US007979450B2
a2y United States Patent (10) Patent No.: US 7.979.450 B2
Adler 45) Date of Patent: Jul. 12, 2011
(54) INSTANCE MANAGEMENT OF CODE IN A 7,155,426 B2* 12/2006 Al-AZZAWEooovvveeeeerenn.. 1/1
DATABASE 7,735,598 B2 6/2010 Nakamura 181/131
2005/0187980 Al 8/2005 Carlin et al.
_ 2006/0085512 Al* 4/2006 Handeletal. 709/206
(75) Inventor: Dustin Kurt Adler, Rancho Cordova, 2007/0038662 Al* 2/2007 Bendeletal. ... 707/102
CA (US) 2010/0030745 Al 2/2010 Adler
2010/0042585 Al 2/2010 Adler
: : 2010/0070448 Al 3/2010 Omoigui
(73) Assignee: Xsevo Systems, Inc., Norco, CA (US) 2010/0070516 Al 32010 Adler
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35 FP 0757650 A2 * 10/1996
U.S.C. 154(b) by 348 days.
(b) by d OTHER PUBLICATIONS
(21) Appl. No.: 12/210,629 International Search Report and Written Opinion, Jul. 30, 2009.
“Source Code 1n Database,” Wikipedia, http://en. wikipedia.org/wiki/
(22) Filed: Sep. 15, 2008 Source Code in_ Database, Feb. 11, 2010.
Green, Roedy, Canadian Mind Products, “SCID,” http://mindprod.
(65) Prior Publication Data com/project/scid.html, downloaded Mar. 4, 2011.
US 2010/0070516 A1~ Mar. 18, 2010 (Continued)
(51) Int.Cl. Primary Examiner — Apu M Moliz
GO6F 17/30 (2006.01) Assistant Examiner — Hung D Le
(52) UuSe CL oo, 707/755 (74) Attorney, Agent, or Firm — Peters Verny, LLP
(58) Field of Classification Search None
See application file for complete search history. (57) ABSTRACT
The compiled code of a computer program 1s stored 1n mul-
(56) References Cited tiple pieces within a database. Each piece 1s optionally stored
within a separate data record. Execution of the computer
U.S. PATENT DOCUMENTS program 1ncludes using database queries to retrieve pieces of
3,411,139 A 11/1968 Lynch et al. the compiled code for execution. The database and associated
5,301,351 A ™ 11/1994 Lenkovetal. 717/124 database management logic are used to provide numerous
g’g jlg’ggg i . g/}ggg (L}ira;:e ““““““““““““““ 707/ 63(1) advantages in execution and management of the computer
51386320 A * 12/1996 Knudsen etal .. 717108 Pprogram. For example, in some embodiments, database que-
5,850,554 A * 12/1998 CAarvero.occocevvvva.. 717/162 ries are used to help facilitate program tlow logic. In another
5,854,932 A % 12/1998 Mariani et al. 717/116 example, database queries are based on a command line or
ga é 8?333 g : g; 388(1) E‘“f_n}(1 **************** 707/ 332/225 umversal resource locator. These queries may be used to
6579 151 BI /7001 Bll‘lessl:;l Zt A select functionality of a computer program in response to the
6:629:313 B1* 02003 Roweetal . . T17/136 command line or universal resource locator.
7,024,663 B2* 4/2006 Klemnoooooviiiiinnnn 717/127
7,047,249 B1* 5/2006 Vincentcoooovvvvviiinniiinn, 1/1 11 Claims, 7 Drawing Sheets
Management Server Database Server
305 3
Code
Syusl::: :Eggic CDTPH.E‘M" Database
130 170 140
ode Execution Code Datahasa
“logie | | Management o
160 o 150

Client
3158

Client
J13A

Browser

320

Browsear

320

US 7,979,450 B2
Page 2

OTHER PUBLICATIONS

“Jade 6,” http://www.jadeworld.com/yw/Technologies/High Per-

formance_ Technology/JADE .php, downloaded Mar. 4, 2011.
“What 1s Zope?” http://www.zope.org/WhatlsZope, downloaded
Mar. 4, 2011.

Little, Jim, “Prism Criticism,” http://lists.tunes.org/archives/tunes/
1999-June/002143 html, Jun. 7, 1999.

Green, Roedy, Canadian Mind Products, “Aubjex: Java Glossary,”
http://mindprod.com/jgloss/aubjex.html, downloaded Mar. 4, 2011.
Fowler, Martin, “ProjectionalEditing,” http://martinfowler.com/
bliki/ProjectionalEditing . html, Jan. 14, 2008.

Fowler, Martin, “Language Workbenches: The Killer-App for
Domain Specific Languages? ” http://martinfowler.com/articles/

languageWorkbench html, Jun. 12, 2005.
Advertisement for “Model Driven Software Development,” http://
www.amazon.com/gp/product/0470025700, downloaded Apr. 6,

2011.

“Apache Sling,” http://mvnrepository.com/artifact/org.apache.sling,
2006.

“Seaside Screenshots,” http://www.seaside.st/about/screenshots?
K=qBQgx4pN, downloaded Mar. 4, 2011.

“Smalltalk Source Code Browser,” http://stackoverflow.com/ques-
tions/1298020/how-useful-would-be-a-smalltalk-source-code-
browser-for-other-programming-languag, Aug. 19, 2009.

Shariff, Fahd, “Source_Code_in_Database SCID,” http://www.
scribd.com/doc/3010319/Source-Code-in-Database-SCID, May

2003.
“Kiln Features,” http://www.fogcreek.com/kiln/features/source-
code-contol.html, 2000.

“SECO,” http://www.kobrix.com/seco.jsp, downloaded Mar. 4,
2011.

Iordinov, Borislav, “Rapid Software Evolution,” http://www.kobrix.
com/documents/rse.pdf, Oct. 21, 2007.
“HyperGraphDB,” http://www.hypergraphdb.org/index,
loaded Mar. 4, 2011.

“Source Code Control | Kiln from Fog Creek Software,” http://www.
springerlink.com/content/3m226811191w1566/, downloaded Mar.
28, 2011.

“Ruby that Scales,” http://ruby.gemstone.com/, downloaded Mar. 4,
2011.

“Gemstone/s Object Server,” http://www.gemstone.com/products/
gemstone, 1983.

“Gemstones/s Object Server,” http://www.gemstone.com/products/
gemstone, 1983.

U.S. Appl. No. 12/191,711 non-final Office action, Mar. 16, 2011.

down-

* cited by examiner

U.S. Patent

Jul. 12, 2011 Sheet 1 of 7 US 7,979,450 B2
Computing
System 100
Computing Code Execution
Device Logic
110 160
Code
Network Compilation
120 Logic
170
. Code
Operatmg“ Management
System Logic Loqi
130 ogic
o 180
Database Schedgllng
140 Logic
“‘"""" 185
Database Command
Management Interpretation
Logic Logic
150 190

FIG. 1

US 7,979,450 B2

Sheet 2 of 7

Jul. 12, 2011

U.S. Patent

¢ 9l
oomx/
NOLZ /\L |
-4 ¥
| | i
adole -
04 ——u
|
d01s "
vorz __|
|
P . X
Noe¢e Noomm OQNNJ g0ce L Vv0Ze
1BUI0 Ble(] adA| 98P0 9jgeINVax3 Xapuj

U.S. Patent

Jul. 12, 2011 Sheet 3 of 7 US 7,979,450 B2
Management Server Database Server
305 ; 310
: : Code
Operating o
System Logic Cgmp'i;at'm Database
130 Logic 140
il :LZ-Q el
, Code Database
CedeLExe_cutlon Management Management
ogic : , Logic
160 Logic
— 180 130
Client
- 3158
Client e
315A
Browser
320
Browser
320

FIG. 3

U.S. Patent Jul. 12, 2011 Sheet 4 of 7 US 7,979,450 B2

Receive Request Generate Query
410 440
Execute Query Use Query
415 445
Generate Code
425 |
| Retrieve Code | Receive Code
420 450
Store Code
430
Provide Code Provide Code
435 455

FIG. 4

U.S. Patent

Jul. 12, 2011

- Receive Source

E Code
' 510

Compile
915

Index
925

ST el ————— i_*

Store Source

Sheet S of 7

US 7,979,450 B2

Store
Configuration
Data
535

Version
Management
245

Control Access
990

-

230

Provision
955

FIG. 5

U.S. Patent

Jul. 12, 2011

Define
610

Provision

615

Receive
620

Parse
625

Retrieve
630

FIG. 6

Execute
635

Sheet 6 of 7

US 7,979,450 B2

Read Object
710

Identify
115

Syntax

720

Check

L

Read Next Object
125

f

Process Next
Object
730

— 2

FIG. 7

Use Map
735

U.S. Patent Jul. 12, 2011 Sheet 7 of 7 US 7,979,450 B2

Receive Code | Compile Code

810 _ 850

Store Modified
Code
860

Divide Code

820

Store Code Select Instance
830 870

Modify Code

840

US 7,979,450 B2

1

INSTANCE MANAGEMENT OF CODE IN A
DATABASE

BACKGROUND

1. Field of the Invention

The mvention 1s 1n the field of computing systems, and
more specifically in the fields of computer programming and
provisioning.

2. Related Art

In a typical computing model source code 1s generated by
a programmer using an editor. This source code may be con-
figured to be interpreted at the time it 1s executed or compiled
into executable code using a compiler. Compiled code typi-
cally executes more quickly than interpreted code because the
compiling process includes parsing and syntax checking prior
to execution. Compiling the code also places the code 1n a
form (e.g., object code) that may be directly executable using
an operating system.

The compiled code 1s stored using a filing system, typically
provided with an operating system configured to execute the
compiled code. For example, the compiled code may be
stored 1n an “.exe” file for execution within the Windows
operating system. The compiled code may be linked to other
files containing executable code, data or scripts. This linking
may occur prior to or at the time the code 1s executed. When
the code 1s executed the file system 1s used to identity the file
within which the code 1s stored and this file 1s opened and
processed by the operating system.

There are several disadvantages to this computing model.
For example, modification of the compiled code typically
involves recompiling an entire source code or file thereof. If a
single Tunction, among many functions, within source code,
1s modified, then the entire source code, on a file-by-file basis,
1s recompiled. Further, specific permissions and specific soit-
ware (e.g., an editor) are required to modily the source code.
This can be cumbersome when the editor and code are on
different computing devices.

Databases and database programs configured to manage
the databases are commonly used to store and access data.
Sometimes this data 1s used by computer programs external to
database programs. For example, an external program may
use a database program to retrieve data that 1s then operated
on by the external program. Database programs may also
include “database stored procedures” which are functions
prepared by a user of the database program to operate on a
database. Database stored procedures are limited to operating
on stored data and are differentiated from other types of
computer programs in that these procedures are run under the
control of (e.g., within) the database program rather than
under direct control of an external operating system.

Compiled code 1s typically executed using a command line
that includes a name of the compiled code, e.g., a program
name, and optionally a path to the compiled code. This com-
mand line 1s optionally represented by a graphical 1con 1n a
graphical user interface. A command line optionally further
includes parameters, sometimes referred to as switches, that
are used as 1nput to the compiled code and may be used to
control operation of the compiled code. For example, the
DOS command line “CD lib” includes a program 1dentifier
“CD” and a parameter “lib.” The program 1dentifier 1s used to
identily compiled code, which 1n this case 1s configured for
changing a file directory. The parameter 1s used to pass, to the
compiled code, an 1dentity of the directory to change to.

Compiled code 1s optionally accessed over a computer
network, such as the internet, using a universal resource loca-
tor (URL). For example, the URL www.xsevo.comv/login.esp

10

15

20

25

30

35

40

45

50

55

60

65

2

may be used to execute a login program hosted at xsevo.com.
The URL may also be used to pass parameters to a program.

For example, the URL www.xsevo.com/login.esp?lvl=high
may be used to pass a value of “high” for a parameter “1vl” to
the program login.esp. URLs and command lines may, thus,
be used to provide parameters to previously established com-
piled code.

SUMMARY

Various embodiments of the invention comprise a comput-
ing architecture 1 which executable code, for execution
external to a database program, 1s stored within records of a
database. The executable code 1s retrieved from the database
at the time of execution. This executable code typically
includes compiled code that 1s ready for execution on an
operating system. In comparison to the prior art, the execut-
able code 1s managed and accessed via the database program
rather than merely via a file system.

Storage of executable code within the records of a database
provides a variety of advantages, some of which are provided
as examples herein. For example, the code may be easier to
manage 1n a database than a file system. The executable code
can be stored with a greater degree of granularity than would
normally be practical using a file system. In some embodi-
ments, executable code 1s stored at a granularity such that
individual functions are located 1n different data records of
the database. In some cases this allows for the executable
code to be managed, modified or otherwise manipulated at the
function level rather than at the file level.

During execution of a computer program, database queries
are used to retrieve the stored code from the database. The
retrieved code 1s then executed external to the database and
supported by the operating system. The code may be executed
one part at a time, each part being separately retrieved from
the database. Queries are optionally used to facilitate condi-
tional program flow. For example, a CASE statement that uses
alabel to direct program flow between a number of alternative
paths may be implemented by a database query that uses the
label as a query parameter.

Compiled code to be executed 1s optionally selected using
a command 1ncluding a command line or universal resource
locator. For example, objects within a universal resource
locator may be used in forming queries on the database of
compiled code. The universal resource locator can thus be
used to select individual data records including particular
code desired by a user. In some embodiments, objects within
a command are used to directly map to data records. Some
embodiments of the mvention include logic configured to
parse a command line or umiversal resource locator. This logic
may be further configured to interpret a grammatical structure
of the command.

Multiple instances of compiled code, source code and/or
other information are optionally stored within the database of
compiled code. These instances may include different ver-
sions, have different functionality, include development and
production versions, be related to different security levels, be
associated with different human languages, and/or the like.
Database management logic and queries executed thereon
may be used to facilitate mnstance management.

The ability to access different parts ol computer program
by accessing mndividual data records 1n which these different
parts are stored may allow for external control or execution of
these different parts. For example, an external scheduling
program may be used to schedule execution of a subset of a
computer program by executing compiled code stored in one
or more of the data records according to a schedule.

US 7,979,450 B2

3

Various embodiments of the mvention include a system
comprising: a computing device; operating system logic con-
figured to run on the computing device and stored on a com-
puter readable media of the computing device; a database
stored on a computer readable media and including data
records configured to store compiled code of a computer
program; database management logic configured for access-
ing the database; and code execution logic configured to
retrieve the compiled code from the data records by executing,
one or more queries on the database management logic, and to
execute the retrieved code on the operating system logic.

Various embodiments of the mvention include a method
comprising: receving a request to execute a computer pro-
gram; executing a first query to identily a first database
record, of a database, 1n which a subset of compiled code of
the computer program 1s stored. retrieving first code from the
identified first database record as a result of the first query;
providing the retrieved first code to an operating system for
execution; generating a second query based on a result of the
execution of the retrieved first code; using the generated
second query to identily a second database record, of the
database, 1n which compiled code of the computer program 1s
stored; retrieving the compiled code from the second database
record as a result of the second query; and providing the
retrieved compiled code to the operating system for execu-
tion.

Various embodiments of the imnvention include a method
comprising: receving source code of a computer program,
the source code comprising a plurality of functions; compil-
ing the plurality of functions, the compiled functions being
configured for execution on an operating system; storing each
of the compiled plurality of functions 1n a separate database
record; and indexing each of the separate database records
using an identifier of the function stored in the database
record, the 1dentifiers being configured to select members of
the plurality of functions according to program flow logic.

Various embodiments of the mvention include a system
comprising: a computing device; a database stored on a com-
puter readable medium and including data records configured
to store compiled code of a computer program; database
management logic configured to access the database; code
execution logic configured to retrieve the compiled code from
the data records by executing one or more queries on the
database management logic, and to execute the retrieved code
on the operating system logic; and command interpretation
logic stored on a computer readable medium and configured
to generate the one or more queries by interpreting a com-
mand.

Various embodiments of the mvention include a method
comprising: receiving a command comprising a command
line or a universal resource locator; parsing the command to
generate a plurality of database queries; retrieving compiled
code from a plurality of data records within a database using
the plurality of database queries, different parts of the com-
piled code being stored in different members of the data
records; and executing the retrieved compiled code external
to the database in response to recerving the command.

Various embodiments of the mvention include a method
comprising: reading a first object within a received command
line or umiversal resource locator; identifying the first object
as a predefined prefix configured to characterize types of one
or more other objects within the recetved command line or
universal resource locator; reading a second object with the
recerved command line or universal resource locator; and
identifying the second object as a map to a data record within
a database, the data record including compiled code config-

10

15

20

25

30

35

40

45

50

55

60

65

4

ured to be executed in response to recerving the recerved
command line or universal resource locator.

Various embodiments of the invention include a system
comprising: a computing device; operating system logic con-
figured to execute computer programs on the computing
device; a database stored on a computer readable medium and
including a first data record, a second data record and a third
data record; code management logic configured to store a first
compiled code in the first data record, to store a second
compiled code 1n the second data record and to store a third
data record 1n the third data record, the first compiled code
and the second compiled code comprising different parts of a
computer program, the second compiled code and the third
compiled code comprising different instances of a part of the
computer program; database management logic configured to
access the database; and code execution logic configured to
select one of the different instances of the compiled code and
to retrieve the selected instance of the compiled code from the
data records by executing one or more queries on the database
using the database management logic, and to execute the
retrieved istance on the operating system logic.

Various embodiments of the invention comprise a coms-
puter readable medium having stored thereupon: logic con-
figured to receive a code of a computer program; logic con-
figured to divide the code into a plurality of parts; logic
configured to store the plurality of parts, each 1n a separate
record of a database; logic configured to modily a member of
the plurality of parts to produce a modified instance of the
member from an original instance of the member; logic con-
figured to store the modified instance 1n the database; and
logic configured to alternatively select the original instance or
the modified instance using a database query.

Various embodiments of the invention include a method
comprising: recerving a code of a computer program; divid-
ing the code into a plurality of parts; storing the plurality of
parts, each in a separate record of a database; modifying a
member of the plurality of parts to produce a modified
instance of the member from an original instance of the mem-
ber; storing the modified instance in the database; alterna-
tively selecting the original instance or the modified instance
using a database query; and optionally executing the selected
instance.

Various embodiments of the invention include a system
comprising: a computing device configured to execute a com-
puter program using operating system logic; a database stored
on a computer readable media and including data records
configured to store compiled code of the computer program
as separate parts; database management logic configured for
accessing the database; and scheduling logic external to the
computer program and configured to request execution of a
subset of the separate parts on the computing device accord-
ing to a schedule.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a computing system, according to various
embodiments of the invention.

FIG. 2 illustrates a data structure, according to various
embodiments of the invention.

FIG. 3 1llustrates a distributed computing system, accord-
ing to various embodiments of the mvention.

FIG. 4 illustrates methods of executing a computer pro-
gram, according to various embodiments of the invention.

FIG. 35 1llustrates methods of creating and moditying a
computer program, according to various embodiments of the
ivention.

US 7,979,450 B2

S

FIG. 6 illustrates a method of interpreting a command
using the computing system of FIG. 1, according to various

embodiments of the invention.

FI1G. 7 1llustrates a method of parsing a command, accord-
ing to various embodiments of the invention.

FI1G. 8 1llustrates a method of storing multiple instances of
computing code, according to various embodiments of the
invention.

DETAILED DESCRIPTION

In various embodiments, the mnvention includes a comput-
ing device on which a computer program 1s stored within a
database, systems and methods of storing and modifying the
computer program, systems and methods of executing the
computer program, and other features discussed herein. The
stored computer program includes compiled code as well as
optionally data, scripts, mark-up language, images, source
code, or the like. The computer program 1s optionally stored
at a granularity wherein individual functions are store 1n
separate data records. The computer program 1s executed by
retrieving the stored compiled code from the database at the
time of execution. In some instances the computer program 1s
part of an internet based application configured to be
accessed, modified and/or executed though a browser.

The compiled code 1s object code or byte code that has been
parsed and converted from a human-readable source code
form so as to be more elliciently executed by a software
interpreter. Byte code may be executed by a virtual machine
(e.g., interpreter) or 1t may be further compiled to machine
code. Using byte code a computer program may be executed
in two phases, first compiling source code into byte code, and
then passing the byte code to a virtual machine. Such virtual
machines are portable and exist for popular programming,
languages such as C, Java, Python, PHP (Hypertext Prepro-
cessor), Forth and Tcl (Tool Command Language). Other
examples of byte code include code of the BCPL program-
ming language, p-code of UCSD Pascal, Scheme 48, CLISP,
CMUCL, Microsoit .NET Common Intermediate Language,
among others. Object code 1s a representation of source code
that has been generated by a compiler or assembler. This code
may include binary mstructions (machine code), data for use
by the code, program symbols, relocation information,
debugging information, and, or the like. The compiling of
object code or byte code typically includes performing syntax
checks on source code and parsing the source code atleast one
time to generate the object or byte code.

FIG. 1 1llustrates a Computing System 100, according to
various embodiments of the invention. Computing System
100 1s configured for the preparation, storage and/or execu-
tion of computer programs. As 1s further described herein,
Computing System 100 1s optionally a distributed system
comprising a plurality of discrete devices configured to com-
municate together. Computing System 100 comprises at least
one Computing Device 110. Computing Device 110 includes
hardware such as a processor, memory and input/output con-
figured to execute a computer program. In various embodi-
ments Computing Device 110 comprises a server, a personal
computer (PC), a workstation, a portable computing device,
or the like.

Computing Device 110 1s optionally connected to other
computing devices via a Network 120. Network 120 may
include the internet, a wide area network, a local area net-
work, or the like. For example, in some embodiments Com-
puting Device 110 includes a server configured to execute a
computer program, the output of which 1s communicated over
the internet and presented to a user within a browser. Network

5

10

15

20

25

30

35

40

45

50

55

60

65

6

120 may also be configured to facilitate communication
between various distributed elements of Computing System
100.

Computing System 100 turther comprises Operating Sys-
tem Logic 130. Operating System Logic 130 1s optionally
stored on a computer readable media within Computing
Device 110 and 1s configured to run on Computing Device
110 so as to support the execution of object code or byte code
on Computing Device 110. Operating System Logic 130 1s
optionally further configured to support a file system on Com-

puting Device 110. Operating System Logic 130 may
include, for example, LINUX, UNIX, BSD Unix, Mac OS X,

HPUX, Solaris, Microsoit Windows, or the like.

Computing System 100 further comprises a Database 140.
Database 140 1s typically a relational database stored on
computer readable media and may be stored on Computing
Device 110 or on some other computing device within Com-
puting System 100. Database 140 comprises data records
configured to store compiled code of a computer program.
Data records within Database 140 are optionally also config-
ured to store data on which the computer will operate, con-
figuration data related to the computer program, non-com-
piled computing 1nstructions, and/or the like. For example,
non-compiled computing instructions stored 1n data records
of Database 140 may include scripts, mark-up language
instructions, source code, code configured to be interpreted 1n
a text format, or the like. Compiled and non-compiled com-
puting instructions may be stored 1n the same and/or different
data records. In some embodiments, Computing System 100
comprises an instance of Database 140 configured to store
compiled code and a similar database configured to store
related source code. The logical division of compiled code
among diflerent data records may be similar to the division of
source code among database records. Further details of Data-
base 140 are described elsewhere herein, for example with
respect to FIG. 2.

Database 140 1s typically managed by Database Manage-
ment Logic 150 installed on the same computing device as
Database 140. Database Management Logic 150 1s config-
ured to access (e.g., read or write) records within Database
140 using queries. Database Management Logic 150 may
also be configured to control access to Database 140, to define
tables of data records within Database 140, to log operations
on Database 140, and/or to perform other functions com-
monly available from database management tools. Database
140 optionally 1s configured to store compiled code of more
than one computer program.

Computing System 100 further includes Code Execution
Logic 160. Code Execution Logic 160 is configured to
retrieve the compiled code from the data records by executing
one or more queries through Database Management Logic
150, and to execute the retrieved code using Operating Sys-
tem Logic 130. Code Execution Logic 160 may be stored on
Computing Device 110 or on some other computing device
within Computing System 100.

More specifically, Code Execution Logic 160 1s configured
to formulate queries that are configured to retrieve a next
required stored piece of compiled code. For example, when a
computer program 1s first executed, Code Execution Logic
160 may be used to formulate a query configured to 1dentily
a data record within Database 140 that includes code of an
entry point of the computer program. This query may include
an 1dentifier of the program as well as a parameter indicating
that the entry point 1s required. The results of this query
comprise the entry point code which 1s then passed to Oper-
ating System Logic 130 for execution. Code Execution Logic
160 1s then used to formulate a second query configured to

US 7,979,450 B2

7

retrieve the next code to be retrieved from Database 140 for
execution on Operating System Logic 130. The second query
may be formulated after the first query 1s formulated and/or
may be formulated after the first code 1s executed.

The second query may be formulated shortly after the first
query if the program flow following the code retrieved by the
first query 1s known. The program tlow 1s the order 1n which
code will be executed. Program flow may be varied using, for
example, conditional branching statements within the com-
puter program. These conditional branching statements
include, for example, IF statements, WHILE statements,
CASE statements, or the like. If the computer program
includes a conditional branching statement, the contents of
the second query may be dependent on results of executing,
the code retrieved using the first query. In some embodiments,
therefore, 1t may not be possible to formulate the second
query until after the code of the first query 1s finished execut-
ng.

Sometimes conditional branching statements include a
label to which program flow should jump. In systems of the
prior art, this label may be converted to a pointer. In some
embodiments, the label 1s used as a parameter 1n the second
query. Within the query, this label 1s used by Data Manage-
ment Logic 150 to identify the data record in which the next
code to be executed 1s stored. As a result of this feature, the
querying capabilities of Database Management Logic 150
may be used to control program flow within the executed
program. This may result in several advantages. For example,
a new option (program flow destination) may be added to a
conditional branching statement by adding an appropriate
data record to Database 140 and indexing the added data
record using a label to be included 1n a query by Code Execu-
tion Logic 160. In various embodiments, parameters included
in queries are recerved by Code Execution Logic 160 from a
user, from a command line, from a configuration file, from an
examination of available hardware, retrieved from a database,
web request data, and/or another computer program.

Code Execution Logic 160 may be configured to formulate
and execute further queries, following the second query, hav-
ing similar characteristics. This process may be repeated until
program termination.

Computing System 100 optionally further includes Code
Compilation Logic 170 configured to generate the compiled
code from source code. Code Compilation Logic 170 1is
optionally a standard compiler configured for compiling
source code to byte or object code. Code Compilation Logic
170 1s alternatively a customized compiler configured to com-
pile source code to byte or object code, and to output the
source code 1n a piecemeal form including pieces of compiled
code that are of appropriate scope for storage 1n Database
140. For example, Compilation Logic 170 may divide the
compiled code 1nto parts at the function (procedure) level, a
functional level, by class defimition, or into other logical ele-
ments. In some embodiments, the compiled code 1s divided
into parts based on program flow within the computer pro-
gram. In these embodiments, the compiled code may be
divided at points where jumps to labels within the code are
made. In some embodiments, Code Compilation Logic 170 1s
configured to automatically compile recerved source code
and then store the compiled code 1 Database 140. Code
Compilation Logic 170 may be stored 1n Computing Device
110 or some other computing device of Computing System
100. In some embodiments, Code Completion Logic 170 1s
configured to store definition code for a class 1n a data record,
or alternatively store each class method of a class 1n a separate
data record.

10

15

20

25

30

35

40

45

50

55

60

65

8

Computing System 100 optionally further includes Code
Management Logic 180 configured for moditying and other-
wise manipulating the compiled code. In some embodiments
Code Management Logic 180 1s configured for a user to
access source code, retrieve the accessed source code, edit the
source code, compile the source code using Code Compila-
tion Logic 170, and/or store the compiled source code in
Database 140. Code Management Logic 180 typically uses
Database Management Logic 150 for accessing, retrieving,
and storing compiled code 1 Database 140. Database Man-
agement Logic 150 optionally further uses Database Manage-
ment Logic 150 (or an instance thereot) to access source code
stored 1n Database 140 or another database.

Code Management Logic 180 1s optionally configured for
use within a web browser. For example, Code Management
Logic 180 may be configured to communicate with Database
Management Logic 150 and/or Code Compilation Logic 170
via the internet. In some embodiments, Code Management
Logic 180 1s configured to access both compiled code and
source code using one or more instances of Database Man-
agement Logic 150. For example, 11 the source code 1s stored
in a database, Code Management Logic 180 may use queries
to access this source code. The source code may be stored in

a single record or stored 1n multiple records 1n a piecemeal
fashion. In embodiments wherein the source code 1s stored 1n
multiple records, Code Management Logic 180 1s optionally
configured to either present one piece of source code to a user
at a time or several pieces of source code to a user at the same
time. When several pieces of source code are presented to the
user at the same time, the results of quenies to the database
including the source code may be appended together such that
the source code 1s presented as a continuous body of human-
readable text. Code Management Logic 180 1s optionally
configured to present the source code to a user within an
editing environment so that the source code can be modified
by the user.

If the source code 1s edited, Code Management Logic 180
1s configured to store the edited source code. This storage may
be 1n a file or 1n a database. Code Management Logic 180 1s
turther configured to compile the edited source code and store
the compiled source code in Database 140. The source code
may be compiled in 1ts entirety or 1n a piecemeal fashion. For
example, 11 only one piece of source code was retrieved from
a database and edited, then only this piece of source code may
be recompiled and stored, 1n the compiled form, 1n Database
140.

Computing System 100 optionally further includes Com-
mand Interpretation Logic 190 configured to interpret a
received command. Command Interpretation Logic 190 may
be stored on a computer readable media within Computing
Device 110 and 1s optionally included in Code Execution
Logic 160 and/or Code Management Logic 180. Command
Interpretation Logic 190 1s configured to receive a command
and process this command for execution of executable code.
The received command may include a command line or a
umversal resource locator and typically includes a plurality of
interpretable objects.

Code Management Logic 180 1s optionally configured for
managing different instances of compiled code, source code
or other information discussed herein, within the records of
Database 140. For example, a first version of compiled code
may be stored 1n a first record and a second version of the
compiled code may be stored in a second record. The records
optionally include a field configured for storing information
that can be used to differentiate between the two instances.
This field may include a version 1dentifier, a password, a date,

US 7,979,450 B2

9

a debug flag, a browser i1dentity, a label, a database 1ssued
unique ID (e.g., an 1nteger), a human-readable description,
and/or the like.

In some embodiments, different instances of code difier by
a change made by a user. For example, a user may edit source
code and store the original version in a first record and store
the new version 1n a second record. In some embodiments,
different mstances of code differ in the way they were com-
piled. For example, one instance may include debugging
information for use 1n a development mode and one 1nstance
may lack the debugging information as would be desired in a
production mode. In some embodiments, different instances
of code differ 1n a manner relating to security levels or privi-
leges. For example, different instances may be selected
depending on whether a user 1s logged on, a password, an
identity and/or privileges of a user, a network security proto-
col, an internet protocol address, a MAC address, and or the
like. In some embodiments, different instances of code differ
in the human languages they are associated with. For
example, one instance may be configured to parse english
characters and another instance may be configured to parse
chinese characters. Instances may differ in other types of
functionality, e.g., in how calculations are made, in features
offered to a user, 1n an 1nterface style, 1n browsers they sup-
port, 1n hardware they support, and/or the like.

Code Management Logic 180 1s optionally further config-
ured to manage multiple instances of information other than
code 1n different records of Database 140. For example, dii-
ferent 1nstances of configuration data, style sheets, display
text, may be stored in different records. These instances may
be selected based on available hardware, a browser type, a
preferred human language, and or the like. For example, a
particular 1nstance ol configuration data may be selected
responsive to information recerved regarding available hard-
ware, a target operating system, user preferences, and/or the
like.

In some embodiments, istances of different parts of a
computer program are logically grouped into an instance set.
An 1nstance set 1s a plurality of instances that are configured
to operate together. For example, 11 a computer program
includes a plurality of parts and some of these parts are
modified, the modified parts may be dependent on each other.
Using an original instance of a first part in combination with
a modified instance of a second part may result 1n an error. In
some embodiments, Code Management Logic 180 1s config-
ured to group instances that are modified during the same
event 1nto an 1nstance set. This grouping 1s optionally auto-
matic. The records of Database 140 optionally include a field
configured to store one or more tags identifying membership
in an instance set. An instance may be a member of more than
one instance set. An instance set may be selected using a
prefix or a map, discussed elsewhere herein.

In some embodiments, Code Management Logic 180 1s
configured to use features of Database Management Logic
150 to help manage various 1nstances. For example, an event
logging feature included in Database Management Logic 150
1s optionally used to track instances within Database 140. In
another example, a rollback feature included in Database
Management Logic 150 may be used to restore previous
instances.

The ability to execute, store and manipulate parts of a
computer program at more granular level than 1s possible 1n
the prior art may have numerous advantages. For example, i
two different versions ol a computer program are needed
then, 1 the prior art, then two copies of a source file and an
executable file are kept. If the differences between the ver-
s1ons of the computer program occur 1n just one or two func-

10

15

20

25

30

35

40

45

50

55

60

65

10

tions, then in some embodiments of the ivention multiple
instances of only these functions must be stored.

Some embodiments of the imvention include a Scheduling
Logic 185. Scheduling Logic 1835 1s configured to allow
execution of functions of a computer program according to a
schedule. Scheduling Logic 185 may be used to schedule this
execution on a lfunction-by-function basis. For example,
Scheduling Logic 185 may send a request to Code Execution
Logic 160 to request execution of a particular function stored
in a record of Database 140. This 1s optionally done without
executing any other parts of a computer program of which the
function 1s a part. Scheduling Logic 185 may be executed on
a database server, a web server, a client device, or the like, and
may be executed on a device separate from Database 140 or
Computing Device 110.

Interpretable objects within a command may 1nclude, for
example, a predefined prefix, a map to Database 140, and/or
static values. A predefined prefix 1s an object used to charac-
terize subsequent objects. For example, a predefined prefix
may be used to indicate that the next three objects within the
command should be treated as a map and two values, or some
other combination of objects. An object specified by a pre-
defined prefix may be another predefined prefix. This results
in a hierarchical relationship between objects within the com-
mand. The use of predefined prefixes also allows the com-
mand to be interpreted as a grammatical structure. E.g., a
structure 1n which the interpretation of objects can be depen-
dent on other objects within the command, rather than merely
a static template. In some embodiments, the grammatical
structure allows a command to include phrases of related
objects.

A map object 1s an object that maps to a data record within
Database 140. In various embodiments, a map object includes
an index to a particular data record and/or may be used to
select a plurality of data records. Because a map object maps
to one or more data records within Database 140, the map
object may be used to select particular executable code for
execution. For example, a map object may be passed to Code
Execution Logic 160 for inclusion in a query. The passed map
object may be configured to select one of a plurality of alter-
native functions for execution. In some embodiments, a map
object may also serve as a predefined prefix. For example, a
map object may be used to select data records within Data-
base 140 and also to characterize subsequent objects within a
command. A value object includes a static value such as a
string, character, integer, floating point number, or any other
simple or compound data type. A map object may include
database references that establish a many-to-many relation-
ship between a set of maps and compiled code stored 1n
Database 140. A map object may map to a data record that
includes a stored map object. This stored map object may map
between 1dentifiers and compiled code stored 1n Database
140.

The use of various objects with a command 1s illustrated by
an example using the universal resource locator “http://xse-
vo.com/1temA/1/1itemB/2/edit_production.” This command
includes protocol information “http,” and a string “xsevo-
.com’ convertible to an internet protocol (IP) address. This
command further includes 5 objects that are interpreted by
Command Interpretation Logic 190. These objects may be
interpreted 1n a variety of different ways responsive to any
predefined prefixes that may be included among the objects.

For example, “itemA” may be a predefined prefix that
specifies that one value object should follow, a predefined
prefix that specifies that a value object and a second pre-
defined prefix should follow, or a predefined prefix that speci-
fies that three value objects should follow. The predefined

US 7,979,450 B2

11

prefix may specily the data type of a value object. For
example, “itemA” may specily that the first value object “1”
1s to be treated as an integer and the second value object
“1itemB” 1s to be treated as a string. The objects defined by a
predefined prefix are considered a grammatical phrase of that
predefined prefix.

If the object “itemB” 15 also a predefined prefix it may be
part of the grammatical phrase of “itemA” or the start of
second independent grammatical phrase. When a second pre-
defined prefix 1s part of a grammatical phrase defined by a first
predefined prefix a hierarchical relationship between the pre-
defined prefixes exists. The second predefined prefix and any
objects defined by the second object may be considered
daughters and/or granddaughters of the first predefined pre-
{1x.

In some embodiments a predefined prefix includes a mix-
ture of data type designations and other objects. For example,
a predefined prefix may include a data type designation for
another object within a command and also a static value, a
map, or some another predefined prefix. In one embodiment a
predefined prefix includes a first string type designation, an
integer type designation, a static Boolean, and a map.

Typically, Command Interpretation Logic 190 1s config-
ured to parse a command by considering one object at a time
and treating each object as a function of any previously con-
sidered predefined prefixes. A predefined prefix 1s typically
defined before receipt of a command, for instance, by a user
such as a programmer. Predefined prefixes may be stored in a
location accessible to Command Interpretation Logic 190.
Command Interpretation Logic 190 1s configured to compare
objects within a command with these stored predefined pre-
fixes.

In some embodiments, when an object within a command
1s not recognized as a predefined prefix, and 1s not an object
characterized by a predefined prefix, then the object 1s con-
sidered to be a map. For instance, 1n the example universal
resource locator discussed above the object “edit_produc-
tion” may be a map to a data record within Database 140. As
a map, “‘edit_production” 1s passed to Code Execution Logic
160 where the object 1s used to generate a query. This query 1s
then applied to Database 140 using Database Management
Logic 150. In some embodiments, a map 1s used directly in a
query as a search term. In the example discussed above, the
map “edit_production” may map to compiled code config-
ured for editing source code 1n a production mode. An alter-
natrve map, such as “edit_development” may map to com-
piled code configured for editing source code in a
development mode. The objects “itemA,” “1,” “1temB,” and
“2” could be used to 1dentity the source code to be edited,
version information, access requirements, editor options,
login information, or the like.

In some embodiments, map objects and/or predefined pre-
fixes are of two general kinds. Objects of a first kind are
configured to be used 1n an exact match comparison, while
objects of a second kind are configured to be used as a regular
expression. A regular expression 1s a tlexible means of 1den-
tifying objects, such as text strings. For example, a regular
expression “edit\d” includes a wildcard character “\d”” and
may be used to match text strings “editl”, “edit2”, or the like.
A regular expression may be used 1n a recerved command line
or unmiversal resource locator, 1n a stored predefined prefix, or
in a data record. A regular expression may be contrasted with
an exact expression, which i1s an expression that 1s configured
for making an exact match.

A regular expression may be configured to be compared
with an entire command line or an entire universal resource
locator. Alternatively, a regular expression may be configured

10

15

20

25

30

35

40

45

50

55

60

65

12

to be compared with a subset of a command line or universal
resource locator. For example, a regular expression may be
matched with a single object or a grammatical phrase within
a command. A regular expression 1s optionally used to sepa-
rate an object recerved as part ol a command 1nto two param-
cters. For example, a recerved object “edit6” may be matched
to a predefined prefix “edit\d”. In this case, the “edit” and the
“6” of the received object may be separated and used 1nde-
pendently. Specifically, a map “edit(?P<Id>\d) can be used to
pass a parameter Id=6 to target code when matched against
the string “edit6”. Among other advantages, this may allow
for easy reference to several different versions of a compiled
code to which the “edit” object 1s mapped.

Command Interpretation Logic 190 1s optionally config-
ured for the inheritance of attributes between elements of a
received command. For example, parsing of the command
may be viewed as a parse tree and attributes may be inherited
(up and/or down) this tree. Values in a child object may
override values set 1 a parent object, or vice-versa. For
example, a command comprising/itemA 1temB/edit_produc-
tion,” where 1temA and ItemB are each prefixes and edit_pro-
duction 1s a map, may use the prefixes itemA and 1temB to
cach set one or more parameters which are passed to edit_
production. One or more of the parameters set by itemA may
be overridden by 1itemB. ItemB may override a subset of the
parameters set by itemA.

Command Interpretation Logic 190 1s optionally distrib-
uted among several parts of Computing System 100. For
example, part of Command Interpretation Logic 190 may be
included 1n Code Execution Logic 160 and part of Command
Interpretation Logic 190 may be included 1n Code Manage-
ment Logic 180.

FIG. 2 illustrates a Data Structure 200 as may be included
in Database 140, according to various embodiments of the
invention. Data Structure 200 comprises a plurality of
Records 210, individually labeled 210A, 2108, . . . 210N.
Data Structure 200 may include any number of Records 210.
Each of Records 210 comprises a plurality of Data Fields 220,
individually labeled 220A, 2208, . . . 220N. Each of Records
210 may include more or fewer Fields 220 than 1llustrated 1n
FI1G. 2. These Fields 220 are accessible, readable and writable
using queries executed by Database Management Logic 150.
Typically, several instances of Data Structure 200 are
included in Database 140. Each of Data Structure 200 1s
optionally stored 1n a different file. The order of Data Fields
220 illustrated 1n FIG. 2 may be varied in alternative embodi-
ments.

In an exemplary embodiment, a Field 220A 1s configured
to store a record index value. The index value 1s typically a
unique 1dentifier configured to identity a particular data
record. The index value 1s optionally used as a label to control
program flow. A Field 220B 1s configured to store a piece of
executable code or source code of a computer program. As
discussed elsewhere herein, this code may be stored on a
line-by-line basis, on a function basis, on a functional basis,
on a basis based on program flow, or some other basis for
dividing the computer program into separate pieces.

An optional Field 220C 1s configured to store a data or
function type. This type may be the type of a value (or object)
expected by the code stored 1n Field 220B, or the type of a
value (or object) returned by the code stored 1n Field 220B.

An optional Field 220D 1s configured to store data on
which the code stored 1n Field 220B is configured to operate
on. For example, Data Field 220D may include constants for
use by the stored code.

Records 210 may include a wide variety of additional

fields, represented in FIG. 2 by Field 220N. One or more

US 7,979,450 B2

13

Fields 220N may include fields configured to store: further
labels configured to control program flow, a label (or index
vale) of a subsequent piece of code, a version identifier of the
code stored 1n Field 22B, configuration information, mapping
information, scheduling information, a human readable
description or explanation of the code, organization informa-
tion for an editor, or the like.

Database 140 1s typically stored in one or more tables each
including an mstance of Data Structure 200. These tables are
optionally combined using a JOIN 1nstruction or the like. For
example, 1n some embodiments code 1s store 1n a first data-
base table that includes function types, function names, func-
tion parameters and default data, a second table that includes
source code for each instance of a function, and a third table
that includes compiled byte code (or the like) of each function
instance.

FI1G. 3 1llustrates distributed embodiments of Computing
System 100. In these embodiments Computing System 100 1s
divided into, for example, a Management Server 305 and a
Database Server 310. Management Server 305 includes
Operating System Logic 130, Code Execution Logic 160, and
optionally Code Compilation Logic 170 and Code Manage-
ment Logic 180. Database Server 310 includes Database 140
and Database Management Logic 150. Management Server
305 and Database Server 310 are configured to communicate
with each other through part of Network 120, for example a
Local Area Network 120A. Management Server 305 1is
optionally configured to communicate with more than one
instance ol Database Server 310. Each of these instances may
be configured to support one or more different computer
programs. In some embodiments, one instance of Database
140 1s treated as a master database and other instances of
Database 140, optionally stored on separate devices, are
treated as slave databases. For example, the master database
may be considered the most current state of the data while the
slave databases are reproductions of the master.

Management Server 305 1s further configured to commu-
nicate with one or more Clients 315, referred to herein as
Client 315A, Client 315B, Client 315C, etc. This communi-
cation may be through another part of Network 120, for
example Internet 120B. In some embodiments, Management
Server 303 1s configured to be accessed by users of clients via
an 1mternet Browser 320, e.g., Internet Explorer or Firefox.
This access may include execution ol computer programs
stored 1n Database 140 and/or development and modification
of these computer programs.

FIG. 4 illustrates methods of executing a computer pro-
gram, according to various embodiments of the invention. As
described elsewhere herein, the computer program 1is
executed by retrieving executable code from a database, and
executing this retrieved code on an operating system external
to the database. These methods may be performed using
Computing System 100, optionally 1n response to communi-
cations received from Clients 315. The steps illustrated 1n
FIG. 4 may be performed 1 alternative orders.

In a Recerve Request Step 410 a request to execute a
computer program 1s recerved by Computing System 100.
This request may be received from another computing device,
from a user of Management Server 303 or from a user of one
of Clients 315. In some embodiments the request 1s recerved
via Browser 320, includes a universal resource locator
(URL), and/or 1s communicated via HT'TP, 1s communicated
via TCP/IP, and/or 1s provided using a POST operation. In
addition to information identifying the computer program,
the request optionally includes other data such as security
information, configuration data, version 1nformation,
uploaded file data, an 1image, video, or the like.

10

15

20

25

30

35

40

45

50

55

60

65

14

In an Execute Query Step 4135 a query 1s provided to Data-
base Management Logic 150. This query 1s configured to
retrieve a subset of the compiled code of the computer pro-
gram from one of Records 210 within Database 140. The
query may be a predetermined query or may be configured 1n
response to data recerved as part of the request.

In a Retrieve Code Step 420 the execution of the query
executed 1n Execute Query Step 415 results 1n the retrieval of
a first piece of code from Database 140. This first piece of
code 1s a subset of the code of the computer program. As
discussed elsewhere herein, the retrieved code may be a
single function, a single functional unit, a block of code
between conditional branches 1n a program flow, a single line
ol code, or other division of the total code of the computer
program.

I1 the retrieval of code 1n Retrieve Code Step 420 fails, e.g.,
if the code 1s not available, then 1n an optional Generate Code
Step 425 the compiled code 1s generated from source code
using Code Compilation Logic 170. This generated code 1s
then stored 1n one of Records 210 of Database 140. Generate
Code Step 425 may 1nclude all or a subset of the total code of
the computer program. If all of the code 1s generated, then
different parts of the generated code are stored in different
Records 210.

In an optional Store Compiled Code Step 430 any code
generated 1n Generate Code Step 425 1s stored 1n one or more
Records 210 of Database 140 using Database Management
Logic 150. Retrieve Code Step 420 1s then attempted again.
This storage may occur 1n an original copy of Database 140 or
a cached copy of Database 140. A cached copy 1s optionally
created by Code Execution Logic 160 or other elements of
Computing System 100.

In a Provide Code Step 433, the executable code retrieved
in Retrieve Code Step 420 1s provided to Operating System
Logic 130 for execution. This execution typically i1s not
dependent of Database Management Logic 150. For example,
as illustrated in FIG. 3, Operating System Logic 130 and
Database Management Logic 150 are optionally included on
different computing devices. The code 1s, thus, optionally
executed on Operating System Logic 130 remote from Data-
base Management Logic 150.

In a Generate Query Step 440, a second query 1s generated.
This query 1s configured to retrieve further code of the com-
puter program from Database 140. The second query 1s
optionally based on a result of the execution of the retrieved
first code. For example, the execution of the retrieved first
code may generate a value that determines program flow, e.g.,
the object of a subsequent IF or CASE statement. This value
may then be included 1n the second query as a parameter.

In a Use Query Step 445, the generated second query 1s
used to 1dentify a second of Records 210 of Database 140.
This second of Records 210 may include compiled code of the
computer program, other executable code, non-compiled
code, data, scripts, mark-up language, images, source code,
and/or the like.

In a Receive Code Step 450, executable code 1s received
from the second database record as a result of the second
query. This code 1s received by a computing device including
Operating System Logic 130, for example Management
Server 305. The executable code 1s optionally recerved via
Network 120.

In a Provide Code Step 455, the executable coderecerved in
Receive Code Step 445 1s provided to Operating System
Logic 130 for execution. This execution i1s optionally 1nde-
pendent of Database Management Logic 150, although the
execution may generate a result that 1s later used to access
Database 140 using Database Management Logic 150. As

US 7,979,450 B2

15

such, the Steps Generate Query 440 through Provide Code
455 may be repeated to retrieve and execute multiple pieces of
code from Database 140. This process may continue until the
computer program 1s terminated.

FIG. 5 1llustrates methods of creating and modilying a
computer program, according to various embodiments of the
invention. In these methods source code 1s received and com-
piled. The compiled code is stored 1n an indexed manner in
multiple pieces within Records 210. The method optionally
includes further steps 1n which the source code or other data
are stored, the stored compiled code 1s modified, the Database
Management Logic 150 1s used to provide additional features,
and/or the database computer program 1s provisioned by sup-
plying a copy of Database 140. The steps 1llustrated 1n FIG. 5
may be performed 1n alternative orders.

In a Receive Source Code Step 510, the source code of a
computer program 1s recerved by Computing System 100.
The computer program may be received from a storage
device, from another computing device via Network 120, or
from a user entering text. The received source code typically
includes a plurality of functions.

In a Compile Step 515, the source code received 1n Receive
source Code Step 510 1s compiled using Code Compilation
Logic 170. This step may include generating a single block of
compiled code or generating multiple pieces of compiled
code divided as discussed elsewhere herein. For example,
Code Compilation logic 170 may be used to divide the com-
piled code 1nto pieces that can be separately stored 1n Records
210 of Database 140. For example, in some embodiments,
Code Compilation logic 170 1s used to produce separate
pieces ol compiled code based on functions or program flow
of the source code. The compiled code generated in Compile
Step 315 15 configured for execution on Operating System
Logic 130 and 1s typically in byte code, object code, machine
code, and/or the like.

In a Store Step 520, the compiled code generated 1n Com-
pile Step 515 1s stored in Records 210 of Database 140. Each
piece of the compiled code 1s optionally stored 1n a separate
member of Records 210. If the code was generated in multiple
pieces in Compile Step 515 then these pieces can typically be
stored directly. However, if Compile Step 515 results 1 a
single block of compiled code, then Store Step 520 includes
dividing this block into separate pieces. This division may be
performed using Code Management Logic 180 and typically
includes dividing the code up on one or more of the basis
discussed elsewhere herein.

Store Step 520 optionally includes storing further informa-
tion, 1n addition to compiled code. For example, Store Step
520 may 1nclude storing other executable code, configuration
code, data to be operated on by the code, data type informa-
tion, or any of the other information discussed herein.

In an Index Step 3525, the members of Records 210 1n which
compiled code are stored are indexed. The indexing process 1s
typically performed using Code Management Logic 180 and/
or Database Management Logic 150. The indexing 1s config-
ured for the 1identification and retrieval of the stored compiled
code and optionally other information. Each separately stored
piece ol code1s typically associated with a unique index or set
of indexes. Thus, each piece of code may be 1dentified using
the indexing. In some embodiments, Index Step 525 includes
adding labels (or other identifiers) meaningtul to program
flow to Records 210. For example, a label added in Index Step
525 may 1dentily a piece of code as a program flow destina-
tion following a conditional statement.

In an optional Store Source Step 530, the source code
received 1n Receive Source Code Step 510 1s stored. The
source code 1s optionally stored 1n pieces with the compiled

10

15

20

25

30

35

40

45

50

55

60

65

16

code 1n Database 140, or in pieces in a separate database
having a structure similar to that of Database 140, e.g., where
Field 220 1s used to store source code rather than compiled
code. Alternatively, Store Source Step 530 may include stor-
ing the source code 1n a conventional text file.

In an optional Store Configuration Data Step 335, configu-
ration data 1s stored 1n Database 140. This configuration data
1s configured for providing a user with alternative configura-
tions of the computer program represented by the received
source code. For example, 1n some embodiments, more than
one set of configuration data 1s stored in Database 140, each
set 1n a different data record. A query executed using Data-
base Management Logic 150 may then be used to retrieve a
configuration desired by a user or appropriate for a specific
hardware target, or the like.

In an optional Modity Step 540, compiled code within
Records 210 1s modified. This modification process may
include altering the stored source code or receiving new
source code, compiling the altered or new source code, and
replacing compiled code stored 1n one or more of Records 210
with the new compiled source code. Modity Step 540 may be
performed using Code Management Logic 180 to modify the
source code, Code Compilation Logic 170 to compile the
source code, and Database Management Logic 150 to store
the new compiled code 1n one or more of Records 210.

Modity Step 540 1s optionally performed on one piece of
the compiled code at a time. For example, the modification
may be made to compiled code stored 1n only one or a subset
of Records 210. Other compiled code, of the same computer
program, need not necessarily be recompiled. As such, the
modification and recompiling may be limited to a single piece
of code separated from other code on the basis of function,
functionality, program tlow, or the like. In some embodiments
Code Compilation Logic 170 1s configured to operate 1n a
production mode and a development mode. A greater amount
of the compiled code 1s recompiled 1n the production mode
relative to the development mode, after modification of the
code.

In an optional Version Management Step 543, version con-
trol of the stored compiled code, and other parts of the com-
puter program are performed using logging capabilities of
Database Management Logic 150. For example, 1n some
embodiments, Database Management Logic 150 includes a
logging feature configured to log changes in Database 140.
This feature may be used to track changes 1n the computer
program. Likewise, Database Management Logic 150 may
have a rollback feature configured to return the database to a
previous state. This feature may be used to restore previous
versions of code. In some embodiments, Database Manage-
ment Logic 150 1s configured to keep multiple copies of
Database 140 or individual Records 210 and to track these
copies using version information.

In an optional Control Access Step 530, access control
features of Database Management Logic 150 are used to
control access to the computer program or features thereof.
For example, Database Management Logic 150 may be con-
figured to control access to particular Records 210 or sets
thereof within Database 140 (or control access to Database
140 1n 1ts entirety). This access control can be used to prevent
a user from accessing pieces ol compiled code associated
with specific functionality, specific data, images, or any other
aspect ol the computer program.

In an optional Provision Step 553, the computer program 1s
provisioned to a computing device by providing a copy of
Database 140 to that computing device. This provisioning
may occur over Network 120. The step takes advantage of the
fact that, 1n some embodiments, Database 140 1s portable.

US 7,979,450 B2

17

FIG. 6 illustrates a method of interpreting a command
using the computing system of FIG. 1, according to various
embodiments of the invention. The interpreted command may
include a command line or a universal resource locator. While
the steps 1llustrated in FIG. 6 are discussed 1n reference to
compiled code, they may also be performed 1n relation to
other kinds of executable code and/or data.

In an optional Define Step 610, a prefix 1s predefined. This
predefinition may be performed by a programmer or system
manager, for example, using Code Management Logic 180,
Database Management Logic 150 or an editor. The predefi-
nition typically includes specification of a label identifying,
the predefined prefix, and one or more data types character-
1zing objects. For example, a predefined prefix may include
“member; string; integer; prefix”. This predefined prefix
includes a label “member” configured to identily the pre-
defined prefix and match this label to the predefined prefix
when the label occurs 1n a command. This predefined prefix
turther comprises data types “string’” and “integer” which, 1n
some embodiments, are configured to indicate that the next
two objects should be treated as a string and an integer,
respectively. This predefined prefix further comprises a type
“prefix”. This type 1s optionally used to indicate that an object
should be treated as a daughter predefined prefix. In various
embodiments, a predefined prefix may include a wide variety
ol alternative syntaxes, types, and the like.

In various embodiments, a prefix may include one or more
of the following: a) a unique 1dentifier, e.g., an integer, for the
prefix; b) a string used to match the prefix; ¢) and an 1dentifier,
¢.g., an integer or a pointer, of a parent prefix; d) a string that
identifies possible objects, e.g., values, to be expected within
a command and variables to assign the values;) a string that
identifies static values to be passed to executable code and
variables of the executable codeto assign these values; 1) an
enable/disable flag; g) a human readable name of the prefix;
h) a key to an external database; 1) a style identifier; an
application identifier configured to identily one or more
application to which the prefix belongs; 1) a configuration
parameter; k) information (e.g., an imnternet protocol address)
relating to websites on which the prefix 1s available and/or
may be used; and 1) a human readable description of the
prefix. The predefined prefixes are stored 1n a location acces-
sible to Command Interpretation Logic 190, optionally 1n
Database 140.

In an optional Provision Step 615, a computer program 1s
provisioned on a computing device such as Database Server
310 by transferring Database 140 and a set of predefined
prefixes to the computing device.

In a Recerve Step 620, a command 1s recerved by Comput-
ing System 100. This command includes a plurality of
objects, for example, a predefined prefix, a value, a map,
and/or the like. Typically the command includes a command
line or a universal resource locator, or the like. In some
embodiments the command 1s recerved via a browser and/or a
network such as Network 120B.

In a Parse Step 625, the command received in Recerve Step
620 1s parsed using Command Interpretation Logic 190. As
discussed elsewhere herein, this parsing can include 1dentifi-
cation of predefined prefixes, maps, values, and/or other
objects within the received command. Parse Step 6235
includes generation of one or more queries, using Code
Execution Logic 160, based on one or more objects identified
in Parse Step 625. In some embodiments a map 1dentified
within the recerved command 1s included as a search term in
one of the queries.

In a Retrieve Step 630, compiled code is retrieved from a
Data Record 210 of Database 140 using the one or more

10

15

20

25

30

35

40

45

50

55

60

65

18

queries generated 1n Parse Step 625. This retrieval 1s typically
performed using Database Management Logic 150. For
example, in some embodiments, different parts of the com-
piled code of a computer program are retrieved from different
members of Data Records 210 using the queries generated in
Parse Step 625. Parse Step 625 and/or Retrieve Step 630 may
be performed 1n response to receiving an 1nitial request from
a user, or may be performed before receiving the request. If
performed before recerving the request, the compiled code 1s
cached for execution when the request 1s recerved.

In an Execute Step 635, the compiled code retrieved 1n
Retrieve Step 630 1s executed, for example using Operating
System Logic 130. This execution 1s normally external to
Database Management Logic 150. For example, the execu-
tion may 1nclude passing the compiled code from Database
Management Logic 150 to Operating System Logic 130
where 1t 1s executed on Computing Device 110.

FI1G. 7 illustrates a method of parsing a recerved command,
according to various embodiments of the invention. This pro-
cess 1s typically performed using Command Interpretation
Logic 190.

In a Read Object Step 710 a first object within a received
command 1s read. In various embodiments the command 1s
read from right to left or left to right. Objects withun the
command may be separated by a /7, *\”, “”, %" or other
suitable character.

In an Identity Step 715 the object read 1n Read Object Step
710 1s 1dentified as a value, predefined prefix and/or map.
Predefined prefixes are identified by comparing the read
object with a set of predefined prefixes stored 1n Computing
System 100. This storage 1s normally prior to the receipt of the
command. In some embodiments, the read object 1s by default
identified as a map 11 not 1dentified as either a value object or
a predefined prefix. If a predefined prefix has already been
identified (for example 1n a prior rendition of Identity Step
715), then Identity Step 715 may be responsive to this pre-
defined prefix. For example, 1f the predefined prefix charac-
terizes a next object as a value object and the read object 1s the
next object, then the object 1s 1dentified as a value object.

In an optional Check Syntax Step 720, the syntax of the
read object 1s checked. For example, 11 the object 1s identified
as a character or a tfloating point value, the object 1s checked
for having a syntax conforming to these types, respectively.
Check Syntax Step 720 1s optionally performed at other times
during the method illustrated in FIG. 7. Check Syntax Step
720 may be applied on an individual basis to objects or
grammatical phrases within the recerved command. As such,
Check Syntax Step 720 may be repeated after further objects
are read from the command.

In a Read Next Object Step 7235, a next object within the
received command 1s read. Typically, this next object will be
one adjacent to the previously read object 1n the command.

In a Process Next Object Step 730, the object read in Read
Next Object step 725 1s processed using Command Interpre-
tation Logic 190. This processing includes identification of
the object and may be dependent on a previously read prede-
termined prefix. For example, if the object 1dentified 1n Iden-
tify Object Step 715 1s a predefined prefix that characterizes
the next object as a character, then in Process Next Object
Step 730 the object read 1n Read Next Object Step 725 1s
automatically identified as a character. Read Next Object Step
725 and Process Next Object Step 730 are typically repeated
until the entire received command 1s processed.

In an optional Use Map Step 7335 a map object 1dentified in
an Identity Step 715 or Process Next Object Step 730 1s
passed to Code Execution Logic 160 for use 1n generating a
database query. As discussed elsewhere herein, this map may

US 7,979,450 B2

19

be used to select executable code, such as compiled code,
from within Database 140. The map object may be passed to
Code Execution Logic 160 1n combination with other objects
identified in the command. For example, the map object may
be combined with a text string, an integer, or some other type
of object and the combination may be used by Code Execu-
tion Logic 160 to generate the database query. Use Map Step
735 may occur at other times within the method 1llustrated by
FIG. 7. For example, use Map Step 735 may be performed
once a map object 1s 1dentified and then repeated when a
second map object 1s 1dentified. In Use Map Step 735 com-
piled code identified by a map object may be executed or may
be passed as a parameter to another piece of compiled code.

FIG. 8 1llustrates a method of storing multiple instances of
computing code, according to various embodiments of the
invention. In this method parts of a computer program are
stored 1n separate records of Database 140, one or more of
these parts are modified to create modified nstances of the
parts, Code Management Logic 170 1s then used to select
between the modified or original instances at a time of execu-
tion and/or provisioning of the computer program.

In a Receive Code Step 810, computing code 1s received by
Computing System 100. The received code may include
source code, executable code, configuration data, and/or
other information. In some embodiments, the code 1s received
as a single file, for example via Network 120. Alternatively,
the code may be recerved 1n a piecemeal fashion, for example
as 1t 1s typed 1n by a user. In some embodiments, the code 1s
received via an editing interface presented in a browser.
Receive Code Step 810 may occur over time.

In a Divide Code Step 820, the code received 1n Receive
Code Step 810 1s divided into separate parts for storage 1n
Records 210, each part being stored 1n a different member of
Records 210. This step may include parsing the code to deter-
mine division points. As discussed elsewhere herein, code
may be divided using a variety of approaches including but
not limited to dividing code by functions (procedures), by
class definition, by statement hierarchy, by line, by program
flow branching, or the like. For example, 1n some embodi-
ments each function of the computer program 1s stored 1n a
separate member of Records 210. In some embodiments, the
highest statement hierarchy within a function is used to divide
parts of the received code. For example, the use of WHILE
statements, CASE statements, or IIF statements may create a
hierarchical structure wherein sub-statements within one of
these statements are at a lower hierarchical level. The
received code may be divided at the hierarchical level includ-
ing the WHILE, CASE and IF statements.

In some embodiments, the division of code in Divide Code
Step 820 1s under the control of a user. For example, a user
may specily through and editor, or similar interface how code
1s to be divided. This specification may be facilitated by
placement, by a user, of markers within source code. Code
Management Logic 180 is optionally configured to use these
markers to 1dentity places wherein the source code may be
divided. Further, Code Compilation Logic 170 1s optionally
configured to use these markers while compiling the source
code to divide the resulting compiled code. The markers are
optionally placed within text that would otherwise be inter-
preted as a comment within the programming language of the
source code.

In some embodiments the recerved code 1s divided depend-
ing on how 1t 1s recerved. For example, 11 the code 1s recerved
as parts 1n a piecemeal fashion, itmay be divided according to
these parts.

Source code and compiled code generated from the source
code may or may not be stored using the same divisions. For

10

15

20

25

30

35

40

45

50

55

60

65

20

example, the source code may be divided and the compiled
code may be divided at the same points as the source code.
Alternatively, the source may not be divided, e.g., it may be
stored as a single file, and compiled code resulting from
compilation of the source code may be divided. Finally, 1n
some embodiments the source code 1s divided but the com-
piled code1s divided differently. This may occur, for example,
where the division 1s dependent on program flow determined
during the compilation process.

In a Store Code Step 830, the code received 1n Receive
Code Step 810 and divided 1in Divide Code Step 820 1s stored
within Database 140. Each divided part of the code 1s stored
in a separate member of Records 210. Typically, the storage 1s
accomplished using Database Management Logic 150 and
may occur over Network 120. Receive Code Step 810, Divide
Code Step 820 and Store Code step 830 are optionally per-
formed more than once to process multiple parts of a com-
puter program.

In a Modily Code Step 840, a modified instance of one or
more parts of the code stored 1n Store Code Step 830 1s
produced. This modification may include editing of source
code, replacement or recompiling of compiled code, and/or
the like. For example, 1n some embodiments, source code
stored 1n Store Code Step 830 1s retrieved from Database 140
using a query. The source code 1s then edited by a user,
optionally via a browser interface. In some embodiments,
Modity Code Step 840 includes modifying compiled code.
For example, source code may be modified and then recom-
piled to generate modified compiled code. The same source
code may be compiled 1n a different manner, e.g., with dii-
terent compiler settings, to generate modified compiled code.

In an optional Compile Code Step 850 source code modi-
fied 1n Modify Code Step 840 1s compiled using Code Com-
pilation Logic 170. Compile Code Step 8350 1s unnecessary
when the modified code 1s already 1n a compiled form, or
when a compiled form of the code 1s not needed.

In a Store Modified Code Step 860, the modified code
produced in Modity Code Step 840, and optionally Compiled
in Compile Code Step 850, 1s stored in one or more of Records
210. The modified code 1s optionally stored as a separate
instance of the original code. Store Modified Code step 860
may include setting a value 1n a field of Records 210 to
distinguish different instances of the code. The storage is
typically performed using Database Management Logic 150.

In a Select Instance Step 870, a selection among the dif-
ferent instances of the code, e.g., the original instance and the
instance produced in Modily Code Step 840, 1s made. This
selection may be 1n response to a request to access and/or
execute the code. Optionally, the selection 1s made using a
database query and Database Management Logic 150. The
selected mstance 1s optionally executed using Operating Sys-
tem Logic 130.

Several embodiments are specifically illustrated and/or
described herein. However, 1t will be appreciated that modi-
fications and variations are covered by the above teachings
and within the scope of the appended claims without depart-
ing from the spirit and intended scope thereol. For example,
the various logic discussed herein may comprise hardware,
firmware and/or soltware stored on a computer readable
media. Different parts of a computer program are optionally
stored within different tables of Database 140. For example,
where a computer program comprises multiple source {files
and/or object files, each of these may be stored in a separate
table. The compiled code discussed herein 1s optionally con-
figured for execution within a browser. The various embodi-
ments discussed herein may be applied to web or non-web
applications. The compiled code discussed here may be

US 7,979,450 B2

21

executed on a virtual machine. Likewise, various components
of Computing System 100 may include virtual machines.
Objects within a recerved command may be used to retrieve
information other then compiled code from Database 140, for
example, style sheets, static data, or the like. The term pre-
defined prefix discussed herein may alternatively be a suilix.
Various embodiments of the mnvention comprise a graphical
user interface configured to specily map objects, prefixes, or
the like. For example, a graphical user interface may be used
for selecting target code to be executed according to a given
map.

The embodiments discussed herein are illustrative of the
present invention. As these embodiments of the present inven-
tion are described with reference to illustrations, various
modifications or adaptations of the methods and or specific
structures described may become apparent to those skilled 1n
the art. All such modifications, adaptations, or variations that
rely upon the teachings of the present invention, and through
which these teachings have advanced the art, are considered
to be within the spirit and scope of the present mvention.
Hence, these descriptions and drawings should not be con-
sidered 1n a limiting sense, as it 1s understood that the present
invention 1s in no way limited to only the embodiments 11lus-
trated.

What 1s claimed 1s:

1. A system comprising:

a computing device;

operating system logic configured to execute computer
programs on the computing device;

a database stored on a computer readable medium and
including a first data record, a second data record and a
third data record;

code management logic configured to store a first compiled
code 1n the first data record, to store a second compiled
code 1n the second data record and to store a third data
record 1n the third data record, the first compiled code
and the second compiled code comprising different parts
of a computer program, the second compiled code and
the third compiled code comprising different instances
of a part of the computer program;

10

15

20

25

30

35

22

database management logic configured to access the data-

base; and

code execution logic configured to select one of the differ-

ent 1nstances of the compiled code and to retrieve the
selected 1nstance of the compiled code from the data
records by executing one or more queries on the data-
base using the database management logic, and to
execute the retrieved 1nstance on the operating system
logic.

2. The system of claim 1, wherein the different instances of
the compiled code comprise different versions of the com-
piled code.

3. The system of claim 1, wherein the different instances
comprise compiled code having different functionality.

4. The system of claim 1, wherein the different instances
comprise a development version and a production version of
the part of the compiled code.

5. The system of claim 1, wherein the different instances
are associated with different security levels.

6. The system of claim 1, wherein the different instances
are associated with different human languages.

7. The system of claim 1, wherein the database further
comprises data records configured to store different instances
of application configuration data.

8. The system of claim 1, wherein the code execution logic
1s further configured for a user to select among different
instances of compiled code at a function level.

9. The system of claim 1, wherein the code execution logic
1s configured for the user to select among the different
instances of compiled code using a command line or universal
resource locator.

10. The system of claim 1, wherein the code execution
logic 1s configured to retrieve an 1nstance set based on a prefix
Or map.

11. The system of claim 1, wherein the executed retrieved
code comprises a {irst function of the computer program
compiled on a first date and a second function of the computer
program compiled on a second date, the first date being dif-
ferent from the second date.

% o *H % x

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,979,450 B2 Page 1 of 1
APPLICATION NO. . 12/210629

DATED July 12, 2011

INVENTOR(S) : Dustin Kurt Adler

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 21:

Claim 1, Line 35 and 36, delete to store a third “data record” 1n the third data record... and insert
...to store a third --compiled code-- in the third data record.

Signed and Sealed this

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

