, the programmer may use the same bar
access step, defined above, for accessing many cubes at once,
saving memory transier time (1f access pattern permits).

An example cube transpose operation for the cuboid trans-
pose operation above 1s now described. The cube transpose
operation 1s useful with all possible transposes that may be
performed on a pxpxp cube. Vectorization 1s used to achieve
high performance of element displacement. For a pxpxp,
/Y X cube, cube elements for all x values for x=1 to p for a
given z and y are to be defined as yz cube row. Only two
adjacent axes are swapped at each single step (1.e., swap 1s
cither between major and middle, or between middle and
minor, axes). Thus, a maximum of three swap operations are
required for any cube transpose.

Major-middle swapping 1s performed by reordering of the
cuboid rows. As such, each yz row 1s swapped with zy row.
This swapping 1s performed by simple out of place memory
copying from the source to a temporary destination (for the
Cell BE computer, this memory copy and swap process 1s
performed using SPU C itrinsics (load/store) to achieve the
highest performance).

Middle-minor swapping comprises a 2D transpose for one
face of the pxpxp cuboid, to be performed p times for the p
faces of the cube. Any eflicient 2D transpose algorithm may
be used (for the Cell BE computer, the transpose matrix
function from the SDK library may be used). In order to

achieve 3D transpose of a cube, a transpose process 30 shown
in FIG. 5 mvolves:
Step 51: Load a cube 1nto a temporary empty space from
source bar 1 local memory.
Steps 52a-b: Perform face transpose on each of the p faces
of the pxpxp cube 1n the temporary space.
Step 33: Store cube from temporary space into destination
bar.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

Steps 51 and 53 may or may not involve major-middle axis
swapping depending on the requested transpose (which 1s one
out the five possibilities described further below). Further,
steps 52a-b may or may not be performed based on the
requested transpose. Possible transposes for a cuboid are the
following (note that the trivial no transpose case 1s omitted):

cw: Clockwise rotation (ZYX—=XZY).

ccw: Counter Clockwise rotation (ZYX—=YXZ).

xy: XY swapping (ZYX—=7XY).

xz: X7 swapping (ZYX—=XYZ).

yz: Y7 swapping (ZYX—=>Y7ZX).

Referring to the graphical example 60 1 FIG. 6 and
example process 70 1 FIG. 7, clockwise rotation (1.e., cw
(ZYX—=XZY)) involves the following;

Step 71: Load a cube 1nto temporary space with no major-

middle swapping (ZYX—=7ZYX).

Steps 72a-b: Perform face transpose on each of the p faces
of the pxpxp cube 1n the temporary space. This imnvolves
middle-minor swapping (ZYX—=7ZXY).

Step 73: Store the cube from temporary space into desti-
nation bar (at local memory) with major-middle swap-
ping (ZXY—=XZY).

Referring to the graphical example 80 mn FIG. 8 and
example process 90 1 FIG. 9, counter clockwise rota-
tion (1.e., ccw (ZYX—=Y X7Z)) involves the following:

Step 91: Load a cube nto temporary space with major-
middle swapping (ZYX—=YZX).

Steps 92a-b: Pertform face transpose on each of the p faces
of the pxpxp cube in temporary space, This 1nvolves
middle-minor swapping (YZX—=YXZ).

Step 93: Store the cube from temporary space into desti-
nation bar (at local memory) with no major-middle
swapping (YXZ—=YX7Z).

Referring to the example process 100 1n FIG. 10, XY axis

swapping (1.e., Xy (ZYX—=7XY)) involves the following:

Step 101: Load a cube 1nto temporary space with no major-
middle swapping (ZYX—=Z2YX).

Steps 102a-b: Perform face transpose on each of the p faces
of the pxpxp cube 1n temporary space. This involves
middle-minor swapping (ZYX—=7XY).

Step 103: Store the cube from temporary space into desti-
nation bar (at local memory) with no major-middle
swapping (ZXY—=7ZXY).

Referring to the example process 110 1 FIG. 11, XZ axis

swapping (1.e., Xz (ZYX—=XY 7)) involves:

Step 111: Load a cube into temporary space with major-
middle swapping (ZYX—=YZX).

Steps 112a-b: Perform face transpose on each of the p faces
of the pxpxp cube 1n temporary space. This involves
middle-minor swapping (YZX—=YXZ).

Step 113: Store the cube from temporary space into desti-
nation bar (at local memory) with major-middle swap-
ping (YX7Z—=XYZ).

Referring to the example process 120 1n FIG. 12, YZ axis

swapping (1.e., vz (ZYX—=Y ZX)) involves:

Step 121: Load a cube into temporary space with major-
middle swapping (ZYX—=YZX). No middle-minor
swapping (YZX—=YZX).

Step 122: Store the cube from temporary space into desti-
nation bar (at local memory) with no major-middle
swapping (YZX—=Y7ZX).

After performing the transpose process on all pxpxp cubes
and the destination bar 1s built, the process 1s reversed and the
bar 1s written back imn-place 1n 1ts original cuboid location into
main memory. As such, a preferred embodiment of the inven-
tion divides the steps of transpose operations among multiple
processing units that process independently along all axes

US 7,979,672 B2

7

until transpose 1s completed without inter-process communi-
cations. Further, the 3D transpose 1s performed in-place based
on a hybrid/integrated 3D transpose approach including logi-
cal and physical processing.

Increasing a cube dimension size cubically increases vol-
ume and hence local memory allocated space, whereas
decreasing the cube size decreases cube read/write speeds
and ultimately the degree of SIMD processing possible. One
approach to choosing cube dimension 1s to choose a suitable
s1ze with respect to eflicient SIMD processing for the under-
lying architecture. The sizes should allow for eflicient vec-
torization of the transpose and possibly the post-transpose
operations. We then rely on bars to achieve high communi-
cation speed.

As discussed above, there are two main operations accord-
ing to one embodiment of the mvention: the first 1s to physi-
cally transpose small 3-D portions on the 3-D array; the
second 1s to make a logical transpose on each access to the
said 3-D array, resulting in returning the correct transposed
data. The logical transpose merely requires changing the
order of the element coordinates for access. In more concrete
terms, suppose that we have a 3-D array of NxNxN dimen-
s1ons. Suppose that the dimensions of the small portions are
MxMxM, such that N 1s an integer multiple of M. Also
suppose that the transpose 1s to change the axis of the NxNxN
array from XY Z toYZX. In one embodiment of the invention,
all MxMxM portions are physically transposed from XY Z to
YZX. For an application to access element (a, b, ¢) in the
NxNxN array, the following steps will be performed:

Target 3-D portion address is computed by (|a/M |, |b/M |,

(/M)

The portion address 1s logically transposed by the opposite
of the sought transpose; so the address becomes (| ¢/M |,
la/M |, |b/M|). The sought element is accessed by its
olflset inside the portion; the offset1s (amod N, b mod N,
¢ mod N). So the complete address becomes
(Ic/MIxM+a mod N, la/MIxM+b mod N, |b/MIxM+c
mod N).

For ease of understanding, the following example 1s pre-
sented as follows. Take N=4 and M=2. The ¢lements of the
3-D array 1s indexed by the tuple (1, j, k) where 0=1=0,
0=1=3, 0=k=3.

Suppose for k=0 we have elements (1, 7, 0) to be:

0123

4567

891011

12 13 14 15
where 1 1s the column index and j 1s the row 1ndex.

Suppose for k=1 we have elements (1, 1, 1) to be:

16 17 18 19

2021 22 23

24 2526 27

28 29 30 31
Suppose for k=2 we have elements (1, 7, 2) to be:

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47
Suppose for k=3 we have elements (1, 1, 3) to be:

48 49 50 51

5253 54 55

56 57 58 59

60 61 62 63
Suppose that we’re transposing such that element (1, 7, k)
becomes element (3, k, 1). In one embodiment of the mnvention,
only all small 2x2x2 portions will be transposed.

10

15

20

25

30

35

40

45

50

55

60

65

8

Therefore the array aifter transpose becomes:
Suppose for k=0 we have elements (1, 3, 0) to be:

0426
1720 18 22
8121014
24 28 26 30
where 1 1s the column 1ndex and j 1s the row 1ndex.

Suppose for k=1 we have elements (1, 1, 1) to be:
1537

18 21 19 23

9131115

252927 31
Suppose for k=2 we have elements (1, 7, 2) to be:

32 36 34 38

48 52 50 34

40 44 42 46

56 60 58 62
Suppose for k=3 we have elements (1, 1, 3) to be:

33 3735 39

49 53 51 35

41 45 43 47

576159 63
Now suppose 1t 1s desired to access element (2, 3, 1). First the
portion address is identified to be (| 2/2], |3/2], [1/2]) which
1s (1, 1, 0). Then the transpose 1s made 1n the opposite direc-
tion, so the cube address 1s (0, 1, 1). The first element address
of the portion 1s (0*2, 1*2, 1*2)=(0, 2, 2). The offset 1s
computed to be (2 mod 2, 3 mod 2, 1 mod 2)=(0, 1, 1).
Therefore element (0+0, 2+1, 2+1)=(0, 3, 3) 1s accessed,
which has the value 57 (notice that sought element 2, 3, 1 1s
clement 1, 2, 3 1 the original array which 1s indeed has the
value of 37).

FIG. 13 shows a functional block diagram of a multi-core
processor 130 such as a Cell Broadband Engine Architecture
for distributed processing, implementing an embodiment of
the 1n-place multi-dimensional transpose according to the
invention. The multi-core processor 130 comprises a proces-
sor element (chip) 131 which includes a processor unit (PU)
132 that manages the system and distributes tasks to multiple
synergistic processing elements/cores (SPEs) 133. The SPEs
are ellicient single-instruction, multiple-data (SIMD) pro-
cessing units optimized for computation and data movement.
Each SPE includes a synergistic processor unit (SPU) and a
memory flow controller (MFC). The element 131 further
includes on-chip local memory (MEM) 134 such as a double-
data-rate (DDR2) memory. The PU, SPEs and MEM are
connected to an Interconnect Bus 135. One or more elements
131 may be connected to a communication infrastructure 136
for interface with a display/user interface 137, data storage
138 (e.g., maimn memory, secondary memory, disk, tape),
communications interface 139, etc. Various software embodi-
ments are described 1n terms of this exemplary computer
system. After reading this description, it will become appar-
ent to a person of ordinary skill in the relevant art(s) how to
implement the invention using other computer systems and/or
computer architectures. For example, the PU 132 may parti-
tion the 3D array that 1s 1n main memory 138, into bars in the
local memory MEM 134 and associate each bar with an SPE
133, which SPE then in turn partitions the bar into cubes,
transposes each cube, and provides the transposed cubes back
from local memory to the PU to combine and place back into
main memory.

The terms “computer program medium,”
medium,” and “computer readable medium”, “computer pro-
gram product,’ are used to generally refer to media such main
memory, secondary memory, removable storage drive, a hard
disk mnstalled in hard disk drive, and signals. These computer

computer usable

US 7,979,672 B2

9

program products are means for providing software to the
computer system. The computer readable medium allows the
computer system to read data, instructions, messages or mes-
sage packets, and other computer readable information from
the computer readable medium. The computer readable
medium, for example, may include non-volatile memory,
such as a floppy disk, ROM, flash memory, disk drive
memory, a CD-ROM, and other permanent storage. It 1s use-
tul, for example, for transporting information, such as data
and computer instructions, between computer systems. Fur-
thermore, the computer readable medium may comprise
computer readable mformation 1n a transitory state medium
such as a network link and/or a network interface, including a
wired network or a wireless network that allow a computer to
read such computer readable information. Computer pro-
grams (also called computer control logic) are stored in main
memory and/or secondary memory. Computer programs may
also be recerved via a communications interface. Such com-
puter programs, when executed, enable the computer system
to perform the features of the present invention as discussed
herein. In particular, the computer programs, when executed,
enable the processor multi-core processor to perform the
teatures of the computer system. Accordingly, such computer
programs represent controllers of the computer system.
As 15 known to those skilled 1n the art, the atforementioned
example embodiments described above, according to the
present invention, can be implemented in many ways, such as
program 1nstructions for execution by a processor, as soit-
ware modules, as computer program product on computer
readable media, as logic circuits, as silicon walers, as inte-
grated circuits, as application specific integrated circuits, as
firmware, etc. Though the present invention has been
described with reference to certain versions thereot; however,
other versions are possible. Therefore, the spirit and scope of
the appended claims should not be limited to the description
of the preferred versions contained herein. Those skilled 1n
the art will appreciate that various adaptations and modifica-
tions of the just-described preferred embodiments can be
configured without departing from the scope and spirit of the
invention. Therefore, 1t 1s to be understood that, within the
scope of the appended claims, the invention may be practiced
other than as specifically described herein.
What 1s claimed 1s:
1. A method of transposing a three-dimensional (3-D) data
array for a multi-processor system having multiple proces-
sors and a main memory for storing the 3-D data array, the
method comprising:
logically dividing the 3-D data array into a number of
equally si1zed consecutive 3-D first bar portions;

determining distribution for each first 3-D bar portion
evenly among a plurality of processors i the multi-
processor system, and storing each first 3-D bar portion
in a respective original storage location 1n the main
memory;

cach of the plurality of processors,

reading the respective first 3-D bar portion from the
main memory to a local memory of the respective
Processor;

logically dividing the first 3-D bar portion into multiple
3-D cube portions within the local memory of the
respective processor, wherein the 3-D cube portions
comprise plural data matrices including rows and col-
umns;

physically transposing elements of each 3-D cube por-
tion by a sequence of mterchanging of adjacent axes
in a temporary storage location 1n the respective pro-
cessor and storing the physically transposed cube ele-

10

15

20

25

30

35

40

45

50

55

60

65

10

ments in the local memory of the respective processor,
wherein the 3-D cube portions remain 1n original
physical storage locations with the elements of each
3-D cube portion physically transposed, then:
combining the 3-D cube portions into a respective
second 3-D bar portion 1n the local memory of the
respective processor, wherein the second 3-D bar
portion comprises a combined data matrix from the
physically transposed matrices of the 3-D cube por-
tions; and
writing the respective second 3-D bar portions from
the local memory of each respective processor to
the respective original storage location 1n the main
memory for which the respective first 3-D bar por-
tion was originally stored; and

obtaining elements of the transposed 3-D data array by
logically transposing each 3-D cube portion via address
mapping, wherein logically transposing includes:
determining a 3-D cube address for a 3-D cube portion 1n

the 3-D data array for a given element address;
iverse transposing the 3-D cube address;

determining a 3-D entry offset address within the 3-D
cube portion; and

accessing the given element within the 3-D cube portion
directly without 1nversion using the determined 3-D
entry offset address.

2. The method of claim 1 wherein

the number of respective first bar portions 1s equal to the
number of processors 1n said multi-processor system.

3. The method of claim 2 wherein logically dividing the
3-D data array comprises: dividing the 3-D data array into a
number of equally sized rows, wherein the number of rows 1s
equal to the number of processors 1 said multi-processor
system.

4. The method of claim 3 wherein logically dividing the
3-D data array into a number of equally sized first bar por-
tions-further includes:

associating each row with one of the plurality of processors
of said multi-core processor system.

5. The method of claim 4 wherein transposing in each

processor mcludes:

partitioning each associated row 1nto plural matrices 1n the
respective local memory; and

transposing each matrix in the respective local memory.

6. The method of claim 5 wherein combining the trans-
posed portions and writing back to the respective original
storage location in the main memory includes:

combining the transposed matrices mto a new row in
respective local memory, and storing back the new row
from the respective local memory to the respective origi-
nal storage location in the main memory.

7. An mformation processing system comprising:

a multi-processor system having multiple processors and a
main memory for storing a three-dimensional (3-D) data
array;

a controller configured for logically dividing the 3-D
data array 1into a number of equally sized first 3-D bar
portions, distributing each first 3-D bar portion evenly
among the plurality of processors, and storing each
first 3-D bar portion 1n a respective original storage
location 1n the main memory; and

cach of the plurality of processors configured for reading

the respective first 3-D bar portion ifrom the main
memory to a local memory of the respective proces-

SOT’;
logically dividing the first 3-D bar portion into multiple

3-D cube portions within the local memory of the

US 7,979,672 B2

11

respective processor, wherein the cube portions com-

prising plural data matrices including rows and col-

umns;

physically transposing elements of each 3-D cube por-
tion by a sequence of interchanging of adjacent axes
1in a temporary storage location 1n the respective pro-
cessor and storing the physically transposed cube ele-
ments 1n the local memory of the respective processor,
wherein the 3-D cube portions remain in original
physical storage locations with the elements of each

3-D cube portion physically transposed, then:

combining the 3-D cube portions into a respective

second 3-D bar portion 1n the local memory of the
respective processor, wherein the second 3-D bar
portion comprises a combined data matrix from the
physically transposed matrices of the 3-D cube por-
tions; and

writing the respective second 3-D bar portions from
the local memory of each respective processor to
the respective original storage location 1n the main

memory for which the respective first 3-D bar por-
tion was originally stored; and

obtaining elements of the transposed 3-D data array by

logically transposing each 3-D cube portion via address

mapping, wherein logically transposing includes:

determining a 3-D cube address for a 3-D cube portion in
the 3-D data array for a given element address;

iverse transposing the 3-D cube address;

determining a 3-D entry offset address within the 3-D
cube portion; and

accessing the given element within the 3-D cube portion
directly without 1nversion using the determined 3-D
entry offset address.

8. The system of claim 7, wherein the number of equally
s1zed first 3-D bar portions 1s equal to the number of proces-
sors 1n said multi-processor system.

9. The system of claim 8 wherein logically dividing the 3-D
data array into a number of equally sized first 3-D bar por-
tions-includes: logically dividing the 3-D data array into a
number of equally sized rows, wherein the number of rows 1s
equal to the number of processors in said multi-processor
system.

10. The system of claim 9 wherein the controller 1s further
configured for associating each row with a processor among
the plurality of processors of said multi-processor system.

11. The system of claim 10 wherein each processor is
turther configured for:

partitioning each associated row into plural matrices in the

respective local memory; and

physically transposing each matrix 1n the respective local

memory.

12. The system of claim 11 wherein the controller 1s further
configured for combiming the transposed matrices into a new
row 1n respective local memory, and storing back the new row
from the respective local memory to the respective original
storage location 1n the main memory.

13. A computer program product, comprising:

a computer readable medium including computer mnstruc-

tions that when executed on a multi-processor system
computer having a main memory for storing a three-

dimensional (3-D) data array, cause the computer to
perform operations comprising:

logically dividing the 3-D data array into a number of
equally si1zed first 3-D bar portions;

5

10

15

20

25

30

35

40

45

50

55

60

65

12

distributing each first 3-D bar portion evenly among a
plurality of processors, and storing each first 3-D bar
portion 1n a respective original storage location 1n the
main memory;
cach of the plurality of processors:
reading the respective first 3-D bar portion from the
main memory to a respective local memory;

logically dividing the first 3-D bar portion nto mul-
tiple 3-D cube portions within the local memory,
wherein the 3-D cube portions comprising plural
data matrices including rows and columns;

physically transposing elements of each 3-D cube
portion by a sequence of interchanging of adjacent
axes 1n a temporary storage location 1n the respec-
tive processor and storing the physically trans-
posed cube elements 1n the local memory of the
respective processor, wherein the 3-D cube por-
tions remain 1n original physical storage locations
with the elements of each 3-D cube portion physi-
cally transposed, then:

combining the 3-D cube portions into a respective

second 3-D bar portion 1n the local memory of the
respective processor, wherein the second 3-D bar
portion comprises a combined data matrix from the
physically transposed matrices of the 3-D cube por-
tions:; and

writing the respective second 3-D bar portions from
the local memory of each respective processor to
the respective original storage location 1n the main

memory for which the respective first 3-D bar por-
tion was originally stored; and

obtaining elements of the transposed 3-D data array
by logically transposing each 3-D cube portion via
address mapping, wherein logically transposing
includes:

determining a 3-D cube address for a 3-D cube por-
tion 1n the 3-D data array for a given element
address:

inverse transposing the 3-D cube address;

determining a 3-D entry offset address within the 3-D
cube portion; and

accessing the given element within the 3-D cube por-
tion directly without mversion using the deter-
mined 3-D entry offset address.

14. The computer program product of claim 13 wherein the
number of first 3-D bar portions 1s equal to the number of
processors 1n said multi-processor system.

15. The computer program product of claim 14 wherein the
instructions for logically dividing the 3-D data array into a
number of equally sized first 3-D bar portions comprise
instructions for:

logically dividing the 3-D data array into a number of

equally sized rows, wherein the number of rows 1s equal
to the number of processors 1n said multi-processor sys-
tem computer.

16. The computer program product of claim 15 wherein the
instructions for distributing each first 3-D bar portion further
include 1nstructions for:

associating each row with a processor among the proces-

sors of said multi-processor system computer.

17. The computer program product of claim 16 wherein
physically transposing each 3-D cube portion include mnstruc-
tions for each processor for:

partitioning each associated row 1nto plural matrices in the

respective local memory; and

physically transposing each matrix in the respective local

memory.

US 7,979,672 B2

13

18. The computer program product of claim 17 wherein the
instructions for combining the physically transposed 3-D
cube portions and writing the respective second 3-D bar por-
tion from the respective local memory to the respective origi-
nal storage location in the main memory include nstructions

combining the physically transposed matrices into a new

row 1n respective local memory, and writing the new row
from the respective local memory to the respective origi-
nal storage location in the main memory.

19. A transposition system for transposing a three-dimen-
sional (3-D) data array, comprising:
a multi-processor system having multiple processors and a

main memory for storing the 3-D data array, wherein the
multi-processor system 1s configured for:
logically dividing the 3-D data array into a number of
equally si1zed first 3-D bar portions;
distributing each first 3-D bar portion evenly among a
plurality of processors 1n the multi-processor system,
and storing each first 3-D bar portion in a respective
original storage location 1n the main memory;
cach other processor:
reading the respective first 3-D bar portion from the
main memory to a local memory of a respective
Processor;
logically dividing the first 3-D bar portion into mul-
tiple 3-D cube portions within the local memory,
wherein the 3-D cube portions comprising plural
data matrices including rows and columns;
physically transposing elements of each 3-D cube
portion by a sequence of interchanging of adjacent
axes 1n a temporary storage location 1n the respec-

10

15

20

25

30

14

tive processor and storing the physically trans-
posed cube elements 1n the local memory of the
respective processor, wherein the 3-D cube por-
tions remain in original physical storage locations
with the elements of each 3-D cube portion physi-
cally transposed, then:
combining the 3-D cube portions into a respective
second 3-D bar portion 1n the local memory of the
respective processor wherein the second 3-D bar
portion comprises a combined data matrix from the
physically transposed matrices of the 3-D cube por-
tions; and
writing the respective second 3-D bar portions from
the local memory of each respective processor to
the respective original storage location 1n the main
memory for which the respective first 3-D bar por-
tion was originally stored; and
obtaining elements of the transposed 3-D data array
by logically transposing each 3-D cube portion via
address mapping, wherein logically transposing
includes:
determining a 3-D cube address for a 3-D cube
portion 1n the 3-D data array for a given element
address:
iverse transposing the 3-D cube address;
determining a 3-D entry offset address within 3-ID
cube portion; and
accessing the given element within the 3-D cube
portion directly without inversion using the
determined 3-D entry offset address.

	Front Page
	Drawings
	Specification
	Claims

