US007953776B2
a2y United States Patent (10) Patent No.: US 7,953,776 B2
1 : :
Boykin et al 45) Date of Patent “May 31, 2011
(54) DISCOVERY DIRECTIVES 7,139,811 B2* 11/2006 Lev Ranetal. 709/217
2003/0009540 Al 1/2003 Benfield et al.
(75) Inventors: James R. Boykin, Pflugerville, TX (US); 2005/0047350 Al 372005 Kantor et al.
Alberto Giammaria, Austin, TX (US); FOREIGN PATENT DOCUMENTS
Brian J. Schlosser, Austin, TX (US) WO WO 02/05184 AD 115002
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) OIHER PUBLICATIONS
N _ _ _ _ _ “All About IBM Tivoli Configuration Manager Version 4.2”, IBM
(*) Notice: SUbJeCt_ to any disclaimer ’ the term of this Corporation, Dec. 2002, http://www.redbooks.ibm.com/redbooks/
%azlg HSSZX;BILdeg 405 adjusted under 35 e 000546612 pdf, pp. i-xxv and 345-516.
T (b) by 475 “Operations Guide: Microsoft Systems Management Server 2003,
This patent 1s subject to a terminal dis- Microsofit Corporation, 2003, http://www.e-consultancy.com/knowl-
claimer. edge/whitepapers/88549/operations-guide-microsoft-systems-man-
agement-server-2003-scalable-management-for-windows-based-
(21) Appl. No.: 12/397,548 systems.html, 69 pages.
Tromn, Philippe, “Manpages CRON/CRONTAB”, Dec. 20, 1993,
(22) Filed: Mar. 4, 2009 http://www fif1.org/cgi-bin/man2html/usr/share/man/man 1/crontab.
l.gz, 9 pages.
(65) Prior Publication Data * cited by examiner
US 2009/0172680 Al Jul. 2, 2009
Related U.S. Application Data Primary Examiner — Hosain T Alam
(63) Continuation of application No. 11/425,463, filed on Assistant Examiner — Van.H Oberly
Tun. 21. 2006. now Pat. No. 7.512.590 (74) Attorney, Agent, or Firm — Stephen R. Tkacs; Stephen
Y ’ T J. Walder, Ir.; Jeflrey S. LaBow
(51) Int.Cl.
GO6F 12/00 (2006.01)
GO6F 15/16 (2006.01) (57) ABSTRACT
GO6F 17/30 (2006.01) A mechanmism for configuring and scheduling logical discov-
(52) LS. e e e e e aaans 707/899 eIy Processes 1n a data processing system 1S provided_ A
(58) Field of Classification Search 707/782, discovery engine communicates with information providers
707/899, 999.002, 718, 781 to collect discovery data. An information provider 1s a soft-
See application file for complete search history. ware component whose responsibility is to discover resources
and relationships between the resources and write their rep-
(56) References Cited resentations in a persistent store. Discovery directives are

U.S. PATENT DOCUMENTS

used to coordinate the execution of information providers.

6,195,676 B1* 2/2001 Spixetal.c.cc..... 718/107

6,236,983 Bl 5/2001 Hofmann et al. 13 Claims, 7 Drawing Sheets

CLIENT 602
604 APPLICATION

N
| ~
| CLIENT INTERFACE |
L]
PROVIDER MANAGER

610

@ B @ C G

Y v
DISCOVERY @
REPOSITORY PROVIDERS CONTROLL ER SCHEDULER

606 612 620 630

U.S. Patent May 31, 2011 Sheet 1 of 7 US 7,953,776 B2
100
| -110
102 >>>>>>>>‘
CLIENT
SERVER 112
D;;}>‘
106\ CLIENT
— ‘ _ ~-114
SERVER STORAGE
CLIENT
108
FIG. 2
206~ | PROCESSING
™ UNT 200
210 2072 208 216 230
\ N / /
‘ GRAPHICS |: - MAIN AUDIO
PROCESSOR NB/MCH MEMORY ADAPTER >l
204
24() \ 238
\ BUS BUS /
KEYBOARD
USB AND
NETWORK PCI/PCle AND
DISK) [CD-ROMY 1 A nAPTER ggg%g pevices | | wmouse | | MOPEM
ADAPTER
220 230 212 237 234

U.S. Patent May 31, 2011 Sheet 2 of 7 US 7,953,776 B2

FIG. 3 304 308
DISCOVERY DISCOVERY
DIRECTIVE SCHEDULE DIRECTIVE SCHEDULE
DISCOVERY ENGINE 310
INFORMATION | | INFORMATION | | INFORMATION | | INFORMATION
PROVIDER PROVIDER PROVIDER PROVIDER
322 324 320 328
FIG. 6
CLIENT 602
604 APPLICATION
r- - - _ __________ - 1
| CLIENT INTERFACE |
e o o o e ————— - -1
PROVIDER MANAGER
610

® 0] (@0 ¢
. EEEE G
e e | vy A)

U.S. Patent May 31, 2011 Sheet 3 of 7 US 7,953,776 B2

// Definition of the SoftwareProduct resource to be discovered
[Provider("SoftwareProvider")]

class SoftwareProduct : CIM ManagedSystemElement

{
[Key]
FIG. 44 - string Name;
[Key]
string Version;
string InstallationDirectory;
datetime InstallationDatelime;

// Definition of Discovery Directive
class DiscoveryDirective

{
// Specifies the name of this discovery directive
string Name:;
FlG. 4B // Specifies the name of classes of resources to discover
string ClassNames|];
// Specifies the schedule associated with the discovery process
schedule schedule;

// Detinition of Schedule
class Schedule

{
// Specifies when to start the discovery process
datetime StartTime;

FIG. 4C - // Specifies when to stop the discovery process
datetime EndTime;

// Specifies the interval to use to refresh the information
// discovered by the discovery process
datetime Interval,

}
// Definition of the Software Discovery Directive
class SoftwareDiscoveryDirective : DiscoveryDirective
FIG. 4D 4 1

string FileExtensions(];
string Drive;

U.S. Patent May 31, 2011 Sheet 4 of 7 US 7,953,776 B2

// Directive specified by Administrator Luigi
instance of SoftwareDiscoveryDirective as $LuigiDirective
{
Name = "Luigi's directive";
FIG. SA Classes = "SoftwareProduct":
' FileExtensions = {"exe", "bat"};
Drive = "C:";
Schedule = $LuigiSchedule;
};
// Schedule used by Administrator Luigi
instance of Schedule as $LuigiSchedule
{
Name = "Luigl's schedule";
FIG. 5B StartTime = "10/7/2004 12:00 PM";
EndTime = "12/25/2004 12:00 PM";
Interval = "6 hours";
};
// Directive specified by Administrator Mario
instance of SoftwareDiscovery Directive as $MarioDirective
{
Name = "Mario's directive";
Classes = "SoftwareProduct";
FIG. 5C FileExtensions = {"exe", "dI|"};
Drive = "C:";
Schedule = $MarioSchedule;
};
//Schedule used by Administrator Mario
instance of Schedule as $MarioSchedule
{
Name = "Mario's schedule";
FIlG. 5D StartTime — "10/8/2004 12:00 PM".
EndTime = "12/31/2004 12:00 PM":
Interval = "12 hours";
};

U.S. Patent May 31, 2011 Sheet 5 of 7 US 7,953,776 B2

FIG. 74

interface Provider {
ProviderexecutionPlan|[] createbxecutionPlan{DiscoveryDirective[] directives);
void preparelnstances(ProvidereExecutionPlan plan);
void invalidatelnstances(ProviderExecutionPlan plan);

class DiscoveryDirective {
string getName() {...};

string[] getClassNames() {...};
FIG. 7B schedule getSchedule() {...};

}
class Schedule {
J long getStartTime() {...};
FIG 7C long getEndTime() {...};
' I long getinterval() {...};
}s

class ProviderExecutionPlan {
string[] getClassNames() {...};

FIG. 7DD] schedule getschedule() {...};
)

string getSatisfiedDiscoveryDirectiveName() {...};

U.S. Patent

FIG. 54

FIG. 8B

1002

1004

1006

1008

May 31, 2011 Sheet 6 of 7

instance of SoftwareDiscoveryDirective

1

Classes ="SoftwareProduct";
// note the merged file extensions
FileExtensions = {"exe", "bat", "dll"};
Drive = "C:"

Schedule = $Newschedule;

instance of Schedule as $NewSchedule

1

Interval = "b hours";

FIG. 10

RECEIVE DIRECTIVES FROM
DISCOVERY CONTROLLER

DECIDE STRATEGY TO SATISFY
DIRECTIVES USING MINIMUM
AMOUNT OF RESOURCES

SPLIT, MERGE, OR MODIFY
DIRECTIVES AND
SCHEDULES, IF NECESSARY

RETURN DIRECTIVE/SCHEDULE
PAIRS TO DISCOVERY CONTROLLER

END

US 7,953,776 B2

Name ="New Software Discovery Directive";

Name = "New schedule";

// min start time of the two schedules
StartTime = "10/7/2004 12:00 PM";
// max end time of the two schedules
EndTime = "12/31/2004 12:00 PM";
// min interval of the two schedules

U.S. Patent May 31, 2011 Sheet 7 of 7 US 7,953,776 B2

FIG. 9

(BEGIN)
9U2J" READ DIRECTIVES FROM REPOSITORY

904~ RESOLVE CLASS DEPENDENCIES AND
CLASS/PROVIDER DEPENDENCIES

906 ~ SPLIT AND EXPAND INSTRUCT INFORMATION 916
DIRECTIVES, IF NECESSARY PROVIDER TO
CREATE INSTANCES
908 | PASS NEW DIRECTIVE TO
INFORMATION PROVIDER GENERATE EVENTS TO
INDICATE THAT JOB 18
RECEIVE NEW OR MODIFIED DIRECTIVE DIRECTIVES ARE SATISFIED
010-"| FROM INFORMATION PROVIDER, IF ANY
GENERATE EVENT TO
CREATE JOB FOR RETURNED INDICATE REQUESTED 920
912" DIRECTIVE/SCHEDULE PAIR CLASSES THAT ARE
READY TO BE QUERIED
PASS JOB WITH ASSQOCIATED
?
YES 922
INSTRUCT INFORMATION
PROVIDER TO INVALIDATE 924
INSTANCES
GENERATE EVENT TO
INDICATE INSTANCES ARE 926
INVALIDATED

END

US 7,953,776 B2

1
DISCOVERY DIRECTIVES

BACKGROUND

1. Technical Field

The present application relates generally to an improved
data processing system and method. More specifically, the
present application 1s directed to a method, apparatus, and
computer program product for configuring and scheduling
discovery processes 1n a data processing system.

2. Description of Related Art

“Discovery”, 1n the field of system management, 1s the
capability of automatically identifying hardware or software
services 1n a network. For example, an administrator may
wish to discover scanners, printers, Web servers, or particular
soltware applications. Discovery systems either use central
depositories where services are registered, or they provide a
method for querying devices on the network.

Admimstrators may be in charge of network resources,
license management, or soitware solutions distribution.
Administrators typically request discovery scans; however,
scans may also be mitiated by software products. A scan can
dominate resources for a significant amount of time. For
example, a software scan may access hard disk drives and use
processor resources on a number of data processing systems
concurrently for a substantial period of time. Therefore, con-
figuration and scheduling of discovery scans must be practi-
cal. That 1s, 1t 1s beneficial for administrators to schedule
discovery processes so that the scans do not interfere with the
production of workers or the computing devices themselves.

The discovery processes 1n current discovery engines are
usually configured by parameters that delimit the set of
resources to discover and define the time intervals used to
scan the monitored resources again. A range of Internet pro-
tocol (IP) addresses may be used to delimit network discov-
ery, while a drive specification may be used to delimit appli-
cation discovery.

Different administrators may have different needs for dis-
covery configuration parameters. If two or more administra-
tors want to share the same discovery engine, they may agree
on a common set of configuration parameters. If administra-
tors cannot agree on a common set of configuration param-
cters, they may install two or more discovery engines and
coniigure them separately.

Sharing the same configuration parameters among differ-
ent administrators requires continued agreement. Any time
one of the administrators needs to change parameters for a
specific purpose, 1t may increase unnecessarily increase the
burden on other scanned networks and systems that share the
configuration parameters. For example, if an administrator
needs to scan a small subnet each hour and another adminis-
trator needs to scan a large subnet each day, a common con-
figuration would require scanning the combined subnets each
hour. On the other hand, using multiple independent discov-
ery engines 1n the same network increases the likelihood that
overlapping scans of the same regions or resources may
OCCUL.

SUMMARY

The illustrative embodiments recognize the disadvantages
of the prior art and provide a mechanism for configuring and
scheduling logical discovery processes 1n a data processing
system. A discovery engine communicates with information
providers to collect discovery data. An information provider
1s a software component whose responsibility 1s to discover
resources and relationships between the resources and write

10

15

20

25

30

35

40

45

50

55

60

65

2

their representations in a persistent store. Discovery direc-
tives are used to coordinate the execution of information
providers.

In one illustrative embodiment, a method 1n a data process-
ing system for configuring and scheduling logical discovery
processes 1n a data processing system comprises receiving a
plurality of discovery directives. Each discovery directive
within the one or more discovery directives defines classes of
resources and relationships to be discovered. The method
further comprises creating an optimized provider execution
plan to satisiy the plurality of discovery directives and to
minimize overlapping discovery. Further, the method com-
prises executing the provider execution plan.

In one exemplary embodiment, the provider execution plan
comprises a plurality of directive/schedule pairs. In another

exemplary embodiment, executing the provider execution
plan comprises creating a job for each directive/schedule pair

within the plurality of directive/schedule pairs to form a plu-

rality of jobs and passing the plurality of jobs with associated
schedule information to a scheduler. In a further exemplary
embodiment, executing the provider execution plan further
comprises nstructing the information provider to create
instances of resource objects. The information provider dis-
covers resource information defined in the provider execution
plan and stores the resource information 1n a persistent store.
In yet another embodiment, executing the provider execution
plan further comprises, responsive to a given job within the
plurality of jobs completing, generating an event to indicate
directives associated with the given job are satisfied.

In another exemplary embodiment, a discovery controller
receives the one or more discovery directives. The discovery
controller passes the one or more discovery directives to an
information provider. The information provider creates the
provider execution plan. In a further embodiment, the discov-
ery controller optimizes the execution plan.

In another illustrative embodiment, an apparatus 1n a data
processing system for configuring and scheduling logical
discovery processes 1n a data processing system 1s provided.
The apparatus comprises a discovery controller and an infor-
mation provider. The discovery controller receives one or
more discovery directives. Each discovery directive within
the one or more discovery directives defines classes of
resources and relationships to be discovered. The discovery
controller passes the one or more discovery directives to the
information provider. The information provider creates a pro-
vider execution plan to satisfy the one or more discovery
directives and wherein the provider execution plan comprises
one or more directive/schedule pairs. The discovery control-
ler executes the provider execution plan.

In other exemplary embodiments, the apparatus performs
various ones of the operations outlined above with regard to
the method 1n the 1llustrative embodiments.

In another illustrative embodiment, a computer program
product comprising a computer useable medium having a
computer readable program 1s provided. The computer read-
able program, when executed on a computing device, may
cause the computing device to receive one or more discovery
directives. Each discovery directive within the one or more
discovery directives defines classes of resources and relation-
ships to be discovered. The computer readable program may
turther cause the computing device to create a provider execu-
tion plan to satisty the one or more discovery directives and
wherein the provider execution plan comprises one or more
directive/schedule pairs. The computer readable program
may still further cause the computing device to execute the
provider execution plan.

US 7,953,776 B2

3

In other exemplary embodiments, the computer readable
program may cause the computing device to perform various
ones ol the operations outlined above with regard to the
method 1n the illustrative embodiments.

These and other features and advantages of the present
invention will be described 1n, or will become apparent to
those of ordinary skill in the art in view of, the following
detailed description of the exemplary embodiments of the
present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth i the appended claims. The invention 1itself,
however, as well as a preferred mode of use, further objectives
and advantages thereotf, will best be understood by reference
to the following detailed description of an illustrative
embodiment when read 1n conjunction with the accompany-
ing drawings, wherein:

FIG. 1 depicts a pictorial representation of an exemplary
distributed data processing system 1n which aspects of the
illustrative embodiments may be implemented;

FIG. 2 1s a block diagram of an exemplary data processing,
system 1n which aspects of the illustrative embodiments may
be implemented;

FI1G. 3 1s a block diagram 1llustrating a discovery system in
accordance with an exemplary embodiment;

FIG. 4A depicts an example resource class definition for a
software resource to be discovered in accordance with an
illustrative embodiment;

FIG. 4B depicts an example a discovery directive class
definition 1n accordance with an illustrative embodiment;

FIG. 4C depicts an example schedule class definition in
accordance with an 1llustrative embodiment;

FIG. 4D 1s an example specialized software discovery
directive class definition 1n accordance with an 1illustrative
embodiment;

FIGS. 5A-5D depict examples of discovery directive
classes and schedule classes for different administrators 1n
accordance with an exemplary embodiment;

FIG. 6 1s a block diagram of a discovery engine 1n accor-
dance with an 1llustrative embodiment:

FIG. 7A depicts an example interface that the information
provider class may implement 1n accordance with an illustra-
tive embodiment;

FIG. 7B depicts an example discovery directive class in
accordance with an 1llustrative embodiment;

FI1G. 7C depicts an example schedule class 1n accordance
with an illustrative embodiment;

FIG. 7D depicts an example provider execution plan class
in accordance with an 1llustrative embodiment;

FIGS. 8A and 8B depict an instance of a discovery direc-
tive and schedule resulting from merging discovery directives
in accordance with an exemplary embodiment;

FIG. 9 15 a flowchart 1llustrating operation of a discovery
controller in accordance with an 1llustrative embodiment; and

FI1G. 10 1s a flowchart illustrating operation of an informa-
tion provider 1n accordance with an 1llustrative embodiment.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The illustrative embodiments described hereafter provide a
mechanism for configuring and scheduling logical discovery
processes in a data processing system. As such, the illustrative
embodiments may be implemented 1n a distributed data pro-
cessing environment 1 which multiple computing devices

10

15

20

25

30

35

40

45

50

55

60

65

4

are utilized along with one or more data networks. Accord-
ingly, FIGS. 1 and 2 hereafter are provided as examples of a
distributed data processing environment and computing
devices 1 which exemplary aspects of the illustrative
embodiments may be implemented. FIGS. 1 and 2 are only
exemplary and are not imntended to state or imply any limita-
tion with regard to the types and/or configurations of com-
puting devices 1n which the illustrative embodiments may be
implemented. Many modifications to the computing devices
and environments depicted i FIGS. 1 and 2 may be made
without departing from the spirit and scope of the present
ivention.

FIG. 1 depicts a pictorial representation of an exemplary
distributed data processing system 1n which aspects of the
illustrative embodiments may be implemented. Distributed
data processing system 100 may include a network of com-
puters in which embodiments of the 1llustrative embodiments
may be implemented. The distributed data processing system
100 contains at least one network 102, which 1s the medium
used to provide communication links between various
devices and computers connected together within distributed
data processing system 100. The network 102 may include
connections, such as wire, wireless communication links, or
fiber optic cables.

In the depicted example, server 104 and server 106 are

connected to network 102 along with storage unit 108. In
addition, clients 110, 112, and 114 are also connected to
network 102. These clients 110, 112, and 114 may be, for
example, personal computers, network computers, or the like.
In the depicted example, server 104 provides data, such as
boot files, operating system 1mages, and applications to the
clients 110, 112, and 114. Clients 110, 112, and 114 are
clients to server 104 1n the depicted example. Distributed data
processing system 100 may include additional servers, cli-
ents, and other devices not shown.

In the depicted example, distributed data processing sys-
tem 100 1s the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
suite of protocols to communicate with one another. At the
heart of the Internet 1s a backbone of high-speed data com-
munication lines between major nodes or host computers,
consisting of thousands of commercial, governmental, edu-
cational and other computer systems that route data and mes-
sages. Of course, the distributed data processing system 100
may also be implemented to include a number of different
types ol networks, such as for example, an intranet, a local
area network (LAN), a wide area network (WAN), or the like.
As stated above, FIG. 1 1s intended as an example, not as an
architectural limitation for different embodiments of the
present invention, and therefore, the particular elements
shown in FIG. 1 should not be considered limiting with regard
to the environments 1n which the illustrative embodiments of
the present invention may be implemented.

In one illustrative embodiment, distributed data processing,
system 100 1includes resources to be discovered by an admin-
istrator during a discovery scan. For example, a network
administrator may wish to scan network 102 for routers,
switches, and the like. As another example, a software solu-
tions distribution manager may wish to scan clients 110, 112,
114, or even servers 104 and 106, for particular software
applications. In the i1llustrative embodiment, multiple admin-
istrators may configure different logical discovery processes
on the same discovery engine while, at the same time, avoid-
ing the likelithood of concurrent overlapping scans on the
same systems.

US 7,953,776 B2

S

A discovery engine may run on a server, such as servers
104, for instance. The discovery engine communicates with
information providers to collect discovery data. An informa-
tion provider 1s a software component whose responsibility 1s
to discover resources and relationships between the resources
and write their representations in a persistent store. Discovery
directives are used to coordinate the execution of information
providers and specily the classes of information to be discov-
ered, how frequently to run the discovery scans, on which
resources to run the scans, among other discovery parameters.

A client application, which may run on one of clients 110,
112, 114, for example, passes discovery directives to the
discovery engine. A client application may submit discovery
directives under the instruction of a human operator, such as
a system administrator, for example. Alternatively, a client
application may submit discovery directives automatically
under control of the program. For example, a license software
application may periodically discover software applications
that are no longer covered by a software license. The discov-
ery engine reads discovery directives and generates execution
plans that satisiy the discovery directives. The client applica-
tion then listens for events indicating when the requested
classes of information are discovered and then reads or oth-
erwise collects the discovered information from resource
instances created by discovery engine.

With reference now to FI1G. 2, a block diagram of an exem-
plary data processing system 1s shown 1n which aspects of the
1llustrative embodiments may be implemented. Data process-
ing system 200 1s an example of a computer, such as server
104 or client 110 1n FIG. 1, in which computer usable code or
instructions 1mplementing the processes for illustrative
embodiments of the present invention may be located.

In the depicted example, data processing system 200

employs a hub architecture including north bridge and
memory controller hub (NB/MCH) 202 and south bridge and

input/output (I/0) controller hub (SB/ICH) 204. Processing
unit 206, main memory 208, and graphics processor 210 are
connected to NB/MCH 202. Graphics processor 210 may be
connected to NB/MCH 202 through an accelerated graphics
port (AGP).

In the depicted example, local area network (L AN) adapter
212 connects to SB/ICH 204. Audio adapter 216, keyboard
and mouse adapter 220, modem 222, read only memory
(ROM) 224, hard disk drive (HDD) 226, CD-ROM drive 230,
universal serial bus (USB) ports and other communication
ports 232, and PCI/PCle devices 234 connect to SB/ICH 204
through bus 238 and bus 240. PCI/PCle devices may include,
tor example, Ethernet adapters, add-in cards, and PC cards for
notebook computers. PCI uses a card bus controller, while
PCle does not. ROM 224 may be, for example, a tlash binary
input/output system (BIOS).

HDD 226 and CD-ROM drive 230 connect to SB/ICH 204
through bus 240. HDD 226 and CD-ROM drive 230 may use,
for example, an integrated drive electronics (IDE) or serial
advanced technology attachment (SATA) interface. Super 1/0
(SIO) device 236 may be connected to SB/ICH 204.

An operating system runs on processing unit 206. The
operating system coordinates and provides control of various
components within the data processing system 200 1n FIG. 2.
As a client, the operating system may be a commercially
avallable operating system such as Microsoft® Windows®
XP (Microsoft and Windows are trademarks of Microsoit
Corporation in the United States, other countries, or both). An
object-oriented programming system, such as the Java™ pro-
gramming system, may run 1n conjunction with the operating
system and provides calls to the operating system from
Java™ programs or applications executing on data processing

10

15

20

25

30

35

40

45

50

55

60

65

6

system 200 (Java 1s a trademark of Sun Microsystems, Inc. 1n
the United States, other countries, or both).

As a server, data processing system 200 may be, for
example, an IBM® eServer™ pSeries® computer system,
running the Advanced Interactive Executive (AIX®) operat-
ing system or the LINUX® operating system (eServer,
pSeries and AIX are trademarks of International Business
Machines Corporation 1n the United States, other countries,
or both while LINUX 1s a trademark of Linus Torvalds 1n the
United States, other countries, or both). Data processing sys-
tem 200 may be a symmetric multiprocessor (SMP) system
including a plurality of processors in processing unit 206.
Alternatively, a single processor system may be employed.

Instructions for the operating system, the object-oriented
programming system, and applications or programs are
located on storage devices, such as HDD 226, and may be
loaded mto main memory 208 for execution by processing
unmt 206. The processes for 1llustrative embodiments of the
present invention may be performed by processing unit 206
using computer usable program code, which may be located
in a memory such as, for example, main memory 208, ROM
224, or in one or more peripheral devices 226 and 230, for
example.

A bus system, such as bus 238 or bus 240 as shown in FIG.
2, may be comprised of one or more buses. Of course, the bus
system may be implemented using any type of communica-
tion fabric or architecture that provides for a transfer of data
between different components or devices attached to the fab-
ric or architecture. A communication unit, such as modem
222 or network adapter 212 of FIG. 2, may include one or
more devices used to transmit and recerve data. A memory
may be, for example, main memory 208, ROM 224, or a cache
such as found in NB/MCH 202 1n FIG. 2.

Those of ordinary skill 1n the art will appreciate that the
hardware 1n FIGS. 1 and 2 may vary depending on the imple-
mentation. Other internal hardware or peripheral devices,
such as flash memory, equivalent non-volatile memory, or
optical disk drives and the like, may be used 1n addition to or
in place of the hardware depicted 1n FIGS. 1 and 2. Also, the
processes of the illustrative embodiments may be applied to a
multiprocessor data processing system, other than the SMP
system mentioned previously, without departing from the
spirit and scope of the present invention.

Moreover, the data processing system 200 may take the
form of any of a number of different data processing systems
including client computing devices, server computing
devices, a tablet computer, laptop computer, telephone or
other commumnication device, a personal digital assistant
(PDA), or the like. In some illustrative examples, data pro-
cessing system 200 may be a portable computing device
which 1s configured with flash memory to provide non-vola-
tile memory for storing operating system files and/or user-
generated data, for example. Essentially, data processing sys-
tem 200 may be any known or later developed data processing
system without architectural limitation.

FIG. 3 1s a block diagram 1llustrating a discovery system 1n
accordance with an exemplary embodiment. Discovery
engine 310 recerves discovery directive 302 and schedule 304
from a first administrator or client application. Discovery
engine 310 may be embodied on a server, such as server 104
in FI1G. 1, for example. Discovery engine 310 also receives
discovery directive 306 and schedule 308 from a second
administrator or client application. Discovery engine 310
communicates with information providers 322, 324, 326, 328
to collect discovery data.

An information provider 1s a soitware component whose
responsibility 1s to discover resources and relationships

US 7,953,776 B2

7

between the resources and write their representations 1n a
persistent store. FIG. 4A depicts an example resource class
definition for a soitware resource to be discovered 1n accor-
dance with an illustrative embodiment. In the definition
shown 1n FIG. 4A, the Provider qualifier refers to the class
that implements the provider logic.

In the example depicted in FIG. 3, the discovery of
resources 1s governed by discovery directives 302, 306, which
are used to coordinate the execution of information providers
322, 324, 326, 328. A discovery directive 1s composed of a
“what” parameter and a “when” parameter. A “what” param-
cter defines classes of resources and relationships to be dis-
covered. A “when” parameter defines the schedule according
to which the provider 1s to run.

Usually, depending on the resource class, a discovery
directive may contain other configuration parameters. A
“where” parameter delimaits the area to scan. A “how” param-
cter provides constraints for the scan, such as processor
usage, network bandwidth usage, and the like. The “where”
and “how” parameters are usually class dependent.

As an example, a network discovery directive may contain

the following parameters:
hat: IPAddress

hen: StartTime=0ct. 10, 2004 18:00, EndTime=Dec. 31,
2004 0:00, Interval=1 hour

where: IP-address range (9.48.25.47-9.48.25.250)

As another example, a software discovery directive may con-
tain the following parameters:

what: SoftwareProduct

when: StartTime=0Oct. 20, 2004 6:00, EndTime=Dec. 25,

2004 0:00, Interval=1 hour

where: InstallationDrive=C:, D:

The examples shown 1 FIGS. 4A-4D are in the common
information model, managed object format (CIM/MOF) pro-
gramming language. However, a person of ordinary skill in
the art will recognize that discovery directives, as well other
components of the discovery system, may be implemented
using other programming languages without departing from
the spirit and scope of the present invention.

FIG. 4B depicts an example discovery directive class defi-
nition in accordance with an 1illustrative embodiment. The
discovery directive specifies the name of the discovery direc-
tive, the name of the classes of resources to be discovered, and
when to run the information provider. As can be seen in the
example depicted 1n FIG. 4B, the “when” parameter of a
discovery directive may be specified by reference to a sched-
ule class. FIG. 4C depicts an example schedule class defini-
tion i accordance with an illustrative embodiment. In the
example depicted in FI1G. 4C, the schedule specifies when to
start the discovery process, when to stop the discovery pro-
cess, and the interval to use to refresh the information discov-
ered by the discovery process.

Discovery directives may be specialized to address the
needs of certain resource classes. For example, discovery
directives may be specialized for network discovery, software
product discovery, and so forth. FIG. 4D 1s an example spe-
cialized software discovery directive class definition 1n accor-
dance with an 1llustrative embodiment. As can be seen 1n the
example depicted 1 FIG. 4D, the specialized software dis-
covery directive class defines the class of resources to be
discovered as file extensions and delimits the area to scan to
a particular drive.

FIGS. 5A-5D depict examples of discovery directive
classes and schedule classes for different administrators in
accordance with an exemplary embodiment. Considering this
particular example for 1llustration, a first admimistrator, Luigi,
sets a discovery directive for the SoftwareProduct class. FIG.

A%
A%

10

15

20

25

30

35

40

45

50

55

60

65

8

5A depicts the discovery directive specified by Luigi, where
the name of the directive 1s “Luigi’s directive,” the classes of
resources to be scanned are defined as “SoftwareProduct,” the
file extensions to be scanned are “exe” and “bat,” the drive to
which the scan 1s to be limited 1s “C:”, and the schedule 1s

“$LuigiSchedule.” FIG. SB depicts the schedule used by

Luigi, where the name of the schedule 1s “Luigt’s schedule,”
the start time 1s defined as “Oct. 7, 2004 12:00 PM.” the end

time 1s defined as “Dec. 25, 2004 12:00 PM.” and the interval
1s defined as ““6 hours.”

Now consider a second administrator, Mario, sets a ditfer-
ent discovery directive for the same resource class. FIG. 5C
depicts the discovery directive specified by Mario, where the
name of the directive 1s “Mario’s directive,” the classes of

resources to be scanned are defined as “SoftwareProduct,” the
file extensions to be scanned are “exe’ and “dll,” the drive to
which the scan 1s to be limited 1s “C:”, and the schedule 1s
“$MarioSchedule.” FIG. 5D depicts the schedule used by

Mario, where the name of the schedule 1s “Mario’s schedule,”
the start time 1s defined as “Oct. 8, 2004 12:00 PM.” the end

time 1s defined as “Dec. 31, 2004 12:00 PM.” and the interval
1s defined as *“12 hours.”

The examples shown 1n FIGS. SA-5D are 1n the common
information model, managed object format (CIM/MOF) pro-
gramming language. However, a person of ordinary skill 1n
the art will recognize that discovery directives, as well other
components of the discovery system, may be implemented
using other programming languages without departing from
the spirit and scope of the present invention.

FIG. 6 15 a block diagram of a discovery engine in accor-
dance with an illustrative embodiment. Discovery controller
620 reads discovery directives from repository 606. Discov-
ery controller 620 generates execution plans that satisiy the
discovery directives and passes the execution plans to sched-
uler 630 for the execution of information providers 612.

Execution plans generated by the discovery controller may
differ from those of an information provider. Optimization
could occur at discovery controller rather than information
provider. With the division of labor between the discovery
controller and the information provider, one could actually
have multiple discovery controllers providing requests to the
same 1nformation provider. One situation where 1t might be
valuable 1s where different network administrators are
responsible for different parts of the network and, hence, 1t
makes the most sense, most of the time, for the discovery
operations to be separate. However, there may be relatively
few events 1n the portion of the network under another admin-
istrator’s control on which 1t would be usetul to collect infor-
mation. Thus, perhaps, 1t would be useful to have the ability
for the local discovery controller to send a request to an
information provider in the other network.

FIG. 7A depicts an example interface that the information
provider class may implement 1n accordance with an 1llustra-
tive embodiment. In the embodiment, using the Java™ pro-
gramming language, an information provider may be any
class that implements the interface shown by example in FIG.
7A. In the depicted examples, interfaces, classes, and
instances are shown using the Java™ programming language
for 1llustration purposes; however, a person of ordinary skill
in the art will appreciate that the interfaces, classes, and
instances may be written 1n other programming languages
without departing from the spirit and scope of the present
invention. The method createExecutionPlan returns one or
more execution plans for the passed directives. The method
preparelnstances discovers the resources defined in the
passed execution plan and stores them in a persistent store.

US 7,953,776 B2

9

The method invalidatelnstances invalidates the resources
specified 1n the passed execution plans.

FIG. 7B depicts an example discovery directive class in
accordance with an illustrative embodiment. The method get-
Name returns the name of the discovery directive. The
method getClassNames returns the names of the classes of
resources to discover. The method getSchedule returns the
schedule associated with the discovery process.

FIG. 7C depicts an example schedule class 1n accordance
with an illustrative embodiment. The method getStartTime
returns the start time of the discovery process. The method
getStopTime returns the stop time of the discovery process.
The method getlnterval returns the interval to use to refresh
the values of the discovered resources.

FIG. 7D depicts an example provider execution plan class
in accordance with an illustrative embodiment. The method
getNewDiscoveryDirective returns an optimized new discov-
ery directive that meets the requirements of one or more
original discovery directives (see getSatisfiedDiscoveryDi-
rectiveNames). The method getSatisfiedDiscoveryDirec-
tiveNames returns the name of the original discovery direc-
tive satisiied by the execution plan.

Returning to FIG. 6, in step A, the operation of discovery
controller 620 reads all specified discovery directives from
repository 606. Discovery controller 620 then resolves class
dependencies and class/provider dependencies. For example,
a directive specifying a class that 1s part of a system may be
expanded into a directive that contains the original class, the
class representing the system, and an association that links
one to the other. This 1s because a part cannot exist without the
system that contains 1t. Likewise, an association class may be
expanded into the original class and the classes that are ret-
erenced by the association.

Discovery controller 620 also handles directives among
different providers iI a directive specifies classes that are
handled by different providers. For instance, a directive speci-
tying both a ComputerSystem class (handled by a system
information provider) and a SoftwareProduct class (handled
by a software information provider) may be split mto two
directives, one specitying the ComputerSystem class for the
system information provider and another one specitying the
SoftwareProduct class for the software information provider.
In step B, discovery controller 620 passes the newly gen-
erated directives to the proper information provider’s create-
ExecutionPlans method. The responsibility of this method 1s
to decide the best strategy to satisiy both directives using a
mimmum amount of resources. For example, a software
information provider may decide to merge the extensions of
the file to scan because looking for another file extension (to
satisty a second directive) adds a negligible amount of work.
Providers 612 return the provider execution plan in step C.

As an example, suppose the software information provider
decides to merge the discovery directives specified in FIGS.
5A-3D. The createExecutionPlans method will return a single
directive. FIGS. 8A and 8B depict an instance of a discovery
directive and schedule resulting from merging discovery
directives 1n accordance with an exemplary embodiment. As
seen 1n F1G. 8 A, the file extensions to be scanned are merged.
As shown 1n FIG. 8B, the schedule sets a minimum start time
of the two schedules, a maximum end time of the two sched-
ules, and a mimmimum interval of the two schedules. The new
directive/schedule pair satisfies both Luigi’s and Mario’s
original directives. This combination of three items—new
directive, new schedule, and satisfied original directive—
may be referred to as ProviderExecutionPlan.

The examples shown in FIGS. 8A and 8B are 1n the com-
mon information model, managed object format (CIM/MOF)

5

10

15

20

25

30

35

40

45

50

55

60

65

10

programming language. However, a person of ordinary skall
in the art will recogmize that discovery directives, as well
other components of the discovery system, may be 1mple-
mented using other programming languages without depart-
ing from the spirit and scope of the present invention.
Alternatively, the software provider may decide not to
merge the directives and pass the original directive/schedule
pairs back to the discovery controller. In this case, the content
of the discovery directive mnstances and schedule instances

for difterent administrators will be 1dentical to those shown 1n
FIGS. 5A-5D.

With reference again to FIG. 6, i step D, discovery con-
troller 620 creates a job for each returned directive/schedule
pair and passes the jobs with their associated schedule 1infor-
mation to scheduler 630. In turn, scheduler 630 runs these
jobs according to the specified schedule. The job’s run
method calls a discovery controller method in step E, which in
turn calls the preparelnstances method of providers 612 in
step F. Note that discovery controller 620 may never look
inside the schedules. Rather, discovery controller 620 only
passes directives and schedules among providers 612 through
provider manager 610 and scheduler 630. This allows chang-
ing scheduler 630 without changing code in discovery con-
troller 620.

“Instances” prepared by a provider are representations of
the resources being scanned. Entities, such as software appli-
cations, may listen (subscribe) to events to determine when
the instances are prepared. An 1nstance may comprise prop-
erties of the resource being represented. For example, an
instance ol a soltware product to be scanned may include
values for the properties of that software product, such as
name, version, installation directory, and installation date and
time, which correspond to the properties defined 1n the class
illustrated 1n FIG. 4A. These entities may then query (con-
sume) the mnstances to obtain the scan mnformation.

When a job 1s completed successtully, discovery controller
620 generates, or “fires,” an event (DirectivesSatisfiedEvent)
indicating that the job’s associated directives are satisfied.
Discovery controller 620 may fire a DirectivesSatisfiedEvent
event for each directive specified by a provider execution
plan. Discovery controller 620 also fires events (Instanc-
esPreparedEvent) indicating that the instances of requested
classes are ready to be queried by client application 602 1n
step Q.

Discovery controller 620 passes to scheduler 630 jobs to
invalidate instances when the end time of the schedule arrives.
The job’s run method calls a discovery controller method that
in turn calls the provider’s invalidateInstances method. When
the jobs complete successiully, the controller fires Instance-
Invalidated events.

Client application 602 passes discovery directives to dis-
covery controller 620, listens for events indicating when the
requested classes of information are discovered, and then
reads the discovered mformation from the place where the
information 1s stored. For instance, client application 602
may be interested in knowing when instances of Software-
Product are prepared. Client application 602 may then con-
nect to client interface 604 and add a listener speciiying the
following filters: eventClassName=InstancesPreparedEvent,
targetClassName=SoltwareProduct. If client application 602
1s interested 1n when an entire directive 1s satisfied, it connects
to client interface 604 to add a listener specitying the follow-
ing filters: eventClassName=DirectivesSatisfiedEvent,
targetClassName=SoltwareDiscoveryDirective. When the
event 1s recerved, client application 602 may query the
instance of the classes that are ready, using query methods

US 7,953,776 B2

11

enumeratelnstances, references (enumerateAssociations),
and associations (enumerateAssociatedObjects) of client
interface 604.

FIG. 9 1s a flowchart illustrating operation of a discovery
controller in accordance with an illustrative embodiment. It
will be understood that each block of the tlowchart illustra-
tions, and combinations of blocks in the flowchart 1llustra-
tions, can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor or other programmable data processing apparatus
to produce a machine, such that the instructions which
execute on the processor or other programmable data process-
ing apparatus create means for implementing the functions
specified 1n the flowchart block or blocks. These computer
program 1nstructions may also be stored in a computer-read-
able memory or storage medium that can direct a processor or
other programmable data processing apparatus to function 1in
a particular manner, such that the mstructions stored in the
computer-readable memory or storage medium produce an
article of manufacture including instruction means which
implement the functions specified 1n the flowchart block or
blocks.

Accordingly, blocks of the flowchart illustrations support
combinations of means for performing the specified func-
tions, combinations of steps for performing the specified
functions and program instruction means for performing the
specified functions. It will also be understood that each block
of the flowchart illustrations, and combinations of blocks in
the tlowchart illustrations, can be implemented by special
purpose hardware-based computer systems which perform
the specified functions or steps, or by combinations of special
purpose hardware and computer 1nstructions.

With reference now to FIG. 9, operation begins and the
discovery controller reads discovery directives from a reposi-
tory (block 902). The discovery controller resolves class
dependencies and class/provider dependencies (block 904).
The discovery controller splits and expands discovery direc-
tives, 1 necessary (block 906).

Next, the discovery controller passes the new directives to
information providers (block 908). Directives may be passed
to information providers via the method Provider.createEx-
ecutionPlan described above, for example. The discovery
controller then receives new or modified directives from
information providers, i1f any (block 910). Thereatter, the
discovery controller creates jobs for the returned directive/
schedule pairs (block 912) and passes the jobs with associated
schedule information to a scheduler (block 914). Operation
then proceeds to block 916 where the discovery controller
then instructs the information providers to create instances.
The discover controller may instruct information providers to
create instances via the method Provider.preparelnstances
described above, for example.

The discovery controller generates events to indicate that
the job’s directives are satisfied and that the requested classes
are ready to be queried (blocks 918 and 920). Thereatfter, the
discovery controller determines whether the job 1s complete
(block 922). If the job 1s complete, operation returns to block
916 to 1nstruct the information provider to create 1nstances.

If the job 1s complete 1n block 922, the discovery controller
instructs the imformation provider to invalidate instances
(block 924). The discovery controller may instruct the infor-
mation provider to invalidate instances using the method
Provider.invalidateInstances as described above, {or
example. Then, the discovery controller generates an event to
indicate that instances are invalidated (block 926), and opera-
tion ends. There are situations where data are volatile. Invali-
dating the 1instances ensures that consumers do not read scan
data that are incorrect, or invalid.

FIG. 10 1s a flowchart illustrating operation of an informa-
tion provider 1n accordance with an 1llustrative embodiment.
Operation begins and the information provider recerves direc-

10

15

20

25

30

35

40

45

50

55

60

65

12

tives from the discovery controller (block 1002). The infor-
mation provider decides a strategy to satisty directives using
a minimum amount of resources (block 1004). The informa-
tion provider splits, merges, or modifies directives and sched-

ules, 1t necessary (block 1006). The information provider
returns the directive/schedule pairs to the discovery controller
(block 1008). Thereafter, operation ends.

Thus, the 1llustrative embodiments solve the disadvantages
of the prior art by providing a mechanism for configuring and
scheduling logical discovery processes 1n a data processing,
system. A discovery engine communicates with information
providers to collect discovery data. An information provider
1s a soltware component whose responsibility 1s to discover
resources and relationships between the resources and write
their representations 1n a persistent store. Discovery direc-
tives are used to coordinate the execution of information
providers.

It should be appreciated that the i1llustrative embodiments
may take the form of an entirely hardware embodiment, an
entirely software embodiment or an embodiment containing
both hardware and software elements. In one exemplary
embodiment, the mechanisms of the illustrative embodiments
are 1mplemented in software, which includes but 1s not lim-
ited to firmware, resident software, microcode, etc.

Furthermore, the illustrative embodiments may take the
form of a computer program product accessible from a com-
puter-usable or computer-readable medium providing pro-
gram code for use by or in connection with a computer or any
istruction execution system. For the purposes of this
description, a computer-usable or computer-readable
medium can be any apparatus that can contain, store, com-
municate, propagate, or transport the program for use by or in
connection with the mnstruction execution system, apparatus,
or device.

The medium may be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
or device) or a propagation medium. Examples of a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
a rigid magnetic disk and an optical disk. Current examples of
optical disks include compact disk-read only memory (CD-
ROM), compact disk-read/write (CD-R/W) and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age ol at least some program code 1n order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/0O control-
lers. Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and Ethernet cards are just a few of the currently
available types of network adapters.

The description of the present invention has been presented
for purposes of 1illustration and description, and 1s not
intended to be exhaustive or limited to the invention 1n the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill 1n the art to understand the ivention
for various embodiments with various modifications as are
suited to the particular use contemplated.

US 7,953,776 B2

13

What 1s claimed 1s:

1. A method 1n a data processing system for configuring
and scheduling logical discovery processes 1n a data process-
ing system, the method comprising:

receiving a plurality of discovery directives, wherein each

discovery directive within the one or more discovery
directives defines classes of resources and relationships
to be discovered:

creating an optimized provider execution plan to satisty the

plurality of discovery directives and to minimize over-

lapping discovery, wherein the provider execution plan

comprises a plurality of directive/schedule pairs; and
executing the provider execution plan;

wherein executing the provider execution plan comprises:

creating a job for each directive/schedule pair within the
plurality of directive/schedule pairs to form a plurality
ol j0bs;

passing the plurality of jobs with associated schedule
information to a scheduler;

responsive to a given job within the plurality of jobs
completing, generating an event to indicate directives
associated with the given job are satisfied.

2. The method of claim 1, wherein executing the provider
execution plan further comprises:

instructing the information provider to create mnstances of

resource objects, wherein the information provider dis-
covers resource information defined in the provider
execution plan and stores the resource information 1n a
persistent store.

3. The method of claim 1, wherein a discovery controller
receives the one or more discovery directives,

wherein the discovery controller passes the one or more

discovery directives to an information provider, and
wherein the information provider creates the provider
execution plan.

4. The method of claim 3, wherein the discovery controller
optimizes the execution plan.

5. A computer program product comprising a computer
useable medium having a computer readable program,
wherein the computer readable program, when executed on a
computing device, causes the computing device to:

receive one or more discovery directives, wherein each

discovery directive within the one or more discovery
directives defines classes of resources and relationships
to be discovered;

create a provider execution plan to satisiy the one or more

discovery directives and wherein the provider execution
plan comprises one or more directive/schedule pairs;
and

execute the provider execution plan;

wherein the computer readable program causes the com-

puting device to execute the provider execution plan by:

creating a job for each directive/schedule pair within the
plurality of directive/schedule pairs to form a plurality
of jobs; and

passing the plurality of jobs with associated schedule
information to a scheduler;

responsive to a given job within the plurality of jobs
completing, generating an event to indicate directives
associated with the given job are satistied.

6. The computer program product of claim 5, wherein the
computer readable program further causes the computing
device to execute the provider execution plan by:

instructing the information provider to create mnstances of

resource objects, wherein the information provider dis-

5

10

15

20

25

30

35

40

45

50

55

60

14

covers resource information defined in the provider
execution plan and stores the resource information in a
persistent store.

7. The computer program product of claim 5, wherein a
discovery controller receives the one or more discovery direc-
tives,

wherein the discovery controller passes the one or more

discovery directives to an information provider, and
wherein the information provider creates the provider
execution plan.

8. The computer program product of claim 7, wherein the
discovery controller optimizes the execution plan.

9. The computer program product of claim 5, wherein the
computer readable program 1s stored 1n a computer readable
storage medium 1n a data processing system, and wherein the
computer readable program 1s downloaded over a network
from a remote data processing system.

10. The computer program product of claim 5, wherein the
computer readable program 1s stored 1n a computer readable
storage medium 1n a server data processing system, and
wherein the computer readable program 1s downloaded over
a network to a remote data processing system for use 1n a
computer readable storage medium within the remote data
processing system.

11. An apparatus, comprising: a processor; and a memory
coupled to the processor, wherein the memory comprises
instructions which, when executed by the processor, cause the
pProcessor 1o:

recerve one or more discovery directives, wherein each

discovery directive within the one or more discovery
directives defines classes of resources and relationships
to be discovered;

create a provider execution plan to satisty the one or more

discovery directives and wherein the provider execution
plan comprises one or more directive/schedule pairs;
and

execute the provider execution plan;

wherein the istructions cause the computing device to

execute the provider execution plan by:

creating a job for each directive/schedule pair within the
plurality of directive/schedule pairs to form a plurality
ol jobs;

passing the plurality of jobs with associated schedule
information to a scheduler;

responsive to a given job within the plurality of jobs
completing, generating an event to indicate directives
associated with the given job are satisfied.

12. The apparatus of claim 11, wherein the provider execu-
tion plan further comprises:

instructing the information provider to create instances of

resource objects, wherein the information provider dis-
covers resource information defined in the provider
execution plan and stores the resource information in a
persistent store.

13. The apparatus of claim 11, wherein a discovery con-
troller receives the one or more discovery directives;

wherein the discovery controller passes the one or more

discovery directives to an information provider;
wherein the information provider creates the provider
execution plan; and

wherein the discovery controller optimizes the execution

plan.

	Front Page
	Drawings
	Specification
	Claims

