US007975130B2
a2y United States Patent (10) Patent No.: US 7,975,130 B2
Alexander et al. 45) Date of Patent: Jul. §, 2011
(54) METHOD AND SYSTEM FOR EARLY 6,108,770 A * 82000 Chrysosetal. 712/216
INSTRUCTION TEXT BASED OPERAND 22‘;‘332% g; gggg; Ehlliimakonldﬂ et al.
STORE COMPARE REJECT AVOIDANCE Eocl s BRI 39009 Slfuﬁf:tt 1
| 6,912,648 B2* 6/2005 Hammarlund et al. 712/219
(75) Inventors: Khary J. Alexander, Poughkeepsie, NY 6,931,515 B2 {/2005 Ross et al.
(US); Fadi Y. Busada, Poughkeepsie, 7,062,638 B2 6/2006 Yoaz et al.
NY (US); Bruce €. Glame, TAA1107 B2% 102008 Hamesond et a 712/225
- : . ,, : ammond et al.
Poughkeepsie, NY (US); David S. 2003/0196075 Al* 10/2003 Akkaryetal. 712/218
Hutton, Tallahassee, FL (US); 2003/0217251 Al* 11/2003 Jourdan et al. 712/225
Chung-Lung Kevin Shum, Wappingers 2007/0288726 Al* 12/2007 Luick .oovveeceeecerennnn, 712/216
Falls, NY (US)
OTHER PUBLICATIONS
(73) Assignee: Internati(.mal Business Machines 7/ Architecture, Principles of Operation, Sixth Edition, Apr. 2007,
Corporation, Armonk, NY (US) Publication No. SA22-7832-05, copyright IBM Corp. 1990-2007,
pp. 1-1218.

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 * cited by examiner

U.S.C. 154(b) by 528 days.
Primary Examiner — Eric Coleman

(21) Appl. No.: 12/034,042 (74) Attorney, Agent, or Firm — Cantor Colburn LLP; John

(22) Filed: Feb. 20, 2008 Campbell
(57) ABSTRACT

A method and system for early 1nstruction text based operand
store compare avoidance 1n a processor are provided. The

(65) Prior Publication Data
US 2009/0210675 Al Aug. 20, 2009

(51) Int.Cl system 1ncludes a processor pipeline for processing instruc-
GogF 5')/3 12 (2006.01) tion text 1n an 1nstruction stream, where the instruction text
(52) U.S.Cl | 712/225- 712/219 includes operand address information. The system also
T ’ includes delay logic to monitor the mstruction stream. The

(58) Field of Classification Search None

delay logic performs a method that includes detecting a load
instruction following a store instruction in the instruction
stream, comparing the operand address mmformation of the
store mstruction with the load nstruction. The method also
US PATENT DOCUMENTS includes delaying the load instruction in the processor pipe-
line 1n response to detecting a common field value between

See application file for complete search history.

(56) References Cited

g’ggg’jgg i . liﬁggg g;ﬁ:eeilal* 1253 the operand address information of the store instruction and
5781,752 A * 7/1998 Moshovos et al. 712/216 the load instruction.
5,881,307 A 3/1999 Park et al.
5,087,595 A * 11/1999 Yoazetal. 712/216 14 Claims, 3 Drawing Sheets
" 100
_L RECYCLEPATH 1
REECTI e
.l 120 136
| 114 1 116 18] —Z——»EOADSTOHE / -
INSTRUCTION INSTRUCTION INSTRUCTION ADDRESS UNIT (0SC EXECUTION
DECODER GROUPING |- DISPATOHER | GENERATOR LFEECT oeree oy o FEESTL T UNIT
102 104 106 08 | 30 S IREC] T
- _
134 e 138
124 | 196
Y
| OCATIONI~—140
DATA CACHE
122
-

US 7,975,130 B2

Sheet 1 of 3

Jul. 5, 2011

U.S. Patent

oM

LINA

001

NOILN3XT |

7
JHOVO VLV(

07 F~NOILYIOT]

9¢1 Al

L Old

8gl vel

~ 011 (193r3y
5ch_Ig NoiLo313a] et
L3138] A50) LINN
JHO1S av01

801
dOLVdaN39 -

3l

103r3d
I 5o3addy

ot 0cl

26 TREET

2

HLvd 310A034

0}

a3HILvdSId -
NOILONHLSNI g

—

|

POl

ONIdNOad)
NOILLINGLSNI

41

201

d40094G
NOILINYLSNI

)
- e 9l
F 70t c0¢
B.., s T - »\l\ N \Illmlﬂ N
& . 0OP0dd0 , IHa 110 ol 2 8poadg ;A
2 | 2| _ 1A g 5poadQ 1S b)¢
% , Q9P000 | ZHA , 21d 28 | CX'HAIH 8poodQ | AXH
— | , PodO LINLY | 8poadQ 1la
¢SH
_ (g ¢l 8poadp _m\
| gepoddQ ; gHa 210 29 TENEH! 1Y 8poad) 1+ ASH

” 2 29 ENeH, 14, @epoodp | g
- | 2 129+ 2Xr Mdr 8poad) 1+ XH
S Ly 07 9 ¢ 8 ¥ 02 9 T 8 0/
- , R S lonisod iig z¢
7 01E 806 90E
= o ¢ Ol
» 2V v2e
b (-0v) - 70¢
= 1557 SFOVLS 9v-0¥) ININD F10A03Y \ N

" Ml

/ X
3l¢ 9t¢ ¥I¢ / 0l¢ 80¢ | gpg _

U.S. Patent

S0 | .
ww_mw by ev| av| 1v | oyl e N»?w 8_8 EZM_

202
212 1 Jlovl.
Va4 Jomo1! o
00¢ 92¢ | AV13Q ~—~077

008

U.S. Patent Jul. 5, 2011 Sheet 3 of 3 US 7,975,130 B2

400

a4

DETECT A LOAD INSTRUCTION FOLLOWING A
STORE INSTRUCTION IN AN INSTRUCTION STREAM. 402
WHERE THE LOAD INSTRUCTION AND THE STORE
INSTRUCTION INCLUDE INSTRUCTION TEXT WITH
OPERAND ADDRESS INFORMATION

COMPARE THE OPERAND ADDRESS INFORMATION

OF THE STORE INSTRUCTION WITH THE 404
L OAD INSTRUCTION

DELAY THE LOAD INSTRUCTION IN RESPONSE TO
DETECTING A COMMON FIELD VALUE BETWEEN THE 406
OPERAND ADDRESS INFORMATION OF THE
STORE INSTRUCTION AND THE LOAD INSTRUCTION

FIG. 4

US 7,975,130 B2

1

METHOD AND SYSTEM FOR EARLY
INSTRUCTION TEXT BASED OPERAND
STORE COMPARE REJECT AVOIDANCE

BACKGROUND OF THE INVENTION

This invention relates generally to improving computer
system eliliciency, and more particularly to the reduction of
operand store compare rejects penalties through instruction
text based early detection.

As computer system designers seek to continually improve
processor performance, 1t 1s beneficial to develop approaches
that reduce cycles per instruction (CPI). Operand store com-
pare (OSC) penalties can be a large contributor to high CPI
numbers. OSC 1s defined as encountering an nstruction with
an operand to store data to memory followed by an instruction
to load the data from the memory before the stored data
actually reaches the memory. As a stream of instructions
progresses through a processor pipeline, various control units
perform tasks such as fetching instructions, dispatching
instructions, calculating address values, accessing registers,
fetching operands, executing 1nstructions, checking for error
conditions, and retiring the mstructions including storing the
results. When 1instructions advance deeper through the pipe-
line, dependency conditions, errors, incorrectly predicted
branches, and the like, can stall progress of the instructions
through the pipeline as the conditions are handled. The prob-
lem with OSC 1s that occurrence of the condition 1s unknown
until a cache address i1s formed, which may be after the
istruction has already been dispatched, requiring costly
stall/reset mechanisms. For instance, when load store (LLS)
logic detects an OSC, it then rejects/recycles the load mstruc-
tion and holds i1t from dispatching again until the storage data
reaches a point where 1t can be bypassed (or read) by the load
instruction. The penalty of such a reject can be many (e.g., 9)
cycles ol unused processing time. Compilers that generate the
instructions typically try to distance instructions that store
and load the same data sufficiently to minimize the OSC
penalty. However, 11 the distance between the store and load 1s
not large enough, the load can still be rejected 1n the processor
pipeline. The distance between two 1nstructions 1s defined by
the number of cycles between dispatches of the two 1nstruc-
tions. The distance 1s zero 1f the store and load are grouped
and dispatched together, for mnstance, 1n a super-scalar archi-
tecture.

It would be beneficial to develop an approach to identify an
OSC early in the pipeline to minimize associated delays. Such
an approach should not require additional memory for storing
accumulated 1nstruction history, but take advantage of access
to 1nstruction text as it moves through pipeline stages.

Accordingly, there 1s aneed 1n the art for early instruction text
based OSC avoidance.

BRIEF SUMMARY OF THE INVENTION

An exemplary embodiment includes a system for early
instruction text based operand store compare avoidance 1n a
processor. The system 1ncludes a processor pipeline for pro-
cessing 1nstruction text in an instruction stream, where the
istruction text includes operand address information. The
system also 1ncludes delay logic to monitor the 1nstruction
stream. The delay logic performs a method that includes
detecting a load instruction following a store instruction 1n the
instruction stream, comparing part of the instruction text
related to operand address information of the store instruction
with the load 1nstruction. The method also includes delaying,
the load 1nstruction 1n the processor pipeline 1n response to

10

15

20

25

30

35

40

45

50

55

60

65

2

detecting a common field value between the operand address
information of the store mstruction and the load 1nstruction.

Another exemplary embodiment includes a method for
carly instruction text based operand store compare avoidance
in a processor pipeline. The method includes detecting a load
instruction following a store instruction in an instruction
stream. The load 1nstruction and the store instruction include
instruction text with operand address information. The
method further comprises comparing the part of the mnstruc-
tion text related to the operand address mmformation of the
store mstruction with the load instruction, and delaying the
load instruction in the processor pipeline in response to
detecting a common field value between the operand address
information of the store instruction and the load instruction.

A further exemplary embodiment includes a system for
carly mstruction text based operand store compare avoidance
in a processor pipeline. The system includes an instruction
dispatcher in communication with an address generator and a
load store unit, where the address generator creates addresses
for the load store unit to access memory. The system also
includes an instruction decoder sending instruction text to an
instruction grouping. The nstruction grouping is in comimu-
nication with the instruction dispatcher and establishes
dependencies between an operand 1n the instruction text of a
load instruction following a store instruction 1n the processor
pipeline.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings wherein like elements are
numbered alike 1n the several FIGURES:

FIG. 1 depicts a block diagram of a system for early
instruction text based operand store compare avoidance 1n
accordance with an exemplary embodiment;

FIG. 2 depicts a block diagram of an instruction processor
pipeline, delay logic and recycle queue 1n accordance with an
exemplary embodiment;

FIG. 3 depicts mstruction formats in accordance with an
exemplary embodiment; and

FIG. 4 depicts a process for early instruction text based
operand store compare avoidance in accordance with an
exemplary embodiment.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

An exemplary embodiment of the present invention pro-
vides early instruction text based operand store compare
(OSC) avoidance. An OSC condition can occur when one
instruction 1n a processor pipeline includes an operand tar-
geted to store data to memory, and a second instruction
attempts to load the data from the memory before the store
completes. In an exemplary embodiment, instruction text in
an nstruction stream 1s accessed to detect potential OSC
conditions early in a processor pipeline. Early detection 1s
performed prior to address generation to minimize wasted
time 1n recycling an instruction that has progressed deep nto
the processor pipeline. This 1s achieved by taking advantage
of instruction formatting that 1s common across multiple
instructions. For example, comparing bits from instruction
text that provide operand address information, such as index,
base, and displacement fields, provides information to deter-
mine 11 an OSC 1s likely to occur in the instruction stream.

Turming now to FIG. 1, a system 100 1s depicted that
includes multiple functional units to support pipelining of
istructions 1n processing circuitry. Pipelining can increase
instruction execution throughput by performing stages such

US 7,975,130 B2

3

as fetching, decoding, execution and completion concur-
rently for multiple instructions in an mstruction stream. In an
exemplary embodiment, functional units in the system 100
include: nstruction decoder 102, instruction grouping 104,
instruction dispatcher 106, address generator 108, load store
unit 110, and execution unit 112. It will be understood that
additional functional units can be included in the system 100
which are not depicted, such as an istruction fetching unit, a
completion unit, a recovery unit, and the like. Multiple com-
munication paths can be used to communicate between each
of the functional units 102-112. The communication paths
may vary in bus width (single-bit to multi-bit) and can be
unidirectional or bidirectional. For example, path 114 passes
istruction text (itext) in an instruction stream from the
instruction decoder 102 to instruction grouping 104. The
instruction grouping 104 determines whether istructions can
be grouped together for parallel processing, for example,
using a super-scalar architecture. The 1nstruction grouping
104 can create itext based OSC dependencies on older store
instructions that have progressed into later pipeline stages
(e.g., 1n functional units 106-112). The instruction grouping
104 passes 1text including any groups formed via path 116 to
instruction dispatcher 106. In an exemplary embodiment, the
instruction dispatcher 106 delays dispatching of a load
instruction when a store instruction with a potential OSC
condition has been 1dentified. The nstruction dispatcher 106
dispatches 1text, maintaining dependencies via path 118 to
address generator 108. The address generator 108 determines
actual address values, which may be calculated using a com-
bination of base, index, and displacement fields from itext in
the 1nstruction stream. The address generator 108 sends 1text
with operand address information to the load store unit 110
via path 120.

The load store unit 110 can access a data cache 122 via path
124 and recerves data from the data cache 122 viapath 126. In
an exemplary embodiment, the load store unit 110 performs
actual OSC detection, monitoring actual load and store
accesses to the data cache 122. When the load store unit 110
detects that an operand load has been requested for a location
140 1n the data cache 122 that has not completed a store
operation, the load store unit 110 declares a reject condition
for the associated instruction, since 1t cannot complete. The
reject condition 1s forwarded to execution unit 112 via path
128 and returned to address generator 108 via path 130 and to
instruction grouping 104 via path 132. Additionally, the load
store unit 110 can feed information back to the address gen-
crator 108 viapath 134, and forward information to the execu-
tion unit 112 via path 136. The execution unit 112 can also

send data to the load store unit 110 via path 138 and send itext
back to the instruction grouping 104 via recycle path 140.
Although the paths 130 and 134, as well as paths 136 and 128,
are depicted as separate paths, 1t will be understood that paths
can be combined within the scope of the invention.

Turning now to FIG. 2, a block diagram of an instruction
stream 1n a processor pipeline 200 1s depicted 1n accordance
with an exemplary embodiment. Stages of the processor pipe-
line 200 1include DO 202 to transfer fetched instructions for
decoding, D1 through D3 204 to decode instructions (e.g.,
instruction decoder 102 of FIG. 1), G1 205 and G2 206 to
group instructions (e.g., grouping stages in mnstruction group-
ing 104 of FIG. 1), G3 208 to dispatch instructions (e.g.,
instruction dispatcher 106 of FIG. 1), A0 210 to perform
address generation (e.g., address generator 108 o FIG. 1), Al
through A3 212 for cache access (e.g., load store unit 110 of
FIG. 1), A4 214 to execute instructions (e.g., execution stage

10

15

20

25

30

35

40

45

50

55

60

65

4

112 of FIG. 1), AS 216 to start the put away of results or
recycle instructions on failure conditions, and A6 218 to retire
instructions.

As 1nstructions advance i decoding stages D1 through D3
204, an 1nstruction queue and address queue (1Q/AQ) 220
may be used to expand 1text 224 1nto greater levels of detail
for processing. The expansion adds additional control and
status mformation associated with the itext 224. Delay logic
226 monitors movement of the 1text 224 into the G1 203 stage
and 1dentifies fields that may be used for operand address
calculation. IT a store 1nstruction 1s identified, the delay logic
226 monitors for a subsequent load instruction with potential
overlap 1n operand fields that include operand address infor-
mation. When an overlap 1s detected, the delay logic can hold
the load 1nstruction for up to a designated number of cycles to
provide adequate time for the Store instruction to at least be
able to support forwarding to a dependent Load. Delaying the
Load mstruction proactively, rather than waiting for an actual
non-forwardable OSC to be detected later in the pipeline once
address generation 1s performed, prevents rejection of the
load mstruction. This Load to Store dependency tracking and
stalling 1s applied for each Store in the window of influence.
The delay logic 226 may be performed in instruction decoder
102, instruction grouping 104, or instruction dispatcher 106
in FIG. 1. The mstruction queue and address queue (1()/ AQ)
220 can be used to store decoded 1nstruction text 1f the group-
ing stages are blocked.

Recycle queue 222 retains mstruction information for use
in the cases where a retry of an instruction 1f necessary. Upon
determining that there 1s a need to reject the dependent Load,
the rejected instruction 1s returned to an earlier position in the
processor pipeline 200 via recycle path 228. In an exemplary
embodiment, actual OSC rejects due to OSC occurs 1 A5
216.

Turming now to FIG. 3, instruction formats 300 are
depicted 1n accordance with an exemplary embodiment. Each
row 1n the mstruction formats 300 includes instruction text
(1text) formatting for a particular mnstruction format in the
instruction formats 300. Fields are defined relative to bat
positions. For example, bits positions 0 to 7 represent opcodes
302. Bit positions 12 through 31 can contain operand address
information 304 that may also include other information
depending upon each instruction format. The operand address

information 304 may include operands for the opcodes 302,
such as an index field 306, a base field 308, and/or a displace-

ment field 310. The index field 306, base field 308, and/or
displacement field 310 can be combined to form a value used
to detect a potential OSC. The index and base fields, 306 and
308, represent the number of a General Purpose Register
(GPR) to be utilized 1n Address generation. In cases where
either field 1s not utilized by the mstruction it 1s set to <0000,
Each format in the instructions formats 300 may provide
formatting for both load and store instructions. For example,
the delay logic 226 of FIG. 2 can i1dentify load and store
instructions formatted 1n RX format 312 and directly com-
pare the operand address information 304 associated with
cach 1nstruction, a subset of fields (e.g., base fields 308) or a
combination of fields to detect a potential OSC. The 1denti-
fication and comparison of operand address information 304
for load and store instructions can also be performed across
formats, such as a load instruction 1n RX format 312 and a
store mstruction 1 SI 314 format. The delay logic 226 may
perform conditional comparisons that target specific mnstruc-
tion formats 300 and perform comparisons when the mnstruc-
tion formats 300 include specific fields, e.g., index fields 306.

Turning now to FIG. 4, a process 400 for early instruction
text based operand store compare avoidance will now be

US 7,975,130 B2

S

described in reference to FIGS. 1-3 and 1n accordance with an
exemplary embodiment. At block 402, delay logic 226 detects
a load struction following a store instruction 1n an mstruc-
tion stream. The load instruction and the store instruction
include 1text 224 with operand address information 304. For
example, the delay logic 226 may be 1included 1n the mstruc-
tion grouping 104.

At block 404, the delay logic 226 compares the operand
address information 310 of the store 1nstruction with the load
instruction. The compare can be performed across the entire
operand address information 310 or a subset thereof. The
compare may 1dentity common fields between the load and
store 1nstructions for comparison. The delay logic 226 may
also distinguish between instruction formats 300 such that
non-existing fields or fields with alternate definitions are not
compared to each other.

At block 406, the delay logic 226 delays the load instruc-
tion 1n the processor pipeline 200 1n response to detecting a
common field value between the operand address information
304 of the store instruction and the load instruction. For
example, the base field 308 of the store instruction may target
the same location 140 as operand address information 304 of
the load instruction. In an exemplary embodiment, the delay
of the load 1nstruction 1s performed prior to dispatching the
load 1nstruction. In determining a number of cycles to delay
the load instruction, the delay logic 226 can calculate the
number of cycles between the load instruction and the store
instruction, and establishes the delay period as a minimum
value delay to avoid a reject minus the number of cycles
between the load instruction and the store instruction. Iden-
tifying a potential OSC early in the processor pipeline 200
and delaying the load instruction prevents the longer delay
associated with the recycle queue 222 that occurs when an
actual non-forwardable OSC 1s allowed to occur. A pre-emp-
tive delay for a potential OSC can prevent an actual, more
costly OSC reject from occurring. Alternatively, in rare cases
based on implementation, the pre-dispatch delay introduced
by the 1text based scheme may be unnecessary because an
address generator (AGEN) shows that there 1s actually no
overlap.

It will be understood that the process 400 can be applied to
any processing circuitry that incorporates a processor pipe-
line. For example, process 400 can be applied to various
digital designs, such as a microprocessor, an application spe-
cific integrated circuit (ASIC), a programmable logic device
(PLD), or other such digital devices capable of processing
instructions. Therefore, the system 100 of FIG. 1 can repre-
sent a variety of digital designs that incorporate processing
circuitry.

Technical effects and benefits include early 1nstruction text
based operand store compare avoidance 1n a processor pipe-
line. In a normal compiled program, instructions writing and
reading the same storage area generally utilize the same reg-
isters and displacement. Unlike other prediction schemes,
additional loading or memory beyond that already included
as part of a processor pipeline need not be used. Instead,
readily available 1text being staged in support of a general
recycle scheme can be analyzed to act preemptively before an
actual OSC occurs. The mvention attempts to avoid the OSC
recycle penalty by delaying the dispatch of a load. In one
embodiment, up to 9 cycles of recycle time are replaced by up
to 6 cycles of load 1nstruction delay relative to an older store
instruction. Thus, at least 8 cycles can be saved when a load
instruction would otherwise be dispatched 5 cycles after the
store nstruction. The net 8 cycle savings comes from delay-
ing the load instruction by an additional cycle and avoiding
the 9 cycles of recycle time.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

While the invention has been described with reference to
exemplary embodiments, 1t will be understood by those
skilled 1n the art that various changes may be made and
equivalents may be substituted for elements thereof without
departing from the scope of the invention. In addition, many
modifications may be made to adapt a particular situation or
material to the teachings of the invention without departing
from the essential scope thereol. Theretfore, 1t 1s intended that
the mvention not be limited to the particular embodiment
disclosed as the best mode contemplated for carrying out this
invention, but that the invention will include all embodiments
falling within the scope of the appended claims. Moreover,
the use of the terms first, second, etc. do not denote any order
or importance, but rather the terms first, second, etc. are used
to distinguish one element from another.
The mnvention claimed 1s:
1. A system for early instruction text based operand store
compare avoidance 1n a processor, the system comprising:
a processor pipeline for processing mnstruction text in an
instruction stream, wherein the instruction text includes
operand address information; and
delay logic to monitor the instruction stream, the delay
logic performing a method comprising:
detecting a load instruction following a store instruction
in the 1nstruction stream:

comparing the operand address information of the store
instruction with the load 1nstruction;

determining a delay period for delaying the load instruc-
tion based on when the store instruction can support
forwarding in response to detecting a common field
value between the operand address information of the
store 1nstruction and the load instruction; and

delaying the load instruction in the processor pipeline
for the delay period.

2. The system of claim 1 wherein the common field value
includes one or more of an index field, a base field, and a
displacement field.

3. The system of claim 1 further wherein comparing the
operand address information of the store mstruction and the
load mstruction 1s performed as a function of instruction
formats.

4. The system of claim 1 wherein the delaying 1s performed
prior to dispatching the load instruction.

5. The system of claim 1 wherein the delay logic accesses
a grouping stage to monitor the mstruction stream.

6. The system of claim 1 wherein the determining of the
delay period further comprises:

calculating a number of cycles between the load instruction
and the store instruction; and

establishing a delay period for delaying the load instruction
as a minimum delay value minus the number of cycles
between the load instruction and the store mstruction.

7. The system of claim 1 further comprising a recycle
queue to return instruction text to an earlier stage in the
processor pipeline, wherein the delaying 1s performed priorto
the load instruction reaching the recycle queue.

8. A method for early 1nstruction text based operand store
compare avoidance in a processor pipeline, the method com-
prising:

detecting a load mstruction following a store instruction in
an 1nstruction stream, wherein the load 1nstruction and
the store instruction are comprised ol instruction text
including operand address information;

comparing the operand address information of the store
instruction with the load instruction:

determining a delay period for delaying the load instruc-
tion based on when the store instruction can support

US 7,975,130 B2

7

forwarding 1n response to detecting a common field
value between the operand address mformation of the
store 1instruction and the load instruction; and

delaying the load instruction in the processor pipeline for
the delay period.

9. The method of claim 8 wherein comparing the operand
address 1nformation of the store instruction and the load
istruction 1s performed as a function of mstruction formats.

10. The method of claim 8 wherein the common field value
includes one or more of an index field, a base field, and a
displacement field.

11. The method of claim 8 wherein the delaying is per-
formed prior to dispatching the load instruction.

5

10

8

12. The method of claim 8 wherein the delay logic accesses
a grouping stage to monitor the mstruction stream.
13. The method of claim 8 wherein the determining of the
delay period further comprising;:
calculating a number of cycles between the load instruction
and the store instruction; and
establishing a delay period for delaying the load instruction
as a minimum delay value minus the number of cycles
between the load instruction and the store mstruction.
14. The method of claim 8 wherein the delaying 1s per-
formed prior to the load 1nstruction reaching a recycle queue
capable of returning 1nstruction text to an earlier stage in the
processor pipeline.

	Front Page
	Drawings
	Specification
	Claims

