US007953861B2
®
12 United States Patent (10) Patent No.: US 7.953.861 B2
Yardley 45) Date of Patent: May 31, 2011
(54) MANAGING SESSION STATE FOR WEB 2004? 0039827 Al 2§2004 Thomas et al.
2004/0068572 Al 4/2004 Wu
APPLICATIONS 2004/0143669 Al1* 7/2004 Zhaoetal. 709/228
_ 2004/0193600 Al 9/2004 Kaasten et al.
(75) Inventor: Brent W. Yardley, Hillsboro, OR (US) 2005/0038801 Al* 2/2005 Colrainetal. 707/100
2005/0198380 Al1* 9/2005 Panasyuketal. 709/239
(73) Assignee: International Business Machines %882? 81'1322 é S? i : 12; 3882 Eielﬁore etal. ... ggg? % g
. 1 | 1 1 1 PN
Corporation, Armonk, NY (US) 2008/0286741 A1* 11/2008 Call oovovvvoooeooeron 434/350
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35 CN 1717676 A 4/2004
U.S.C. 154(b) by 843 days. WO W02004034192 A2 4/2004
(21) Appl. No.: 11/463,830 OIHER PUBLICATIONS
.L.am et al., chitecting Your we 1cations, 1CIroso
| L 1., “Architecting Your Web Applications,” 1999 Microsoft
(22) Filed: Aug. 10, 2006 Internet Developer, pp. 1-10.
The J2EE Tutornal, “Maintaining Client State,” downloaded from the
(65) Prior Publication Data Internet {<http://www java.sun.com/j2ee/ 1 .4/tutorial/doc/
Servlets11.html>} Aug. 9, 2006, 2 pages.
US 2008/0040434 Al Feb. 14, 2008 “Introduction to Web Forms State Management,” download from the
Internet {<http://msdn.microsoft.com/library/default.asp?url=
(5 1) Int. CI. library/en-us/vbcon/html/vbconIntroductionToWebFormsState
GO6l 15/16 (2006.01) Management.asp? frame=true&hidetoc=true>} on Aug. 9, 2006, 5
(52) US.CL ..., 709/227: 709/203; 709/228 pages.
(58) Field of Classification Search 709/2 1 7 ;gg/ 220238,, * cited by examiner
See application file for complete search history. Primary Examiner — Phuoc Nguyen
_ (74) Attorney, Agent, or Firm — Walter W. Dutft
(56) References Cited
U.S. PATENT DOCUMENTS (57) ABSTRACE
6.199.065 Bl 3/2001 Kenyon A techmque for managing the session state of a web apphc:-:?-
6,701,345 Bl =% 3/2004 Carley etal. ... 700/205 {10n dlll'lllg fransaction pFQCESSIHg. When a IMECS5dZC 15
6,701,367 B1* 3/2004 Belkincoccoveevveennn. 709/227 exchanged between a web client and a web server, such as a
7,171,410 B1* 1/2007 Neufeldetal. 707/8 web client request or a web server response, session informa-
7,433,956 B2* 1072008 Zhao etal. ... 709/228 tion therein 1s stored on behalt of the client. Following an
2002/0147652- Al 10/2002 " Gheith et al. interruption 1n session state, the session state mav be recre-
2002/0152423 Al1* 10/2002 McCabecocevvvvvenannnn.. 714/15 P) 7, : . Y
2002/0194262 Al* 12/2002 JOIQENSON ..o.oovvrvveorern.. 709/203 ated by using the stored session information.
2003/0084165 Al1* 5/2003 Kjellbergetal. 709/227
2004/0015600 Al1* 1/2004 Tiwaryetal. 709/234 29 Claims, 6 Drawing Sheets
58 RERNERYY
2N
34
SERVER NO v
CLIENT HAS SAVED SETUP STORE 3b
ACCESS? CONTEXT? FOR CLIENT [\
CONTEXT
TOf;'EP
38 46
clenT N o SN o)
SESSION CACHE CLIENT 92
SAVE? CONTEXT {
KEY: YES YES
IR COMMIT CACHED
77 NoR 48
s PERSISTENT [/
ADDED STATE STORAGE
SAVE FUNCTIONS A 4 a0 i
RESTORE
R CONTEXT FROM [/ R
[*55’*?’Eizl:?ifﬁfaiﬁﬁi"-‘::;-"-f-‘::;-"-f-" Fgﬁg EIE ET EEEIIEGH ﬁéE ‘MSD H[EOSTSXTE
HE:JILD N42 l COMMIT CACHED
o PERSISTENT
6{\./' STORAGE

U.S. Patent May 31, 2011 Sheet 1 of 6 US 7,953.861 B2

§4n " BZ

WEB
CLIENT [10 12
S S 14
° S
: = IR
. FRONT «— —» WEB (:::) R—
COMM. <:::> END SERVERS x@i
WEB
CLIENT [0 % M,
42
8 22\,«"\. v
WEB |,
CLENT [° T
+ " FILTER ()| o
N R
16 S S
FIG. 1 >~ 18 20
) SESSION STATE MANAGER

SESSION STATE
FROM CONTEXT

US 7,953,861 B2

60

\\\\\\\\
hh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
\\\\\\\\\\\\\
''

1111111111

1111111111111111111111

U.S. Patent May 31, 2011 Sheet 2 of 6
CLIENT' N S
ACCESS /
29 34
NO YES SERVER NO
HAS SAVED SETUP STORE 36
CONTEXT? FOR CLIENT
CONTEXT
T0 5TEP
46
38 46
h 4
REQUEST - 5
RESTORE SESSION CACHE CLIENT N5
' SAVE? CONTEXT
KEY- YES YES +
I" .‘ o A T e o,
e COMMIT GACHED| .. [& CSPROBAGATE . o4
,,,,, MGF’:}MAL
WEB FUNCTIONS CONTEXTTO |\ A8 meauest o [
T e PERSISTENT ICRERVEHR
STORAGE R
ADDED STATE e * '
SAVE FUNCTIONS h 4 20 i
RESTORE
<<<< 'E_- RTRVEXIT. CONTEXT FROM [~ CAGHE SEHVER| 56
________________________ POINTS i PERSISTENT ceneraTE |50 Hggggg‘;‘f i
STORAGE RESPONSE
* N42 i
REBUILD
FIG. 2

62 |

COMMIT CACHED
CONTEXT TO
PERSISTENT

STORAGE

U.S. Patent May 31, 2011 Sheet 3 of 6 US 7,953,861 B2

o 4 X

WEB |,
CLIENT 10 12 3
: 3 § s

- = e
. FRONT ||« wes [—=|| e

END SERVERS (| sTomee
WEB
CLIENT
at
WEB 22
CLIENT MY 24
v
D
» FILTER ()| JSace
S -
FIG. 3) 5 5
e 18 20
SESSION STATE MANAGER

U.S. Patent May 31, 2011 Sheet 4 of 6 US 7,953.861 B2

S4n 2& BZ

WEB |,
CLIENT Sw S12)
. S
—
) — -
. FRONT WEB <:> ——
END SERVERS (| s
WEB b
CLENT [T~ Vi T"\24
42
WEB
CLIENT | FILTER
LN
4,
S RN
18 ﬁ 16
FIG. 4A p—
CACHE
STORAGE
S -
20

U.S. Patent May 31, 2011 Sheet 5 of 6 US 7,953,861 B2

"2
g™ :
WEB Z 12

CLIENT |® 10 S .
: 5 s
y [
FRONT <:> WEB <:> SERBVER
) COMM. <::> END SERVERS | STORAGE
WEB _ - F N
CLIENT [01 22 V‘; .y
. Y
WEB 8
CLIENT | FILTER
Mo\
4,

16 13S
|

3

CACHE
STORAGE

. -

S

20

U.S. Patent May 31, 2011 Sheet 6 of 6 US 7,953,861 B2

32

36 i i 34
GRAPHICS | MEMORY i MAIN
CARD | CONTROLLER [+1 MEMORY
; HUB ;
38
: : PERIPHERAL
; /0 :
STORAGE | | | ~qNTROLLER H- PERIPHERAL | » 40
DEVICE | HUB :
i : PERIPHERAL

US 7,953,801 B2

1

MANAGING SESSION STATE FOR WEB
APPLICATIONS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to web-based network trans-
action processing. More particularly, the invention 1s directed
to techniques for preserving session state in a web application
transaction.

2. Description of the Prior Art

By way of background, the use of web applications for
conducting remote electronic transactions has become perva-
stve. A web application 1s a software program that allows a
user to 1nteract with a remote service using web page forms
delivered by a web server and displayed to the user via a web
client (e.g. a web browser). Although the term “web” 1s short
for “World Wide Web™ (a portion of the global Internet), web
applications are not limited to public networks, and may be
used 1n private networks or even between non-network con-
nected machines. The types of transactions that may be
implemented using web applications are many and varied.
Examples include online purchasing, trading, banking and
other forms of commerce. Web applications have also been
utilized to implement user interfaces for hardware and soft-
ware services, such as storage and database management
systems.

In conventional web-based applications, especially those
that deal with secure (e.g., banking) information, there are
session timeouts that terminate user interaction with the
application for security reasons 1f the timeouts are triggered.
When this occurs, the user has to log back 1nto the interface
and start from the beginning of the transaction. Session state
will likewise be lost 11 the session 1s disrupted due to network
errors, equipment failures or the like. Current web applica-
tions also provide no mechanmism whereby a user can volun-
tarilly imterrupt a session while saving session state. For
example, when a user logs on to a financial institution website
to make an online bill payment, the user must complete the
transaction betfore logging off. The user 1s not allowed to save
the current state of the transaction, logoil and then at some
later date, log back into the system and continue with the
transaction from the saved point.

It would be desirable to provide a technique whereby the
session state of a web application can be preserved notwith-
standing interruptions 1n transaction processing. What 1s par-
ticularly needed 1s the capability for web application users to
control session state, so that a session can be paused and later
resumed according to user requirements.

SUMMARY OF THE INVENTION

The foregoing problems are solved and an advance 1n the
art 1s obtaimned by a novel method, system and computer
program product for managing the session state of a web
application during transaction processing. When a message 1s
exchanged between a web client and a web server, such as a
web client request or a web server response, session informa-
tion therein 1s stored on behalf of the client. Following an
interruption 1n session state, the session state may be recre-
ated by using the stored session information.

According to exemplary illustrated embodiments, the mes-
sage may comprise one of an encrypted web client request
message, a non-encrypted web client message, an encrypted
web server response message or a non-encrypted web server
response message. The session information may comprise the
entire message, or a portion thereol. In either case, the session

10

15

20

25

30

35

40

45

50

55

60

65

2

information may be stored 1n association with a session 1den-
tifier. The session information data may be stored in a cache
while the session state remains uninterrupted, and 1n persis-
tent storage when the session state 1s interrupted. The persis-
tent storage may comprise a server-side file system storage, a
client-side file system storage, or a database storage. In a
turther aspect, the client may be given the option to initiate
storage of the session information when the client voluntarily
terminates the session state.

In one exemplary implementation, session state manage-
ment functions are part ol a web server system product that
provides a web application while managing the session state
of the web application during transaction processing. When a
request 1s recetved from a client that contains session nfor-
mation for generating a web page, the web server system
stores the session information on behalf of the client. Follow-
ing an interruption 1n session state, the session state may be
recreated by using the stored session information to generate
the web page.

In another exemplary implementation, the session state
management functions are part of a middleware product that
supports a web server system 1n providing a web application
while managing the session state of the web application dur-
ing transaction processing. When the middleware product
receives a request from a client that contains session nfor-
mation for generating a web page, the submission 1s passed to
the web server system and the session state information 1s
stored on behalf of the client. Following an interruption 1n
session state, the session state may be recreated by providing
the stored session imnformation to the web server 1n order to
generate the web page.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features and advantages of the
invention will be apparent from the following more particular
description of preferred embodiments of the invention, as
illustrated 1n the accompanying Drawings, 1n which:

FIG. 1 1s a functional block diagram showing an exemplary
web transaction environment that includes a web application
session state manager;

FIG. 2 1s a flow diagram showing a sequence of actions
performed by the session state manager of FIG. 1;

FIG. 3 1s a functional block diagram showing an exemplary
implementation of the session state manager of FIG. 1;

FIG. 4A 1s a functional block diagram showing a first
alternative implementation of the session state manager of
FIG. 1;

FIG. 4B 1s a functional block diagram showing a second
alternative implementation of the session state manager of
FIG. 1;

FIG. 5 1s a functional block diagram showing an exemplary
computer hardware platform that may be used to implement
the session state manager of FIG. 1; and

FIG. 6 1s a diagrammatic illustration of storage media that
can be used to provide a computer program product for imple-
menting the session state manager of FIG. 1.

L1
=]

ERRED

DETAILED DESCRIPTION OF THE PR.
EMBODIMENTS

The mvention will now be described by way of exemplary
embodiments shown by the drawing figures, 1n which like
reference numerals indicate like elements 1n all of the several
views. Turning to FIG. 1, an exemplary web transaction envi-
ronment 2 1s shown wherein one or more web application
clients (web clients) 4,, 4, . . . 4 communicate with a web

US 7,953,801 B2

3

application server system (web server system) 6 over a com-
munication medium 8. The web clients 4,, 4, . . . 4 may be
individually embodied in any type of device, system or appli-
ance capable of implementing the web client logic needed to
interact with the web server system 6. By way of example
only, an exemplary web client 4,, 4, .. .4, might comprise a
web browser program running on a personal desktop com-
puter, a laptop computer, a cellular telephone or other hand-
held device, a web appliance or other embedded system, etc.
The web server system 6 may be implemented using con-
ventional web server program logic executing 1n one or more
instances on one or more data processing platforms. In FIG. 1,
the web server system 6 1s shown by way of example only as
a server farm capable of large-scale web transaction process-
ing. According to this exemplary implementation, the web
server system 6 may comprise one or more front end query
distributor instances (query distributors) 10, one or more
back-end web server instances (web servers) 12, and one or
more mstances of server storage 14. As 1s known in the art, the
function of the query distributors 10 1s to receive client
requests from the web clients 4, 4, ... 4, and distribute them
to the web servers 12 1n a manner that achieves equitable web
server load balancing. The web servers 12 process the client
requests and generate responsive web pages for return to the
clients 4,, 4, . . . 4 _wvia the query distributors 10. This pro-
cessing 1includes the retrieval of static web pages that may be
stored 1n the server storage 14 and common gateway interface
(CGI) processing whereby the web servers 12 invoke external
helper applications to assist 1n creating dynamic web page
content. The server storage 14 stores static web pages, and
may additionally store other information such as data for
constructing dynamic web pages, as well as execution and
data files associated with the front end query distributors 10,
the web servers 12, and any associated helper applications.
Exemplary data processing resources thatmay be used to host
the query distributors 10 and the web servers 12 include, but
are not limited to, personal computers, workstations, mid-
range computers or main frame systems. One or more of such
resources may be used, and each such resource may be singly-
or multiply-partitioned 1n order to run the required number of
instances of query distributor and web server program logic.
An exemplary server farm implementation may utilize a first
set of one or more data processing resources to host the front
end query distributors 10 and a second set of one or more data
processing resources to host the back-end web servers 12. The
web server helper applications could also run on the second
set of data processing resources, or alternatively a third set of
one or more data processing resources could beused. A set of
dedicated data storage resources, such as one or more single-
disk storage umts, multi-disk storage subsystems, RAID
arrays, JBOD arrays, etc., may be used to host the server
storage 14. The forgoing resources of the web server system
6 may be situated at a single physical site or could be distrib-
uted over plural sites that are geographically diverse.
Although not shown, interconnectivity between such
resources may be provided by way of a private network, a
public network, or by other communication infrastructures.
The communication medium 8 may be implemented using,
any suitable communication technology, including wired
(e.g., electrical or optical) or wireless networks or other con-
nectivity schemes. Examples of suitable network implemen-
tations 1nclude, but are not limited to, public networks, such
as the Internet, as well as private networks. With respect to the
latter category, a private network could comprise 1ts own
physical infrastructure, or could be provided by way of virtual
private network connections within a public network. Thus,

although the term “web” 1s short for “World Wide Web” (a

10

15

20

25

30

35

40

45

50

55

60

65

4

portion of the global Internet), communication between the
web clients 4,4, .. .4 and the web server 6 1s not limited to
public networks, and may include the use of private networks
or even non-network connections.

The web clients 4,, 4, . . . 4 may interact with the web
server system 6 by exchanging messages according to any
suitable web-based request-response protocol. For example,
the web clients 4,, 4, . . . 4 may send request for web pages
to the web server system 6 and the latter may return responses
that contain formatting instructions and data that the web
clients process 1into graphical web page displays. The requests
sent by the clients 4,, 4, . . . 4 may be formatted in any
suitable manner. For example, the client requests may com-
prise presently known HIML (hypertext Markup Language)
URL (Unmiform Resource Locator) character strings (also
known as web addresses) of the type that are conventionally
displayed 1n a web browser address window. The requests
may additionally include data that 1s to be processed by the
web server system 6 when generating responsive web pages.
A common example would be form data that users of the web
clients4,,4,...4 supplyusing web page torms. When a user
submits such a form, the data entered therein are passed to the
web server system 6 (e.g., using conventional GET or POST
methods) as part of the request sent by the web client 4,
4, ...4 .The web server system 6 processes the request and
returns the appropriate web page response to the client. This
response may be formatted using a language such as HIML
(HyperText Markup Language) or XML (eXtensible Markup
Language) that the web client4,,4, .. .4, parses and inter-
prets 1n order to display the web page. As mentioned above,
the response from the web sever system 6 may be a static web
page retrieved from the server storage 14, or 1t could be
dynamically created, for example, by a web server helper
application that processes the data submitted as part of a client
request. It should also be understood that the request-re-
sponse messages exchanged between the web client 4,
4, ...4 andthe web server system 6 may be 1n an open web
text format or they may be encrypted according to an encryp-
tion mechanism such as SSL/TLS (Secure Socket Layer/
Transport Layer Security).

In order to facilitate online transaction processing, the web
server system 6 has the ability to track sessions between 1t and
the web clients 4,, 4, . . .4 . As 1s known 1n the art, sessions
may be 1dentified by the web server system 6 using any
unique 1dentifying information, such as a client name and/or
password (assuming the transaction uses such i1dentifiers), a
cookie set by the web server system 6, a client network or
MAC address, or other distinguishing information. Note that
some or all of the foregoing mmformation may be available
depending on whether the transaction mvolves a login pro-
cess, and 1t so, the type of login used. For example, a trans-
action might utilize a formal login process where a user
supplies a name and/or password, or an informal login pro-
cess where the web server system sets a cookie or other
identifier on the web client4,, 4, ... 4 , perhaps 1n response
to a user selecting a check box or the like indicating that they
wish to be remembered. In the former case, user name and
password information would be available to the web server
system 6 to use as a session 1dentifier. In the latter case, there
may not be any user name or password, but there may be a
cookie or the like that could be used as a session identifier. A
session refers to a series ol request-response interactions
between the web server and an individual web client 4,
4, ...4, . A common example of an online transaction pro-
cessing session would be a request-response sequence that
entails a web client user filling 1n and submitting a set of web
forms that are generated by the web server system 6, typically

US 7,953,801 B2

S

in response to data supplied by the user. An online banking
transaction that sequentially requests a user name, a pass-
word, an account number, a set of transaction instructions,
and so on, would be a representative example of a single
session. Another example of a session would be a shopping
cart transaction wherein a web client user selects 1tems for
purchase, places them in a shopping cart, and then purchases
the 1items as part of a check out procedure. Still another
example would be a transaction whereby a web client user
interacts with a web interface to a hardware or software
service, such as a storage or database management system. In
this example, the user would use a series of web forms to enter
a sequence of interface commands to invoke the functionality
of the service.

As discussed by way of background above, in conventional
web-based applications there are session timeouts or other
automated functions that close a web application session for
security reasons if the timeouts or other functions are trig-
gered. Sessions may also be terminated when network errors,
equipment failures disrupt the client/server communication
link. When such events occur, the session state 1s lost and the
user has to reacquire the interface and start from the begin-
ning of the transaction. Conventional web-based applications
also provide no mechanism whereby a user can voluntarily
interrupt a session while preserving the session state. For
example, when a user logs on to a financial institution website
to make an online bill payment, the user must complete the
transaction before logging off. The user 1s not allowed to save
the current state of the transaction, logoil and then at some
later date, log back into the system and continue with the
transaction from the saved point.

To address this problem, a session state manager 16 may be
provided that empowers a user to preserve session state (con-
text) notwithstanding a session interruption. As shown in
FIG. 1, the session state manager 16 includes a filter 18 that
may be configured to intercept client requests and/or server
responses passing between the front end distributors 10 and
the web servers 12. Assuming the session state manager 16 1s
in active mode, the filter stores session information within
cach request and/or each response 1n a cache storage 20 1n
order to preserve the session information for subsequent use
in recreating the session state. The cache storage 20 may
physically reside with the session state manager 16 on any
suitable data processing host, such as one of the data process-
ing resources associated with the web server system 6, or
otherwise (see below). In the event that arequest or aresponse
1s encrypted (e.g., using SSL/TLS encryption), the portion
thereol to be cached may be decrypted prior to filtering. This
decryption may be performed by the front end 10, the web
servers 12, or by the filter 18 1tself.

FI1G. 1 illustrates exemplary pathways 22 and 24 that may
be used for passing client requests and/or server responses
through the filter 18. As incoming client requests are routed
from the query distributors 10 to the web servers 12, they may
be diverted to the filter 18 via the pathway 22. The filter 18
may be programmed to cache the session imnformation, either
by copying the entire request message or a subset of the
information therein to the cache storage 20. In certain
embodiments, filter 18 may optionally overwrite any previous
cached information for the session in order to preserve
memory. After caching, the requests are passed via the path-
way 24 to the appropriate web servers 12 for processing. In
the reverse direction, outgoing responses sent by the web
servers 12 to the query distributors may be diverted to the
filter 18 via the pathway 24. Again, the filter 18 may be
programmed to cache the session information, either by copy-
ing the entire response message or a subset of the information

10

15

20

25

30

35

40

45

50

55

60

65

6

therein to the cache storage 20. In certain embodiments, filter
18 may optionally overwrite any previous cached information
for the session 1n order to preserve memory. After caching, the
responses are passed via the pathway 22 to the query distribu-
tors 10 for transmission to the web clients 4,, 4., .. .4, . Inthis
way, session information such as the current web page, login
status, wizard step, input field data, etc, may be tracked by the
session state manager 16 during the interactive session. In
order to properly associate the cached session information
with the correct web client4,, 4, . . . 4 , additional session-
identifying information, such as a client name and/or pass-
word, a cookie set by the web server system 6, a client net-
work or MAC address, or other unique distinguishing
information, may also be cached.

In the event of a session interruption, the cached session
information representing the most recent request or response,
together with the associated session-identifying information
(e.g., the network address of the web client4,,4,...4), may
be commuitted to persistent storage so that the session context
can be restored at a later date. The persistent storage can be
provided by any suitable storage system. For example, the
persistent storage could be implemented as file system stor-
age or database storage associated with either the web server
system 6 (e.g., the server storage 14) or the web clients 4,
4,...4 (e.g., local disk drives). Alternatively, a storage that
1s dedicated to the session state manager 16 may be used, such
as a file system storage associated with a data processing host
that implements the session state manager (see below), or a
separate database storage system that i1s accessible by the
session state manager. Any suitable storage format may be
used, including BLLOBs (Binary Large Objects) or other data
types.

Session interruptions resulting in the transfer of cached
information to persistent storage may arise under various
circumstances, for example, when one of the following
instances occur:

The user requests to be logged off of the system and to save
the current session state for restoration on the next login;
or

The system automatically logs off the user from the system
due to a session timeout or other automated function of
the web application; or

The sess1on 1s interrupted due to a network error, an equip-
ment failure, or other condition.

When the user comes back to the session and accesses the web
application, the filter 18 may determine from 1ts previously
stored session-identifying information that the user has a
saved session. The filter 18 may then present the user with the
ability to continue the last saved session, or to discard the
changes from the last session and begin with a fresh session.
If the user requests to continue the previous session, the filter
18 retrieves the saved session imnformation from persistent
storage and uses the mformation to present the user with a
web page that 1s consistent with the previous state. For
example, 11 the last item of cached session information was a
client request comprising a URL address with associated web
form data, this information will be retrieved by the filter 18
from persistent storage and passed to the web servers 12 via
the pathway 24. The request will be processed 1n conventional
fashion and the appropriate response will be generated. Simi-
larly, 11 the last item of cached session information was a web
server response (1.€., aweb page), the filter 18 will retrieve the
response from persistent storage and pass 1t to the query
distributors 10 via the pathway 22 for return to the associated
web client 4,, 4, . . .4 . The user 1s thus taken to the exact
place the last session was 1n, including all field inputs, pages,
wizard steps, etc. In essence, it 1s as 1f the user never left the

US 7,953,801 B2

7

session as 1t existed at the time of the previous logout, timeout
or other session interruption. Alternatively, 1f the user
requests that the last session be discarded, all information and
state data from the previous session may be deleted and the
user will be presented with a fresh session as 11 there was no
previous session to be restored. This would be the case i1 the
session state manager 16 was not present or enabled for
operation.

Turning now to FIG. 2, exemplary logic implemented by
the filter 18 of the session state manager 16 1s illustrated for
the case where the filter saves state on both clientrequests and
server responses (rather than just one or the other). This
processing of request-response tratfic begins with the receipt
ol a client request at client access point 30. When the client
request 1s received, control passes to step 32 where the filter
18 tests whether the request represents a new session (new
client access). This can be performed by using the client’s
current session identifying-information (e.g., name, pass-
word, cookie, network or MAC address, etc.) as a search key
in a lookup of previously cached and/or persistently stored
session context information. If true (e.g., a search key match
1s found), control passes to step 34 1n which the filter 18 tests
whether there 1s any saved (cached or persistently stored)
session context mformation for the current web client 4,
4, ...4 Iftheresult of step 34 1s false, control passes to step
36 1n which the filter 18 sets up cache storage for caching
session context information associated with the new session.
If 1t 1s determined 1n step 34 that there i1s previously saved
session context information, control passes to step 38.

In step 38, the filter 18 tests whether the web client 4,,
4, ...4 has submitted a request to restore the session context
of a saved session. This option may be desirable to a web
client user regardless of whether the previous session was
automatically terminated by the web server system 6, or vol-
untarily by the user, or due to a network error, equipment
failure or other condition. The user’s instructions can be
solicited by presenting a web page control element to the web
client 4,, 4, . . . 4, that allows a user to select whether to
proceed with the current session or restore a previous session.
Theuser’s selection will be passed as part of the client request
so that 1t may be evaluated by the filter 18 1 step 38. If 1t 1s
determined 1n step 38 that the web client 4,, 4, . . . 4, has
requested restoration of a previous session, the session con-
text will be retrieved by the filter 18 from persistent storage in
step 40. This can be performed by using the client’s current
session 1dentifying-information (e.g., name, password,
cookie, network or MAC address, etc.) as a search key 1n a
lookup of persistently stored session context information. In
step 42, the filter 18 rebuilds the session state 1n step 42 based
on the retrieved context information. This may be handled by
the filter 18 alone or with support from the web servers 12.
The rebuilt session state will comprise a web page that 1s
propagated to the web client4,,4, .. .4 . viaone of the query
distributors 10 1n step 44.

If 1t 1s determined 1n step 38 that the web client4,.4, .. .4
has not requested a session context restoration, or it 1t 1s
determined 1n step 32 that the current request 1s not the begin-
ning of a new session, control passes to step 46 in which the
filter 18 determines whether the client has requested to save
the current session. This determination can be made either
transparently without user involvement or can be based on
user mput. In the former case, a user terminating a session
betore 1t 1s completed (e.g., logging out of a transaction prior
to consummation) could be interpreted as a client request to
save the session context. The user need not know that the
session context has been saved until a subsequent login, at
which point the user could be asked whether they wish to

10

15

20

25

30

35

40

45

50

55

60

65

8

restore the previous session, as per steps 38-42. I1 the deter-
mination of step 46 1s made on the basis of user mput, the
user’s istructions can be solicited by presenting a web page
control element to the web client 4,, 4, . .. 4, that allows the
user to 1nitiate a session save pursuant to a session termination
request. It 1t 1s determined 1n step 46 that the web client 4,
4, ...4 hasrequested a session save, the filter 18 will commat
the cached context for the current session to persistent storage
in step 48. In step 50, the filter 18 generates a session save
verification response (e.g., as a web page) and the response 1s
propagated to the web client4,,4, . ..4 1in step 44.

If1t 1s determined in step 46 that the web client4,,4,...4
has not requested a session save, control passes to step 52 and
the filter 18 caches the current request as session context
information. Again, additional session-identitying informa-
tion (e.g., a name, password, cookie, network or MAC
address, etc.) associated with the web client4,,4, .. .4, , may
also be cached 1n order to facilitate subsequent session resto-
ration on behalf of the correct web client. Step 52 will also be
implemented following the cache storage setup operation of
step 36. In step 54, the filter 18 propagates the request to the
web servers 12 for conventional processing. When a web
server response 1s returned to the filter 18, 1t 1s cached 1n step
56. The response 1s then propagated to the web client 4,,
4, ...4 , (via one of the query distributors 10) in step 44.

The processing logic of FIG. 2 may be accessed by the web
servers 12 at server access point 38 when there 1s a session
termination that 1s not voluntarily 1nitiated by the web client
user. Step 60 represents a server-side termination event in
which the web server system 6 either initiates a session time-
out or other automated session terminating function, or
becomes aware that a session has been interrupted due to
some other cause, such as a network error, an equipment
failure, or the like. When such an event occurs, the filter 18 1s
notified so that 1t may commit the cached session context to
the persistent storage 1n step 62. If there 1s advance warning of
the session termination, an appropriate response may be
propagated to the webclient4,.4, ...4 . (viaone ofthe query
distributors 10) 1n step 44.

It will be appreciated that the filter 18 may be implemented
as soltware, firmware or a combination of both. The program-
ming logic that comprises the filter 18 may execute on any
suitable data processing system or device. The cache storage
20 may be implemented in a memory associated with the
system or device that executes the filter logic. FIG. 3 1llus-
trates one exemplary implementation of the filter 18 wherein
its logic 1s embodied separately from the web server system 6,
for example, as a self-contained middleware product. Accord-
ing to this implementation, the filter logic would be distinct
from the program logic used to implement the query distribu-
tors 10 and the web servers 12. Note, however, that the filter
logic could nonetheless execute on the same hardware that
runs the query distributors 10 and/or the web servers 12.
Alternatively, the filter logic could run on a stand-alone sys-
tem. In order to handle encrypted messages 1n the embodi-
ment of FIG. 3 (e.g., based on SSL/TLS or the like), it may be
expedient to have the filter 18 handle any decryption of
incoming client requests (prior to caching such requests) and
encryption of outgoing server responses (alter caching such
responses). Alternatively, the query distributors 10 could per-
form decryption/encryption. FIGS. 4A and 4B illustrate
another exemplary implementation of the filter 18 wherein 1ts
logic 1s incorporated into the web server system 6. In FIG. 4 A,
the filter logic 1s part of the query distributors 10. In order to
handle encrypted messages 1n the embodiment of FIG. 4A
(e.g., based on SSL/TLS or the like), 1t may be expedient to
have the query distributors 10 handle any decryption of

US 7,953,801 B2

9

incoming client requests (prior to caching such requests) and
encryption of outgoing server responses (after caching such
responses). Alternatively, the filter 18 could perform decryp-
tion/encryption as in the embodiment of FIG. 3. In FIG. 4B,
the filter logic 1s part of the web servers 12. In order to handle
encrypted messages in the embodiment of FIG. 4B (e.g.,
based on SSL/TLS or the like), it may be expedient to have the
web servers 12 handle any decryption of mncoming client
requests (prior to caching such requests) and encryption of
outgoing server responses (aiter caching such responses).
Alternatively, the filter 18 could perform decryption/encryp-
tion as 1 the embodiment of FIG. 3, as could the query
distributors 10.

Accordingly, a technique has been disclosed for managing
the session state of a web application during transaction pro-
cessing. It will be appreciated that the inventive concepts may
be variously embodied in any of a data processing system, a
machine 1mplemented method, and a computer program
product 1 which programming logic i1s provided on one or
more data storage media for use 1n controlling a data process-
ing system to perform the required functions. Relative to a
data processing system and machine implemented method,
FIG. 5 illustrates an exemplary hardware environment 30 1n
which the session state manager 16 may be implemented. The
hardware environment 30 includes a CPU or other data pro-
cessing resource 32, amain memory 34, a graphics card 36 for
generating visual output to a monitor (not shown), a periph-
cral storage device 38, other peripheral devices 40, and a bus
infrastructure 42 interconnecting the foregoing elements. The
session state manager 16 may be loaded 1n the main memory
34. The cache storage 20 may also reside 1n the main memory
34. The storage device 38 may be used as persistent storage.
Client requests and server responses may be mput through an

I/O (Input/Output) resource provided by one of the peripheral
devices 40, such as a network interface card or other commu-
nication device.

Relative to a computer program product having a machine-
readable media and programming logic, exemplary data stor-
age media for storing the programming logic are shown by
reference numeral 50 1n FIG. 6. The media 50 are shown as
being portable optical storage disks of the type that are con-
ventionally used for commercial software sales, such as com-
pact disk-read only memory (CD-ROM) disks, compact disk-
read/write (CD-R/W) disks, and digital versatile disks
(DVDs). Such media can store the programming logic of the
invention, either alone or in conjunction with another sofit-
ware product that incorporates the required functionality. The
programming logic could also be provided by portable mag-
netic media (such as floppy disks, flash memory sticks, etc.),
or magnetic media combined with drive systems (e.g. disk
drives), or media imncorporated 1n data processing platiorms,
such as random access memory (RAM), read-only memory
(ROM) or other semiconductor or solid state memory. More
broadly, the media could comprise any electronic, magnetic,
optical or semiconductor system or apparatus or device, or a
network or any other entity that can contain, store or commu-
nicate the programming logic for use by or 1n connection with
a data processing system, computer or other instruction
execution system, apparatus or device.

While several embodiments of the invention have been
shown and described, 1t should be apparent that many varia-
tions and alternative embodiments could be implemented.
For example, as previously mentioned, instead of caching
both web client requests and web server responses, the filter
18 could be adapted to store only web client requests or only
web server responses 1n order to preserve cache and persistent
storage capacity. It1s understood, therefore, that the invention

5

10

15

20

25

30

35

40

45

50

55

60

65

10

1s not to be 1n any way limited except i accordance with the
spirit of the appended claims and their equivalents.

What 1s claimed 1s:
1. A method for managing the session state of a web appli-
cation session during transaction processing, comprising:

receving a message exchanged between a web client and a
web server:;

storing session mformation in said message on behalf of
said client:

said session information being stored 1n a cache while said
session state remains uninterrupted, and 1n persistent
storage when said session state 1s mterrupted;

said storing including allowing said client to 1nitiate stor-
age of said session information to said persistent storage
when said client voluntarnly terminates said session; and

following an interruption in session state 1 which a web
application session between said client and said server 1s
terminated and said session state 1s lost, recreating said

session state 1 a new session using said session infor-
mation.

2. A method 1 accordance with claiam 1 wherein said
message comprises one ol an encrypted web client request
message, a non-encrypted web client message, an encrypted
web server response message and a non-encrypted web server
response message.

3. A method 1 accordance with claam 1 wherein said
storing of session information comprises storing all of said
message.

4. A method 1n according with claim 1 wherein said per-
sistent storage comprises one of server-side file-system stor-
age, client-side file-system storage, client-side file system
storage, or database storage.

5. A method in accordance with claim 1 wherein said
session mnformation 1s stored 1n association with a session
identifier.

6. A system for managing the session state ol a web appli-
cation session during transaction processing, comprising:

a session state manager filter;

a storage;

said filter being adapted to receive a message exchanged

between a web client and a web server;

said filter being further adapted to store session informa-

tion 1n said message on behalf of said client 1n said
storage;

said storing including allowing said client to 1mitiate stor-

age of said session information when said client volun-
tarily terminates said session; and

said filter being additionally adapted to recreate said ses-

s1on state 1n a new session using said session information
following an interruption 1n session state in which a web
application session between said client and said server 1s
terminated and said session state 1s lost.

7. A system 1n accordance with claim 6 wherein said mes-
sage comprises one of a non-encrypted web client request
message, an encrypted web client message, a non-encrypted
web server response message and a non-encrypted web server
response message.

8. A system 1n accordance with claim 6 wherein said filter
1s adapted to store all of said message 1n said storage.

9. A system 1n accordance with claim 6 wherein said filter
1s adapted to store said session information 1n a cache while
said session state remains uninterrupted, and 1n persistent
storage when said session state 1s interrupted.

10. A system 1n accordance with claim 9 wherein said
persistent storage comprises one of server-side file system
storage, client-side file system storage, or database storage.

US 7,953,801 B2

11

11. A system 1n accordance with claim 6 wherein said filter
1s adapted to persist said data 1n association with a session
identifier.

12. A computer program product for managing the session
state of a web application session during transaction process-
1ng, comprising:

one or more machine-readable tangible storage media;

programming logic provided by on said machine-readable

media for programming a data processing apparatus to
operate as by:

receiving a message exchanged between a web client and a

web server;

storing session information 1n said message on behalt of

said client:

said storing including allowing said client to 1nitiate stor-

age of said session information when said client volun-
tarily terminates said session; and

following an interruption 1n session state 1 which a web

application session between said client and said server is
terminated and said session state 1s lost, recreating said
session state 1 a new session using said session infor-
mation.

13. A computer program product in accordance with claim
12 wherein said message comprises one of an encrypted web
client request message, a non-encrypted web client request
message, an encrypted web server response message and a
non-encrypted web server response message.

14. A computer program product in accordance with claim
12 wherein said storing of session information comprises
storing all of said message.

15. A computer program product in accordance with claim
12 wherein said session imnformation 1s persisted 1n a cache
while said session state remains umnterrupted, and in persis-
tent storage when said session state 1s interrupted.

16. A computer program product in accordance with claim
15 wherein said persistent storage comprises one of server-
side file system storage, client-side file system storage, or
database storage.

17. A computer program product in accordance with claim
12 wherein said session information 1s persisted 1n associa-
tion with a session identifier.

18. A computer program web server system product for
providing a web application on a web server system while
managing the session state of the web application session
during transaction processing, comprising;:

one or more machine readable tangible storage media;

programming logic provided by said machine readable

media for programming a data processing apparatus to
operate as by:

receiving a request from a client that contains session infor-

mation for generating a web page;
storing said session imformation on behalf of said client;
said storing including allowing said client to 1nitiate stor-
age of said session information to said persistent storage
when said client voluntarily terminates said session;

processing said request on said web server system; and

following an interruption 1n session state in which said web
application session 1s terminated and said session state 1s
lost, recreating said session state 1n a new session by
using said stored session information to generate said
web page.

10

15

20

25

30

35

40

45

50

55

60

12

19. A computer program product in accordance with claim
18 wherein said storing of session information comprises
storing all of said request.

20. A computer program product in accordance with claim
19 wherein said persistent storage comprises one of server-
side file system storage, client-side file system storage, or
database storage.

21. A computer program product in accordance with claim
18 wherein said session information 1s stored 1n a cache while
said session state remains uninterrupted, and 1n persistent
storage when said session state 1s interrupted.

22. A computer program product in accordance with claim
18 wherein said session information 1s persisted 1n associa-
tion with a session identifier.

23. A computer program product in accordance with claim
18 wherein said programming logic 1s further adapted to
control said data processing apparatus to store session 1nfor-
mation contained 1n responses from said web server system to
said client.

24. A computer program middleware product for support-
ing a web server system 1n providing a web application while
managing the session state of the web application session
during transaction processing, comprising:

one or more machine readable tangible storage media;

programming logic provided by said machine readable

media for programming a data processing apparatus to
operate as by:

recerving a request from a client that contains session infor-

mation for generating a web page;
storing said session information on behalf of said client;
said storing including allowing said client to 1mitiate stor-
age of said session information to said persistent storage
when said client voluntarnly terminates said session;

passing said request to said web server system; and

following an interruption 1n said session state in which said
web application session between said client and said
web server system 1s terminated and said session state 1s
lost, recreating said session state 1n a new session by
providing said stored session imformation to said web
server 1 order to generate said web page.

25. A computer program product in accordance with claim
24 wherein said storing of session information comprises
storing all of said request.

26. A computer program product in accordance with claim
25 wherein said persistent storage comprises one of server-
side file system storage, client-side file system storage, or
database storage.

277. A computer program product in accordance with claim
24 wherein said session information 1s stored 1n a cache while
said session state remains uninterrupted, and 1n persistent
storage 11 said session state 1s imterrupted.

28. A computer program product in accordance with claim
24 wherein said session information is stored 1n association
with a session 1dentifier.

29. A computer program product in accordance with claim
24 wherein said programming logic 1s further adapted to
control said data processing apparatus to store session infor-
mation contained in responses from said web server system to
said client.

	Front Page
	Drawings
	Specification
	Claims

