US007953224B2
12 United States Patent (10) Patent No.: US 7,953,224 B2
Zhu et al. 45) Date of Patent: *May 31, 2011
(54) MPEG-4 ENCRYPTION ENABLING 7,155,448 B2* 12/2006 Wintercccoenne... 707/101
TRANSCODING WITHOUT DECRYPTION 7,248,740 B2* 7/2007 Sulltvan ... 382/232
7,274,661 B2* 9/2007 Harrelletal. 370/229
: . _ 7,561,933 B2* 7/2009 Ohetal. 700/94
(75) Inventors: Bin Zhu, Edina, MN (US); Chang Wen 7,586,425 B2* 9/2000 Ridge et al. .oooovoervore.. 341/67
Chen, Melbourne, FL (US); Shipeng Li, 2002/0018565 Al* 2/2002 Luttrell etal. 380/217
Redmond, WA (US); Yang Yang, 2004/0028227 A1* 2/2004 YU .coooeiviiniiiiiice, 380/201
Xuzhou (CN) 2004/0030665 Al* 2/2004 Sullivan 706/48
2004/0156433 Al* 8/2004 Comeretal. ... 375/240.2
: _ : : 2004/0170277 Al1* 9/2004 Iwamuraetal. ... 380/217
(73) Assignee: (B{[I‘é‘;' osoft Corporation, Redmond, WA 2006/0133472 Al* 6/2006 Brulsetal. ... 375/240.1
2006/0265601 Al 11/2006 Zhu et al.
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent 1s extended or adjusted under 35 3
U.S.C. 154(b) by 1149 da A. Menezes, P. van Oorschot, and S. Vanstone, “Handbook of
S.C. y V. _
Applied Cryptography,” 1997 by CRC Press, Inc. chapter 7, pp.
This patent 1s subject to a terminal dis- 222-282.%
claimer. _
(Continued)
(21) Appl. No.: 11/419,464
| Primary Examiner — Carl Colin
(22) Filed: May 19, 2006 (74) Attorney, Agent, or Firm — Perkins Coie LLP
(65) Prior Publication Data
(37) ABSTRACT
US 2006/0282665 Al Dec. 14, 2006
A method and system for encrypting a video compressed with
Related U.S. Application Data MPEG-4 FGS compression with mimimal overhead is pro-
.. L. vided. The encryption system encrypts the video 1nto inde-
(60) EBO?SE)%H&] application No. 60/683,111, filed on May pendently encrypted segments that can be either a video
" ‘ packet or a video block. When the encryption system encrypts
(51) Int.ClI based on ;(ii(;eo gacketsj 1t eni:rypts the gata to ilsu:i'elthat the
o encrypted data does not emulate any video packet delimiting
55 {JH‘):LCf/OO 280/ 21(30220(3;)7 120/200- 380/730: markers. When the encryption system encrypts based on
(52) U e ’ 220/26 1" 1316 6 713/] 84: video blocks, 1t encrypts the coded bitstream for each video
_ _ _ 3 3 block independently, from the most significant bitplane to the
(58) Field of Classification Search 380/37, least significant bitplane, using either a stream or a block
o 380/200, 239, 261; 7_13/ 160, 134 cipher. After all the wvideo blocks are independently
See application file for complete search history. encrypted, the encryption system partitions the encrypted
(56) Ref Cited data into video packets and adds a builering bit, 11 necessary,
eferences Cite

U.S. PATENT DOCUMENTS

6,996,173 B2* 2/2006 Wuetal. 375/240.1
7,095,782 B1* 82006 Cohenetal. 375/240.01
7,136,485 B2* 11/2006 Weeetal.ccoovvnnnnnnn, 380/37

encryption system

110

111

video
store

to prevent emulation of video packet delimiting markers. The
encryption system may generate an initialization vector for
cach independently encrypted segment.

encryption-unaware

150

17 Claims, 5 Drawing Sheets

destination device 130

119 device 120
compress and encrypt video 121
113
ehcode and 140 trﬂgza;:e
encrypt segment
114

encrypt
segment

131

decrypt
video

132

decompress
video

US 7,953,224 B2
Page 2

OTHER PUBLICATIONS

Chun Yuan, Bin B. Zhu, Yidong Wang, Shipeng L1, Yuzhuo Zhong;
“Efficient and Fully Scalable Encryption for MPEG-4 FGS™; 2003, 4
Pages.™

Wee et al; “Secure Scalable Streaming and Secure Transcoding with
JPEG-2000”:HP Laboratories Palo Alto HPL-2003-117 Jun. 13,
2003; 5 Pages.™

“Crypto++® Library 5.2.1,” 6 pages [last accessed Sep. 27, 2005].
“Gormush Notes on JPEG 2000,” 8 pages [last accessed May 11,
2005].

“The JPEG2000 Resource Web Page,” VIPER, 5 pages [last accessed
Apr. 4, 2005].

Grosbois, Raphael et al., “Authentication and access control 1n the
JPEG 2000 compressed domain,” In Proc. of the SPIE 46th Annual
Meeting, Applications of Digital Image Processing XXIV, San
Diego, Jul. 29-Aug. 3, 2001, pp. 1-10.

L1, Welping, “Overview of Fine Granularity Scalability in MPEG-4
Video Standard,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 11, No. 3, Mar. 2001, pp. 301-317.
Marcellin, Michael et al., “An Overview of JPEG-2000.” Proc. of
IEEE Data Compression Conference, 2000, pp. 523-541.

Wee, Susie et al., “Secure Scalable Streaming Enabling Transcoding

without Decryption,” Image Processing International Conference on
2001, vol. 1, pp. 437-440.

Wu, Feng et al., “SMART: An Efficient, Scalable, and Robust
Streaming Video System,” EURASIP Journal on Applied Signal Pro-
cessing 2004, 35 pages.

Wu, Feng et al., “SMART: An Efficient, Scalable, and Robust
Streaming Video System,” EURASIP Journal on Applied Signal Pro-
cessing 2004, 39 pages.

Wu, Hongjun et al., “Efficient and Secure Encryption Schemes for
JPEG2000,” Proc. IEEE Int. Conf. Acoust. Speech Signal Process,
2004, pp. V-869-V-872.

Wu, Min et al., “Communication-Friendly Encryption of Multime-
dia,” Signal processing, IEEE Workshop, Dec. 9-11, 2002, 4 pages.
Wu, Yongdong et al., “Complaint Encryption of JPEG2000
Codestreams,” 2004 IEEE, pp. 3439-3442.

Yuan, Chun et al., “Layered Access Control for MPEG-4 FGS
Video,” ICIP, International Proceeding Sep. 14-17, 2003, 4 pages.
Zhu, Bin et al., “Encryption and Authentication for Scalable Multi-
media: Current State of the Art and Challenges,” Proc. SPIE, 2004, 14
pages.

Zhu, Bin et al., “JPEG 2000 Encryption Enabling Fine Granularity
Scalability without Decryption,” Circuits and Systems, IEEE Inter-
national Symposium on May 23-26, 2005, vol. 6, 4 pages.

Zhu, Bin et al., “Scalable Protection for MPEG-4 Fine Granularity
Scalability,” IEEE Transactions on Multimedia, vol. 7, No. 2, Apr.
2005, pp. 222-233.

Crypto++® Library 5.2.1, 6 pages [last accessed Sep. 27, 2005].
Lian et al., “A Selective Image Encryption Scheme Based on
JPEG2000 Codec,” PCM 2004, LNCS 3332, pp. 65-72, 2004,

Zhu, Bin et al., “JPEG 2000 Syntax-Compliant Encryption Preserv-
ing Full Scalability,” Image Processing, 2005, IEEE International
Conference on ICIP 20035, 4 pages.

* cited by examiner

["OIA

US 7,953,224 B2

\F

Sy

S | o8pIA

— ssajdwoosp

.m |

z A 03 PIA
0GL ayeounJl

o

= LTl

— QCL 8dlAsp

3 —

> T slemeun-uondAious

>

0€] SJIASP UOIBUIISap

U.S. Patent

ovlL

OL1

juawbas
1dAioua

43

Juswibes 1dAicus
pue apoous

ElLl

08pIA JdAIDUS pue ssaidwod
gl __

waysAs uondAious

U.S. Patent May 31, 2011 Sheet 2 of 5 US 7,953,224 B2

VPE stream mode VP

201
generate IV
(VP)
202
apply ciphertext switching

encryption

U.S. Patent May 31, 2011 Sheet 3 of 5 US 7,953,224 B2

VPE block mode VP

301

I generate 1V for VP I
302

apply locally iterative
encryption in cipher block
chalning mode to full blocks

303

apply locally iterative
encryption in cipher text
feedback mode to encrypt last

partial block

U.S. Patent May 31, 2011 Sheet 4 of 5 US 7,953,224 B2

(video block mode)

select next video block

402 407
all already Y select next bitplane
selected of all blocks

N 403

generate IV
(video block}

404 N :
| ' | 409 |
select next bitplane
| select next block I

all already
selected

all already
selected

all already
selected

encrypt bitplane of video
block

. |

feed to current VP

end of VP

ensure no VP delimiters in
the encrypted data of VP

414
|

* start a new VP

FilG. 4

U.S. Patent May 31, 2011 Sheet 5 of 5 US 7,953,224 B2

type
global IV
VOP identifier
(Qe”erate_w_) video block index
— color
bit plane

type

videoblock

003

IV =1 (global IV, VOP identifier
index, bit plane)

002

IV = f(global IV, VOP identifier,
iIndex, color)

FIG. 5

US 7,953,224 B2

1

MPEG-4 ENCRYPTION ENABLING
TRANSCODING WITHOUT DECRYPTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application No. 60/683,111, enfitled “Syntax Compli-
ant Encryption for JPEG 2000 and Motion JPEG 2000 filed
on May 20, 2005 and 1s related to U.S. patent application Ser.
No. 11/419,468 entitled “JPEG 2000 Syntax-compliant
Encryption With Full Scalability” filed concurrently, which
are hereby both incorporated by reference.

BACKGROUND

Videos can be compressed using MPEG-4 compression.
MPEG-4 compression incorporates many compression fea-
tures of MPEG-1 and MPEG-2 such as frame types (I-frames,
B-frames, and P-frames), motion compensation, group of
pictures, and macroblocks. MPEG-4 also introduces the con-
cept of an object. Objects are parts of scenes that can be coded
as separate video objects. For example, a person in a scene can
be coded as a video object that 1s separate from the coding of
the background of the scene. The separate coding of objects
allows different parts of a scene to be coded with different
resolutions. For example, the object representing a person can
be coded at a higher resolution than the background.

MPEG-4 codes a video hierarchically. A video object may
be sampled at each frame of a scene to generate a video object
plane (“VOP”). A VOP may be coded using various frame
types or using motion compensation. A sequence ol VOPs can
be grouped together 1nto a group of VOPs (“GOV”). GOV,
like VOPs, can be coded independently. MPEG-4 organizes
the VOPs or GOVs 1nto video object layers (“VOLs™). The
VOLs for a video object are further organized into a video
object (“VO”) level, which includes all the bitstreams, for that
video object. The video object levels of a scene are organized
into a video session (“VS”) for the scene.

The spatial and temporal scalability of MPEG-4 1s pro-
vided at the VO level. MPEG-4 provides scalability using a
base layer and enhancement layers. The base layer represents
the lowest quality supported by a bitstream, and each
enhancement layer provides increasingly higher quality. To
provide spatial scalability, each VOP 1s converted from its
original resolution to alower resolution as a base layer and the
difference between the lower resolution and the original reso-
lution 1s represented in the enhancement layers. When a
device receives an MPEG-4 video, 1t can present the video
using the base layer alone or using the base layer and one or
more enhancement layers. Similarly, when a routing device
receives an MPEG-4 video, 1t can forward the base layer only
or forward the base layer along with one or more of the
enhancement layers.

MPEG-4 was amended to allow for Fine Grain Scalability
(“FGS”) to support environments (e.g., streaming media)
where scalability based on base and enhancement layers 1s
too coarse and does not provide the needed flexibility, or the
coders and decoders for multiple enhancement layers are too
complex and thus too expensive. FGS provides a base layer
and one enhancement layer. The base layer 1s encoded with a
non-scalable coder to provide the lowest quality bitrate for a
scalable codestream. The enhancement layer 1s coded into
bitplanes from the most significant bitplane to the least sig-
nificant bitplane. In particular, the difference between the
original VOP and the reconstructed VOP from the base layer
1s encoded bitplane-wise from the most significant bitplane to

10

15

20

25

30

35

40

45

50

55

60

65

2

the least significant bitplane. Each bitplane of a macroblock’s
discrete cosine transform (“DCT”) coellicients 1s zigzag

ordered, converted to run and end-of-plane (RUN, EOP) sym-
bols, and coded with variable-length coding to produce an
enhancement layer codestream. RUN 1s the number of con-
secutive zeros before a nonzero value, and EOP indicates 1t
any non-zero values are left on the current bitplane for the
block. For FGS Temporal (“FGST”), which does not have
corresponding base layer VOPs, the bitplane coding 1is
applied to the entire DCT coeflicients of the VOP. MPEG-4
FGS provides very fine grain scalability to allow near rate-
distortion (RD) optimal bitrate truncation for a large range of
bitrates. An FGS video can be truncated to the base layer or
any bitplane of the enhancement layer depending on channel
capacity or display device capability.

MPEG-4 FGS groups video data into Video Packets
(““VPs”) that contain independently coded data. Each VP 1s
delimited by unique resynchronization markers to prevent
error propagation to other VPs. Information 1s inserted after a
resynchronization marker to enable resuming decoding 1n the
event that a VP 1s damaged 1n transmission. For the enhance-
ment layer, both the bitplane start marker (1.e., Igs_bp_start-
_code) and the resynchronization marker (1.e., Igs_resync-
_marker) are used as VP delimiters. The fgs_bp_start_code 1s
32 bits, starting with 23 binary zeros followed by Ox A and five
bits indicating to which bitplane the data belongs. The fgs_r-
esync_marker 1s 22 binary zeros followed by a binary one.
The number of the first macroblock 1s inserted aiter each
marker 1gs_resync_marker. The VP boundary 1s aligned with
a macroblock. If an error occurs in coded bitplane data, the
bitplane data of the current and subsequent blocks of that
bitplane cannot be correctly decoded, and will be discarded.
The lower bitplane data of those affected blocks are also
discarded because the alignment of the sign bits cannot be
determined. In particular, a sign bit for a DCT coetficient 1s
encoded with the bitplane that has the most significant “1” for
that DCT coellicient. So, 1f an error occurs in the bitplane, the
sign bits for lower bitplanes become misaligned and cannot
be properly decoded. The size of a VP can be determined at
encoding time based on different scenarios. For example, 1f
the video 1s being transmitted on a highly reliable channel, a
large VP may be used as errors and corrupted VPs will be rare.
In contrast, 1f the channel 1s unreliable and prone to errors

(e.g., awireless channel), a small VP may be used so that not
much video information is lost with each frequent error.

Encryption can be applied to MPEG-4 FGS video code-
streams to protect videos from unauthorized access or usage.
An 1mportant requirement for encryption of scalable code-
streams 1s that the encrypted codestream should preserve as
fine as possible granularity for scalability so that 1t can be
truncated directly by an encryption-unaware device without
decryption. In other words, as a video 1s processed by inter-
mediaries, 1t 1s desirable that those intermediaries can reduce
the scale (e.g., resolution) of the video without having to
decrypt the video. A desirable requirement for MPEG-4 FGS
encryption 1s that an encrypted codestream 1s still compliant
to the MPEG-4 FGS syntax and that encrypted data does not
emulate any MPEG-4 FGS delimiters to avoid erroneous
parsing or synchronization, especially under error-prone
transmissions.

SUMMARY

This Summary 1s provided to introduce a selection of con-
cepts 1n a simplified form that are turther described below 1n
the Detailed Description. This Summary 1s not intended to
identily key features or essential features of the claimed sub-

US 7,953,224 B2

3

ject matter, nor 1s 1t intended to be used as an aid 1n determin-
ing the scope of the claimed subject matter.

A method and system for encrypting a video compressed
with MPEG-4 FGS compression with minimal overhead 1s
provided. The encryption system encrypts the video into
independently encrypted segments that can be either a video
packet or a video block. When the encryption system encrypts
based on video packets, 1t may encrypt the data using Cipher-
text Switching Encryption or Locally Iterative Encryption to
ensure that it 1s syntax compliant with MPEG-4 FGS com-
pression. When the encryption system encrypts based on
video blocks, 1t encrypts the coded bitstream independently
tor each video block from the most significant bitplane to the
least significant bitplane using either a stream or a block
cipher. After all the video blocks of a video packet are 1inde-
pendently encrypted, the encryption system adjusts the
encryption to ensure that it 1s syntax compliant with MPEG-4
FGS compression. The encryption system may generate an
initialization vector (“IV”’) for each independently encrypted
segment. The IV for a segment may be generated as a function
of a global IV and a umique identifier of the segment. The
encryption system ensures that an encrypted video 1s syntax

compliant with MPEG-4 FGS compression and 1s fully scal-
able.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 11s a block diagram that 1llustrates components of the
encryption system in one embodiment.

FI1G. 2 1s a flow diagram that illustrates the processing of a
video packet mode encryption component with a stream
cipher 1n one embodiment.

FI1G. 3 1s a flow diagram that illustrates the processing of a
video packet mode encryption component with a block cipher
in one embodiment.

FIG. 4 1s a flow diagram that illustrates the processing of a
video block mode encryption component 1n one embodiment.

FIG. 5 1s a flow diagram that illustrates the processing of
the generate IV component in one embodiment.

DETAILED DESCRIPTION

A method and system 1s provided for encrypting a video
compressed with MPEG-4 FGS with minimal overhead so
that the encrypted codestream does not emulate MPEG-4
delimiting markers 1n the encrypted data and can be scaled at
fine granularity without decrypting. In one embodiment, the
encryption system encrypts a video into independently
encrypted segments that can be either a video packet (“VP”)
or a video block. When the encryption system encrypts based
on video packets, referred to a video packet mode encryption,
it encrypts the data using Ciphertext Switching Encryption
(“CSE”) or Locally Iterative Encryption (“LIE™) to ensure
that no VP delimiters appear in the encrypted data. The
encryption system does not encrypt the VP header or the
macroblock numbers so that the encrypted codestream pro-
vides the necessary synchronization markers for an encryp-
tion-unaware device. When the encryption system encrypts
based on video blocks (e.g., a macroblock or some smaller
block), referred to as video block mode encryption, it
encrypts the coded bitstream for each video block indepen-
dently, from the most significant bitplane to the least signifi-
cant bitplane, using either a stream or a block cipher. After all
the video blocks of a VOP are independently encrypted, the
encryption system partitions and adjusts the encrypted data
into VPs so that no VP delimiters appear in the encrypted data
contained 1n a VP. The encryption system generates an 1ni-

10

15

20

25

30

35

40

45

50

55

60

65

4

tialization vector (“IV”) for each independently encrypted
segment. The IV for a video block may be generated as a
function of a global IV and the video block’s index and
bitplane color component. The IV for a VP may be generated
as a function of a global IV and the number of the first
macroblock and a bitplane 1dentifier of the macroblock. In
this way, the encryption system can ensure that an encrypted
video has negligible overhead without emulating VP delim-
iting markers and 1s fully scalable.

Video packet mode encryption encrypts each VP indepen-
dently. The encryption system may use syntax-compliant
encryption schemes such as Ciphertext Switching Encryption
or Locally Iterative Encryption to ensure that the ciphertext
does not emulate VP delimiters. The encryption system
ensures that the ciphertext does not contain any string of
byte-aligned 22 consecutive binary zeros, which corresponds
to a VP delimiter in MPEG-4 FGS. When a stream cipher 1s
used, the encryption system applies CSE and LIE directly and
the ciphertext has the same size as the plaintext. When a block
cipher 1s used with LIE, the encryption system uses both
Cipher Block Chamning (“CBC”) and Cipher-Feedback
(“CFB”) modes to produce syntax-compliant ciphertext with
the same size as input for plaintext of arbitrary size. The
encryption system partitions the plamntext into blocks. Each
block, except the last one, has the same size as the encryption
block used by the block cipher. The last block may be a partial
block that does not have enough data to be a full block. The
encryption system encrypts each tull block using a block
cipher with LIE in CBC mode. The encryption system
encrypts the last partial block, 11 any, with the same block
cipher with LIE 1n CFB mode. If the VP includes at least one
tull block, the encryption system initializes the shift register
for CFB mode with the ciphertext of the last full block.
Otherwise, the encryption system 1nitializes the shift register
with the IV. The encryption system may use video packet
mode encryption to encrypt both the base layer and the
enhancement layer. Video packet mode encryption allows
truncation of trailing data in an encrypted VP. Moreover,
when an error occurs 1n ciphertext, only the current and sub-
sequent blocks 1n the VP are discarded, rather than the entire
VP.

Video block mode encryption encrypts each video block
independently. When 1n video block encryption mode, the
encryption system encrypts each block of the bitstream of the
enhancement layer independently, from the most significant
bitplane to the least significant bitplane. The encryption sys-
tem uses a stream or block cipher. The encryption system
partitions the resulting ciphertext into smaller groups. allo-
cates the groups to each bitplane, and then packs the groups
into VPs. If the encryption system uses a stream cipher, such
as Rivest’s Cipher 4 (“RC4”) or Software Encryption Algo-
rithm (“SEAL”), 1t sets the grouping boundary at the end of
cach bitplane for the video block. As a result, the encrypted
Contribution of a Block to a Bitplane (“CBB”) contains the
same number of bits as the unencrypted CBB. It the encryp-
tion system uses a block cipher, 1t aligns the grouping bound-
ary with the encryption block size of the block cipher. For
example, if Advanced Encryption Standard (“AES™) 1s used
with a block size of 128 bits, then each CBB contains a
multiple of 128 bits. An encrypted CBB thus would contain
more bits than the unencrypted CBB. The extra data 1s from a
lower bitplane of the video block. Extra data ensures that the
CBB can be decrypted even 1f VPs of lower bitplanes are
truncated or lost 1in the process of transmission. As aresult, the
use ol a block cipher introduces an overhead when truncation
occurs at the bitplane. Thus, when overhead 1s a concern, a
stream cipher can be used to eliminate this overhead.

US 7,953,224 B2

S

When 1n video block encryption mode, once a VP has all
the CBBs from contributing video blocks, the encryption
system checks the encrypted data to determine whether 1t
contains any VP delimiters. If it finds a byte-aligned sub-
stream of 21 binary zeros, 1t inserts a binary “1”” at the end of
the substream. By inserting the “1,” the encryption system
avolds emulating VP delimiters, fgs_bp_start code and
fgs_resync_marker, of the enhancement layer. When the VP
1s decrypted, the decryption system removes each binary “1”
alter a byte-aligned substream of 21 binary zeros.

During decryption of a video encrypted using video block
mode, the decryption system checks the Variable Length
Codes (“VLCs”) for the end of a video block. Once the end of
a video block 1s found, the decryption system uses the decryp-
tion of the next video block to decrypt the rest of the VP until
the end of the block 1s found. This process continues until all
the encrypted data 1n a VP 1s decrypted to corresponding
individual video blocks. When a block cipher 1s used, a CBB
may contain some extra data for the next lower bitplane(s) of
the video block. The decryption system combines this extra
data with the decrypted data of the next lower bitplane for
decoding. It all the data of a bitplane of a video block 1is
contained 1n the CBB of the higher bitplane of the block, the
decryption system marks the current bitplane of the video
block as empty. The decryption system detects this case and
inputs the right bitplane data to the decoder.

The encryption system generates an IV for each encrypted
segment so that they can be independently encrypted. The
encryption system uses different IVs to encrypt different seg-
ments to avoid 1dentical ciphertext when different segments
of plaintext are identical. Other techniques, such as a revers-
ible bilinear hash function, may used to avoid such 1dentical
ciphertext. These techniques, however, results in later
encrypted data atflecting already encrypted data. The use of
different I'Vs results 1n the encryption of later data not affect-
ing already encrypted data and thus enabling truncation of
trailing ciphertext and only forward error expansion (1.€., an
error affects only the current and later decrypted data of the
segment).

The encryption system generates a unique identifier for
cach segment and uses that identifier to generate a unique 1V.
The encryption system uniquely identifies each video block
in a VOP using the video block’s index and color component.
In MPEG-4 FGS, the number of the first macroblock 1s
inserted right after each igs_resync_marker. The macroblock
alter 1gs_bp_start_code 1s always the first macroblock. The
last five bits in Igs_bp_start_code are used to i1dentily the
bitplane. Therefore, the encryption system uses the bitplane
identifier 1n fgs_bp_start code and the number of the first
macroblock to uniquely 1dentity a VP 1n a VOP. The encryp-
tion system uses the umique 1dentifier of a segment to generate
the IV used to encrypt the segment so the IV for each inde-
pendent encryption need not be inserted into the codestream,
which would otherwise cause a large overhead.

The encryption system may use different techniques for
generating I'Vs depending on the format of the codestream. A
codestream may contain persistent presentation time or other
attributes unique to each VOP, which are invariant throughout
the life of the codestream, even when some VOPs are lost. In
such a case, the encryption system uses this unique VOP
identification attribute to generate IVs for the VOP. The
encryption system inserts a random IV into the codestream as
a global IV. The encryption system generates the IV by hash-
ing together the umique VOP 1dentification attribute, the layer
identifier (1.e., base layer or enhancement layer), and the
unique segment 1dentifier. If such a persistent VOP 1dentifier
does not exist, then the encryption system inserts an indepen-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

dent random IV (*VOP IV”) for each VOP 1nto the base VOP
for FGS VOP and 1nto the FGST VOP otherwise. To generate
the IV, the encryption system combines the segment 1dentifier
with the layer ID (which 1s used to 1dentily base or enhance-
ment layer), copy-expands the combination to the length of
the IV, and XORs it with the VOP 1V of the segment. The
encryption system uses the result as an IV for a stream cipher
to encrypt the segment. When a block cipher 1s used, the
encryption encrypts the result with the block cipher and uses
it as the IV to encrypt the segment.

FIG. 1 1s a block diagram that illustrates components of the
encryption system in one embodiment. The encryption sys-
tem 110 1s connected to a destination device 130 via commu-
nications links 140 and 150 and an encryption-unaware
device 120. The encryption system may compress video data
of a video store 111 using a compress and encrypt video
component 112. The compress and encrypt video component
invokes an encode and compress segment component 113 to
encode and compress the segments. An encrypt segment com-
ponent 114 1s invoked by the encode and compress segment
component to encrypt segments. After the encryption system
encrypts the compressed video data, 1t forwards the com-
pressed video data to the encryption-unaware device via com-
munications link 140. Because the encrypted video data 1s
still syntax compliant with the compression techmque, the
encryption-unaware device can truncate the video data in
some way that 1s consistent with the compression scheme
using a truncate video component 121. The encryption-un-
aware device forwards the truncated video data to the desti-
nation device via communications link 150. The destination
device can decrypt the truncated video data using a decrypt
video component 131 and decompress the decrypted video
data using a decompress video component 132. The destina-
tion device can then display the video.

The encryption system may be implemented in silicon,
using discrete logic, a microprocessor, or other computing
devices. The computing device on which the encryption sys-
tem 1s 1implemented may include a central processing unit,
memory, imput devices (e.g., keyboard and pointing devices),
output devices (e.g., display devices), and storage devices
(e.g., disk drives). The memory and storage devices are com-
puter-readable media that may contain instructions that
implement the encryption system.

The encryption system may be implemented 1n various
operating environments that include personal computers,
server computers, multiprocessor systems, miCroprocessor-
based systems, programmable consumer electronics, net-
work PCs, minicomputers, mainframe computers, distributed
computing environments that include any of the above sys-
tems or devices, and the like.

The encryption system may be described in the general
context of computer-executable instructions, such as program
modules, executed by one or more computers or other
devices. Generally, program modules include routines, pro-
grams, objects, components, data structures, and so on that
perform particular tasks or implement particular abstract data
types. Typically, the functionality of the program modules
may be combined or distributed as desired 1n various embodi-
ments and may be implemented in hardware or software.

FIG. 2 1s a flow diagram that 1llustrates the processing of a
video packet mode encryption component with a stream
cipher in one embodiment. The component 1s passed a video
packet and returns the video packet encrypted with a stream
cipher. In block 201, the component invokes the generate IV
component requesting that an IV for a video packet be gen-
erated. In block 202, the component applies a Ciphertext
Switching Encryption technique to encrypt the data in the

US 7,953,224 B2

7

video packet ensuring that the encrypted video packet does
not increase 1ts size and 1s syntax compliant. Alternatively, the
component may apply a Locally Iterative Encryption tech-
nique. The component then returns the encrypted video
packet.

FI1G. 3 1s a flow diagram that illustrates the processing of a
video packet mode encryption component with a block cipher
in one embodiment. The component 1s passed a video packet
and returns the video packet encrypted with a block cipher. In
block 301, the component invokes the generate IV component
requesting that an I'V for a video packet be generated. In block
302, the component applies a Locally Iterative Encryption
technique 1n Block Channel Mode to all the full blocks of the
data 1n the video packet. In block 303, the component applies
a Locally Iterative Encryption technique 1n Cipher Text Feed-
back Mode to encrypt the last partial block, if any, of the data
in the video packet. The component then returns the
encrypted video packet.

FI1G. 4 15 a flow diagram that illustrates the processing of a
video block mode encryption component 1n one embodiment.
The component 1s passed video blocks of a VOP and returns
the encrypted video packets of the VOP. In blocks 401-406,
the component loops selecting each video block and encrypt-
ing 1ts bitplanes. In block 401, the component selects the next
video block. In decision block 402, if all the video blocks have
already been selected, then the component continues at block
407, else the component continues at block 403. In block 403,
the component 1nvokes the generate IV component request-
ing an IV for the selected video block. In block 404, the
component selects the next bitplane of the selected video
block. In decision block 405, 11 all the bitplanes have already
been selected, then the component loops to block 401 to select
the next video block, else the component continues at block
406. In block 406, the component encrypts the selected bait-
plane of the selected video block using an RC4 or SEAL
encryption technique or some other appropriate encryption
technique and loop to block 405. In blocks 407-414, the
component loops selecting each bitplane of all encrypted
blocks 1 the VOP to pack into video packets. In block 407,
the component selects the next bitplane of all the blocks in the
VOP from the most significant bitplane to the least significant
bitplane. In decision block 408, if all the bitplanes have
already been selected, then the component returns the
encrypted video packets of the VOP, else the component
continues at block 409. In block 409, the component selects
the bitplane of the next block. In decision block 410, 11 all the
blocks have already been selected for the selected bitplane,
then the component loops to block 407 to select the next
bitplane, else component continues at block 411. In block
411, the component adds the encrypted bitplane of the
selected block to the current VP. In decision block 412, 1f 1t 1s
the end of the current VP, then the component continues at
block 413, else component loops to block 409 to select the
bitplane of the next block. In block 413, the component
ensures that the encrypted data in the current video packet has
no VP delimiter. In block 414, the component starts a new
video packet and then loops to block 411 to add the remainder
of the select block to the new VP.

FIG. 5 15 a flow diagram that illustrates the processing of
the generate IV component in one embodiment. The compo-
nent 1s passed the type of segment, a global 1V, a VOP 1den-
tifier, a video block index, a color plane, and a bitplane. The
component returns an IV for the type of segment. In decision
block 501, 11 the type of segment 1s a video block, the com-
ponent continues at block 502, else the component continues
at block 503. In block 502, the component sets the IV to a
function of the global 1V, the VOP 1dentifier, the video block

10

15

20

25

30

35

40

45

50

55

60

65

8

index, and the color and then returns. In block 503, the com-
ponent sets the IV to a function of the global IV, the index of
the first macroblock 1n a video packet, and the bitplane and
then returns.

Although the subject matter has been described 1n lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
features or acts described above. For example, the principles
of the encryption system may be used in conjunction with a
variety of media and multimedia types and compression
schemes. As an example, multimedia data may include a
movie with both video and audio. The media data may be
derived from a media signal or transmitted via a media signal.
Also, MPEG-4 FGS based compression refers to any com-
pression scheme that 1s compatible with or derived from
MPEG-4 FGS compression. Accordingly, the invention 1s not
limited except as by the appended claims.

We claim:

1. A method performed by a computing device for encrypt-
ing a video, the encrypted video being MPEG-4 syntax-com-
pliant, the method comprising:

generating a global initialization vector for the video;

identitying independent encryption segments of the video;

and

for each 1dentified independent encryption segment,

generating by the computing device an initialization
vector for the independent encryption segment that 1s
derived from the global 1nitialization vector and from
a unique 1dentifier of the independent encryption seg-
ment; and
encrypting data of the independent encryption segment
using the generated 1nitialization vector for the inde-
pendent encryption segment, the encrypted data being
syntax-compliant with MPEG-4 so that each indepen-
dent encryption segment 1s encrypted independently
of each other independent encryption segment
wherein the global mnitialization vector and the encrypted
data of each imndependent encryption segment without
the mitialization vector for each independent encryption
segment form an encrypted MPEG-4 syntax-compliant
video that can be truncated without having to decryptthe
encrypted data of the independent encryption segments.

2. The method of claim 1 wherein an independent encryp-
tion segment 1s a video packet of MPEG-4 Fine Grain Scal-
ability compression.

3. The method of claim 1 wherein an independent encryp-
tion segment 1s a video block of MPEG-4 Fine Grain Scal-
ability compression.

4. The method of claim 1 wherein the encrypting of an
independent encryption segment applies an encryption
scheme that generates syntax-compliant ciphertext.

5. The method of claim 4 wherein the encryption scheme 1s
a locally iterative encryption scheme.

6. The method of claim 5 wherein the locally iterative
encryption scheme 1n cipher block chaining mode 1s applied
to full encryption blocks and the locally iterative encryption
scheme 1n cipher feedback mode 1s applied to a last partial
encryption block.

7. The method of claim 4 wherein the encryption scheme 1s
a ciphertext switching scheme.

8. The method of claim 1 wherein the unique 1dentifier for
a video block 1s a VOP-specific number, a video block num-
ber, and an identifier of a color component.

9. The method of claim 1 wherein the unique 1dentifier for
a video packet 1s a VOP-specific number, a number of the first
macroblock, and a bitplane 1dentifier.

US 7,953,224 B2

9

10. The method of claim 1 wherein buifering bits are added
to encrypted data to stop emulation of delimiting markers.

11. A system for encrypting video data so that the
encrypted video data 1s MPEG-4 syntax compliant, compris-
ng:

a memory storing computer-executable instructions of:

a component that identifies a global 1initialization vector
for the video data;

a component that identifies segments of the video data;

a component that generates an 1mtialization vector for
cach segment that 1s dertved from the global 1nitial-
1zation vector and from a unique identifier of the
segment;

a component that encrypts each segment using the gen-
erated 1nitialization vector for the segment so that the
encrypted data in each segment does not include any
delimiters of a video packet and 1s MPEG-4 syntax-
compliant; and

a component that packetizes the encrypted segments
into an encrypted video codestream that includes the
global 1nitialization vector but not the imtialization
vectors for the segments; and

a processor for executing the computer-executable mnstruc-

tions stored in the memory.

12. The system of claim 11 wherein a segment 1s a video
block and encrypted data from multiple video blocks are
stored 1n a video packet.

13. The system of claim 11 wherein a segment 1s a video
packet.

14. The system of claim 13 wherein when the segment is a
video packet, the component that encrypts applies a locally
iterative encryption scheme.

10

15

20

25

30

10

15. The system of claim 13 wherein when the segment 1s a
video packet, the component that encrypts applies a cipher-
text switching scheme.

16. The system of claim 11 wherein the packetizing com-
ponent adds buflering bits to stop emulation of delimiter
markers 1n encrypted data.

17. A computer-readable device containing encryption of
video data that 1s compressed using an MPEG-4 FGS based
compression, the encryption being generated by a method
comprising;

identifying a global initialization vector for the video data;

identifying independent encryption segments from the

video data; and

for each 1dentified independent encryption segment,

providing an 1nitialization vector for the independent
encryption segment, the imitialization vector being
derived from the global iitialization vector and from
a unique 1dentifier of the independent encryption seg-
ment,

encrypting the video data in the independent encryption
segment using the provided initialization vector to
generate ciphertext that 1s MPEG-4 syntax-compli-
ant; and

packetizing encrypted segments into an encrypted code-
stream without emulation of delimiting markers 1n the
encrypted data so that the encrypted codestream 1s
MPEG-4 syntax-compliant, the encrypted code-
stream 1ncluding the global 1nitialization vector but
not including the mitialization vectors of the indepen-
dent encryption segments.

	Front Page
	Drawings
	Specification
	Claims

