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VIRTUALIZATION BRIDGE DEVICE

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority to U.S. Pro-
visional Patent Application No. 60/888,984, entitled “Virtu-
alization Bridge Device,” filed Feb. 9, 2007, the entirety of

which 1s incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to the field of computer
system architecture and more particularly, to an architecture
that allows mapping between computing nodes and shared or
non-shared I/O devices.

2. Description of the Related Art

Computing systems often contain multiple compute nodes.
For example, computing systems may include multiple
CPUs, one or more multi-core CPUs, CPUs that operate 1n
multiple operating system domains, and/or multiple single-
board computers configured as blades and mounted 1n a com-
mon chassis or drawer. In addition, computer nodes may be
interfaced to multiple I/O devices. I/O devices may be any
devices that allow data to be transierred to or from the com-
pute nodes. For example, compute nodes may be coupled to
one or more network interfaces such as Ethernet, storage area
network interfaces such as Fibre Channel, graphics cards,
USB or Firewire controllers, etc. In addition, redundant con-
nections may also be desired to improve availability and
reliability of the I/0 nterfaces. In modern computer systems,
an interface subsystem placed between the compute nodes
and the I/0O devices may include a variety of chipsets con-
necting a host bus on the compute node side to one or more

I/O buses on the other side, such as ISA, FISA, PCI, PCI-X,
compact PCI, AGP, etc.

In order to make more effective use of the I/O devices 1n a
system, the interface subsystem may be designed to permit
compute nodes to share I/O devices. For instance, 1n a com-
puter system that uses multiple blades to increase the avail-
able processing power, instead of placing I/O 1interface
chipsets and I/0 devices on each blade, each blade may inter-
face to a set of shared I/O cards through a midplane that
includes hardware to replace the function of the interface
chipsets. The resulting architecture may provide alower over-
all system cost, higher configuration flexibility, and more
complete utilization of I/O devices. One skilled 1n the art will
appreciate that a system of blades coupled to I/O devices
through a midplane 1s but one example of an architecture in
which I/0 mterface chipsets are separate from the compute
nodes. What should be appreciated 1s that regardless of the
type of compute nodes and 1I/0O devices provided, some type
of I/O interface permits the I/O devices to be shared. Further,
the I/0 interface may allow compute nodes to be designed,
manufactured and sold separately from the I/0 devices. Still
turther, the I/O interface may provide switching between
compute nodes and I/0 devices. Still further, the I/O interface
may allow multiple compute nodes, operating independently
and having one or more operating system domains, to share
I/0 devices as 1 the devices were dedicated to them.

In addition to the foregoing design considerations, efficient
I/O interfaces are typically implemented in hardware or a
combination of hardware and soitware. In the following
descriptions, such I/O interfaces may be described as virtu-
alization hardware, although it 1s understood that some func-
tions of the I/O mterface may comprise software and/or hard-
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2

ware. Virtualization hardware may typically include one or
more switches to interconnect the compute nodes with the I/O
devices. These switches combine together to create a virtual
view ol a switch fabric for each compute node. That virtual
view may or may not correspond to the physical fabric layout.

One 1mplementation of virtualization hardware uses the
PCI Express (PCle) protocol to interconnect compute nodes
and I/0 devices. In this implementation, the virtualization
hardware presents a virtual view of a PCI Express system to
cach compute node. This virtual view contains virtual PCI
Express switches for some or all of the physical PCI Express
switches 1n the fabric. The virtual view also contains virtual
I/O devices for some or all of the IO devices in the fabric.

In a classic PCI Express (PCle) I/O system there 1s one host
processor (root) and several 1/O devices. The root 1s associ-
ated with a single operating system and each I/0 device 1s
bound to that root. As processing power has increased, 1t has
become possible to run multiple independent operating sys-
tems on a host processor. This introduces the problem of
sharing an I/O device among multiple operating systems.
Technology has also advanced in the I/O devices. I/O device
bandwidth has evolved to where a single I/O device has more
bandwidth than 1s needed by a single host processor. To be
cost efficient it 1s advantageous to be able to share a single I/O
device among multiple host processors, each of which may
support multiple independent operating systems. The PCI
Special Interest Group (PCI SIG) has defined two indepen-
dent I/0 virtualization standards to solve both of these prob-
lems:

SR-I0OV—allows a single host processor supporting mul-

tiple operating systems to share a single I/O device.

MR-IOV—allows multiple host processors to share a

single I/0 device.

FIG. 1 1illustrates a prior art embodiment of an SR-IOV
system 100. In the illustrated embodiment, a single host pro-
cessor 110, a PCle switch 130, and SR PCle endpoints 140,
150, and 160 are shown. PCle switch 130 includes ports
131-134. Host processor 110 includes operating systems
(OS) 115 and 116 that are managed by a hypervisor 114. Host
processor 110 also includes a PCI root port 112, through
which host processor 110 1s coupled to switch port 131.
Switch ports 132, 133, and 134 are coupled to SR PCle
endpoints 140, 150, and 160 respectively. From each OS’s
point of view, each endpoint 1s a dedicated resource to that
OS. This allows existing software to be used without modi-
fication to communicate with the endpoints. In reality, how-
ever, multiple OS’s are sharing the 1/0 device. Note a con-
ventional PCle switch may be used in an SR-IOV system. The
endpoints have SR-I0V extensions to allow multiple OS’s to
share the endpoint resources.

FIG. 2 1illustrates a prior art embodiment of an MR-I0OV
system 200. In the illustrated embodiment, single host pro-
cessors 210 and 220, an MR PCle switch 230, and MR PCle
endpoints 240, 250, and 260 are shown. PCle switch 230
includes ports 231-235. Host processors 210 and 220 share
the endpoints 240, 250, and 260. Each of host processors 210
and 220 may include one or more operating systems and a
hypervisor (not shown). In addition host processor 210
includes a PCI root port 212 and host processor 220 includes
a PCI root 222 through which to communicate with ports 231
and 232, respectively, of switch 230. Switch ports 233, 234,
and 235 are coupled to MR PCle endpoints 240, 250, and 260
respectively. Note both switch 230 and endpoints 240, 250,
and 260 have MR-IOV extensions.

FIG. 3 illustrates one embodiment of an SR-IOV software
system 300. In the illustrated embodiment a single host pro-

cessor 310 hosts three OS’s 320, 330 and 340 that share a
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single SR endpoint 360. Each of OS’s 320, 330, and 340
includes a respective one of virtual function (VF) drivers 322,

332, and 342. A physical function (PF) driver 352 may run 1n
a Hypervisor 350 that manages endpoint 360 and may provide
services to the VF drivers. Note all the OS’s are running in a
single host processor that, in one embodiment, may be a
symmetric multiprocessor using a variety of multi-core
multi-chip or multi-thread techniques. Note that the PF driver
352 may also be located outside the Hypervisor 350, for
example 1n a designated OS (such as OS 320). Such a desig-
nated OS may also contain a VF dniver.

One problem 1s the endpoint extensions for SR-IOV and
MR-IOV are different, so with current designs endpoint
manufacturers have to generate two different products 11 they
desire to satisiy both markets. The SR extensions have alower
implementation cost than the MR extensions. It would be
desirable for endpoint manufacturers to only have to imple-
ment one set of extensions (preferably SR extensions because
they have a lower cost) that could solve both the SR and MR
system solutions. Accordingly, what 1s needed 1s a design that
can enable an SR endpoint to function as an MR endpoint 1n
an MR system. In addition, it 1s desirable that the design
enables other types of endpoints to operate in MR-IOV sys-
tems.

SUMMARY OF THE INVENTION

Various embodiments of a computer system are disclosed.
In one embodiment, a computer system includes a shared 1/0
device including at least first and second functions providing
access to first and second portions of the device local memory
space, respectively and a plurality of roots coupled to the
shared I/0O device via a switch fabric. A first root assigns a first
address 1n a first root memory space to the first function. A
second root assigns a second address 1n a second root memory
space to the second function. The switch fabric maps the first
root memory space to the first portion of device local memory
space and the second root memory space to the second portion
of device local memory space. Subsequently, the switch
receives a first data transaction request from the first root
targeted to the first address, translates the first address to a
corresponding location in the first portion of the device local
memory space based on the mapping, and handles the first
data transaction request.

In a further embodiment, the switch fabric routes the data
transaction request to the I/O device. In a still further embodi-
ment, the first and the second addresses are the same. In a still
further embodiment, at least one of the first and second func-
tions 1s a virtual function.

In another embodiment, the first address comprises a root
base address and an offset address. The switch fabric stores a
value corresponding to a base address in the device local
memory space in a base address register and replaces the root
base address with the value stored 1n the base address register.

In another embodiment, the first data transaction includes a
first 1dentifier 1dentifying the first root and a second data
transaction includes a second 1dentifier identifying the second
root. The switch fabric replaces the first identifier with a third
identifier, replaces the second identifier with a fourth identi-
fier, and conveys the third 1dentifier with the first data trans-
action request. The first identifier 1s the same as the second
identifier and the third identifier 1s not the same as the fourth
identifier. In a further embodiment, the switch fabric receives
a response Irom the I/O device to the first data transaction
request including the third identifier, translates the third iden-
tifier to the first identifier, and routes the response to the first
root based on the third 1dentifier.
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In one embodiment, the I/O device 1s a PCle endpoint
configured to operate 1n a single root I/O virtualization envi-
ronment. In another embodiment, the I/O device 1s a PCle

multi-function endpoint.

In a still further embodiment, the first root assigns a first
range of addresses 1n the first root memory space to the first
function. The switch maps the first root memory space to a
memory range larger than the first portion of device local
memory space, receives a third data transaction request from
the first root targeted to a third address outside of a range of
addresses that correspond to the first portion of device local
memory space, and process the third data transaction request.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a generalized block diagram of one
embodiment of a prior art SR-IOV system.

FIG. 2 illustrates a generalized block diagram of one
embodiment of a prior art MR-IOV system.

FIG. 3 illustrates one embodiment of a prior art SR-IOV
software system.

FIG. 4 illustrates a generalized block diagram of one
embodiment of an MR-IOV computer system in which SR
PCle endpoints may be used.

FIG. 5 illustrates one embodiment of an MR-IOV software
system 1n which SR PCle endpoints may be used.

FIG. 6 illustrates one embodiment of MR PCle switch that
includes an embedded XR device.

FIG. 7 illustrates one embodiment of a process that may be
used by XR device to share an SR endpoint in an MR system

FIG. 8 1s a block diagram of one embodiment of an XR
device.

FIG. 9 illustrates one embodiment of a process that may be
used by a translator 1n an XR device to translate packet
addresses.

FIG. 10 illustrates one embodiment of a block diagram of
the system 1llustrated 1in FIG. 5 that provides more detail of
the components used 1n address translation.

FIG. 11 illustrates one embodiment of the layout of a PCI
Express Type 0 VF Configuration Space Header.

FI1G. 121llustrates one embodiment of a PCI Express Capa-
bility Structure.

FIG. 13 illustrates one embodiment of a DMA process.

FIG. 14 1llustrates one embodiment of a configuration pro-
cess that may be used by an XR device.

FIG. 15 1illustrates an alternative embodiment of an MR
system that uses an SR endpoint.

FIG. 16 1llustrates a set of virtual hierarchies produced by
the system 1llustrated 1n FIG. 15.

FIG. 17 illustrates yet another alternative embodiment of
an MR system that uses an SR endpoint

FIG. 18 illustrates a set of virtual hierarchies produced by
the system 1llustrated in FIG. 17.

While the invention 1s susceptible to various modifications
and alternative forms, specific embodiments are shown by
way ol example 1n the drawings and are herein described in
detail. It should be understood, however, that drawings and
detailed description thereto are not intended to limit the
invention to the particular form disclosed, but on the contrary,
the mvention 1s to cover all modifications, equivalents and
alternatives falling within the spirit and scope of the present
invention as defined by the appended claims.

DETAILED DESCRIPTION

The following description 1s generally orgamized as fol-
lows. The first section includes FIG. 4 and provides an over-
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view ol one embodiment of an MR system in which SR
endpoints may be used. FIG. 5 provides a software model of
a system 1n which an SR endpoint 1s shared in an MR system.
FIG. 6 1llustrates a virtual model of an MR switch configured
to share an SR endpoint. FIG. 7 illustrates the process by
which an SR endpoint 1s shared in an MR system. FIGS. 8-14
illustrate various aspects ol a device that may be used to
implement the concepts shown 1n FIG. 7. Finally, FIGS. 15,
16, 17, and 18 1llustrate various virtual hierarchies that may
be implemented using the device.
System Overview

FIG. 4 1llustrates a generalized block diagram of one
embodiment of an MR-IOV computer system 400 1n which
SR endpoints may be used. For convenience, system 400 and
similar systems may be referred to hereinaiter as XR systems.
In the 1llustrated embodiment, single host processors 410 and
420, an XR device 430, switch fabrics 470 and 480, and SR
endpoints 440, 450, and 460 are shown. In the following
discussion, system components will be described 1n terms of
a PCI express (PCle) architecture. However, those skilled 1n
the art will appreciate embodiments of the inventions
described herein may find application in other system archi-
tectures. In the example of FIG. 4, XR device 430 includes
ports 431-435, and host processors 410 and 420 share end-
points 440, 450, and 460. Each of host processors 410 and 420
may include one or more operating systems and a hypervisor
(not shown). In addition, host processor 410 includes a PCI
root port 412 and host processor 420 includes a PCI root port

422 for communication via switch fabric 470 and ports 431
and 432, respectively, of XR device 430. SR PCle endpoints

440, 450, and 460 are coupled through switch fabric 480 to
ports 433, 434, and 435, respectively.

Each of host processors 410 and 420 may be any of a
variety of computing entities such as a CPU, one or more
multi-core CPUs, a CPU that operates in multiple operating,
system domains, and/or a single-board computer configured
as a blade and mounted 1n a common chassis or drawer with
other blades. While a single connection 1s shown between
cach host processor and XR device 430, in alternative
embodiments a host processor may include more than one
point of connection that 1s commonly referred to as a root
port. A root complex 1s typically a chip set that provides the
interface between processing elements and memory and
downstream I/O. Each root port of a root complex may have
its own connection to XR device 430.

Each of SR PCle endpoints 440, 450, and 460 1s an 1I/O
device that has SR-IOV capabilities, but does not have MR-
IOV capabilities. Accordingly, endpoints 440, 450, and 460
may be I/O devices that are not configured to be shared by
multiple roots. XR device 430 may comprise virtualization
hardware or a combination of hardware and soiftware. For
example, XR device 430 may include a fabric of one or more
PCI Express switches. In alternative embodiments, XR
device 430 may include a fabric of switches, some of which
may couple one or more non-shared endpoints to their respec-
tive root ports using conventional means, such as PCI Express
components. In still further embodiments, any of root ports
412, 422, and endpoints 440, 450, and 460 may be coupled
directly to XR device 430 rather than being coupled through
additional switches or fabrics. A variety of topologies are
possible and are contemplated.

Software Components

FIG. S illustrates one embodiment of an MR-IOV software

system 300 in which SR PCle endpoints may be used. In the

illustrated embodiment, system 500 includes host processors
510,520, and 530, an MR switch 540, SR PCle endpoint 560,

and XR software 570. Host processors 510, 520, and 530 each
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may run a single OS that collectively share SR endpoint 560
through MR switch 540. MR switch 540 may include ports

541-544 and an XR device 350. XR device 550 and XR
soltware 370 together enable host processors 510, 520, and
530 to share SR PCle endpoint 560 as 11 1t were an MR PCle
endpoint. XR software 570 may include a PF driver $72. SR
endpoint 560 may include virtual functions 562, 564, and 566
and physical function 568. XR device 550 enables host pro-
cessors 510, 520, and 530 to be bound to virtual functions
562, 564, and 566. More particularly, the OS running on host
processor 510 1s associated with a VF driver 512 that 1s
coupled to virtual function 562 via port 541 and XR device
550 of switch 540. The OS running on host processor 520 is
associated with a VF driver 522 that 1s coupled to virtual
function 564 via port 542 and XR device 550 of switch 540.
The OS running on host processor 530 1s associated with a VF
driver 532 that 1s coupled to virtual function 566 via port 543
and XR device 550 of switch 540. PF driver 572 may be
coupled to physical function 568 via port 344 of switch 540
through which itmay provide services to VF drivers 512, 522,
and 532. Note that although 1n the illustrated embodiment,
XR device 550 1s embedded 1n MR switch 540, 1n alternative
embodiments XR device 550 may be a stand-alone entity. SR
endpoint 560 maybe coupled to XR device 550 (and MR
switch 540) through a single physical link that includes vir-
tual connections to each of VE’s 562, 564, and 566 and PF
568. The operation of XR device 550 will be described further
below.

The several software components 1llustrated i FIG. § are
the OS’s, which may be used unmodified in an XR system:;
endpoint drivers, which may be used unmodified or with little
change 1n an XR system; and XR software 570, which pro-
vides services to manage the PCle switch with XR, as well as
the XR functionality, manages the endpoint, and emulates
hypervisor functionality that 1s required in an SR system. The
functions of these software components are described further
below.

In an SR system, each endpoint may have one or more
drivers 1including one or more of a Physical Function driver
and/or a Virtual Function driver. A Physical Function (PF)
driver may manage/control a physical I/O device. Addition-
ally, a PF drniver may provide services to Virtual Function
(VF) drivers. A VF driver may be used by a guest OS to
communicate with an I/O device. In one embodiment of an
XR system, XR software 570 may manage SR endpoint 560
using a PF driver for at least some of the management (1.e. a
PF driver may run on the same entity that runs XR software
570).

In an XR system, an endpoint driver running on a root may
be configured in a variety of ways. In one embodiment, a VF
driver may be configured to communicate witha VF and leave
global setup of the I/O device to a PF driver. In another
embodiment, a non-virtual driver may run on a non-virtual
aware OS (similar to an MR system). In this embodiment, the
non-virtual driver may attempt to perform global setup on an
endpoint device. XR device 550 may trap these operations
and have them serviced by software. For example, operations
that can be completed by the PF driver may be routed thereto;
other operations may be emulated by XR software 570. In yet
another embodiment, an XR driver, which may be considered
a hybrid between the VF driver and the non-virtual driver,
may be used. The XR driver may omit functionality that is the
responsibility of the PF driver. The XR driver may also run on
non-virtual aware OS’s.

In one embodiment, XR software 570 supports an environ-
ment that allows a PF device driver to be utilized without
significant changes. XR software 370 provides an API that
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mimics the API used by a PF device driver to interface with a
standard operating system (e.g. Linux). This mechanism
allows a PF device driver to be used with minimal changes,
thus reducing the efiort required to support a specific device.

In a traditional SR system, there is one hypervisor that
manages the endpoint and may provide services to the guest
OS’s. As used herein, hypervisor refers to software that 1s
responsible for managing the physical endpoint. In one
embodiment of an XR system, there 1s no hypervisor running
on the roots (i.e. there 1s no software that manages the physi-
cal I/O device on the roots). In such an embodiment, the
hypervisor 1s emulated in XR hardware 550 and XR software
570. Some of the services provided by an SR hypervisor in an
SR system may be provided by XR hardware/software 1n an
XR system. These services, details of which are provided
below, may include:

PF to VF (primary to subordinate) driver communication

Endpoint initialization

Global setup/control of the endpoint

Privileged operations (trap VH’s access to privileged

operations, and take appropriate action)

Extra hypervisor services not related to the endpoints

It 1s noted that 1n alternative embodiments, XR software
570 may run on a root that 1s also sharing an 1I/O device, such

as one of the roots of host processors 510, 520, or 530.
MR Switch Model

FI1G. 6 illustrates one embodiment of MR PCle switch 540
that includes embedded XR device 550. Switch 540 couples
roots 610, 620, 630, and 640 to an SR PCle endpoint 560 by
presenting endpoint 560 as a virtual device to roots 610, 620,
630, and 640 via pairs of virtual bridges. More particularly,

cach port of switch 540 may be modeled as a pair of virtual
PCI-to-PCI bridges that are coupled through XR device 550

to endpomt 560. Bridges 371 and 572 couple root 610 to XR
device 550. Bridges 373 and 574 couple root 620 to XR
device 550. Bridges 375 and 576 couple root 630 to XR
device 550. Bridges 577 and 578 couple XR software root 640
to XR device 550. XR device 550 implements functionality
that 1s seen by roots 610, 620, 630, and 640 and serves as the
translation agent between them and SR endpoint 560. In an
alternative embodiment, SR PCle endpoimnt 560 may be
coupled to XR device 550 via a PCle switch fabric, rather than
being directly coupled to XR device 550.
XR Device Operational Overview

FI1G. 7 illustrates one embodiment of a process 1500 that
may be used by XR device 550 to share an SR endpoint 1n an
MR system. Process 1500 begins with the reception of a data
packet (block 1510). As used herein packet may refer to any
of a variety of units of data. For example, 1n one embodiment,
a packet may be a PCI Express Transaction Layer Packet
(TLP). If the packet 1s sourced from a root (decision block
1520), 1.e., 1f the packet 1s a downstream packet, it may be
decoded (block 1530) and 11 1t 15 a configuration packet (deci-
sion block 1535), delivered to a configuration unit (block
1540). I1 the packet includes configuration data that may be
used within the XR device (decision block 1542), then the XR
device-specific data may be used to configure portions of the
XR device (block 1544). Alternatively, 1f there 1s no XR-
specific data 1n the packet (decision block 1542) and there 1s
no endpoint-specific data in the packet (decision bock 1546),
packet processing 1s complete. If in decision block 1546 there
1s endpoint-specific data i1n the packet, the packet may be
multiplexed with other downstream packets (block 1556) and
conveyed to the endpoint (block 15358), completing packet
processing.

Returning to decision block 15335, 1 the packet i1s not a
configuration packet, but istead 1s a management packet
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(decision block 1550), the packet may be delivered to a man-
agement unit (block 1552), completing packet processing. If
the packet 1s nerther a configuration packet nor a management
packet (decision blocks 1535 and 1550), the packet may be
translated to determine the target destination (block 1554),
multiplexed with other packets destined for an endpoint
(block 1556), and delivered to the endpoint (block 15358),
completing packet processing.

Returning to decision block 1520, 11 the packet 1s sourced
from an endpoint, 1.e., 1f the packet 1s an upstream packet, 1t
may be decoded (block 1560) and 11 1t 1s a management packet
(decision block 1565), the packet may be delivered to a man-
agement unit (block 1570), completing packet processing. If
the packet 1s not a management packet, but mstead 1s a con-
figuration completion packet (decision block 1580), the
packet may be delivered to a configuration unit (block 1572),
completing packet processing. If the packet 1s neither a con-
figuration packet nor a management packet (decision blocks
1565 and 1580), the packet may be translated to determine the
target destination (block 1582), multiplexed with other pack-
ets destined for a root (block 1584), and delivered to the root
(block 1586), completing packet processing.

XR Device Components

Turming now to FIG. 8, ablock diagram of one embodiment
of XR device 550 1s shown. For purposes of discussion, a
single virtual bridge 710 1s shown coupled to SR PCle end-
point 560 through XR device 550 in order to simply the
description, although more than one virtual bridge may be
coupled to the endpoint 1n other embodiments, as illustrated
in FIG. 6. The packet processing principles of XR device 550
described below for the case of a single virtual bridge apply
equally to cases 1n which multiple virtual bridges are coupled
to the endpoint. XR device 550 may include a downstream
packetdecoder 722, a downstream packet butlier 724, a down-
stream translator 726, a downstream packet multiplexer 728,
an upstream packet decoder 732, an upstream packet buifer
734, an upstream translator 736, an upstream packet multi-
plexer 738, a configuration unit 740, and a management unit
750. Generally speaking, data packets may berecerved by XR
device 550 from either a root or from endpoint 560. Upstream
and downstream packets may pass through similar function-
ality.

During operation, downstream packets (1.e., packets
sourced from a root via virtual bridge 710) may be processed
as follows. Downstream packet decoder 722 may receive and
decode each packet and determine 1ts destination. Configu-
ration packets may be passed to configuration unit 740. Man-
agement packets may be passed to management umt 750.
Other packets may be passed to downstream packet buifer
724 where packets that are destined for endpoint 560 may be
temporarily placed 1n a queue. Packets queued in butier 724
may be subsequently dequeued and further processed by
downstream packet translator 726 where routing information
such as address and requester 1D that are specified in an MR
domain may be translated to corresponding values 1n an SR
domain. After translation, downstream packets may be routed
to endpoint 560 through downstream packet multiplexer 728.
Management and configuration packets may also be multi-
plexed and routed to endpoint 560 by downstream packet
multiplexer 728. In one embodiment, downstream packet
multiplexer 728 may also perform packet flow control.

During operation, upstream packets (1.e., packets sourced
from endpoint 560) may be processed as follows. Upstream
packet decoder 732 may recerve and decode each packet and
determine 1ts destination. Configuration packets may be
passed to configuration unit 740. For example, completion
packets that correspond to packets that were sourced from
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configuration unit 740 may be routed to configuration unit
740. Management packets including, for example, interrupt
packets and error message packets, may be passed to man-
agement unit 750. Other packets may be passed to upstream
packet bufler 734 where packets that are destined for virtual
bridge 710 may be temporarily placed in a queue. Packets
queued 1n bufler 734 may be subsequently dequeued and
turther processed by upstream packet translator 736 where
routing information such as address and requester ID that are
specified in an SR domain may be translated to corresponding
values 1n an MR domain. After translation, upstream packets
may be routed to endpoint 560 through upstream packet mul-
tiplexer 738. Management and configuration packets may
also be multiplexed and routed to endpoint 560 by upstream
packet multiplexer 738. In one embodiment, upstream packet
multiplexer 738 may also perform packet flow control and
other management checking.

In addition to the functions described above, configuration
unit 740 may handle all the configuration space translation
and management to translate the SR configuration space 1n
endpoint 560 to MR configuration space required by the
switch/roots. Similarly, management unit 750 may also
handle miscellanecous management of SR endpoint 560 and
interfaces to XR software 570.

Address Translation

FIG. 9 1llustrates one embodiment of a process 1400 that
may be used by an XR device to translate packet addresses.
Process 1400 may begin when configuration data 1s recerved
from XR software (block 1410). The configuration data may,
for example, be used to configure Base Address Register
(BAR) values for use in packet address translation. For
example, 1n one embodiment, a set of virtual BAR and VF
BAR values may be established for each of the functions that
are conligured 1n the PCle hierarchy. Subsequent to configu-
ration, requests may be detected (block 1430). It the request
1s an upstream request (decision block 1440), the request may
be routed to the originating VH that, 1n one embodiment, may
be identified by the included RID. Once a VH 1s identified, the
included BAR and RID 1in the request may be translated
(block 1464). For example, in one embodiment, the RID and
BAR may be translated to values that are specific to the
originating VH. Once the BAR and RID have been translated,
process 1400 may return to block 1430. I the request 1s a
downstream request (decision block 1440) and 11 the request
1s also an I/O space request (decision block 1450), the
included RID 1n the request may be translated. For example,
in one embodiment, the mncluded RID may be translated to a
special RID value that may be used to 1identily a correspond-
ing completion packet (block 1456). Once the RID has been
translated, the request may be forwarded to the SR endpoint
(block 1458) and process 1400 may return to block 1430.

I, at decision block 1450, a request that 1s not an I/O space
request 1s recerved, 1n one embodiment the request may be
assumed to be a memory space request. I the request includes
a target address 1n one of the configured BAR address ranges
(decision block 1470), then the included BAR and RID 1n the
request may be translated (block 1472). For example, 1n one
embodiment, the originating BAR may be translated to a
virtual BAR that corresponds to VF BAR in the target VF
using a formula such as the one described below in the
description of FIG. 10. The included RID may be adjusted to
correspond to the specific VH from which the request origi-
nated. Once the BAR and RID have been translated, process
1400 may return to block 1430. If the request 1s a downstream
memory request and 1f the request includes a target address
that 1s not 1 one of the configured BAR address ranges
(decision block 1470), then an indication that the request 1s
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not supported may be returned (block 1474). For example, in
one embodiment, the address 1n the request may be changed
to one of a set of special values chosen so that they result in an
unsupported request (UR) at the SR endpoint.

Software running 1n the Management VH of XR device 550
can see all of the PF’s as well as all of the VF’s within SR
endpoint 560. Management VH software can also see and
mampulate all registers within SR endpoint 560. In one
embodiment, Management VH software may be configured
not to 1ssue DMA requests to VE’s to avoid the DMA trans-
lation process described above. Requests within the Manage-
ment VH are not translated by XR device 350. Programmed
I/O transactions 1ssued in the Management VH do not have
their Requester IDs translated so that the resulting comple-
tions are routed back to the requester in the Management VH.
In addition, XR device 550 may have a lockout mechanism
that allows 1t to permit access from the Management VH and
to block accesses from non-management VH’s. This lockout
mechanism disables all translation and guarantees that the
Management VH has exclusive access to SR endpoint 560.

FIG. 10 illustrates one embodiment of a block diagram of
system 500 that provides more detail of the components used
in address translation. The elements shown 1n FIG. 10 gener-
ally correspond to the elements shown in FIG. 5, wherein host
processors 510, 520, and 530 collectively share SR endpoint
560 through MR switch 540. Each of host processors 510,
520, and 530 runs a single OS that has an independent view of
the PCI hierarchy. Accordingly, each OS may independently
assign an address space to endpoint 560 relative to 1ts own
base address register (BAR). More particularly, host proces-
sor 310 views the PCI hierarchy through an address space
relative to a root BAR 513, host processor 520 views the PCI
hierarchy through an address space relative to a root BAR
523, and host processor 530 views the PCI hierarchy through
an address space relative to a root BAR 3533. Corresponding
virtual BARs 514, 524, and 534, respectively may be imple-
mented mm XR device 5350. XR device 5350 may base address
translations on the virtual hierarchy of the received data pack-
ets. In one embodiment, the actual address space of a particu-
lar VF 1n endpoint 560 may be determined by XR software
570 1n conjunction with PF driver 572. XR device 550 may
translate addresses 1n root address space that correspond to a
particular virtual BAR to a corresponding addresses in a
device address space 1dentified with a particular VF BAR to
enable communication with the particular VF 1n endpoint
560. For Multi-Function non-SR devices, there may be physi-
cal BAR registers for each VF. In contrast, in an SR-IOV
system, there may not be a physical VF base address register
for each VF. Rather, VF BAR values may be computed by XR
device 550. For example host processor 310 may communi-
cate with VF 562. Host processor 510 addresses packets to an
address that corresponds with virtual BAR 514. XR device
550 recerves packets from host processor 510 and uses a
translator 552 to translate addresses relative to virtual BAR
514 to addresses relative to VF BAR 516. The operation of
translator 552 1s described 1n further detail below. Addresses
relative to VF BAR 516 correspond to physical addresses 586
within VF BAR address space 380 of physical function 568.
Similarly, host processor 520 communicates with VF 564.
Host processor 520 addresses packets to an address that cor-
responds with virtual BAR 524. XR device 5350 receives

packets from host processor 520 and uses translator 352 to
translate addresses relative to virtual BAR 524 to addresses

relative to VF BAR 526. Addresses relative to VEF BAR 526
correspond to physical addresses 584 within VF BAR address
space 580 of physical function 568. Host processor 330 com-
municates with VF 566 1n a similar manner.
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During configuration, XR software 570 may configure vir-
tual BAR sizes to match the VF sizes (as well as window size
and addressing style, 1.e., whether addresses are expressed 1n
32 bit or 64 bit windows). Alternatively, each virtual BAR 1n
the XR device may also be programmed as a 32-bit Memory
BAR, a 64-bit Memory BAR, or an /O BAR. Virtual BARS
may also be configured to a size that 1s larger than the VF size,
providing additional address space that may be used for cer-
tain transactions. In this case, XR device 550 may detect
transactions targeted to addresses outside the range of the VF
BAR and route them to XR software 570 for emulation. In one
embodiment, the additional address space may be used for
passing messages between drivers and endpoints. For multi-
function endpoints that support I/O space, XR software 570
may similarly configure the virtual BAR sizes and addressing,
style to support I/O space and to match the underlying func-
tion size. During a downstream transaction, memory requests
including a target address and arequestor ID (RID) are passed
through XR device 550 where translator 352 translates the
target address and RID. For example, a memory space trans-
action may be targeted to one of the memory regions claimed
by one of the virtual BARs or an 1/O space transactions may
be targeted to one of the I/0O regions claimed by one of the
virtual BARs. Requests that are targeted to a virtual BAR are
converted to addresses within the corresponding VFE. For
example, 1n one embodiment, the following arithmetic func-
tion may be used for address conversion:

VE __addr=XR__addr-Virtual_BAR_value+Endpoint_
BAR value+XR BAR size*XR Instance index

Where:

XR_addr 1s the address 1n the request packet

VF addr 1s the address in the translated version of the

packet.

Virtual_ BAR_value 1s the value written by VH software to

the virtual BAR

Endpoint_ BAR_value 1s written by XR software and 1s a

copy of the value written to the VF BAR 1n the Endpoint

XR_BAR_size 1s written by XR software and 1s the size

BAR offered by XR. This also matches the VF BAR
value 1n the Endpoint

XR_Instance_index 1s a constant determined by which

instance of XR 1s being addressed by this transaction

In one embodiment, requests that are not targeted to a
virtual BAR 1n XR device 550 return an unsupported request
(UR) code. For example, the address 1n the request may be
changed to one of a set of special values configured by XR
software 570. These special values are chosen so that they
result in a “UR” at the SR endpoint. There may be a first
special memory address used for 32-bit transactions and a
second special value used for 64-1t transaction. In addition, all
I/O transactions may be converted mto a pre-programmed I/0
“UR” address.

A similar translation may be performed for upstream pack-
ets except that translator 552 may base the translation on the
RID of the packet that has been adjusted to correspond to a
specific VH. This allows the associated completions to be
routed back to the correct VH and also guarantees that trans-
action IDs remain umique (the same tag value could be simul-
taneously outstanding 1n distinct VH’s). For a Non-Posted
request, the Completer ID 1n the associated completion
packet may be similarly translated. The XR-specific instance
value contained 1n the Completer ID may be used to deter-
mine which VH should get the completion and to determine
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the translated Completer ID. Similar rules may be applied to
vendor-defined messages that are routed by address.

In a further embodiment, XR device 550 offers an 1/O
space emulation facility. Even 1f an SR endpoint does not
support I/0 space, XR device 5350 may offer I/O space to
support booting and similar operations. An I/O BAR can be
configured to trap to XR software. A hit to such a BAR causes
the request packet to be captured and an interrupt generated to
management software within XR software 570. The I/O
request may also be forwarded to the SR endpoint (to preserve
ordering rules, etc.) but with a RID set to a special value.
When the completion comes back from the SR endpoint, 1t 1s
dropped. The management soitware may then emulate the I/O
operation and generate the associated completion packet.

XR Configuration Space Header

Turming now to FIG. 11, one embodiment of a PCI Express
Type 0 Configuration Space Header 900 1s shown. Configu-
ration space header 900 1s a data structure through which a
root may 1dentify and control an I/O device. In the 1llustrated
embodiment, configuration space header 900 includes several
registers that are described 1n detail below: vendor 1D 910,
device 1D 912, command register 914, status register 916,
revision 1D 918, class code 920, cache line size 922, master
latency timer 924, header type 926, built-in self test (BIST)
register 928, base address registers 930, cardbus CIS pointer
940, subsystem vendor ID 942, subsystem ID 944, expansion
ROM base address 946, capabilities pointer 948, reserved
registers 950 and 952, mterrupt line 954, mterrupt pin 956,
and latency timer values min_gnt 958, and max-lat 960.

In one embodiment, configuration space headers may be
stored 1n an address space within a configuration block of an
XR device ({or example, configuration umt 740 of FIG. 8).
Further, 1n one embodiment, non-XR specific functionality in
header 900 conforms to a draft of the SR-IOV specification
(revision 0.7, Jan. 11, 2007). Access to a portion of a configu-
ration space header may be achieved via a communication
mechanism referred to as a configuration cycle. Generally
speaking, a configuration cycle may be sent to the endpoint 11
any bit of a register that 1s being accessed 1s implemented 1n
the endpoint 1n order to preserve ordering. For configuration
registers that are completely implemented in XR hardware, a
“dummy” read or write configuration cycle may be generated
to a register that has no side effects (1.e. Vendor ID registers),
and the completion may not be returned from XR device 550
until the completion 1s returned from SR endpoint 560. If a
register requires no action from XR device 550, XR device
5350 need not shadow that register (see, for example, the Class
Code register below). I nothing 1s written for a configuration
register, XR device 550 may pass the information in the
configuration cycle to the SR-endpoint unchanged, and
completions may be passed from the SR-endpoint to the root
unchanged. The following sections describe the bit fields that
may be found in one embodiment of a configuration space
packet header and how they are handled by an XR device
and/or XR software.

Table 1 below describes attributes of the fields found 1n one

embodiment of the configuration space header 900 shown 1n
FIG. 11. Included 1n the table are references to the PCI Local
Bus Specification 3.0, PCI Express Base Specification, Revi-
sion 1.1, and PCI Express Base Specification, Revision 2.0,
all three of which are incorporated herein by reference 1n their
entirety.
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TABLE 1

Confisuration Space Header Register Attributes

14

Register

Attribute  Description

LB 3.0 Attribute 1s the same as specified in PCI Local Bus Specification 3.0.

Base 1.1  Attribute is the same as specified in PCI Express Base Specification, Revision 1.1

Base 2.0  Attribute 1s the same as specified in PCI Express Base Specification, Revision 2.0.

HwInit Hardware Initialized: Register bits are imitialized by firmware or hardware mechanisms such
as pin strapping or serial EEPROM. Bits are read-only after initialization and can only be reset
(for write-once by firmware) with “Power Good Reset.”

RO Read-only register: Register bits are read-only and cannot be altered by software. Register bits
may be initialized by hardware mechanisms such as pin strapping or serial EEPROM.

RW Read-Write register: Register bits are read-write and may be either set or cleared by
software to the desired state.

RWI1C Read-only status, Write-1-to-clear status register: Register bits indicate status when read, a set bit
indicating a status event may be cleared by writing a 1. Writing a O to RW1C bits has no effect.

ROS Sticky - Read-only register: Registers are read-only and cannot be altered by software. Registers
are not nitialized or modified by reset. Devices that consume AUX power must preserve sticky
register values when AUX power consumption (either via AUX power or PME Enable) is
enabled.

RWS Sticky - Read-Write register: Registers are read-write and may be either set or cleared by soft-
ware
to the desired state. Bits are not initialized or modified by reset. Devices that consume AUX
power must preserve sticky register values when AUX power consumption (either via AUX
power or PME Enable) is enabled.

RWI1CS Sticky - Read-only status, Write-1-to-clear status register: Registers indicate status when read,
a set bit indicating a status event may be cleared b y writing a 1. Writing a O to RW1CS bits has
no effect. Bits are not mitialized or modified by reset. Devices that consume AUX power
must preserve sticky register values when AUX power consumption (either via AUX power
or PME Enable) 1s enabled.

RsvdP Reserved and Preserved: Reserved for future RW implementations; software must preserve
value read for writes to bits.

RsvdZ Reserved and Zero: Reserved for future RW1C implementations ;software must use

O for writes to bits.

In one embodiment, any bit that XR device 350 emulates
will behave as described 1n the PCI Express 2.0 spec with
respect to the guest OS. For example a R/W bit 1n the Type O
space will still be R/W 1n XR hardware/software even if it 1s
RO in the VF. In one embodiment, the following categories of
registers are included:

Endpoint only (E)—These are implemented 1n the End-
point. XR hardware does not do anything with these bits.
Read data 1s returned from the Endpoint, and writes pass
through to the endpoint un-modified. Depending on the
register, XR hardware may pass the request through to
the VF or the PF instance of the register.

XR only (X)—These are emulated completely in XR hard-
ware. Read data 1s returned from XR hardware, and
writes update XR registers.

Shared XR/Endpoint (S)—These are implemented by both
the endpoint and XR hardware. Reads go to the end-
point, and the read data from the endpoint 1s merged with
data 1n XR hardware. Writes update the register 1n the
endpoint and XR hardware.

35

40

45

50

Register Fields in Configuration Space Header

A detailed description of the bit fields of the registers in one
embodiment of configuration space header 900 1s presented
below.

Vendor 1D register 910 (offset 00h); XR_Attr:E may be a
read-only field identitying the manufacturer of the PCle
device. The field 1n the PF and associated VF’s return the

same value when read. This field may be implemented by XR
device 530.

Device ID register 912 (offset 02h); XR_Attr:E may be a
read-only field i1dentifying the particular PCle device. The
PCle device may report a different value in the PF and the VF;
however all VF’s associated with a given PF report the same
value. This field may be implemented by XR device 550

Command register 914 (oifset 04h). Table 2 below estab-
lishes the mapping between PCI Express Base 2.0 and PF/VFE
definitions 1n this document for one embodiment of configu-
ration space command register 914.

TABLE 2

Command Register 914 Definitions

Bit

Location PF and VF Register Differences from Base 2.0

0 [/O Space Enable - In one embodiment, may

PF Attributes VF Attributes XR Attributes

Base 1.1 RO X

be hardwired to Ob for VEF’s. This bit may

be implemented i XR device 550. XR
device 550 may trap all IO cycles to the
endpoint and pass them to XR software 570.
XR software 570 may include endpoint aware
software that services the I/O cycles (1.e.
converts the I/O cycles to equivalent memory
mapped I/O cycles). This functionality may
be provided to support devices that require
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TABLE 2-continued

Command Register 914 Definitions

Bit
Location PF and VI Register Differences from Base 2.0 PEF Attributes VI Attributes XR Attributes

hypervisor I/O space emulation due to legacy
boot time requirements.

1 Memory Space Enable - In one embodiment, Base 1.1 RO X
may be hardwired to Ob for VEF’s. VF
Memory Space may be controlled by the VF
MSE bit in the VF control register. This bit
may be implemented i XR device 550. If
memory space 1s not enabled by the root, XR
device 550 may respond as a PCle device
would for all memory packets targeting the
VT (1.e. by reporting that the request is an
Unsupported Request (UR)).

2 Bus Master Enable - Disabling this bit may Base 1.1 Base 1.1 E
prevent the associated PF or VF from 1ssuing
any Memory or /O Requests. Note that as
MSTI/MSI-X interrupt messages are m-band
memory writes, disabling the bus master enable
bit disables MSI/MSI-X interrupt messages as
well. Requests other than Memory or I/O
requests are not controlled by this bit. The
default value of this field is Ob. This bit may
be hardwired to Ob 1f a device does not generate
Memory or I/O Requests. Note: The state of
active transactions 1s not specified when this bit
is disabled after being enabled. The PCle device
can choose how it behaves when this condition
occurs. Software cannot count on the PCle
device retaining state and resuming without loss
of data when the bit i1s re-enabled. Transactions
for a VI that has its Bus Master Enable set must
not be blocked by transactions for VEF’s that have

their Bus Master Enable cleared. Bus Master
Enable i1s implemented in the endpoint.
Therefore, in this embodiment, XR device
550 does nothing with this bit. In alternative
embodiments, XR device 550 may generate
Memory or I/O requests, shadow this bit, and
gate generation of requests (1.e. MS I) .

3 Special Cycle Enable - In one embodiment,
may be hardwired to Ob

4 Memory Write and Invalidate - In one
embodiment, may be hardwired to Ob

5 VGA Palette Snoop - In one embodiment,
may be hardwired to Ob

6 Parity Error Enable - In one embodiment,
may be hardwired to Ob for VE’s. Error
reporting 1s described in further detail below.

7 )SEL Stepping/Wait Cycle Control - In one
embodiment, may be hardwired to Ob

8 SERR Enable - In one embodiment, may be
hardwired to Ob for VI’s. Error reporting 1s
described in further detail below. XR device
550 may implement the SERR enable bit as a
R/W. In Base enables generation of
ERR_NONFATAL/ERR_FATAL. If XR
device 550 (VF) bit 1s not set and the PCI-E
capability error message enable 1s not set, XR
device 550 will discard error messages from
the endpoint.

9 Fast Back-to-Back Transactions Enable - In
one embodiment, may be hardwired to Ob

10 Interrupt Disable - In one embodiment, may

be hardwired to Ob for VI’s. If INTx

emulation 1s enabled, then this bit gates INTx

message generation per VH (VEF) in XR
device 550. Hardware or software may clear
the ‘MSI enable’ bit in the endpoint when this
bit changes. Changing this bit may cause an
INTX assert/de-assert.

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

RO

Base 1.1

RO

Base 1.1

RO

E



Status register 916 (o:
the mapping between PCI .
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Iset 06h). Table 3 below establishes
Hxpress Base 1.1 and PF/VFE defi-

nitions for one embodiment of configuration space status
register 916.

TABLE 3

Status Register 916

18

Bit

Location PF and VF Register Differences from Base 1.1

PE

Attributes

VF
Attributes

XR
Attributes

3

10:9

11

12

13

14

15

Interrupt Status - In one embodiment, may
be hardwired to Ob for VIF’s. XR device 550
may emulate this bit 1f INTxX emulation is
enabled.

Capabilities List - In one embodiment, may
be hardwired to 1 for PF’s and VI’s.

66 MHz Capable - In one embodiment, may
be hardwired to Ob

Fast Back-to-Back Transactions Capable - In
one embodiment, may be hardwired to Ob
Master Data Parity Error - See Tablet.
Command register 914 Definitionsfor details. XR
device 550 may emulate this bit. More

particularly, XR device 350 may snoop packets and

set the Master Data Parity Error bit if a Parity
Error Response bit is set and a poisoned
Completion or a poisoned Write from the
endpoint 1s detected.

DEVSEL Timing - In one embodiment,

may be hardwired to Ob.

Signaled Target Abort - XR device 550 may
set this bit when an endpoint sends a
completion with the completer abort status.
The endpoint may send a completion with
completer abort status if the programming
model is violated (this is optional). XR
device 550 may not generate a completion
with completer abort status. XR device 550
may check if the address is correct (1n the
range of the BAR). If it 1s not in the BAR
range, XR device 550 may return
unsupported request status rather than
completer abort status.

Received Target Abort - In one

embodiment, this bit may be implemented in
SR endpoint 560 and set when a requester
receives a completion with Completer Abort
status.

Recerved Master Abort - In one
embodiment, this bit may be implemented in
SR endpoint 560 and set when a requester
receives a completion with Unsupported
Request (UR) status.

Signaled System Error - XR device 550 may
emulate this bit, setting the bit when it sends
ERR_FATAL/ERR_NONFATAL and the
SERR#Enable bit 1s set. XR device 550

may also set this bit under other conditions
that would cause it to generate an ERR
message.

Detected Parity Error - XR device 550 may
snoop received packets and set this bit if a
poisoned packet 1s recerved.

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

RO

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

55

Revision ID register 918 (offset O8h); XR_Attr:X may

specily a device specific revision identifier. This field may be
viewed as a vendor defined extension to the Device 1D and
may follow the same rules regarding PF’s and VF’s. The value

reported 1n the VF may be different than the value reported in 60

the PF; however, 1n one embodiment, all VF’s associated with
a given PF report the same value. In a further embodiment,
XR device 5350 may implement a separate Revision ID regis-
ter 918 for each VF.

Class Code 920 (offset 09h); XR_Attr:X may be a read-
only register used to 1dentify the generic function of a device
and, 1 some cases, a specific register level programming

65

X

interface. The fields 1n the PF and associated VE’s return the

same value when read. In one embodiment, XR device 550

may implement a separate Class Code 920 register for each
VF

Cache Line Si1ze register 922 (oifset 0Ch); XR_Attr: X may
be implemented by PCI Express devices as a read-write field
for legacy compatibility purposes. In one embodiment, 1t has
no eifect on any PCI Express device behavior. Physical Func-
tions may continue to implement this field as RW. For Virtual
Functions this field may be RO and may be hardwired to 00h.
In one embodiment, XR device 350 may implement a sepa-
rate Cache Line Size register 922 register for each VFE.
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Master Latency Timer register 924 (offset ODh); XR_At-
tr:E may not apply to PCI Express. In one embodiment, this
register may be hardwired to 00h.

Header Type 926 (offset OEh); XR_Attr:X. This byte may
identify the layout of the second part of the predefined header
(beginning at byte 10~ 1n Configuration Space) and also
whether or not the device contains multiple Functions. Bit 7 in
this register may be used to identily a multi-function device.
For an SR-IOV device, bit 7 may be set 1f there are multiple
PE’s or Functions. VF’s may not affect the value of bit 7. Bits
6 through 0 i1dentify the layout of the second part of the
predefined header. For VFE’s, this field may be 00h. XR device
550 may return a value for header type 926 indicating whether
or not each virtual OS gets multiple functions. This may be
required 11 an endpoint includes multiple PF’s so that there
may be more than one PF function per VH.

BIST 928 (offset OFh); XR_Attr:E. This register (optional
in PCI Express) may be used for control and status of built-in
self test (BIST). In one embodiment, PCle devices that do not
support BIST return a value of 0 (1.e., treat 1t as a reserved
register). In a further embodiment, VF’s do not support BIST
and define this field as RO ‘0’. Note, 1n the IOV enabled
environment, a virtualization intermediary (VI) may block
the 1mitiation of BIST. For example, a VI may block the
initiation of BIST because IOV 1s enabled for the PF, or
because running BIST for the function may affect other func-
tion operations on the same device. If the VI 1s going to block
the mitiation of BIST, then the VI may also intervene in the
reading of the BIST field and indicate to the reader of the
BIST field that BIST 1s not implemented for the function,
even 1i 1t actually 1s implemented 1n the device. Software may
read the BIST field each time before writing the BIST field, to
make sure that it 1s actually available. Software that uses
BIST to mitialize a function may use Function Level Reset
(FLR), when FLR 1s implemented for the function, and when
FLR provides the same level of functionality. Software may
not run BIST on a PF when the associated VF

Enable 1s Set.
In PCle devices that support BIST, one PF running BIST may
not affect other PF’s. In one embodiment, XR software 570
may be configured to support BIST.

Base Address registers 930 (offset 10h, 14h, . . . 24h);
XR_Attr: X. For VF’s, the values 1n these registers may be
Read Only “0°. XR device 550 may emulate the BARs and
provide the read/write BAR registers to the roots. XR soft-
ware 570 may setup the BARSs in the endpoint and configure
XR device 550 so that the endpoint BAR values are know in
XR device 350. XR device 550 may translate addresses from
the VH/BAR 1n XR device 550 to the VE/BAR 1n SR endpoint
560 (this translation may be performed by downstream packet
translator 726. The endpoint may use a stride mechanism to
translate VF BARs as described further below.

Cardbus CIS Pointer 940 (offset 28h); XR_Attr:E. For
VFE’s, this register may not be used and may return ‘0’.

Subsystem Vendor 1D 942 (offset 2Ch); XR_Attr:E may be
a read-only field that identifies the manufacturer of the sub-
system. In one embodiment, the field in the PF and associated
VE’s return the same value when read. XR device 550 may
return a value configured by XR software 570 for this field.

Subsystem Device ID 944 (offset 2Eh); XR_Attr:E may be
a read-only field that 1dentifies the particular subsystem. In
one embodiment, this field may have a different value 1n the
PF and the VF of a PCle device; however all VF’s associated
with a given PF have the same value. XR device 5350 may
return a value configured by XR software 570 for this field.

Expansion ROM Base Address register 946 (oifset 30h);
XR_Attr:X may be implemented in PF’s. The expansion
ROM BAR may be read-only 1n VF’s. XR device 550 may
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emulate a ROM BAR. XR device 550 may discover whether
an SR endpoint implements a PF only ROM BAR, or inde-
pendent VF ROM BARs. If PF only, XR device 550 may
translate accesses corresponding to VH ROM BARs mto
accesses corresponding to the PF ROM BAR. IT independent
VF ROM BARs, then XR device 550 may translate accesses
corresponding to the VH/ROM_BARS into accesses corre-
sponding to the VE/ROM_BARSs 1n the endpoint (this trans-
lation may be performed in downstream packet translator
726).

Capabilities Pointer 948 (offset 34h); XR_Attr:E may be
implemented as described 1n the PCle specification.

Interrupt Line register 954 (ofiset 3Ch); XR_Attr: X. In one
embodiment, this field does not apply to VF’s and may be
hardwired to 0. XR device 550 may emulate this field as a
R/W register.

Interrupt Pin register 956 (oifset 3Dh); XR_Attr:X. In one
embodiment, this field does not apply to VF’s and may be
hardwired to 0. XR device 550 may emulate this field and, for
example, tie the value to a logical *1° (INTA). In alternative
embodiments, XR device 550 may tie the value to alogical 0’
if INTx emulation 1s not enabled.

Min_Gnt register 9538/ Max_Lat register 960 (oifset 3Eh/
3Fh); XR_Attr:E. In one embodiment, these registers do not
apply to PCI Express. They may be RO and hardwired to 0.

Individual fields of the TypeO configuration space defined
in the above configuration space header 900 may be set by XR
device 550 or programmable by XR software 3570. For
example, Device ID, Vendor ID, and/or Subsystem Vendor 1D
may be set in XR device 550 or in XR software 570. In one
embodiment, XR device 550 may emulate a type O configu-
ration space. In this case, VendorID and DevicelD may be
programmable—allowing the appropriate driver(s) to be
loaded and permitting the PF and VF to have different Devi-
celDs as well as allowing the XR device 550 emulated VF to
present the PF DevicelD.

PCI Express Capabilities Structure

FIG. 12 1llustrates one embodiment of a PCI Express capa-
bility structure 1000. PCI Express devices are generally
required to have a PCI Express capability structure. The capa-
bility structure 1s a mechanism for enabling PCI software-
transparent features requiring support on legacy operating
systems. In addition to identifying a PCI Express device, PCI
Express capability structure 1000 may be used in one
embodiment of an XR system to provide access to PCI
Express specific control/status registers and related power
management enhancements. In the illustrated embodiment,
PCI Express capability structure 1000 includes a PCI express
capability ID 1012, a next capability pointer 1014, a PCI
Express capabilities register 1020, a device capabilities reg-
ister 1030, a device control register 1032, a device status
register 1034, a link capabilities register 1040, a link control
register 1042, a link status register 1044, a slot capabilities
register 1050, a slot control register 1052, a slot status register
1054, a root control register 1060, a reserved register 1062, a
root status register 1064, a device capabilities 2 register 1070,
a device control 2 register 1072, a device status 2 register
1074, a link capabilities 2 register 1080, a link control 2
register 1082, and a link status 2 register 1084. The remaining
bytes 1llustrate new PCI Express features 1 this embodiment.

As described below, the PCI express capabilities register
1020, device capabilities register 1030, device control regis-
ter 1032, device status register 1034, link capabilities register
1040, link control register 1042, and link status register cor-
respond to registers that are required for PEF’s 1n PCI Express
SR-IOV devices. In addition, VF’s may implement portions

of the PCI express capabilities, device capabilities, and
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device status/control registers. Endpoints may not implement
registers other than those listed above and may terminate the
capability structure.

PCI Express capability list register 1010 (offset 00h of PCI
Express capability structure 1000) enumerates the PCI
express capability structure 1000 1n the PCI 2.3 configuration
space capability list. PCI Express capability list register 1010
may include capability ID 1012 and next capability pointer
1014. Table 4 provides the bit defimitions of one embodiment
of PCI Express capability list register 1010.

TABL

(L]

4

PCI Express Capability List Regoister 1010

Bit  PF and VF Register PF VF XR
Location Differences from Base 1.1 Attributes Attributes Attributes
7:0  Capability ID 1012 Base 1.1  Base 1.1 E

15:8 Next Capability Pointer 1014 Base 1.1  Base 1.1 E

PCI Express capabilities register 1020 (ofiset 02h of PCI
Express capability structure 1000) identifies PCI Express
device type and associated capabilities. Table 5 details allo-

cation of register fields and the respective bit definitions 1n
one embodiment of PCI Express capabilities register 1020.
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(Ll

D

PCI Express Capabilities Register 1020

Bit PF and VI Register PL VF XR
Location Differences from Base 1.1 Attributes Attributes  Afttribute
3:0  Capability Version Base 1.1  Base 1.1 E
7:4  Device/Port Type - In one Base 1.1  Base 1.1 E

embodiment, SR-IOV
capable devices indicate
a Device Type of 0000b
(PCI Express Endpoint
Device).
&8  Slot Implemented - In one Base 1.1  Base 1.1 E
embodiment, this bit does
not apply to PF’s or VF’s
and may be hardwired to Ob.
13:9 Interrupt Message Number Base 1.1 Base 1.1 E
14  TCS Routing Supported - In = Base 2.0 Base 2.0 E

one embodiment, this bit 1s
not applicable to Endpoint

devices and may be
hardwired to Ob.

Device capabilities register 1030 (offset 04h of PCI
Express capability structure 1000) i1dentifies PCI Express
device specific capabilities. Table 6 details allocation of reg-
ister fields and bit definitions 1n one embodiment of device
capabilities register 1030.

TABLE 6

Device Capabilities Register 1030

Bit

Location PF and VI Register Differences from Base 1.1

PF Attributes VF Attributes XR Attribute

2:0

Max_Payload_Size Supported. For XR

Base 1.1 Base 1.1 X/E

device implementation, see below.

4:3

Phantom Functions Supported - In one

Base 1.1 RO E

embodiment, when the SR-IOV Capability 1s
enabled, use of Phantom Function numbers by
this PF and associated VI’s 1s not permitted and
this register must return 00Ob when read.

5  Extended Tag Field Supported

Base 1.1 Base 1.1 X

In one embodiment, XR device 550 may tie
this bit to “0’ since 1t 1s enabled in PEF’s only.

8:6
11:9
12

Endpoint LOs Acceptable Latency
Endpoint L.1 Acceptable Latency
Undefined - In one embodiment, the value

Base 1.1
Base 1.1
Base 1.1

Base 1.1
Base 1.1
Base 1.1

M M T

read from this bit 1s undefined in Base 1.1
(was previously Attention Button Present).

13

Undefined - In one embodiment, the value

Base 1.1 Base 1.1 E

read from this bit is undefined in Base 1.1
(was previously Attention Indicator Present).

14

Undefined - In one embodiment, the value

Base 1.1 Base 1.1 E

read from this bit 1s undefined in Base 1.1
(was previously Power Indicator Present).

15

Role-Based Error Reporting

Base 1.1 Base 1.1 E

In one embodiment, this bit may be set for
devices that conform to the SR-IOV

specification.
Captured Slot Power Limit Value - In one

25:1%

Base 1.1 RO X

embodiment, this field may be hardwired
to‘0’ in the VE’s. Further, XR device 550 may
terminate set slot power limit messages and

update this field.
Captured Slot Power Limit Scale - In one

27:26

Base 1.1 RO X

embodiment, this field may be hardwired to
‘0’ 1in the VI’s. Further, XR device 350 may
terminate set slot power limit messages and

update this field.
Function Level Reset Capability - In one

28

Base 2.0 Base 2.0 E

embodiment, this bit 1s required for SR- IOV
devices (PF’ s and VI’s) and may be
hardwired to “1°. Note: This field was added 1n

the Base 2.0 specification.

31:29 RsvdP
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Device control register 1032 (offset O8h of PCI Express
capability structure 1000) controls PCI Express device spe-
cific parameters. Table 7 details allocation of register fields
and provides the respective bit definitions 1n one embodiment
of device control register 1032.

TABLE 7

Device Control Register 1032

Bit
Location PF and VI Register Differences from Base 1.1 PF Attributes VI Attributes XR Attribute

0 Correctable Error Reporting Enable - In Base 1.1 RO X
one embodiment, this bit does not apply to
VI’s and may be hardwired to Ob for
VFI’s. Further, XR device 550 may
implement this bit as a R/W bit. If not
enabled, correctable error messages from
the endpoint may be discarded by XR
device 550.
1 Non-Fatal Error Reporting Enable - In one Base 1.1 RO X
embodiment, this bit does not apply to
VI’s and may be hardwired to Ob for
VI’s. Further, XR device 550 may
implement this bit as a R/W bit. If not
enabled, correctable error messages from
the endpoint may be discarded by XR
device 550.
2 Fatal Error Reporting Enable - In one Base 1.1 RO X
embodiment, this bit does not apply to
VI’s and may be hardwired to Ob for
VI’s. Further, XR device 550 may
implement this bit as a R/W bit. If not
enabled, correctable error messages from
the endpoint may be discarded by XR
device 550.
3 Unsupported Request Reporting Enable - Base 1.1 RO X
In one embodiment, this bit does not apply
to VI’s and may be hardwired to Ob for
VI’s. Further, XR device 550 may
implement this bit as a R/W bit. If not
enabled, correctable error messages from
the endpoint may be discarded by XR
device 550.
4 Enable Relaxed Ordering - In one Base 1.1 RO X
embodiment, this bit may be hardwired to
Ob for VE’s. XR device 550 may provide
R/W bit per VH. If not set, and a packet
has the relaxed ordering bit set, XR device
550 may clear the relaxed ordering bit 1n
the packet forwarded upstream. In
addition, relaxed ordering may be disabled
in each PF, and XR device 550 may
provide a R/W bit per VH, that doesn’t do
anything.
7:5  MaxPayloadSize - In one embodiment, Base 1.1 RO X
MaxPayloadSize is a PF setting that
applies to all associated VE’s as well and
may be hardwired to Ob for VE’s. A
detailed description of how XR device 550
may handle this setting 1s provided below.
8 Extended Tag Field Enable - In one Base 1.1 RO E
embodiment, Extended Tag Field Enable
is a PF setting that applies to all associated
VFI’s as well and may be hardwired to Ob
for VI’s. Further, XR device 550 may not
support extended tag (XR software 570
may set PF bit to “0”). XR device 550 may
allow Writes/Reads to pass through since
VT ties this bit to “0°.
9 Phantom Functions Enable - In one Base 1.1 RO E
embodiment, 1f SR-IOV 1s enabled, this bit

may be hardwired to 0.

10 Auxiliary (AUX) Power PM Enable Base 1.1 RO E
In one embodiment, this bit may be
hardwired to Ob for VI ’s.

11 Enable No Snoop - In one embodiment, Base 1.1 RO E
the PF setting of this bit applies to all

assoclated VEF’s as well and this bit may be
hardwired to Ob for VE’s. Further, XR
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TABLE 7-continued

Device Control Register 1032

26

Bit

Location PF and VI Register Differences from Base 1.1 PF Attributes VI Attributes XR Attribute

device 550 may not support ‘no snoop’.
XR software570 may set this bit for a PF
to ‘0’. XR device 550 may allow
Write/Read to pass through since each VI
ties this bit to “0”.
Max_Read_Request_Size - In one
embodiment, the PF setting of these bits
applies to all associated VIF’s as well and
these bits may be hardwired to Ob for
VE’s. These bits may be programmable
by XR software 570 as described 1n
further detail below.

Initiate Function Level Reset - In one
embodiment, this bit may be required for
SR-IOV devices (PF’s and VE’s).

Further, each SR endpoint may implement
this bit per VI, and roots may use this bit
to reset an SR endpoint. Also i1f PCI-E
reset 1s asserted (such as when a link 1s
down, there is a secondary bus reset,
etc...), XR device 550 may set a VEF’s FLR
(1.e., send a packet to set FLR).

14:12 Base 1.1

15 Base 2.0

Max Payload Si1ze (MPS )—In one embodiment, an MPS of

“128 bytes always™ may be supported as a lowest common
denominator. In alternative embodiments, a vendor-defined
extended capability may be implemented by each SR end-
point that 1s XR-compatible. One example of extended capa-
bilities may be found on page 469 of the PCle 1.1 base
specification. In a further embodiment, this capability pro-
vides bits that separate the MPS checking from the MPS
generation. When enabled, the endpoint may be configured to
have one MPS value that 1s used when data packets are gen-

erated and a different value for MPS checking. The packet
generation MPS may be set to the smallest value used by any
of the roots connected to the XR device. The packet checking
MPS may be set to the largest value used by any of the roots
connected to the XR device. The XR device may scoreboard
the MPS from all the roots and resolve the largest/smallest
values of all roots that are operating 1.e., (notreset). If aroot’s
reset state changes (goes 1nto reset or comes out of reset), both
MPS values may change. In an alternative embodiment, each
VF may have a different value of MPS that 1s defined 1n the
vendor-defined extended capability implemented by each SR
endpoint. Note 1f the endpoint does not implement the
extended capability, then the XR device may use a default
MPS value of 128 bytes always.

In a still further embodiment, MPS may be programmed by
XR software 570 to emulate the MPS of an underlying PCle
device. Similarly, other fields or bits within fields of the

configuration space or capabilities structure may be emulated
by XR device 550 directly or via XR software 570.
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In an alternative embodiment, MR switch 540 may set the
value of the MPS for SR endpoint 560 to the maximum
supported value, advertising this setting to all OS’s. If an OS
sets the MPS to lower value than the maximum supported,
downstream packets (Root-to-Endpoint) are compliant
because they will be smaller than the MPS of the endpoint.
However, upstream packets (Endpoint-to-Root) may exceed
the MPS required by the root. Therefore, upstream packets
may be segmented by MR switch 540 so that each segment
packet will adhere to the MPS required by the root.

XR device 550 may offer a variety of Maximum Read

Request S1ize (MRRS) values. In one embodiment, the Maxi-
mum Read Request Size within a Type O CFG space may be
programmable within the XR device 350 switch. For
example, XR software 570 may initially configure the Maxi-
mum Read Request Size value to the lowest common denomi-
nator (128 byte). In an alternative embodiment, XR software
570 may set the Maximum Read Request Size value to the
smallest root-supported value, provided the values are know
tor all roots. If the values of the Maximum Read Request Size
are not known for all roots, XR software may wait until each
VH 1s enabled and 1ssue a write to the MRRS. If XR software
570 configures a value and subsequently, a VH issues a write
too MRRS requesting a lower value, packets may be seg-
mented within the XR device 550.

Device status register 1034 (offset OAh of PCI Express
capability structure 1000) provides mformation about PCI
Express device specific parameters. Table 8 details allocation
of register fields and provides the respective bit definitions 1n
one embodiment of device status register 1034.

TABLE 8

Device Status Register 1034

Bit

Location PF and VI Register Differences from Base 1.1

i b =

Correctable Error Detected
Non-Fatal Error Detected
Fatal Error Detected

Unsupported Request Detected

PF Attributes VF Attributes XR Attribute

Base 1.1 Base 1.1 E
Base 1.1 Base 1.1 E
Base 1.1 Base 1.1 E
Base 1.1 Base 1.1 S

In one embodiment, XR device 550 may
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TABLE 8-continued

Device Status Register 1034

28

Bit
Location PF and VI Register Differences from Base 1.1

emulate this bit for an address out of range
check. SR endpoint 560 may also implement
this bit per PE. Consequently, this bit may be
shared (merged on read, written to both places
on write).

AUX Power Detected

In one embodiment this bit may be

hardwired to Ob for VE’s. Further, 1f XR
device 550 supports wake on LAN, this bit may
be tied to ‘0’.

Transactions Pending - When set indicates

that a particular function (PF or VF) has 1ssued
Non-Posted Requests that have not been
completed. A function may report this bit
cleared only when all Completions for any

outstanding Non-Posted Requests have been
RsvdZ

Base 1.1

Base 1.1

15:6

Link capabilities register 1040 (ofiset OCh of PCI Express
capability structure 1000) i1dentifies PCI Express Link spe-
cific capabilities. Table 9 details allocation of register fields

and provides the respective bit definitions 1n one embodiment
of link capabilities register 1040.

TABL.

L1l

9

[.ink Capabilities Register 1040

PF Attributes VF Attributes XR Attribute

RO E
Base 1.1 E
25

Bit
Location PF and VI Register Differences from Base 1.1
3:0  Supported Link Speeds Base 1.1
9:4  Maximum Link Width Base 1.1
11:10  Active State Power Management (ASPM) Base 1.1
Support
14:12 LOs Exit Latency Base 1.1
17:15 L1 Exit Latency Base 1.1
18 Clock Power Management Base 1.1
19  Surprise Down Error Reporting Capable - In Base 1.1
one embodiment, this bit may be hardwired to
Ob for Upstream Ports.
20  Data Link Layer Link Active Reporting Base 1.1
Capable - In one embodiment, this bit may be
hardwired to Ob for Upstream Ports.
21  Link Bandwidth Notification Capability - In Base 2.0
one embodiment, this bit may not applicable
to endpoint devices and may be hardwired to Ob
for Upstream Ports.
31:24 Port Number Base 1.1

Note that 11 L1 state 1s not supported for Active State Link PM
(as reported 1n the Active State Link PM Support field) then
the L1 Exit latency field may be ignored. XR device 550 may
ensure typel and endpoint bridges are consistent with respect
to negotiated link parameters (width, speed).

PF Attributes VF Attributes XR Attribute

Base 1.1 E
Base 1.1 E
Base 1. 1 E
Base 1.1 E
Base 1.1 E
Base 1.1 E
Base 1.1 E
Base 1.1 E
Base 2.0 E
Base 1.1 E
50

Link control register 1042 (offset 10h of PCI Express capa-
bility structure 1000) controls PCI Express Link specific
parameters. Table 10 details allocation of register fields and
the respective bit definitions in one embodiment of link con-
trol register 1042.

TABLE 10

Link Control Register 1042

Bit

Location PFF and VF Register Differences from Base 1.1 PF Attributes VI Attributes XR Attribute

1:0
Control

Active State Power Management (ASPM)

Base 1.1 RO X

In one embodiment, these bits may be
hardwired to Ob for VF’s and XR device 330

may 1implement as read/write.

RsvdP



29

US 7,979,592 Bl

TABLE 10-continued

Link Control Register 1042

Bit

Location PF and VI Register Differences from Base 1.1 PF Attributes VI Attributes XR Attribute

3

10

11

15:12

Read Completion Boundary (RCB)

In one embodiment, this bit may be
hardwired to Ob for VI’s and XR device 550
may implement as read/write. XR software
570 may set PF to 64 bytes. There may be
no check against RCB.

Link Disable - In one embodiment, this bit
may be reserved for endpoint devices and
hardwired to Ob.

Retrain Link - In one embodiment, this bit
may be reserved for endpoint devices and
hardwired to Ob.

Common Clock Configuration - In one
embodiment, this bit may be hardwired to Ob
for VI’s and XR device 550 may implement
as read/write.

Extended Synch

In one embodiment, this bit may be
hardwired to Ob for VIF’s and XR device 550
may implement as read/write.

Enable Clock Power Management

In one embodiment, this bit may be
hardwired to Ob for VEF’s

Hardware Autonomous Width Disable

In one embodiment, this bit may be
hardwired to Ob for VE’s

Link Bandwidth Management Interrupt
Enable - In one embodiment, this bit may
not apply to endpoint devices and may be
hardwired to Ob.

Link Autonomous Bandwidth Interrupt
Enable - In one embodiment, this bit may
not apply to endpoint devices and may be
hardwired to Ob.

RsvdP

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 2.0

Base 2.0

Base 2.0

RO

Base 1.1

Base 1.1

RO

RO

RO

RO

Base 2.0

Base 2.0

Link status register 1044 (oifset 12h of PCI Express capa-
bility structure 1000) provides information about PCI
Express Link specific parameters. Table 11 details allocation
of register fields and the respective bit definitions 1n one 40
embodiment of link status register 1044.

TABLE 11

Link Status Register 1044

X

Bit

Location PF and VI Register Differences from Base 1.1

3:0

0:4

10

11

12

Current Link Speed

In one embodiment, may be hardwired to Ob
for VF’s and XR device 550 may read PF value
and return it.

Negotiated Link Width

In one embodiment, may be hardwired to Ob
for VF’s and XR device 550 may read PF value
and return it.

Undefined - The value read from this bit 1s
undefined 1n Base 1.1 (was previously Training
Error). XR device 550 may read PF value and
return it.

Link Tramming - Reserved for Endpoint devices.
In one embodiment, may be hardwired to Ob
for VF’s and XR device 550 may read PF value
and return it.

Slot Clock Configuration

In one embodiment, may be hardwired to Ob

for VF’s and XR device 550 may read PF value
and return it.

PF Attributes VF Attributes XR Attribute

Base 1.1

Base 1.1

Base 1.1

Base 1.1

Base 1.1

RO

RO

Base 1.1

Base 1.1

RO

X

30
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TABLE 11-continued

Link Status Register 1044
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Bit
Location PF and VI Register Differences from Base 1.1

13 Data Link Layer Link Active

In one embodiment, may be hardwired to Ob

for VF’s and XR device 550 may read PF value

and return it.

Link Bandwidth Management Status -

Reserved for Endpoint devices. In one

embodiment, may be hardwired to Ob for VE’s

and XR device 350 may read PF value and
return 1t.

15  Link Autonomous Bandwidth Status -
Reserved for Endpoint devices. In one
embodiment, may be hardwired to Ob for VE’s
and XR device 550 may read PF value and
return it.

14

TABLE 12

PF Attributes VF Attributes XR Attribute

Base 1.1 RO X
Base 2.0 Base 2.0 E
Base 2.0 Base 2.0 E

Device Capabilities 2 Register 1070
(offset 24h of PCI Express capability structure 1000)

Bit

Location PF and VI Register Differences from Base 2.0 PF Attributes VI Attributes XR Attribute

3:0  Completion Timeout Ranges Supported
In one embodiment, XR device 550 may
advertise that this feature 1s not supported.
4 Completion Timeout Disable Supported
In one embodiment, XR device 550 may
advertise that disabling Completion Timeout 1s

not supported.

Base 2.0

Base 2.0

TABLE 13

Device Control 2 Register 1072

Base 2.0 E

Base 2.0 E

(oftset 28h of PCI Express capability structure 1000)

Bit
Location PF and VI Register Differences from Base 2.0

PF Attributes VF Attributes XR Attribute

3:0  Completion Timeout Value

In one embodiment, may be hardwired to Ob
for VEF’s and XR device 550 may allow this bit
to go to the VT tied to “0’ and advertise that
configurable Completion Timeouts are not
supported.

4 Completion Timeout Disable
In one embodiment, may be hardwired to Ob
for VI’s and XR device 550 may allow this bit
to ‘0’ go to the VT tied to and advertise that it is
not supported.

Device status 2 register 1074 (oflset 2Ah of PCI Express

capability structure 1000)

Base 2.0

Base 2.0

RO X

RO X

Link capabilities 2 register 1080 (offset 2Ch of PCI
Express capability structure 1000)

TABLE 14

Link Control 2 Register 1082
(oftset 30h of PCI Express capability structure 1000)

Bit

Location PF and VI Register Differences from Base 2.0 PF Attributes VI Attributes XR Attribute

3:0

Target Link Speed Base 2.0 RO X
In one embodiment, may be hardwired to Ob
for VF’s and XR device 550 may tie these bits

to values representing 2.5 Gb/s. Target Speed
Status, 1f used, may also be forced to 2.5 Gb/s
by XR device 550.
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TABLE 14-continued

Link Control 2 Register 1082
(offset 30h of PCI Express capability structure 1000)

Bit
Location PF and VI Register Differences from Base 2.0 PF Attributes VI Attributes XR Attribute

4 Enter Compliance Base 2.0 RO X
In one embodiment, may be hardwired to Ob

for VF’s and XR device 550 may tie this bit to
‘0” (allowed since Target Link Speed maybe

hardwired to 2.5 Gb/s).
5 Hardware Autonomous Speed Disable Base 2.0 RO E
In one embodiment, may be hardwired to Ob
for VI’s and XR device 550 may allow the
endpoint to hardwire to “0’.
6 Selectable De-emphasis - Reserved for Base 2.0 Base 2.0 E
Endpoint devices. In one embodiment, may be
hardwired to Ob.
9.7  Transmut Margin Base 2.0 RO X
In one embodiment, may be hardwired to Ob
for VI’s and XR device 550 may hardwire to
‘0’ since only one target Link Speed, 2.5 Gb/s,
1s supported.
10 Enter Modified Compliance Base 2.0 RO X
In one embodiment, may be hardwired to Ob
for VF’s and XR device 550 may hardwire to
‘0’ since only one target Link Speed, 2.5 Gb/s,
is supported.

TABLE 15

Link Status 2 Register 1084
(offset 32h of PCI Express capability structure 1000)

Bit
Location PF and VI Register Differences from Base 2.0 PF Attributes VI Attributes XR Attribute

0 Current De-emphasis Level Base 2.0 RO E
In one embodiment, may be hardwired to Ob
for VF’s and XR device 550 may allow the

endpoint to return O.

PCI Standard Capabilities
One PCI Standard Capability that may be implemented in
various embodiments of system 400 1s PCI Power Manage-

ment Capability. This capability 1s required for PF’s and
VFE’s. No changes are made related to this capability within
XR device 550.

TABL

T

16

PCI Power Management Capability

Bit
Location PF and VF Register Differences from Base 2.0 PF Attributes VI Attributes XR Attribute

15:11 PME_Support Base 1.1 Base 1.1 E
10 D2_Support Base 1.1 Base 1.1 E
9 D1_Support Base 1.1 Base 1.1 E
8:6  Aux_Current Base 1.1 Base 1.1 E
5 Device Specific Initialization (DSI) Base 1.1 Base 1.1 E
4  Reserved Base 1.1 Base 1.1 E

3 PME clock Base 1.1 Base 1.1 E
2:0  Version Base 1.1 Base 1.1 E
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17

Power Management Control/Status Table

36

Bit
Location PF and VI Register Differences from Base 2.0 PF Attributes VI Attributes XR Attribute
15 PME_Status Base 1.1 Base 1.1 E
14:13 Data_Scale Optional 1f data register 1s Base 1.1 00b E
implemented. In one embodiment, XR device
550 may pass through.
12:9  Data_Select Optional if data register 1s Base 1.1 0000b E
implemented. In one embodiment, XR device
550 may pass through.
8 PME_En Base 1.1 Base 1.1 E
7:4  Reserved Base 1.1 Base 1.1 E
3 No_Soft_Reset Base 1.1 Base 1.1 E
2 Reserved Base 1.1 Base 1.1 E
1:0  Power State Base 1.1 Base 1.1 E
or 00b

Another PCI Standard Capability that may be implemented
in one embodiment of system 400 1s Power Management
Messages. XR device 350 may contain a configurable mecha-
nism to convert PME_TO (PME Turn O1fl) messages into
Vendor Defined Type 1 messages. This ensures that PME_TO
messages from a root do not cause an endpoint to turn off so
that it can continue to be used by other VHs that are not
turning off.

Another PCI Standard Capability that may be implemented
in one embodiment of system 400 1s Vital Product Data
(VPD) capability. VPD capability 1s optional (as with the base
spec) 1 PEF’s. The VPD capability 1s not specified for VF’s
and may be implemented; however, 1t 1s a requirement that
there can be no “data leakage” between VFE’s and/or PF’s via
the VPD capability 11 1t 1s implemented in VF’s. In one
embodiment, XR device 550 may not support VPD. In alter-
native embodiment, support for VPD within XR device 5350
may be provided 1n a variety of ways. For example, in one
embodiment, VPD may be supported in PF’s and VF’s such
that VPD 1s passed unchanged through XR device 550. In
another embodiment, VPD may be supported in PF’s but not
in VE’s. For example, XR device 350 may not support VPD 1n
SR endpoint 560. Alternatively, XR device 550 may support
VPD 1n SR endpoint 560 by inserting a VPD capability into a
linked list structure in SR endpoint 560. For read-only sec-
tions of VPD, the PF may be read and the data returned. For
writes, a variety of embodiments are possible and are con-
templated. For example, XR device 550 may not write to Sr
endpoint 560. Alternatively, XR device 550 may write to SR
endpoint 550 and allow writes to update the PF. However, 1n
this case all VH’s share the same write register. In another
alternative, XR device 550 may emulate all the read/write bits
in the VPD. When a root does a write, XR device 550 may
read/write/write the original data in the register to verity that
it 1s read/write. XR device 550 may then store the write data
for that VH. IN yet another alternative embodiment, XR sofit-
ware 570 may perform emulation of the read/write bits in the
VPD.

PCI Express Extended Capabilities

One PCI Express Extended Capability that may be imple-
mented 1n some embodiments of system 400 1s support for
Virtual Channels (02h). Support for Virtual Channels 1s
optional 1n physical functions and does not apply to virtual
functions. In one embodiment, virtual channels may be sup-
ported through a combination of XR device 350 and XR
software 370. For example, each VH may be mapped to an
independent VC. XR device 5350 may be configured by XR
software 570 with a linked list of capabilities 1n which virtual
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channel capability 1s linked on to the end of the list. XR
soltware 570 may implement a resolution policy to program
the PF virtual channel capability based on the VF virtual
channel capability configuration.

Another PCI Express Extended Capability that may be
implemented 1n one embodiment of system 400 1s ACS. The
ACS capability 1s optional and may be implemented 1n physi-
cal and virtual functions. Fach function that implements the
capability must implement the capability separately. In an XR
system, ACS may be handled in the VF. ACS configures how
an endpoint deals with inter-function communication (pack-
ets sourced from one function 1n the endpoint and destined for
another function 1n the endpoint). Inter-function communica-
tion (referred to as peer-to-peer or P2P 1n the specification),
may be detected by looking at the routing information of a
packet 1.e. address. There are four things that may be config-
ured:

1. P2P request redirect—it set, all requests that are detected
as peer-to-peer (inter-function) must be routed to the
root (rather than being routed internally from one func-
tion to the other).

2. P2P completion redirect—if set, all completions that are
detected as peer-to-peer must be routed to the root.

3. P2P egress control—Per function can configure which
other functions are enabled for peer-to-peer communi-
cation. If a peer-to-peer packet 1s detected and 1t 1s not
enabled 1n the egress control, an error may be generated.

4. Direct translated P2P—1If enabled, all addresses that are
translated through ATS may be allowed to go peer-to-
peer regardless of the P2P request redirect bit.

ACS Request Redirect and Completion Redirect may be
used within a VF to direct P2P packets to XR device 550. In
one embodiment, XR device 550 may translate these packets
and forward them onward, the same VF or to a different VF of
SR endpoint 560.

Another PCI Express Extended Capability that may be
implemented 1n one embodiment of system 400 1s Alternate
Routing Identifier (ARI). SR-IOV Devices with PF’s or VE’s
that cannot be addressed within the Device Number=0 and
Function Number <8 constraints of 1.x versions of PCle,
must 1implement the ARI capability in the PF’s. SR-IOV
aware PCle devices may implement the ARI capability 1n
both PF’s and VF’s, thus permitting software to use ACS
Function Groups for certain routing and arbitration functions
as described 1n the PCle specification. For PF’s, the ARI
‘Next Function Number” field 1n the ARI control register may

be used to link to the next PF. The VF’s ‘Next Function
Number’ field 1in the ARI control register 1s undefined. Note:
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VFE’s may be located using the SR-IOV capability and are not
included 1n any ARI ‘Next Function Number” list. XR device
550 may support SR endpoints that utilize the ARI capability.
Specifically, translations in XR device 350 may address
Function Numbers 1n the SR-IOV device that are greater than
or equal to 8 and may reside on any bus number. XR device
550 may implement the ARI capability to support more than
8 Functions 1n a particular VH or to utilize function grouping
functionality.

It 1s noted that PCle capability blocks may have different
addresses 1n different PCI devices. Capabilities are linked
together 1n a capability list for software to locate them. In one
embodiment, capabilities offered by XR device 5350 are at
fixed addresses that may not match the addresses of similar
capabilities 1n the underlying VF or PF.

XR Device Functionality.

In one embodiment, XR device 550 may implement direct
memory access (DMA)/Data Movement. FIG. 13 illustrates
one embodiment of a DMA process 1600. Process 1600 may
begin with the reception of a DMA transaction request (block
1610). If the request 1s a downstream request (decision block
1620), the target VF may be determined (block 1630) and the
target address and RID translated (block 1632). For example,
in the embodiment 1llustrated 1n FIG. 10, XR device 550 may
translate the target address from the root’s emulated BAR in
XR device 550 to the correct address 1n the endpoint for the
target VFE. Note the address 1n the endpoint may be setup by
XR software 570 (using the SR stride-based mechanism
described above). In addition, XR device 550 may translate
the requestor ID (RID) from a value 1in the VH space mto the
corresponding RID 1n the device space using a mechanism
described below (block 1634). These translations may be
done 1n the downstream block of translator 5352. If the request
1s a posted request (decision block 1635), 1t may be routed to
the target VF based on the translated address (block 1636),

completing the DMA request process and allowing data
access to proceed. If the request 1s not a posted request (deci-

sion block 1633), the request may be routed to a target VF
based on the translated address (block 1638). After the
request 1s routed, a completion may be recerved indicating the

access has competed (block 1640). An RID in the completion
may be translated from 1ts VF value to a corresponding VH
value (block 1642) and the completion routed to the originat-
ing root (block 1644), completing the DMA process. In the
embodiment of FIG. 10, this translation may be done in the
downstream block of translator 552.

Returming to decision block 1620, if the request 1s an
upstream request, the target VH may be determined (block
1650) and the RID included in the request translated (block
1652) via any of a variety of processes, one of which 1s
described 1in detail below. For example, generally speaking, in
the embodiment illustrated in FIG. 10, XR device 550 may
translate the RID from the endpoint to the correct VH. There
may be no address translation for endpoint to root packets.
The RID of the request may be translated from function O (or
tfunction N) to the RID of the VF for the upstream packet. This
translation may be done 1n the upstream block of translator
552. The request may then be routed to the target VH based on
the translated RID (block 1654). If the request 1s a posted
request (decision block 1656), the DMA process 1s complete
since no completion 1s to be expected. If the request 1s not a
posted request (decision block 1656), a subsequent comple-
tion may be received from the VH indicating the access has
competed (block 1658). An RID in the subsequent comple-
tion may be translated from 1ts VH value to a corresponding,
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VF value (block 1660) and the completion routed to the
originating endpoint (block 1662), completing the DMA pro-
CEesS.

As noted above, DMA Transactions that originate in the SR
endpoint may include a RID associated with the requesting
function (for example, a VF). Translator 552 may use this RID
to determine which VH 1s associated with which transaction,
and forward the request to the proper VH, translating the RID
of the request to the RID of the requesting device within that
VH using one of a variety of mechanisms. For instance, in one
embodiment, translator 552 may use the PCle RID as
index to determine the correct VH. More particularly, trans-
lator 552 may maintain a reverse table for translating RID
values to VH values. In another embodiment, translator 552
may utilize a stride mechanism. Using this stride mechanism
three hierarchies may be distinguished as follows:

VHO=Endpoint RID+RID offset

VHI1=Endpoint RID+RID offset+(1*RID stride)
VH2=Endpoint RID+RID offset+(2*RID stride)

DMA operations may support a number of additional fea-
tures, such as:

Setup: The root writes the descriptor location to the End-

point. Root-to-Endpoint translation occurs (see above).

Descriptor Read: The endpoint reads the descriptor from

the root’s memory. Endpoint-to-Root translation occurs
(see above).

DMA operation: The endpoint writes/reads the root’s

memory. Endpoint-to-Root translation occurs.

Descriptor Write: The endpoint writes status to a descriptor

in the root’s memory. Endpoint-to-Root translation
OCCUrS.
Interrupt: The endpoint interrupts the root to signal 1t 1S
done with the DMA operation. If MSI/MSI-X 1s used,
Endpoint-to-Root translation occurs. If INTx 1s used see
INTx emulation. Interrupt service: The root reads and
clears the endpoint status and Root-to-Endpoint transla-
tion occurs.

In a further embodiment, system 400 may support a DMA
Engine (TX Work Queue, TX Free, RX Work, RX Free). Ina
still further embodiment, SR endpoint 560 may have multiple
address spaces for the VEF’s. XR device 550 may perform
VH-to-VF address translation for Root-to-Endpoint packets.
XR device 350 may perform VF-to-VH address translation
for Endpoint-to-Root packets.

In one embodiment, XR device 550 may support VF INTx
emulation. VF’s in PCI Express systems are not permitted to
support MSI. IT INTX support 1s required by a root, then XR
device 550 may emulate INTx behavior in one of a variety of
ways. For example, in one embodiment, XR soitware 570
may configure the MSI capability in the endpoint and XR
device 550 may advertise INTx capability to the root. XR
device 350 may terminate all MSI Posted Memory Writes and
send them to the management unit 750. Management unit 750
may generate an Assert INTx message to the root. XR device
550 may use endpoint aware soitware within XR software
570 to determine that a deassert 1s needed by snooping all
writes from Root-to-Endpoint and tracking which ones are to
clear interrupts. In an alternative embodiment, INTX emula-
tion capability may be provided by SR endpoint 560. With
this capability 2 MSI addresses are allocated to SR endpoint
560. One may be an INTx assert, and the other may be an
INTx deassert. XR device 550 may terminate all MSI Posted
Memory Writes and send them to management unit 750.
Management unit 750 may decode the MSI address and send
the appropriate Assert INTx or Deassert_ INTx message to
the appropriate root. In another alternative embodiment,
INTx emulation capability may be provided by a combination
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of SR endpoint 560 and the VF driver. Management unit 750
may decode the MSI address and send the appropriate
Assert_INTx message and VF driver software may be used to
indicate to Management Unit 750 when 1t may send the
related Deassert_INTxX message.

In a further embodiment, XR device 550 may support
Primary/Subordinate OS Driver communication. If the SR
components that are used 1n an XR system require driver-to-
driver communication, XR device 550 may emulate this
behavior 1n one of a varniety of ways. For instance, in one
embodiment, SR endpoint 560 may implement Primary/Sub-
ordinate communication in hardware, as may be done 1n MR
systems, where there may not be direct driver communica-
tion. More particularly, SR endpoint 560 may implement
hardware that allows message passing through data registers,
mailboxes, and/or doorbells. In an alternative embodiment,
SR endpoint 560 may implement driver enhancements. SR
endpoint 560 may add a new BAR or extend existing BAR
space. The new BAR space may be used for message passing.
XR device 550 may be configured to terminate the accesses to
the new BAR space region of memory and take action to
enable message passing. In another alternative embodiment,
a manufacturer of an MR switch may provide a device driver
for a new device (or function) embedded 1n XR device 550
that enables message passing between roots. Drivers running,
on the roots may call this new driver for all Primary/Subor-
dinate communication (1.e. bind hypervisor API calls used by
the endpoint driver for communication to the new device
driver).

In a further embodiment, XR device 550 may support reset
propagation. A reset that propagates to XR will cause a Func-
tion level Reset (FLR) specifying the correct function to be
1ssued to the endpoint. The detection of reset propagation and
the generation of the FLR to the endpoint (configuration
write) 1s handled by management unit 750. All XR registers
may take the appropriate reset action (generally, they are
reset). In one embodiment, a reset originating 1n a speciiic VH
may be translated mto a Function level Reset (FLR) to the
alfected VF(s) of the Endpoint. The PCle specification allows
the endpoint 100 ms to complete the FLR. Accordingly, 1f a
reset 1s recerved by XR device 550 that originated as a sec-
ondary bus reset and 11 the secondary bus reset 1s asserted, and
subsequently deasserted, the XR device 550 may delay send-
ing a completion for the deassert configuration write until
after the specified 100 ms has expired (since 1ssuing the FLR
to the endpoint). Note the secondary bus reset can be for an
upstream or a downstream bridge. Alternatively, XR device
550 may 1gnore the 100 ms timer and permit the endpoint to
respond at any time, either doing a Completion Retry Status
or accepting the configuration cycle 1f 1t comes before the 100
ms expires.

If a reset 1s recetved by XR device 350 that corresponds to
a rest of an entire VH—{lor example, a fundamental reset on
the VH (hot reset, link down, etc. . . . )—XR device 550 may
assume that this reset duration 1s longer than the 100 ms FLR
time. IT a FLR 1s 1ssued to XR device 550, 1t may be propa-
gated to the endpoint. The FLR may take effect immediately
without tlushing packets belfore 1ssuing the FLR to the end-
point. It1s noted that FLR may be prevented from propagating
if flow control from a failing endpoint has stopped (no more
credits are being 1ssued). This 1s an error case regardless of
FLR that may be handled according to the flow control pro-
cedures described below.

XR device 550 may also be used with Multi-Function
Endpoints that do not support FLR. In one embodiment, XR
device 550 may contain a state machine configured to 1ssue a
sequence of Configuration and Memory Writes to emulate
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FLR behavior. This sequence may be configured by XR soft-
ware 570. XR device 550 may 1ssue the sequence, adjusting
addresses within Configuration and Memory Space so that
they address the associated underlying Function(s) in the
Endpoint.

In a further embodiment, XR device 550 may support tlow

control. The link between XR device 550 and the SR endpoint
1s a base PCle link. All of the upstream packets arriving at XR
device 550 from VF’s 1n the SR endpoint share the same flow
control credits. As a result, the receive bullers 1n XR device
550 do not provide independent flow control for each VH. In
one embodiment, XR device 550 may implement a mecha-
nism to provide VH tlow control independence. For example,
flow control functionality may be included within upstream
packet multiplexer 738.

Flow control for packets that tlow from SR endpoint 560 to
XR device 550 may be implemented as follows. XR device
550 may implement a timeout mechamsm that detects when a

VH has not progressed for a predetermined length of time—
(the VH 1s “hung”). This condition may be detected by
observing that a root port has not released flow control credits
for a predetermined length of time. When the timeout mecha-
nism detects that a VH 1s “hung” a message may be conveyed
to XR software 570. In response, XR software 570 may
istruct XR device 550 to purge packets from the hung VH
and return any resources, such as tlow control and buffer
space, 1t may have been consuming. The VH may remain 1n
the hung state until a reset propagates from that VH. Note that
queuing 1s independent per VH, so other VHs can make
progress as long as the hung VH does not consume all flow
control credits. In an alternative embodiment, XR device 550
may declare that a VH 1s in the hung state. In a further
embodiment, the number of packe‘[s from a single VH that
may be allowed 1n a receive buller may be capped at a pre-
determined value. If one VH exceeds its allotted bufiler, all
packets from that VH may be purged, and subsequent packets
from that VH may be dropped and that VH declared hung. In
one embodiment, this purge functionality may be imple-
mented as part of upstream packet buifer 734.

Flow control for packets that flow from XR device 550 to
SR endpoint 560 may share a single VC. Therefore, when
flow control credits are not released by XR device 550 for a
pre-determined time, all VE’s within SR endpoint 560 that are
using that VC may be declared to be “hung.”

In a further embodiment, XR device 550 may support
initialization of an SR endpoint after reset. On startup, each
endpoint may be initialized to be 1 a base PCle mode, as
opposed to SR-IOV mode. Subsequently, XR software 570
may query the endpoint’s SR-IOV capabilities to determine
the number of VE’s supported, VF oflsets, BAR type, etc. XR
software 570 may use this mformatlon to configure XR
device 550 (number of VH’s, BAR information, RID infor-
mation, etc.). XR software 570 may enable SR-IOV mode 1n
the endpoint. XR software 570 may configure the switch in
which XR device 550 1s embedded to reflect the number of
VFE’s 1n the endpoint. Also, a “done” bit in XR device 550, or
some other indicator, may be set when XR software 570 has
completed the configuration. I a root tries to discover an
endpoint prior to the completion of configuration, XR device
550 may act as 1f the link to the endpoint 1s unavailable.

In a further embodiment, XR device 350 may support
Power Management. In one embodiment, the PF 1n the end-
point 1s kept 1n a DO state, so the link will never go to a lower
power state. Similarly, the link between XR device 550 and
MR switch 540 may be kept out of a lower power state (except

for LOs).
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In a further embodiment, XR device 550 may support error
handling 1n the following manner. Most of the XR device 550
error functionality 1s implemented 1n configuration umt 740.
XR device 550 may terminate error messages sourced from
SR endpoint 560 if they are not enabled to be sent to a root.
This termination 1s done 1n the upstream packet decoder 732.

There are two classifications of errors, VF specific, and
non-VF specific. The VF may only report VF specific errors.
All non-VF specific errors may be reported by the PF (ser-
viced by XR software 570). XR device 350 may emulate
per-VFE error message enables (SR endpoint 560 may imple-
ment the error message enables 1n the PF only). XR device
550 may throw away error messages from a VF 1f the emu-
lated per-VF error message enable 1s not set. The per-VF
errors may include:

Poisoned packet received

Completion Timeout

Completer Abort

UR, when caused by a function that claims a packet

Unexpected Completion, when Requestor 1D matches a
function 1n the PCle device

ACS Violation
The non-VF errors may include:

All Physical Layer errors

All Data Link Layer errors

ECRC Fail

UR, when caused by no function claiming a packet
Recetver Overtlow

Flow Control Protocol Error

Maliformed packet
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Unexpected Completion, when Requester 1D doesn’t
match any function 1n the PCle device

In one embodiment, system 400 may support Error Detec-
tion (missing delimiter, max length, CRC). For example, SR
endpoint 560 may provide error detection. These errors may
be global 1n nature and may be managed by XR software 570.

Note XR device 550 may not emulate the non-VF errors
(1.e., send any error messages that are recerved to all VH’s of
interest), because most of the errors are not detectable by XR
device 550 (for example, only the SR endpoint sees Physical
link errors).

XR device 550 may set errors status (error status 1s shared),
and send error messages to all VH’s when certain PF error
messages are recerved. The XR-to-Endpoint link 1s treated as
an “internal” bus, but if something fatal happens on that bus,
it must be reported to the VH’s. Correctable and NonFatal PF
errors may not be relayed to the VH’s (1f action 1s required the
errors may be handled by XR software 570). Note for any

error status that XR device 5350 1s setting, the error 1s may be

reported on the link between the Downstream Switch port and

XR device 550 (1or these errors the XR-to-Endpoint link may

be treated as an extension of the Downstream Switch Port-to-

XR link). XR device 550 may snoop data packets and set a

Master Data Parity Error 1f a poisoned completion 1s recerved

or 1f the requestor poisons a write request.

Table 18 lists the errors and how they are handled 1n an XR
system. There are three cases:

1. VF error, handled by endpoint

2. PF error doesn’t require VF notification, handled 1n PF by
XR software 570

3. PF error requires VF notification; XR device 550 may

emulate the error reporting from the PF to the VH.

TABLE 18

Error Handling

Error

Phy Recelrver Error

Bad packet (LCRC)

Bad DLLP (LCRC)
Replay Timeout

Replay Num Rollover
DLL Protocol (seq
number)

Surprise Down

Poisoned packet
received

ECRC Check Failed
UR

Completion Timeout
Completer Abort
Unexpected
Completion

ACS violation
Receiver Overtlow

Message Type PF/VF  XR handling

COR PF In one embodiment, PF only, handle through XR
software 370.

COR PF In one embodiment, PF only.

COR PF In one embodiment, PF only.

COR PF In one embodiment, PF only.

COR PF In one embodiment, PF only.

FATAL PEF In one embodiment, PF may inform all VHs. The
endpoint 1s now broken, so the endpoint may send
ERR_FATAL to all VH’s and XR device 550
may emulate status.

FATAL PF In one embodiment, PF may mnform all VHs. The
endpoint i1s now broken, so the endpoint may send
ERR_FATAL to all VH’s and XR device 550
may emulate status.

NonFatal VF In one embodiment, VF handles, no XR device
550 action needed.

NonFatal PF See ECRC section

NonFatal PE/VF  Inone embodiment, 1if VF UR, no XR action i1s
needed. If “PF” UR (XR device 550 may detect
these), XR device 550 may report to correct VH
and emulate status.

NonFatal VI In one embodiment, VF handles.

Nonlatal Vb In one embodiment, VF handles.

NonFatal VEF/PF  In one embodiment, VF handles 1f RID matches
some function in the endpoint. PF handles if RID
doesn’t match any function in the endpoint. Allow
VI/PF to report to VH or XR Software 570 (XR
system may 1gnore).

NonFatal VF In one embodiment, VF handles.

Fatal PF In one embodiment, PF may mnform all VHs. The

endpoint 1s now broken, so the endpoint may send
ERR_FATAL to all VH’s and XR device 550
may emulate status.
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TABLE 18-continued
Error Handling
Error Message Type PF/VEF  XR handling
Flow Control Protocol Fatal PF In one embodiment, PF needs to inform all VHs.
Error The endpoint i1s now broken, so the endpoint may
send ERR_FATAL to all VH’s and XR device
550 may emulate status.
Malformed packet Fatal PE In one embodiment, PF needs to inform all VHs.

The endpoint is now broken, so the endpoint may
send ERR_FATAL to all VH’s and XR device

550 may emulate status.

In yet another embodiment, XR device 350 may support
Advanced Error Reporting (AER). In PCle-compliant sys-
tems, AER 1s not required to be supported in the PF or VF.
However, 11 AER 1s supported 1n the VF (including the error
log), 1t may be exposed to the Root and work without any XR
device 550 mtervention. Further, 1f AER 1s supported in the
VF, in one embodiment error logging may be shared (one log,
shared among all the VF). In this case XR device 550 may
emulate the error log register per VE. When an error message
1s sent by the endpoint, XR device 550 may:

1. Trap the error message
2. Read the error log register. If there 1s an overflow reported,
XR device 550 may perform one of the following steps:

a. Ignore the error

b. Report the error and compose an error log

c. Report the error and leave the error log empty
3. ITthere 1s not an overtflow, update an XR emulated error log
4. Send the error message to the root
Alternatively, XR device 550 may mask off AER capability
from VFE. Note the reading of the error log register and updat-
ing the emulated error log may be done by XR hardware 550
or XR software 570. If done by XR software 570, there may
be more delay 1n reading the error log register, increasing the
chances of missing an event.

In yet another embodiment, XR device 350 may support
End-to-end Cyclic Redundancy Check (ECRC). ECRC may
be enabled in the PF only (1in the AER capability). Because the
VF will not have an ECRC enable, 1n one embodiment ECRC
will not be supported by XR device 550. In an alternative
embodiment, 1f AER 1s supported 1n the VE, XR device 550
may emulate the ECRC enable bits and append ECRC as a
packet 1s transmitted from SR endpoint 560 to a root. XR
device 550 may also check the ECRC for packets from a root
to SR Endpoint 560. XR device 550 may optionally strip off
the ECRC before sending a packet to SR endpoint 560, such
as 1n a case 1 which SR endpoint 560 1s not compliant.

In other embodiments, XR device 550 may support flexible
topologies. In one embodiment, an XR system may cause
more than one mstance of an SR endpoint to appear 1n a given
VH. In such embodiments, XR device 550 may act as a
bridge, presenting two or more instances of the endpoint,
instead of just a single endpoint, allowing each VH to see
multiple copies of the endpoint.

In an alternative embodiment, XR device 550 may be con-
figured to present 1tself to a root as an SR endpoint, based on
the structure of an actual endpoint. In this embodiment, XR
device 550 may load an approprniate SR driver on each VH.
XR device 550 may thereby present itself as one PF, all the SR
confliguration space structures, plus one or more VF’s. Each
VH would appear to be using its own version of an SR
endpoint, while XR device 550 actually maps each PF/VF
into an actual PF/VF of one or more copies of the SR end-
point.
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In another embodiment, system 400 may support flash
interface (upgradeable ROM). Flash interface 1s a PF func-

tion. This functionality may be accessed through XR software
570.

In another embodiment, system 400 may support interrupt
generator (moderation) in which each VF has an MSI/MSI-X
capability.

In another embodiment, each VF 1n system 400 may imple-
ment Packet TX/RX (unicast, broadcast, multicast).

In another embodiment of system 400, each VF may imple-
ment auto negotiation, 1n which each VF may report the same
thing to all roots.

In another embodiment of system 400, each VF may imple-
ment TCP checksum offload, TCP segmentation, TCP reas-
sembly.

In one embodiment, SR endpoint 560 may implement Vir-
tual Ethernet switching.

In other embodiments, system 400 may support PXE (ex-
pansion ROM). In one embodiment, SR endpoint 560 may be
configured to optionally duplicate or not duplicate ROM
BAR 1nVF’s. XR software 570 (which may maintain a map of
PF address spaces) may discover whether the endpoint dupli-
cates ROM BARs in VE’s or not. If ROM BAR’s are dupli-
cated 1n VF’s, then XR device 5350 may use VF’s BAR’s. If
not then XR device 550 may use translate all expansion ROM
accesses to VF ROM BAR addresses to the endpoint. XR
software 370 may configure XR device 350 in the correct
operating mode (duplicate ROM BAR ornot). See Expansion
ROM Base Address register 946.

Configuration Process

FI1G. 14 1llustrates one embodiment of a configuration pro-
cess 1100 that may be used by an XR device. In the 1llustrated
embodiment, a process 1100 begins when an originator such
as a driver running 1n an OS on a root conveys a configuration
packet to and endpoint via the XR device. If a configuration
cycleis implemented 1n an SR endpoint (decision block 1110)
and the configuration cycle 1s implemented in the virtual
function (decision block 1112), then the XR device may
translate the configuration to match the virtual function that 1s
mapped to the originating root (block 1114) and 1ssue a
request to the endpoint (block 1122). If configuration cycle 1s
implemented 1n an SR endpoint and the configuration cycle 1s
implemented 1n the physical function (decision block 1112),
then the XR device may translate the configuration cycle to
match the physical function associated with the virtual func-
tion that 1s mapped to the originating root (block 1120) and
1ssue a request to the endpoint (block 1122). After arequest is
issued the XR device may wait for a response (blocks 1124
and 1126). Once a response 1s recerved, the XR device may
convey the recerved response to the originator (block 1128),
completing the process 1100.

If a configuration cycle 1s not implemented in the SR end-
point (decision block 1110) and the configuration cycle 1s
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emulated in the XR device (decision block 1130), then the XR
device may convert the requested address offset to a value that
places the address 1n a range where access 1s non-destructive
and no response 1s expected, such as offset equal to zero
(block 1132), and 1ssue a request to the endpoint (block
1134). Routing the request to the endpoint even 1f a response
1s not expected may maintain the proper ordering of requests.
After a request 1s 1ssued the XR device may wait for a
response (blocks 1136 and 1138). Once a completion 1s
received, the XR device may discard the recerved response
and return an emulated response to the originator (block
1140), completing process 1100. If a configuration cycle 1s
not implemented 1n the SR endpoint (decision block 1110)
and the configuration cycle 1s not fully emulated 1n the XR
device, but 1s instead shared between the SR endpoint and the
XR device (decision block 1130), the XR device may 1ssue a
request to the endpoint (block 1150). After arequest 1s 1ssued
the XR device may wait for a response (blocks 1152 and
1154). Once aresponse 1s received, the XR device may merge
a portion of the recerved response with an emulated portion of
the response and convey the result to the originator (block
1156), completing process 1100. It 1s noted that each field 1n
a register in the configuration header may use a different
implementation of the process described above. Conse-
quently, a combination of configuration processes may be
used for configuration cycles addressing multiple fields.
Virtual Hierarchies

To simplity the above discussions, XR device 550 has been
shown as being included i an MR-IOV switch connected
directly to downstream ports of the switch (see, for example,
FIG. §). In alternative embodiments, XR device 350 may be
incorporated into any of a variety of more complex virtual
hierarchies of PCle devices. For example, multiple SR end-
points may be coupled to the MR-IOV switch and XR device
550. XR device 550 may map the functions of each underly-
ing SR endpoint into any PCle hierarchy, thereby allowing
soltware runming in that hierarchy to operate as 1t 1t “owns”
the SR endpoint. In another embodiment, XR device 350 may
support a Management VH that may be used to configure the
entire PCle hierarchy of the SR endpoint. This Management
VH can be assigned to any VH that 1s implemented through
the MR switch. Also, the Management VH used to manage
XR device 550 and the underlying SR endpoint may be
changed during operation. In particular, the Management VH
may be changed while software running 1n non-management
VH’s 1s actively using the SR endpoint.

Turning now to FIG. 15, an alternative embodiment of an
MR system 1200 that uses an SR endpoint 1s shown. In the
illustrated embodiment, system 1200 includes roots 1210-
1212, an MR switch 540, SR PCle endpoint 1240, and XR
software 370. Roots 1210-1212 each may be associated with
a single OS and collectively share SR PCle endpoint 1240
through MR switch 540. MR switch 540 may include ports
1220-1223 and an XR device 350. XR software 570 may
include a physical function (PF) driver 572. PF driver 572 1s
coupled to physical function 1236 via port 1223 of switch
540. SR PCle endpoint 1240 may include virtual functions
1230-1235 that are associated with a physical function 1236.
XR device 550 enables roots 1210-1212 to be bound to virtual
tunctions 1230-1235. The elements illustrated 1n FIG. 15
generally perform functions similar to the corresponding ele-
ments illustrated 1n FIG. 5.

In addition, XR device 550 may assign multiple VEF’s to
distinct functions within a single virtual hierarchy (VH). For

instance, as illustrated 1n FIG. 16, XR device 550 may map
VE’s 1230-1235 to roots 1210-1212 in a virtual hierarchy

1280. More particularly, XR device 350 may map VF 1230
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and VF 1231 through a virtual switch 1250 to root 1210; XR
device 550 may map VF 1232 and VF 1233 through a virtual
switch 1252 to root 1211; and XR device 550 may map VF
1234 and VF 1235 through a virtual switch 1254 to root 1212.

FIG. 17 illustrates yet another alternative embodiment of
an MR system 1200 that uses an SR endpoint. In the 1llus-
trated embodiment, system 1300 includes roots 1310-1312,
an MR switch 540, SR PCle endpoint 1340, and XR software
570. Roots 1310-1312 each may be associated with a single
OS and collectively share SR PCle endpoint 1340 through
MR switch 540. MR switch 540 may include ports 1320-1324
and an XR device 550. XR software 570 may include a
physical function (PF) driver 572. PF driver 572 1s coupled to
physical functions 1336 and 1337 via ports 1324 and 1323,
respectively, of switch 540. SR PCle endpoint 1340 may
include virtual functions 1330-1332 that are associated with a
first physical function 1336 and virtual functions 1333-1335
that are associated with a second physical function 1337. XR
device 550 enables roots 1310-1312 to be bound to virtual
functions 1330-1335. The elements illustrated 1n FIG. 17
generally perform functions similar to the corresponding ele-
ments 1llustrated 1n FIG. 5.

In addition, XR device 550 may assign multiple VE’s to
distinct functions within a single virtual hierarchy (VH). For

instance, as illustrated in FIG. 18, XR device 550 may map
VE’s 1330-1335 to roots 1310-1312 1n a virtual hierarchy

1380. More particularly, XR device 550 may map VF 1330
and VF 1333 through a virtual switch 1350 to root 1310; XR
device 550 may map VF 1331 and VF 1334 through a virtual
switch 1352 to root 1311; and XR device 550 may map VF
1332 and VF 1335 through a virtual switch 1354 to root 1312.
It 1s noted that each virtual switch forms a hierarchy 1n which
VFE’s that are associated with two different PE’s are coupled
to a root. A variety of additional virtual hierarchies may be
enabled by XR device 350, as will be apparent to one of
ordinary skill in the art.

In the preceding embodiments, XR device 550 has been
shown 1n configurations in which an SR PCle endpoint 1s
directly attached below the XR device 550 hardware. In alter-
native embodiments, XR device 550 may be incorporated into
configurations where the SR PCle endpoint 1s not directly
attached to XR device 550 and an arbitrary number of levels
of switching hierarchy are present between XR device 550
and the SR PCle endpoint. In these embodiments, XR device
550 may be configured to 1ssue PCle Type 1 configuration
cycles instead of Type 0 configuration cycles so that the
cycles can be routed through the switching hierarchy to get to
the SR PCle endpoint.

It 1s noted that the above-described embodiments may
comprise software. In such an embodiment, the program
instructions that implement the methods and/or mechanisms
may be conveyed or stored on a computer accessible medium.
Numerous types of media which are configured to store pro-
gram instructions are available and include hard disks, floppy
disks, CD-ROM, DVD, flash memory, Programmable ROMs
(PROM), random access memory (RAM), and various other
forms of volatile or non-volatile storage. Still other forms of
media configured to convey program instructions for access
by a computing device include terrestrial and non-terrestrial
communication links such as network, wireless, and satellite
links on which electrical, electromagnetic, optical, or digital
signals may be conveyed. Thus, various embodiments may
turther include receiving, sending or storing instructions and/
or data implemented i1n accordance with the foregoing
description upon a computer accessible medium.

Although the embodiments above have been described 1n
considerable detail, numerous variations and modifications
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will become apparent to those skilled in the art once the above
disclosure 1s fully appreciated. Additionally, while various
flow charts have been presented, 1t 1s to be understood that the
flowcharts are not intended to indicate a strict ordering of
events or activities. Rather, various events and/or activities
shown 1n the flowcharts may occur in a different order than
that shown and 1n some cases events and/or activities may
generally occur concurrently. All such embodiments are con-
templated. It 1s mtended that the following claims be inter-
preted to embrace all such varniations and modifications.

What is claimed 1s:

1. A method for use 1n a PCI Express system comprising a
plurality of independent PCI Express roots coupled to a
shared single-root input/output virtualization (SR-IOV) end-
point via a bridge device, the method comprising;:

a first root of the plurality of independent PCI Express roots
independently assigning a first address 1 a first root
local memory space to a first virtual function of the
SR-IOV endpoint, wherein the first root corresponds to a
first virtual hierarchy (VH) in the PCI Express system,
and a second root of the plurality of 111dependent PCI

Express roots assigning a second address 1n a second
root local memory space to a second virtual function of
the SR-IOV endpoint, wherein the second root corre-
sponds to a second VH 1n the PCI Express system that 1s
different from the first VH;

mapping in the bridge device the first root local memory
space to a first portion of the SR-IOV endpoint local
memory space, and mapping the second root local
memory space to a second portion of the SR-I0OV end-
point local memory space, whereby both the first root
local memory space and the second root local memory
space are concurrently mapped to the SR-IOV endpoint
local memory space;

performing 1n the bridge device:

receiving a first request from the first root without an
identification of which of said roots 1s a source of the
first request, the first request comprising a first target
address:

receiving a second request from the second root without
an 1dentification of which of said roots 1s a source of
the second request, the second request comprising a
second target address;

identifying a source of the first request based at least 1n
part on a port via which the first request was received;

identifying a source of the second request based at least
in part on a port via which the second request was
recerved:;

determining a target of each of the first request and the
second request based at least 1n part on an 1dentifica-
tion of a source of the first request and the second
request, respectively; and

conveying both of the first request and the second
request to the SR-1I0V endpoint with an identification
of which of said plurality of independent PCI Express
roots 1s a source of the first request and the second
request, respectively.

2. The method of claim 1, further comprising;

translating the first target address to a first translated
address 1n a first address space; and

translating the second address to a second ftranslated
address 1n a second address space, the second address
space being different from the first address space;

wherein the first request conveyed to the SR-IOV endpoint
includes the first translated address, and wherein the
second request conveyed to the SR-IOV endpoint
includes the second translated address.
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3. The method of claim 2, wherein the first target address
and the second target address are the same.

4. The method of claim 2, wherein the first request corre-
sponds to a first virtual function 1n the SR-IOV endpoint, and
the second request corresponds to a second virtual function in

the SR-IOV endpoint.

5. The method of claim 4, wherein the first virtual function
and the second virtual function both correspond to a same
physical function 1n the SR-IOV endpoint.

6. The method of claim 1, wherein the 1dentification of a
source of the first request and the second request 1s based at
least 1n part on a port via which a given root 1s coupled to the
bridge device.

7. The method of claim 1, wherein the first request includes
a requester ID (RID) that does not 1dentify a specific virtual
hierarchy (VH), and wherein the method further comprises:
the bridge device moditying the requester ID to a VH

identifier (VH ID) that identifies a specific VH to which

the first request corresponds; and

conveying the first request to the shared SR-I0V endpoint
with the VH ID and without the RID.

8. A computer system comprising:

a shared single-root input/output virtualization (SR-IOV)
endpoint;

a plurality of independent PCI Express roots coupled to the
shared SR-IOV endpoint via a bridge device utilizing a
PCI Express protocol;

wherein a first root of the plurality of mdependent PCI

Express roots 1s configured to independently assign a

first address 1n a first root local memory space to a first

virtual function of the SR-IOV endpoint, wherein the

first root corresponds to a first virtual hierarchy (VH) 1n

the PCI Express system and a second root of the plurality
of independent PCI Express roots 1s configured to inde-
pendently assign a second address 1n a second root local
memory space to a second virtual function of the SR-
IOV endpoint, wherein the second root corresponds to a
second VH 1n the PCI Express system that 1s different
from the first VH;

wherein the bridge device 1s configured to:
map the first root local memory space to a first portion of

the SR-IOV endpoint local memory space, and map

the second root local memory space to a second por-
tion of the SR-IOV endpoint local memory space,
whereby both the first root local memory space and
the second root local memory space are concurrently
mapped to the SR-IOV endpoint local memory space;

receive a lirst request from a {irst root of the plurality of
roots without an 1dentification of which of said plu-
rality of independent roots 1s a source of the first
request, the first request comprising a first target
address:

receive a second request from a second root of the plu-
rality of roots without an i1dentification of which of
said plurality of independent roots 1s a source of the
second request, the second request comprising a sec-
ond target address;

identify a source of the first request based at least 1n part
on a port via which the first request was recerved;

identily a source of the second request based at least 1n
part on a port via which the second request was
recerved:;

determine a target of each of the first request and the
second request based at least 1n part on an i1dentifica-
tion of a source of the first request and the second

request, respectively;
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convey both of the first request and the second request to
the SR-IOV endpoint with an 1dentification of which
of said plurality of independent PCI Express roots is a
source of the first request and the second request,
respectively.

9. The system of claim 8, wherein the bridge device 1s
turther configured to:

translate the first target address to a first translated address

in a first address space; and

translate the second address to a second translated address

in a second address space, the second address space
being different from the first address space;

wherein the first request conveyed to the SR-IOV endpoint

includes the first translated address, and wherein the
second request conveyed to the SR-IOV endpoint
includes the second translated address.

10. The system of claim 9, wherein the first and the second
target addresses are the same.

11. The system of claim 9, wherein the first request corre-
sponds to a first virtual function 1n the SR-IOV endpoint, and
the second request corresponds to a second virtual function in
the SR-IOV endpoint.

12. The system of claim 11, wherein the first virtual func-
tion and the second virtual function both correspond to a same
physical function 1n the SR-IOV endpoint.

13. The system of claim 8, wherein the identification of a
source of the first request and the second request 1s based at
least 1n part on a port via which a given root 1s coupled to the
bridge device.

14. The system of claim 8, wherein the first request
includes a requester ID (RID) that does not 1dentify a specific
virtual hierarchy (VH), and wherein the bridge device 1s
turther configured to:

modity the requester ID to a VH 1dentifier (VH ID) that

identifies a specific VH to which the first request corre-
sponds; and

convey the first request to the shared SR-I0V endpoint with

the VH ID and without the RID.

15. A bridge device for coupling a shared single-root input/
output virtualization (SR-IOV) endpoint to a plurality of
independent PCI Express roots, wherein a first root of the
plurality of independent PCI Express roots independently
assigns a first address 1n a first root local memory space to a
first virtual function of the SR-IOV endpoint, and a second
root of the plurality of independent PCI Express roots assigns
a second address 1n a second root local memory space to a
second virtual function of the SR-IOV endpoint, where the
bridge device 1s configured to:

map the first root local memory space to a first portion of

the SR-IOV endpoint local memory space, and map the
second root local memory space to a second portion of
SR-IOV endpoint local memory space, whereby both
the first root local memory space and the second root
local memory space are concurrently mapped to the
SR-IOV endpoint local memory space, and wherein the
first root corresponds to a first virtual hierarchy (VH) 1n
the PCI Express system and the second root corresponds
to a second VH 1n the PCI Express system that 1s differ-
ent from the first VH;

receive a first request from a first root of the plurality of

roots without an 1dentification of which of said plurality
ol independent roots 1s a source of the first request, the
first request comprising a first target address;

receive a second request from a second root of the plurality

ol roots without an 1dentification of which of said plu-
rality of independent roots 1s a source of the second
request, the second request comprising a second target

address:
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1dentify a source of the first request based at least 1n part on
a port via which the first request was recerved;

1dentily a source of the second request based at least 1n part
on a port via which the second request was received;

determine a target of each of the first request and the second
request based at least 1 part on an identification of a
source of the first request and the second request, respec-
tively;

convey both of the first request and the second request to

the SR-IOV endpoint with an 1dentification of which of
said plurality of independent PCI Express roots 1s a
source of the first request and the second request, respec-
tively.

16. The bridge device of claim 15, wherein the bridge
device 1s turther configured to:

translate the first target address to a first translated address

in a first address space; and

translate the second address to a second translated address

in a second address space, the second address space
being different from the first address space;

wherein the first request conveyed to the SR-IOV endpoint

includes the first translated address, and wherein the
second request conveyed to the SR-IOV endpoint
includes the second translated address.

17. The bridge device of claim 16, wherein the first and the
second target addresses are the same.

18. The bridge device of claim 16, wherein the first request
corresponds to a first virtual function in the SR-IOV endpoint,
and the second request corresponds to a second virtual func-
tion 1n the SR-IOV endpoint.

19. The bridge device of claim 18, wherein the first virtual
function and the second virtual function both correspond to a
same physical function 1n the SR-IOV endpoint.

20. The bridge device of claim 135, wherein the 1dentifica-
tion of a source of the first request and the second request 1s
based at least 1n part on a port via which a given root 1s
coupled to the bridge device.

21. The bridge device of claim 15, wherein the first request
includes a requester ID (RID) that does not identify a specific
virtual hierarchy (VH), and wherein the bridge device 1s
turther configured to:

modily the requester ID to a VH i1dentifier (VH ID) that

identifies a specific VH to which the first request corre-
sponds; and

convey the first request to the shared SR-IOV endpoint with

the VH ID and without the RID.

22. The method of claim 1, wherein identifying said source
of the first request comprises i1dentifying a root that 1s the
source of the first request, and wherein identifying said source
of the second request comprises 1dentifying a root that is the
source of the second request.

23. The system of claim 22, wherein the first request and
the second request recerved by the SR-IOV endpoint are
received 1n respective packets which do not include a field for
a 1dentifying a source of the respective packets, and wherein
the 1dentification of which of said roots 1s a source of the
respective packets 1s encoded 1n a field designated for other
pUrposes.

24. The bridge device of claim 15, wherein identifying said
source of the first request comprises 1dentifying a root that 1s
the source of the first request, and wherein identifying said
source of the second request comprises identifying a root that
1s the source of the second request.
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