12 United States Patent

Barghouthi et al.

US007962782B2

US 7,962,782 B2
Jun. 14, 2011

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)

(22)

(65)

(1)

(52)
(58)

(56)

MODIFYING CONNECTION RECORDS

Inventors: Soloman J. Barghouthi, Rochester, MN
(US); Sherry Guo, Fremont, CA (US);
Bilung Lee, Fremont, CA (US); Paul
Arnold Ostler, Yakima, WA (US)

Assignee:

Notice:

Appl. No.: 12/123,948

Filed:

Int. CI.

International Business Machines

Corporation, Armonk, NY (US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 336 days.

May 20, 2008

Prior Publication Data

US 2009/0292953 Al

GOo6l 11/00
US.CL ., 714/7,°714/8; 714/9

Field of Classification Search

Nov. 26, 2009

(2006.01)

714/6, 7,
714/8, 9

See application file for complete search history.

0,038,212
0,173,311
6,411,956
0,486,983
0,857,026
6,928,580
7,089,448
7,234,082

2002/0147807

References Cited

U.S. PATENT DOCUMENTS

A 3/2000
Bl* 1/2001
Bl 6/2002
Bl 11/2002
Bl 2/2005
B2* 8/2005
B2* 8/2006
B2 6/2007

Al 10/2002

(Galand et al.
Hassett et al.
Ng

Beshai et al.
Cain
Pedoneetal. 714/7
Hinshaw etal. 714/6
[ai1 et al.

Raguseo

**************** 709/202

2003/0074600 Al* 4/2003 Tamatsucccooeeeverernnnn, 714/6
2004/0120713 Al 6/2004 Ward et al.
2004/0260899 Al 12/2004 Kern et al.
2005/0265231 Al 12/2005 Gunther et al.
2006/0173866 Al* 8/2006 Newportcooeeeeveenn, 707/100
2007/0198684 Al* 82007 Mizushima 709/223
2010/0094988 Al 4/2010 Chang et al.

OTHER PUBLICATIONS

Leiler Lietal., IMS Resource Adapter: Web Enabling IMS, Z Journal,

Feb./Mar. 2006 (4 pgs).

Wang et al., The Realization of Multiple Connections Per A Call
Using RSVP-TE 1n ASON, Communications and Networking in
China 2006, ChinaCom ’06, Oct. 2006 (4 pgs).

Hutchison et al., Database Connection Pool Management, DOSS#

AAA98A060749, 1998, (7 pgs).

Daggett et al., Method of Establishing Connections In The Client
Server Model of Tangora, IBM Technical Disclosure Bulletin, Feb.
1993 (2 pgs).

Botzum et al., IBM WebSphere Developer Technical Journal: Data-
base 1dentity propagation in WebSphere Application Server Vo,
www.lbm.com/developerworks/websphere/techjournal, Jun. 15,

2005 (23 pgs).

* cited by examiner

Primary Examiner — Joshua A Lohn
(74) Attorney, Agent, or Firm — Toler Law Group

(57) ABSTRACT

Systems and methods to modily a set of connection records
are described. A determination 1s made that an application
failed to access a first database via a connection record, where
the connection record includes data to access the first data-
base. A determination 1s made that a second database 1s acces-
sible, where the second database 1s a failover database to the
first database. A set of connection records associated with the
first database 1s modified to enable access to the second data-
base.

18 Claims, 7 Drawing Sheets

108

1" Database Request

112

2™ Database

114

3" Database

Connection 138

J

&
i:]
:‘: Lo o == '-i.'.:{:

esEatall
110 ‘ Y R

Connection 138
Record %

140
Access Request

106

Record
104
.. V
116 Application Servar
Frocessor o
118
| z
120 M
Pocl of Connection Racords _,..v'f Emnw1 2g
1*' Set of Connection Records | 122 [| Event Listener |/
140 131 / Module
C1 I’ ;2 }’ 130
Datahase 4
2" Sat of Connection Records | 124 Driver Module }Eﬂ
142 143 P~ terace
c3 }" ca V
p Conmecton] 192
3™ Sat of Connaction Records | 126 FPool Manager v
144 15 | Moduie
cs cs P _
f Tableof] 134
Failovar V
Databases

U.S. Patent

Jun. 14, 2011 Sheet 1 of 7 US 7,962,782 B2

100

'

1G8

Application

110

'.l'__ ey TR YN oy e e o elalielet o o o L .--
II"-_. L e L - e . e e - e -

connection 136 | 140

: o Record ' A -
| 17 Database p——___ Request - ccess Request

| 2 Database f———————_} Network |

112
' 106

114

| 3™ Database Connection 138
] Record

104

116 Application Server

Processor
e 118 |

e 120 Memory
Pool of Connection Recorgs / ——

| | | 15 Set of Connection Records | 122 | | EventListener |~
] 140 141 b/ _ Module 5 é

1390

Database [|
Driver Module 10

-

™ Connection | 13
| Pool Manager §

— Table of | 194
Failover [
_Databases | |

: 3™ Set of Connection Records |
144 145

_C6 |

FIG. 1

U.S. Patent Jun. 14, 2011 Sheet 2 of 7 US 7,962,782 B2

200

/

202 ' | 204
/ 220

Event Listener
Module

Connection Pool
Manager Module

| Register to receive notification of
a reroute event

224

event occurred Reroute & 5.,
event |

226 . d
_ _occurred| 206

Database Driver
Module

| Request mass reroute of the set of
connection records

232

_ —

Mass Reroute Result Data

230\

35 Delete the | Table of fallover

connection records databases
that were not successfully
| modified

Poolof connection | | 18! Database

records
216

records

| | [Connection | A1

Set of connection| 4~
218
| 214

2™ Database

FIG. 2

U.S. Patent Jun. 14, 2011 Sheet 3 of 7 US 7,962,782 B2

Receive a request from | 302

| an applicationfora |,
| connection record to the |
' first database f

304 206

Determine |
~ whether the connection™ NO |
_ record to the first database >—|
s in a pool of connection””
™ records

Create a
connhection

record to the |
first database |

,_' ._ .

| Retrieve the connection | 308

.5 record to the first
| database from the pool |
| of connection records |

21

Send fo the application |
the connection record to i
' the first database

312

FIG. 3

U.S. Patent Jun. 14, 2011 Sheet 4 of 7 US 7,962,782 B2

R e TS
I Send a registration request o registerto |

receive a notification when a connection |
record to a first database Is rerouted

— 404

Recelve a reroute notification

_ - - . — ‘o
ldentify a set of connection records. »

| associated with the first database from the [
' pool of connection records

— 408
Send a mass reroute request to modify | ,

| the set of connection records to access a
: second database

| Recelve a mass reroute result indicating | 410
| which connection records among the set |/
of connection records were successfully |
modified

| Delete connection records from the pool of | 412
. connection records that were not V4
| successfully modified based on the mass |

414

End

FIG. 4

U.S. Patent Jun. 14, 2011

Process a request to
access a first database
via a connection record

502

Determine whether
an application failed to
access the first database via
the connection record

YES
506

Determine that a second
database is available

208

Modify the connection
record to access the
second database

310

Send a reroute
notification

. 512
Receive a mass reroute

request to modify a set of
connhection records

Sheet 5 of 7 US 7,962,782 B2

Modify each connection
record of the set of
connection records to
access the second
database

514

Determine whether the | 516
set of connection records

was successfully
modified

518

Send a reroute result

520

U.S. Patent

| Determine which module(s) are registered | /

Jun. 14, 2011 Sheet 6 of 7

, 502

| Receive a registration request to an event

- 604

Receilve a message indicating that the
event occurred

to receive a notification message when
the event occured

—_— 508
Send a notification message to the | /

module(s) that registered to receive the |
notification message

FIG. 6

US 7,962,782 B2

U.S. Patent

NPROCESSOR|)

A wch N

708

o)
742 | |

\\[Foot oF connection | |
B RECORDS ||

COMPUTER

MASS REROUTE | |
MODULE |

712

Jun. 14, 2011

] GRAPHICS |
| PROCESSOR |
702

NORTH
BRIDGE

MAIN MEMORY |

[—— TP ——

AUDIO |
ADAPTER [\

_ADAPTER ®

744

750

APPLICATION

Sheet 7 of 7

700

v

738

_\| SOUTH |__N
\BRIDGE|)
A ach v

USB AND
OTHER
PORTS

—\J] PCIPCIE
/] DEVICES |

| KEYBOARD |

71 ADAPTER

790 |
748

DATABASE

720

 AND MOUSE [

US 7,962,782 B2

726

~)Y DISKDRIVE [

730

M cDRom [

. 136

{22

m“_n: VODEM ,

724

794

792

COMPUTING

DEVICE

INSTRUCTIONS |

FIG. 7

US 7,962,782 B2

1
MODIFYING CONNECTION RECORDS

[. FIELD

The present disclosure 1s generally related to modifying
connection records.

I1I. BACKGROUND

When a software application requires access to a database,
the software application may request a connection record to
the database from an application server via a database driver.
The connection record provides the software application with
the information needed to access the database, such as the
address of the database and the protocol used to access the
database. The application server expends time and computing
resources to establish a connection to a database and to create
a connection record to the database. To reduce the time
needed to provide the application a connection record to the
database, the application server may maintain a pool of con-
nection records. The pool may include connection records to
more than one database. For example, the pool may include a
set of connections associated with several databases.

One problem with using a pool of connection records 1s that
when a database 1s 1naccessible, the set of connection records
to the maccessible database 1n the connection pool become
stale because the connection records may no longer be used to
connect to the 1naccessible database. One way of handling

stale connection records 1s to purge the set of connection
records associated with the naccessible database from the

connection pool and create a new set of connection records to
a failover or backup database to the maccessible database.

III. BRIEF SUMMARY

A system and method to modily a set of connection records
1s disclosed. In a particular embodiment, the method deter-
mines that that an application failed to access a first database
via a connection record, where the connection record includes
parameters to access the first database. A determination 1s
made that a second database 1s accessible, where the second

database 1s a failover database to the first database. A set of

connection records associated with the first database 1s modi-
fied to enable access to the second database.

The connection record to enable access to the second data-
base may be modified before modifying the set of connection
records. Modifying the connection record may enable the
application to continue processing substantially without
interruption. The set of connection records may be modified
to enable access to the second database 1n response to deter-
mimng that the application failed to access the first database
via the connection record. Moditying each connection record
ol the set of connection records to enable access to the second
database may be performed substantially concurrently.

Before moditying the set of connection records to enable
access to the second database, at least one connection record
in the set of connection records may be identified as not

currently 1n use. At least one connection record of the set of

connection records may be 1dentified that was not success-
tully modified to enable access to the second database and the
at least one connection record may be deleted.

IV. BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 11s a block diagram of a first embodiment of a system
to modily connection records;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 1s a data flow diagram of a second embodiment of a
system to modily connection records;

FIG. 3 15 a flow diagram of a first 1llustrative embodiment
of a method to modily connection records;

FIG. 4 1s a flow diagram of a second illustrative embodi-
ment of a method to modily connection records;

FIG. 5 1s a flow diagram of a third 1llustrative embodiment
of a method to modily connection records;

FIG. 6 1s aflow diagram of a fourth 1llustrative embodiment
ol a method to modily connection records; and

FIG. 7 1s a block diagram of a computing system to modify
connection records.

V. DETAILED DESCRIPTION

FIG. 1 1s a block diagram of a particular embodiment of a
system 100 to modily connection records. The system 100
includes a computer 102 coupled to an application server 104
via a network 106. An application 108 may be a software
process running on the computer 102. The application server
104 1s also coupled to a first database 110, a second database
112, and a third database 114 via the network 106.

The computer 102 may be a personal computing device, a
server, or a mobile computing device, such as a hand-held
computing device, a mobile phone, or a laptop computer. The
computer 102 includes hardware (not shown) and an operat-
ing system (not shown) adapted to run software applications,
such as the application 108. The network 106 may include a
local area network, a wide area network, an Internet Protocol
network, a wireless network, a wireline network, or any com-
bination thereof.

The application server 104 may be adapted to provide the
application 108 with access to the first database 110, the
second database 112, and the third database 114. The appli-
cation server 104 includes a processor 116 and amemory 118.
The memory 118 includes a pool of connection records 120.
The pool of connection records 120 includes a first set of
connection records 122, a second set of connection records
124, and a third set of connection records 126. Fach set of
connection records 122, 124, and 126 may include one or

more connection records, such as the representative connec-
tion records C1140,C2141,(C3142,C4143,C5144,and Cé6

145.

The connection records 140-145 1n the pool of connection
records 120 may include data to enable the application 108 to
access a specific database, such as the first database 110, the
second database 112, or the third database 114. For example,
a connection record in the pool of connection records 120
may include an address of a specific database, a type of
protocol for accessing the database, and other information
associated with accessing the database.

The application server 104 may maintain the sets of con-
nection records 122, 124, and 126 to each database 110, 112,
and 114 to enable the application server 104 to quickly pro-
vide the application 108 with information and/or parameters
to access the databases 110-114. Each connection record
140-145 1n the pool of connection records 120 may be asso-
ciated with a database 110, 112 and 114 so that each set of
connection records 122, 124, and 126 may be used to access
a database 110, 112, and 114. For example, the first set of
connection records 122 may 1nclude one or more connection
records 140-141 to enable access to the first database 110, the
second set of connection records 124 may include one or
more connection records 142-144 to enable access to the
second database 112, and the third set of connection records
126 may include one or more connection records 145-146 to
enable access to the third database 126.

US 7,962,782 B2

3

The memory 118 may also includes various modules that
are executable by the processor to perform the functions of
the application server 104. The various modules may be
implemented as hardware, software, firmware, other logic
instructions, or any combination thereof. As illustrated, the
memory 118 includes an event listener module 128, a data-
base driver module 130, a connection pool manager module
132, and a table of failover databases 134.

The database driver module 130 may be adapted to receive
a connection record request 136 from the application 108. For
example, the connection record request 136 may request the
database driver module 130 to send a connection record 138
associated with the first database 110. The database driver
module 130 may be further adapted to send the connection
record 138 to the application 108 1n response to the connec-
tion record request 136. One or more connection records 1n
the pool of connection records 120 may remain idle, 1.e.
iactive, until activated by the application 108. For example,
when the connection record 138 1s “handed out™ to the appli-
cation 108, 1.¢. first sent to the application 108, the connection
record 138 1s initially 1dle. When the application 108 uses the
connection record 138 to access the first database 110, the
connection record 138 may transition from an 1dle state to an
“in use” state, also known as an active state.

The database driver module 130 may be further adapted to
process an access request 140, such as to access the first
database 110 via the connection record 138. The database
driver module 130 may determine when an application, such
as the application 108, has failed to access a database via a
connection record and may reroute the connection record to a
fallover database. For example, a failover database may be a
database that contains substantially the same contents as the
first database 110. The failover database may be enabled for
access by the application 108 when the first database 110
becomes 1naccessible. The failover database of the first data-
base 110 may be a backup database, a redundant database, or
a mirrored database of the first database 110. For example,
when the database driver module 130 determines that the
application 108 has failed to access the first database 110 via
the connection record 138, the database driver module 130
may attempt to reroute the connection record 138 to a failover
database. The database driver module 130 may determine
whether a failover database, such as the second database 112,
1s accessible, and may modily the connection record 138 to
enable access to the second database 112. Modifying the
connectionrecord 138 to enable access to the second database
112 may enable the application 108 to continue processing
substantially without interruption. The database driver mod-
ule 130 may also send a message to the event listener module
128 to indicate that the connection record 138 was rerouted.

The database driver module 130 may be configured to send
or broadcast a message indicating events that have been
detected. An event may be an occurrence of a specific condi-
tion, such as an error condition. For example, a reroute event
occurs when the database driver module 130 modifies the
connectionrecord 138 to enable access to the second database
112, because the database driver module 130 has effectively
rerouted the connection record 138 from the first database
110 to the second database 112. When such a reroute event
occurs, the database driver module 130 may send or broadcast
a message indicating that a reroute event occurred.

The event listener module 128 may be adapted to receive
messages, such as the message from the database driver mod-
ule 130, and to 1dentily an occurrence of specific events based
on the messages. For example, when the event listener mod-
ule 128 recerves a message that a reroute event has occurred,
the event listener module 128 1dentifies that a reroute event

10

15

20

25

30

35

40

45

50

55

60

65

4

has occurred based on the message. The event listener module
128 may 1dentily one or more of the modules 128-134 to be
notified when a particular event occurs and may send a noti-
fication to the identified modules 128-134 that the event has
occurred. For example, when the connection pool manager
module 132 registers with the event listener module 128 for a
particular event, such as a connection record reroute, the
event listener module 128 sends a notification to the connec-
tion pool manager module 132 when the particular event has
occurred.

The connection pool manager 132 1s adapted to register
with the event listener module 132 to recerve notifications of
reroute events and to identily a set of connection records
associated with the reroute event. For example, when the
connection pool manager 132 receives a notification event
that the connection record 138 to the first database 110 has
been rerouted, the connection pool manager 132 may identify
that the first set of connection records 122 are associated with
the first database 110. The connection pool manager 132 may
send a mass reroute request to the database driver module 130
via an interface 150 to modify the first set of connection
records 122 to enable access to the second database 112 after
the connection record 138 1s modified to enable access to the
second database 112.

The table of failover databases 134 may store information
about failover databases. For example, the second database
112 may be a failover database to the first database 110 when
the contents of the second database 112 can be used as a
substitute for the contents of the first database 110. To 1llus-
trate, the second database 112 may be a backup, a mirror, or
a disk that belongs to a redundant array of inexpensive disks
(RAID) configuration. When a connection record cannot be
used to access a primary database, such as the first database
110, the database driver module 130 may access the table of
faillover databases 134 to determine a failover database, such
as the second database 112. The database driver module 130
may reroute the connection record to enable access to the
second database 112.

In operation, 1n a particular embodiment, prior to accessing,
the first database 110, the application 108 sends to the appli-
cation server 104 a connection record request 136 to obtain a
connection record to enable access to the first database 110.
The application server 104 sends the connection record 138 to
the application 108 1n response to the connection record
request 136. The application 108 accesses the first database
110 via the connection record 138. When the application
server 104 detects that the application 108 has failed to access
the first database 110 via the connection record 138, the
application server 104 selects a fallover database, such as the
second database 112, from the table of failover databases 134.
The application server 104 then modifies the connection
record 138 to enable access to the second database 112.

When the application 108 fails to access the first database
110 via the connection record 138, the first set of connection
records 122 become stale because they may no longer be used
to access the first database 110. Instead of purging the first set
of connection records 122 from the connection pool, the
application server 104 1dentifies connection records associ-
ated with the first database 110 from the pool of connection
records 120 and attempts to modity each of the i1dentified
connection records to enable access to the second database
112. Thus, each of the connection records 140-141 in the first
set of connection records 122 may be modified to enable
access to the second database 112 1n response to determining
that the application 108 failed to access the first database 110
via the connection record 138. For example, when the first set
of connection records 122 1s associated with the first database

US 7,962,782 B2

S

110, the application server 104 modifies the first set of con-
nection records 122 to enable access to the second database
112. Moditying each of the connectionrecords 140-141 of the
first set of connection records 122 to enable access to the
second database 112 may be performed substantially concur-
rently. Before modifying the first set of connection records
122 to enable access to the second database 112, at least one
ol the connection records 140-141 1n the first set of connec-
tion records 122 may be 1dentified as not currently 1n use, 1.¢.
may be identified as 1dle or inactive.

The application server 104 may delete the connection
records which could not be successtully modified from the
pool of connection records 120. For example, when the appli-
cation server 104 1s unable to modify any connection record
in the first set of connection records 122 to enable access to
the second database 112, the application server 104 deletes
the first set of connection records 122. In another example,
when the first set of connection records 122 has twelve con-
nection records associated with the first database 110 and the
application server 104 1s only able to modily five of the
connection records to enable access to the second database
112, the application server 104 deletes the seven connection
records which were not successiully modified to enable
access to the second database 112 from the first set of con-
nection records 122. A particular embodiment of an interac-
tion of the modules 128, 130, 132, and 134 to perform various
functions of the application server 104 i1s described 1n more
detail in FIG. 2.

The system 100 provides a client, such as the application
108, with a mass redirect solution to stale connections 1n a
three-tiered model. In a three-tiered model the tiers include a
client tier, a middleware tier, and a database tier. For example,
in the system 100, the application 108 1s at the client tier, the
application server 104 1s at the middleware tier, and the data-
bases 110, 112, and 114 are at the data tier. The mass redirect
solution includes a notification mechanism for a database
driver module to notity an application server via an event
listener module when a failed connection has been rerouted to
an alternate database. The database driver module notifies the
application server i1n scenarios where database maintenance
or failures occur and also 1n scenarios where network glitches
occur such that underlying sockets are closed.

In addition, the interface 150 of the database driver module
130 may be used to assist the application server to redirect or
reroute existing 1dle connections 1n the pool to a new database
without going through a complex reroute process for each
individual connection. This interface also enables the appli-
cation server to 1identily and prune connections that cannot be
successiully redirected. Therefore, the application server can
facilitate a mass redirect of an entire set of connections via the
database driver without incurring costly retries and timeouts
and without contaminating the connection pool with stale
connections.

By modilying stale connections from the connection pool
to enable them to access a failover database, the system 100
may provide improved efficiency and performance over sys-
tems that delete stale connections from the connection pool.
For example, deleting stale connections may introduce net-
ficiencies because an application server would have to expend
computing resources to repopulate the pool of connection
records with connection records to a failover database. In
contrast, the system 100 may be more eflicient because the
stale connections are not purged but instead modified to
enable access to the failover database. When the second data-
base 112 1s a backup or alternate database to the first database
110, the second database 112 i1s typically accessed 1n a man-
ner similar to the first database 110, and therefore stale con-

10

15

20

25

30

35

40

45

50

55

60

65

6

nections to the first database 110 may be easily modified to
enable access to the second database 112 because both data-
bases are accessed 1n a similar manner.

FIG. 2 1s a data flow diagram of a particular embodiment of
a system 200 to modify connection records to enable access to
a failover database. FIG. 2 illustrates how several modules
that may be implemented at an application server, such as the
application server 104 in FIG. 1, may interact to perform
various connection management functions of the application
Server.

The system 200 1includes a connection pool manager mod-
ule 202, an event listener module 204, a database driver
module 206, a table of failover databases 208, a pool of
connection records 210, a first database 212, and a second
database 214. The pool of connection records 210 includes a
set of connection records 216. The set of connection records
216 1ncludes 1dle connection records maintained to efficiently
establish new connections to the first database 212.

As depicted, the connection pool manager module 202
sends a registration message 220 to register with the event
listener module 204 to receive a notification of an event. In
response to the registration message 220, the event listener
module 204 registers the connection pool manager module
202 to recerve a notification of a reroute event when a con-
nection record associated with the first database 212 1s modi-
fied to enable access to the second database 214.

When the database driver module 206 determines that a
connection record 218 used to access the first database 212 1s
no longer able to access the first database 212, the database
driver module 206 1dentifies a failover database from the table
of failover databases 208. For example, the database driver
module 206 may i1dentily that the second database 214 1s a
tailover database to the first database 212. The database driver
module 206 modifies the connection record 218 associated
with the first database 212 to enable access to the second
database 214. The database driver module 206 sends an event
notification message 222 to the event listener module 204 to
indicate that a reroute event occurred. The event listener
module 204 identifies the modules that are registered to be
notified when the reroute event occurs, including the connec-
tion pool manager module 202, and the event listener module
204 sends a connection reroute message 224 notifying the
connection pool manager 202 that a reroute event occurred.

In response to the connection reroute message 224, the
connection pool manager 202 identifies the set of connection
records 216 associated with the first database 212 from the
pool of connection records 210 and sends a mass reroute
request message 226 to the database driver module 206 1den-
tifying the set of connection records 216 and requesting a
mass reroute of the set of connection records 216. The data-
base driver module 206 attempts to modily each connection
record in the set of connection records 216 to enable access to
the second database 214. The database driver module 206
sends a reroute result message 228 including mass reroute
result data 230 to the connection pool manager 202. The mass
reroute result data 230 may include an array of Boolean
values indicating which connection records of the set of con-
nection records 216 were successiully modified to enable
access to the second database 214. For example, the mass
reroute result data 230 may include an identifier (ID) 232 that
identifies a connection record of the set of connection records
216 and a value 234 that indicates whether the connection
record was successiully modified to enable access to the
second database 214.

The connection pool manager module 202 parses the
reroute result data 228 to determine which connection records
were not successtully modified. The connection pool man-

US 7,962,782 B2

7

ager 202 sends a delete instruction 236 to the pool of connec-
tion records 210 to delete or purge the connection records
which were not successiully modified to enable access to the
second database 214.

Thus, the set of connection records 216 are modified to
enable access to the second database 214 instead of accessing
the first database 212 when a failure to access the first data-
base 212 via a connection record 1s detected, and stale con-
nection records that could not be modified are removed. By
moditying the set of connection records 216 rather than delet-
ing them, the connection pool manager module 202 can eifi-
ciently manage the pool of connections records 210 without
creating a new set of connection records 1n response to every
reroute event. Modilying the set of connections records 216
enables multiple applications to have access to connection
records to a failover database a short time after a primary
database fails or i1s inaccessible. Although the system 200
illustrates a particular embodiment of modifying connection
records to enable access to a failover database, other embodi-
ments may include more modules or fewer modules that may
communicate with each other 1n a different arrangement with-
out significantly deviating from the scope of the present dis-
closure.

FI1G. 3 15 a flow diagram of a first 1llustrative embodiment
of a method to modity connection records. The method may
be executed by a module, such as the database driver module
130 1n FIG. 1, or the database driver module 206 1n FIG. 2,
that may be implemented as software, firmware, hardware,
other form of logic 1nstructions, or any combination thereof.
At 302, a request for a connection record to the first database
may be recerved from an application. For example, the
request may be the connection record request 136 sent by the
application 108 in FIG. 1 to enable the application 108 to
access the first database 110 via the connection record 140.
Continuing to decision 304, a determination may be made
whether the connection record to the first database 1s 1n a pool
ol connection records.

When, at 304, a determination may be made that the con-
nection record to the first database 1s not in the pool of con-
nection records, then the connection record to the first data-
base may be created and at 306 the method may proceed to
310. For example, when a connection record to the first data-
base 110 of FIG. 1 1s not 1n the pool of connection records
120, the database driver module 130 may create the connec-
tion record 140 to the first database 110 at the first set of
connection records 122. When a determination 1s made at 304
that the connection record to the database 1s 1n the connection
pool, then the connection record to the first database may be
retrieved from the connection pool, at 308. At 310, the con-
nection record may be sent to the application. For example,
the database driver module 130 of FIG. 1 may retrieve the
connection record 138 from the first set of connection records
122 and send the connection record 138 to the application 108
via the network 106. The method may then end at 312.

FIG. 4 1s a tlow diagram of a second illustrative embodi-
ment of a method to modily connection records. The method
may be executed by a module, such as the connection pool
manager module 132 in FIG. 1 or the connection pool man-
ager module 202 1n FIG. 2, and may be implemented as
soltware, firmware, hardware, other form of logic instruc-
tions, or any combination thereof.

At 402, a registration request may be sent to register to
receive a notification when a connection record to a first
database 1s rerouted. For example, the registration request
220 of FIG. 2 may be sent by the connection pool manager
202 1 order to recerve a notification when a connection
record to the first database 212 1s rerouted. Continuing to 404,

10

15

20

25

30

35

40

45

50

55

60

65

8

a reroute notification may be received. The reroute notifica-
tion may indicate that a connection record to a first database
was rerouted to a failover database. Proceeding to 406, a setof
connection records associated with the first database may be
identified from the pool of connection records. Advancing to
408, a mass reroute request to modily the set of connection
records to enable access to a second database may be sent.
The second database may be a failover database for the first
database, such as a backup or a mirror database. Moving to
410, a mass reroute result may be recerved indicating which
connection records among the set of connection records were
successiully modified. Continuing to 412, connection records
that were not successtully modified may be deleted from the
pool of connection records based on the mass reroute result.
For example, the connection records which the reroute result
indicates were not successiully modified to enable access to
the second database may be deleted from the pool of connec-
tion records. The method may end at 414.

FIG. 5 1s a flow diagram of a third illustrative embodiment
of a method to modity connection records. The method may
be executed by a module, such as the database driver module
130 1n FIG. 1 or the database driver module 206 in FIG. 2, and
may be implemented as software, firmware, hardware, other
form of logic instructions, or any combination thereof. At
502, a request to enable access to a first database via a con-
nection record may be processed. For example, the applica-
tion 108 of FIG. 1 may request the connection record 140 to
access to the first database 110. Continuing to decision 504, a
determination may be made whether the application failed to
access the first database via the connection record. When, at
504, a determination 1s made that the application accessed the
first database via the connection record, the method may
proceed back to 502. When at 504, a determination 1s made
that the application failed to access the first database via the
connection record, at 506, the module may determine that a
second database 1s accessible. The second database may be a
tallover database, such as a backup or mirror database.

Proceeding to 508, the connection record may be modified
to enable access to the second database. Advancing to 510, a
reroute notification may be sent. The reroute notification may
indicate that a connection record to the first database was
rerouted by moditying the connection record to enable access
to the second database. Continuing to 512, a mass reroute
request to modily a set of connection records may be
received. For example, the set of connection records 122 in
FIG. 1 may be 1dle connection records 1n the pool of connec-
tion records 120 that have become stale. Moving to 514, each
connection record of the set of connection records may be
modified to enable access to the second database. Prior to
being modified, the set of connection records may enable an
application to access the first database and after modification
the connection records may be enable the application to
access the second database, 1.e. the failover database.
Advancing to 516, a determination may be made whether the
set of connection records was successiully modified. Pro-
ceeding to 518, a mass reroute result may be sent. In one
illustrative embodiment, the mass reroute result indicates
whether the set of connections records was successiully
modified. In a second illustrative embodiment, the reroute
result indicates which connection records of the set of con-
nection were successiully modified to enable access to the
second database. The method may end at 520.

FIG. 6 1s a flow diagram of a fourth 1llustrative embodiment
ol a method to modity connection records. The method may
be executed by a module, such as the event listener module
128 1n FIG. 1 or the event listener module 204 in FIG. 2, and

may be implemented as soitware, firmware, hardware, other

US 7,962,782 B2

9

form of logic instructions, or any combination thereof. At
602, a registration request to an event may be received. For
example, the event listener module 204 1n FIG. 2 may receive
the registration request 220 from the connection pool man-
ager module 202. Continuing to 604, a message indicating
that the event occurred may be received. For example, the
event listener module 204 may receive the event notification
message 222 from the database driver module 206 indicating,
that the connection record 218 to the first database 212 was
rerouted to a failover database, such as the second database
214. Advancing to 606, a determination may be made as to
which module(s) registered to receive a notification message
when the event occurred. For example, the event listener
module 204 may determine that the connection pool manager
module 202 registered to receive the reroute notification mes-
sage 224 when a reroute event occurred. Continuing to 608, a
notification message may be sent to the module(s) which
registered to receive a notification message. For example, the
event listener module 204 may send the reroute event notifi-
cation message 224 to the connection pool manager module
132 indicating that a reroute event occurred. The method may
end at 610.

FI1G. 7 1s a block diagram of a computing system 1n which
systems and methods of the present disclosure may be imple-
mented. Computing system 700 includes an example of an
application server, such as the application server 104 1n FIG.

1, in which computer usable code or instructions are execut-
able to implement the modules 128, 130, and 132 in FIG. 1

and modules 202, 204, and 206 1n FIG. 2.

In the depicted example, the computing system 700
employs a hub architecture including a north bridge and
memory controller hub (MCH) 702 and a south bridge and
input/output (1/O) controller hub (ICH) 704. A processor 706,
a main memory 708, and a graphics processor 710 are
coupled to the north bridge and memory controller hub 702.
For example, the graphics processor 710 may be coupled to
the MCH 702 through an accelerated graphics port (AGP)
(not shown).

In the depicted example, a network adapter 712 1s coupled
to the south bridge and I/O controller hub 704 and an audio
adapter 716, a keyboard and mouse adapter 720, a modem
722, a read only memory (ROM) 724, universal serial bus
(USB) ports and other communications ports 732, and
Peripheral Component Interconnect (PCI) and Peripheral
Component Interconnect Express (PCle) devices 734 are
coupled to the south bridge and 1/O controller hub 704 via bus
738. A disk drive 726 and a CD-ROM drive 730 are coupled
to the south bridge and I/O controller hub 704 through the bus
738. The PCI/PCle devices 734 may include, for example,
Ethernet adapters, add-in cards, and PC cards for notebook
computers. The ROM 724 may be, for example, a flash binary
input/output system (BIOS). The disk drive 726 and the CD-
ROM drive 730 may use, for example, an integrated drive
clectronics (IDE) or senal advanced technology attachment
(SATA) mterface. A super I/O (SIO) device 736 may be
coupled to the south bridge and I/O controller hub 704.

A network 744 1s coupled to a computer 746 and a database
748. An application 750 runs on the computer 746. The main
memory 708 includes a mass reroute module 740 and a pool
of connection records 742. The mass reroute module 740 may
be implemented as one or more modules, such as the modules
202, 204, and 206 in FIG. 2. In a particular embodiment, the
application 750 and the database 748 are accessible via the
network adapted 712. The mass reroute module 740 may
implement one or more of the functions of the connection
pool manager module 202 1n FIG. 2, the event listener module
204, and the database driver module 206. For example, the

10

15

20

25

30

35

40

45

50

55

60

65

10

mass reroute module 740 may be a computer readable pro-
gram that when executed by the processor causes the proces-
sor to detect a failed attempt to access a first database via a
connection record, to modily the connection record to enable
access to a second database, to 1dentily a set of connection
records associated with the first database, and to modify each
connection record of the set of connection records to enable
access to the second database.

As another example, the mass reroute module 740 may be
implemented as a computational component for use in direct-
ing one or more computing devices to reroute a set of con-
nections from a database to a failover database. The compu-
tational component may comprise encoded computing device
istructions 790, emanating from a tangible computer read-
able medium, such as a memory 792 at a server 794. The
encoded computing device instructions 794 are electronically
accessible to at least one of the computing devices 700 and
746 for execution. The execution of the encoded computing
device mstructions 794 may cause the one or more computing
devices 700 and 746 to modily a connection record to access
a second database 1nstead of a first database to enable access
to a second database. The connection record may be modified
to include information to route data with respect to the second
database. The execution of the encoded computing device
instructions 794 may further cause the one or more comput-
ing devices 700 or 746 to identily a set of connection records
associated with the first database and modity the set of con-
nection records to enable access to the second database. The
execution of the encoded computing device instructions 794
may further cause the one or more computing devices 700 and
746 to modity the connection record to enable access to the
second database 1n response to detecting a failure of an appli-
cation to access the first database via the connection record.
The execution of the encoded computing device instructions
794 may further cause the one or more computing devices 700
and 746 to delete connection records of the set of connection
records that were not successiully modified. The computa-
tional component may be received at the main memory 708
from any of the components 720-736 coupled to the bus 738,
or from the computer 746 or the server 790 coupled to the
main memory 708 via the network adapter 712, or any com-
bination thereof.

An operating system (not shown) runs on the processor 706
and coordinates and provides control of various components
within the computing system 700. The operating system may
be a commercially available operating system such as
Microsolt® Windows® XP (Microsoft and Windows are
trademarks ol Microsoit Corporation in the United States,
other countries, or both). An object oriented programming
system, such as the Java® programming system, may run in
conjunction with the operating system and provide calls to the
operating system from Java programs or applications execut-
ing on computing system 700 (Java and all Java-based trade-
marks are trademarks of Sun Microsystems, Inc. 1n the United
States, other countries, or both).

Instructions for the operating system, the object-oriented
programming system, and applications or programs are
located on storage devices, such as the hard disk drive 726,
and may be loaded into the main memory 708 for execution
by the processor 706. The processes of the disclosed illustra-
tive embodiments may be performed by the processor 706
using computer 1implemented instructions, which may be
located 1n a memory such as, for example, the main memory
708, the read only memory 724, or in one or more of the
peripheral devices.

The hardware in computing system 700 may vary depend-
ing on the implementation. Other internal hardware or periph-

US 7,962,782 B2

11

eral devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in
addition to or 1n place of the hardware depicted 1in FIG. 7.
Also, the processes of the disclosed 1llustrative embodiments
may be applied to a multiprocessor data processing system.

In some 1llustrative examples, portions of the computing
system 700 may be implemented 1n a personal digital assis-
tant (PDA), which 1s generally configured with flash memory
to provide non-volatile memory for storing operating system
files and/or user-generated data. A bus system may be com-
prised of one or more buses, such as a system bus, an 1/0 bus
and a PCI bus. Of course the bus system may be implemented
using any type ol communications fabric or architecture that
provides for a transier of data between different components
or devices attached to the fabric or architecture. A communi-
cations unit may include one or more devices used to transmit
and recerve data, such as a modem or a network adapter. A
memory may be, for example, the main memory 708 or a
cache such as found 1n the north bridge and memory control-
ler hub 702. A processing unit may include one or more
processors or CPUs. The depicted examples 1 FIG. 7 and
above-described examples are not meant to 1mply architec-
tural limitations. For example, portions of the computing
system 700 also may be implemented 1n a tablet computer,
laptop computer, or telephone device 1n addition to taking the
form of a PDA.

Particular embodiments of the computing system 700 can
take the form of an entirely hardware embodiment, an entirely
soltware embodiment or an embodiment containing both
hardware and software elements. In a particular embodiment,
the disclosed methods are implemented 1n software, which
includes but 1s not limited to firmware, resident software,
microcode, etc.

Further, embodiments of the present disclosure, such as the
one or more embodiments 1n FIGS. 1-7 can take the form of
a computer program product accessible from a computer-
usable or computer-readable medium providing program
code for use by or in connection with a computer or any
instruction execution system. For the purposes of this
description, a computer-usable or computer-readable
medium can be any apparatus that can contain, store, com-
municate, propagate, or transport the program for use by or in
connection with the 1nstruction execution system, apparatus,
or device.

The medium can be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
or device) or a propagation medium. Examples of a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
arigid magnetic disk and an optical disk. Current examples of
optical disks include compact disk-read only memory (CD-
ROM), compact disk-read/write (CD-R/W) and digital ver-
satile disk (DVD).

A data processing system suitable for storing and/or
executing program code may include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code 1n order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the data processing system either directly or through inter-
vening 1/0 controllers.

10

15

20

25

30

35

40

45

50

55

60

65

12

Network adapters may also be coupled to the data process-
ing system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net-
works. Modems, cable modems, and Fthernet cards are just a
few of the currently available types of network adapters.
The previous description of the disclosed embodiments 1s
provided to enable any person skilled 1n the art to make or use
the disclosed embodiments. Various modifications to these
embodiments will be readily apparent to those skilled 1n the
art, and the generic principles defined herein may be applied
to other embodiments without departing from the scope of the
disclosure. Thus, the present disclosure 1s not intended to be
limited to the embodiments shown hereimn but 1s to be
accorded the widest scope possible consistent with the prin-
ciples and features as defined by the following claims.
The invention claimed 1s:
1. A method of moditying a set of connection records, the
method comprising:
determining that an application failed to access a first data-
base via a connection record, wherein the connection
record includes data to access the first database:

determining that a second database 1s accessible, wherein
the second database 1s a failover database to the first
database:

modifying a set of connection records associated with the

first database to enable access to the second database;
identifying a connection record that was not successiully
modified to enable access to the second database; and
deleting the connection record that was not successiully
modified.

2. The method of claim 1, further comprising modilying
the connection record to enable access to the second database
before modilying the set of connection records, wherein
moditying the connection record enables the application to
continue processing substantially without interruption.

3. The method of claim 1, wherein each connection record
in the set of connection records 1s modified to enable access to
the second database in response to determining that the appli-
cation failed to access the first database via the connection
record.

4. The method of claim 3, wherein modifying each con-
nection record of the set of connection records to enable
access to the second database 1s performed substantially con-
currently.

5. The method of claim 1, wherein before modifying the set
of connection records to enable access to the second database,
at least one connection record 1n the set of connection records
1s 1dentified as not currently 1n use.

6. A computer program product comprising a non-transi-
tory computer usable medium including a computer readable
program, wherein the computer readable program when
executed by a computer causes the computer to:

detect a failed attempt to access a first database via a

connection record;

modify the connection record to enable access to a second

database:

1dentify a set of connection records associated with the first

database:
modily each connection record of the set of connection
records to enable access to the second database; and

delete at least one modified connection record from the set
ol connection records, wherein the at least one deleted
modified connection record was not successiully modi-
fied to enable access to the second database.

7. The computer program product of claim 6, wherein one
or more connection records from the set of connection

US 7,962,782 B2

13

records are used by an application to enable access to the
second database after each connection record of the set of
connection records 1s modified to enable access to the second
database.

8. The computer program product of claim 6, wherein the
connection record 1s modified to enable access to the second
database after determiming that the second database 1s acces-
sible.

9. A system, comprising:

a database driver module adapted to:

determine that a second database 1s accessible after
detecting a failed attempt to access a first database via
a connection record;

modily the connection record to enable access to the
second database;

modily each connection record of a set of connection
records associated with the first database to enable
each connection record to enable access to the second
database, wherein at least one connection record of
the set of connection records 1s 1dentified as currently
not in use; and

delete at least one modified connection record from the
set of connection records, wherein the at least one
deleted modified connection record was not success-
tully modified to enable access to the second data-
base.

10. The system of claim 9, further comprising:

a connection pool manager module to:

identify the set of connection records associated with the
first database before the database driver module modi-

fies the set of connection records to enable access to
the second database.

11. The system of claim 9, wherein the database driver
module 1s adapted to send a message to the connection pool
manager module, wherein the message indicates whether
cach connection record of the set of connection records was
successiully modified.

12. The system of claim 11, wherein further comprising:

an event listener module to:

receive from the database driver module a message 1ndi-
cating that an event occurred; and

send an event notification message to the connection
pool manager module that the event occurred.

13. A method, comprising:

receiving a reroute notification that a connection record

was modified to enable the connection record to enable

10

15

20

25

30

35

40

45

14

access to a second database instead of a first database,
wherein the second database comprises a failover data-
base to the first database;

identifying a set of other connection records associated
with the first database;

sending a mass reroute request to modily the set of other
connection records;

recerving a mass reroute result identifying connection
records that were not successiully modified; and

deleting the connection records that were not successiully

modified.

14. The method of claim 13, wherein at least one connec-
tion record of the set of other connection records has an 1dle
status, and wherein the at least one connection record with the
idle status 1s not 1n use by an application.

15. The method of claim 13, wherein the reroute notifica-
tion that the connection record was modified to enable access
to a second database.

16. The method of claim 15, wherein the mass reroute
request 1dentifies the set of other connection records to be
modified to enable access to the second database.

17. A non-transitory computational component for use in
directing one or more computing devices to reroute a set of
connections from a database to a failover database, the com-
putational component comprising encoded computing device
instructions emanating from a tangible computer readable
medium, the encoded computing device instructions elec-
tronically accessible to at least one of the one or more com-
puting devices for execution, the execution causing the one or
more computing devices to:

modily a connection record to access a second database

instead of a first database to enable access to a second
database, wherein the connection record 1s modified to
include information to route data with respect to the
second database:

1dentily a set of connection records associated with the first

database:

modity the set of connection records to enable access to the

second database; and

delete connection records of the set of connection records

that were not successiully modified.

18. The computational component of claim 17, wherein the
execution of the encoded computing device mstructions fur-
ther causes the one or more computing devices to modily the
connection record to enable access to the second database 1n
response to detecting a failure of an application to access the
first database via the connection record.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

