US007949696B2
a2y United States Patent (10) Patent No.: US 7,949,696 B2
Ishii et al. 45) Date of Patent: May 24, 2011
(54) FLOATING-POINT NUMBER ARITHMETIC g,igga;;é i : 1(3; 3888 Eh-‘:(l:fﬁﬂgpﬂﬂi ***************** 25? %i
128, eComecooevininnin,
CIRCUIT FOR HANDLING IMMEDIATE 6,671,796 B1* 12/2003 Sudharsanan et al. 712/222
VALUES 2005/0055389 Al* 3/2005 Ramanujam ... 708/204
(75) Inventors: Masaaki Ishii, Saitama (JP); Koichi FOREIGN PATENT DOCUMENTS
Hasegawa, Kanagawa (JP); Hiroaki JP 61-103251 A 5/1986
Sakaguchi, Tokyo (IP) JP 03-250324 A 11/1991
JP 05-100822 A 4/1993
: . JP 06-337782 A 12/1994
(73) Assignee: Sony Corporation, Tokyo (IP) P 10-031618 A /1908
| | o | JP 10-031618 * 3/1998
(*) Notice: Subject to any disclaimer, the term of this P 2004-213622 A 7/2004
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1310 days. OTHER PUBLICATIONS
“IA-32 Intel® Architecture Software Developer’s Manual, vol. 1:
(21) Appl. No.: 11/280,244 Basic Architecture”, Intel Corporation, 2004,
Japanese Office Action 1ssued Oct. 29, 2009 for corresponding Japa-
(22) Filed: Nov. 17, 2005 nese Applcation No. 2004-341323.
Japanese Office Action 1ssued Apr. 6, 2010 for corresponding Japa-
(65) Prior Publication Data nese Application No. 2004-341323.
US 2006/0112160 A1~ May 25, 2006 * cited by examiner
(30) Foreign Application Priority Data Pr w ary Lxam f{zer — Lewis A Bullock, Jr.
Assistant Examiner — Hang Pan
Nov. 25,2004 (JP) wooeeeeeeeeeeeeeeee e, 2004-341323 (74) Attorney, Agent, or Iirm — Rader, Fishman & Grauer
PLLC
(51) Int.CL
GO6F 7/00 (2006.01) (57) ABSTRACT
GO6E 7/38 (2006.01) Disclosed herein i1s a floating-point number arithmetic circuit
GO6I 9/30 (2006.01) for efficiently supplying data to be performed arithmetic
(52) US.CL ... 708/204; 708/490; 708/495; 712/208 ~ operation. The floating-point number arithmetic circuit
(58) Field of Classification Search 708/204 1ncludes an floating-point number arithmetic unit for per-

forming a predetermined floating-point number arithmetic

See application file for complete search history. _ _ _ _
operation on a tloating-point number of a predetermined pre-

(56) References Cited cision, and a converting circuit for converting data into the
floating-point number of predetermined precision and sup-
U.S. PATENT DOCUMENTS plying the floating-point number of the predetermined preci-
4675809 A * 6/1987 Omodaetal. 712/222 sion to at least either one of iﬂpllt terminals of the ﬂOﬂtiﬂg-
4,722,068 A * 1/1988 Kurodaetal. 708/625 point number arithmetic unit.
5,161,117 A * 11/1992 Waggener, Jr. 708/204
5,268,855 A * 12/1993 Masonetal. 708/513 11 Claims, 11 Drawing Sheets

200
MEMORY

W,F 2{:!.0

1?0 JE

110 1?0
L0AD-STORE| [conTRoL
UNIT UNIT
INSTRUCTION
: 120

[REGISTER |_
FILE

)
170

FLOATING-

| INTEGER :
- POINT NUMBER |:
E CD""E“TE“J CONVERTER _|:

$ 300\ cr pevoR LA
E 135 .

S W ——————
H
J
Lo
i N
—~0
L

g S S o Mgy - T E——————

U.S. Patent May 24, 2011 Sheet 1 of 11 US 7,949,696 B2

FIG. 1
200
W, F 210

100 W,F

110 190
LOAD-STORE | | CONTROL
ONIT UNIT

_ 5
INSTRUCTION
DECODER 120

| INTEGER
:| CONVERTER
300 \

135

REGISTER
FILE

170

FLOATING- :
POINT NUMBER {.
CONVERTER |

F_ L A - o ek sy S e s e e ——
b
N %
O -
ot
l -n

U.S. Patent May 24, 2011 Sheet 2 of 11 US 7,949,696 B2

IMMEDIATE INSTRUCTION FORMAT
800
801 802 803 7 804
FUNCTION |1ST 2ND
CODE OPERAND|OPERAND IMMEDIATE VALUE
31 26 25 21 20 1615 0

IMMEDIATE STORAGE INSTRUCTION (FLOATING DECIMAL)

w [w] e

FI1G.2C

IMMEDIATE STORAGE INSTRUCTION (INTEGER)

R P

FI1IG.2D

IMMEDIATE ADDITION INSTRUCTION

FIG.2E

IMMEDIATE MULTIPLICATION INSTRUCTION

A I I

FIG.2F

IMMEDIATE DIVISION INSTRUCTION

R I =

U.S. Patent May 24, 2011 Sheet 3 of 11 US 7,949,696 B2

FIG.3A

16-BIT FLOATING-POINT NUMBER
720
721 CODE 72

2 / 723
I EXPONENT MANTISSA
15 14 10 9 0

FIG.3B

POSITIVE ZERO (+0)

u 00000 0000000000

FIG.3C

NEGATIVE ZERO (-0)

00000 0000000000

FIG.3D

POSITIVE INFINITY (+ co)

11111 0000000000

FIG.3E

NEGATIVE INFINITY (- o)

11111 0000000000

FIG.3F

NONNUMERIC (NaN)

11111 XXXXXXXXXX

1

s =
~—
'—l.

U.S. Patent May 24, 2011 Sheet 4 of 11 US 7,949,696 B2

FI1G. 4

EXPONENTIAL| PRIOR TO
PART 722 BIAS REMARKS
e +0, UNNORMALIZED
NUMBER
I
EXPONENT
(10-14 - 10+15)
l
T oo,
31 +16 NONNUMERIC (NaN)

U.S. Patent May 24, 2011 Sheet 5 of 11 US 7,949,696 B2

FIG.S

/711

CODE-ADDED INTEGER

710

300

CODE
DETERMINING

CIRCUIT

ABSOLUTE

VALUE
GENERATING
CIRCUIT

NORMALIZING CIRCUIT 330
339
ROUNDING
BIT ADDING {350
CIRCUIT

ROUNDING

I CIRCUIT
370
CARRY CORRECTING CIRCUIT
319 379

BIT

ROUNDING- 380
DOWN CIRCUIT

790
EXPONENT MANTISSA

31 30 23 22

320

EXPONENT
CALCULATING
CIRCUIT

360

U.S. Patent May 24, 2011 Sheet 6 of 11 US 7,949,696 B2

FIG.6

FROM 711
129

16

--

~320
CODE §
INVERTER [7341
322 §

CODE

DETERMINING
CIRCUIT

319

5 16 323
; EXPANDER
5 32

T = & W = Em W & B W - o gy o = = W R " W B W O B m e _OE S S M S S T B W B S B B M B S O B O i B e W W e W W W

U.S. Patent May 24, 2011 Sheet 7 of 11 US 7,949,696 B2

FIG./

FROM 331 FROM 332
32

45

CODE O P
NUMBER ; E :
ll31ﬂ E : E

[5 15 ' :

ADDER E § R
342 . 361

" 127"
'8 '8

ADDER
343

H O am i d s g S O e g dE - e & & W i dw o & Bk 3 b W & B B O m ik R o oEm o &R B g = S 8 N e B - e & B & W O w B ® B B w

U.S. Patent May 24, 2011 Sheet 8 of 11 US 7,949,696 B2

FIG.8

/750
31 8765 0
‘760

n alrls NORMALIZED NUMBER
WITH ROUNDING BIT

2726 3210

U.S. Patent May 24, 2011 Sheet 9 of 11 US 7,949,696 B2

U.S. Patent May 24, 2011 Sheet 10 of 11 US 7,949,696 B2

FIG.10

START

LOAD VARIABLE r

$F0 « r 5911
L OAD VARIABLE h

$f1 « h 5912
MULTIPLY

$f0 «— fOxf0 5913

MULTIPLY

$F0 «— FOXF1 5914
MULTIPLY

$f0 « $f0x3.14 5916
DIVIDE

$f0 « $f0+3.0 S918

STORE IN VARIABLE v

U.S. Patent

May 24, 2011 Sheet 11 of 11

FIG.11

START

LOAD VARIABLE r
XMMO &« r

LOAD VARIABLE h
XMMO « h

MULTIPLY
XMM0O & XMM0OxXMMO

MULTIPLY
XMM0O « XMMOxXMM1

LOAD CONSTANT
XMM1 « 3.14

MULTIPLY
XMM0O <« XMMO0xXMM1

LOAD CONSTANT
XMM1 « 3.0

DIVIDE
XMMO <« XMM0O+-XMM1

STORE IN VARIABLE v
v < XMMO

S921

S922

5923

5924

S925

S926

S927

S928

$929

US 7,949,696 B2

US 7,949,696 B2

1

FLOATING-POINT NUMBER ARITHMETIC
CIRCUIT FOR HANDLING IMMEDIATE
VALUES

CROSS REFERENCES TO RELATED
APPLICATIONS

The present invention contains subject matter related to
Japanese Patent Application JP 2004-341323 filed 1n the
Japanese Patent Office on Nov. 25, 2004, the entire contents
of which being incorporated herein by reference.

BACKGROUND OF THE INVENTION

The present mvention relates to a floating-point number
arithmetic circuit, and more particularly to a tloating-point
number arithmetic circuit for handling immediate values and
a processor for executing floating-point number instructions
with immediate values.

If data which an arithmetic circuit 1s to operate on 1s stored
in a memory, then when the data i1s to be supplied to the
arithmetic unit, the data needs to be read from the memory.
Some processors handle data that 1s stored 1n a memory as
data to operate on by providing a field (a memory operand)
which specifies an address of the memory where the data to
operate on 1s stored, as an operand of an arithmetic mstruc-
tion.

However, 1f a memory operand 1s provided 1n an arithmetic
instruction, then i1t 1s necessary to access the specified
memory address after the arithmetic instruction 1s inter-
preted. As a result, 1t takes a long time until all the data
becomes available.

According to a load-store architecture exemplified by
RISCs (Reduced Instruction Set Computers) in recent years,
a loading instruction for reading data from a memory into a
register and an arithmetic instruction for operating on the data
are separate from each other to eliminate latency 1n an instruc-
tion thereby facilitating instruction scheduling for faster
operations according to a compiler. The same architecture 1s
also employed with respect to mstruction sets for arithmetic
processors that are combined with processors (see, for
example, Nonpatent document 1: “IA-32 Intel(R) Architec-
ture Software Developer’s Manual Volume 1: Basic Architec-
ture”, Intel Corporation, 2004).

SUMMARY OF THE INVENTION

In recent years, the above architecture where the loading
instruction and the arithmetic instruction are separate from
cach other has been prevailing 1n the art. However, the archi-
tecture 1s problematic 1n that since it 1s necessary to execute a
loading 1nstruction 1n addition to an arithmetic instruction,
memory access takes some time and the program has an
increased code size.

According to some integer arithmetic operations, an imme-
diate field 1s provided in a certain field of an arithmetic
instruction for embedding data to operate on directly in the
arithmetic istruction. For supplying a floating-point number
arithmetic circuit with floating-point number data, however,
since even a single-precision tloating-point number needs 32
bits, 1t 1s difficult to embed data to be operated on as 1mme-
diate data 1n an instruction having a general instruction length
of 32 bats.

It 1s desirable for the present invention to provide a tloat-
ing-point number arithmetic circuit for efficiently supplying
data to operate on.

10

15

20

25

30

35

40

45

50

55

60

65

2

According to a first embodiment of the present invention,
there 1s provided a floating-point number arithmetic circuit
including a floating-point number arithmetic unit for per-
forming a predetermined floating-point number arithmetic
operation on a floating-point number of a predetermined pre-
cision, and a converting circuit for converting data into the
floating-point number of predetermined precision and sup-
plying the floating-point number of the predetermined preci-
s10n to at least one of the mput terminals of the floating-point
number arithmetic unit. The floating-point number arithmetic
circuit thus arranged 1s able to perform a predetermined tloat-
ing-point number arithmetic operation on supplied data.

According to a second embodiment of the present mven-
tion, there 1s provided a processor including an instruction
decoder for decoding an imstruction having an immediate
field, a converting circuit for converting data contained in the
immediate field of the mstruction decoded by the instruction
decoder 1nto a floating-point number having a predetermined
precision, a floating-point number arithmetic unit for per-
forming a predetermined floating-point number arithmetic
operation on the tloating-point number having the predeter-
mined precision from the converting circuit to either one of
the mput terminals of the floating-point number arithmetic
unit, and a register for storing a result of the predetermined
tfloating-point number arithmetic operation performed by the
floating-point number arithmetic unit. The processor thus
arranged 1s able to perform a predetermined floating-point
number arithmetic operation on data 1n an immediate field of
an 1nstruction.

According to the first and second embodiments, the con-
verting circuit may have an integer converter for converting,
an 1teger as the data into the floating-point number of the
predetermined precision. With this arrangement, the prede-
termined floating-point number arithmetic operation may
thus be performed on a supplied integer.

According to the first and second embodiments, the con-
verting circuit may have a floating-point number converter for
converting a floating-point number having a precision differ-
ent from the predetermined precision as the data into the
floating-point number of the predetermined precision. With
this arrangement, the predetermined floating-point number
arithmetic operation may thus be performed on a floating-
point number having a precision different from the precision
of the arithmetic unit.

According to the first and second embodiments, the con-
verting circuit may have an integer converter for converting,
an 1teger as the data into the floating-point number of the
predetermined precision, a floating-point number converter
for converting a floating-point number having a precision
different from the predetermined precision as the data 1nto the
floating-point number of the predetermined precision, and a
converter selector for selecting either an output from the
integer converter or an output from the floating-point number
converter, and supplying the selected output to at least one of
the mput terminals of the floating-point number arithmetic
umt. With this arrangement, the predetermined tloating-point
number arithmetic operation may thus be performed on a
floating-point number having a precision different from the
precision of a supplied integer or the arithmetic unait.

According to the first and second embodiments, the float-
ing-point number arithmetic unit may further include an
arithmetic selector for selecting and outputting either an out-
put from the tloating-point number arithmetic unit or an out-
put from the converting circuit. With this arrangement, a
value produced through the floating-point number arithmetic
unit or a value produced not through the floating-point num-
ber arithmetic unit may be selectively output.

US 7,949,696 B2

3

According to a third embodiment of the present invention,
there 1s provided a processor including an instruction decoder
for decoding an 1nstruction of W bits (W represents an integer
of 1 or greater) having an immediate field of N bits (N repre-
sents an mnteger of 1 or greater), a converting circuit for
converting data of N bits contained in the immediate field of
the 1nstruction decoded by the instruction decoder, into a
floating-point number of F bits (F represents an integer of 1 or
greater), a tloating-point number arithmetic unit for performs-
ing a predetermined tloating-point number arithmetic opera-
tion on the floating-point number of F bits from the converting,
circuit to either one of the input terminals of the tloating-point
number arithmetic unit, and a register for storing a result of
the predetermined floating-point number arithmetic opera-
tion pertormed by the floating-point number arithmetic unait.
The processor thus arranged 1s able to perform an F-bit tloat-
ing-point number arithmetic operation on data of N bits 1n an
immediate field of an instruction.

According to the third embodiment, typically, the 1mme-
diate field of N bits may include an immediate field of 16 bats,
the 1nstruction of W bits an instruction of 32 bits, and the
floating-point number of F bits a floating-point number of 32
bits. An integer or floating-point number of 16 bits may be
designated 1n the immediate field of 16 baits.

According to a fourth embodiment of the present invention,
there 1s provided a processor having, as an instruction set, a
floating-point number arithmetic mstruction having an imme-
diate field of N bits (N represents an integer ol 1 or greater),
including an nstruction decoder for extracting data of N bits
contained in the immediate field, a converting circuit for
converting the extracted data of N bits 1into a floating-point
number of F bits (F represents an integer of 1 or greater), and
a tloating-point number arithmetic unit for performing a pre-
determined floating-point number arithmetic operation on the
floating-point number of F bits from the converting circuit to
cither one of the mput terminals of the floating-point number
arithmetic unit. It 1s thus possible to provide an 1immediate
field 1n a tloating-point number arithmetic instruction, allow-
ing program codes and a memory to be used more efficiently.

According to the fourth embodiment, typically, the imme-

diate field of N bits may include an immediate field of 16 bits,
and the floating-point number of F bits a floating-point num-
ber of 32 bats.

The above and other objects, features, and advantages of
the present invention will become apparent from the follow-
ing description when taken in conjunction with the accompa-
nying drawings which illustrate a preferred embodiment of
the present invention by way of example.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a processor according to an
embodiment of the present invention;

FIGS. 2A through 2F are diagrams showing an instruction
format of immediate nstructions according to the embodi-
ment of the present invention;

FIGS. 3A through 3F are diagrams showing examples of
16-bit floating-point numbers according to the embodiment
of the present invention;

FIG. 4 1s a diagram showing meanings ol exponents of
16-bit floating-point numbers according to the embodiment
of the present invention;

FI1G. 5 1s a block diagram of an integer converter according,
to the embodiment of the present invention;

FIG. 6 1s a block diagram of details of the integer converter
according to the embodiment of the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 7 1s a block diagram of other details of the integer
converter according to the embodiment of the present inven-
tion;

FIG. 8 1s a diagram showing the manner in which a round-
ing bit 1s added to a normalized number by a rounding bit
adding circuit according to the embodiment of the present
imnvention;

FIG. 9 1s a block diagram of a floating-point number con-
verter according to the embodiment of the present invention;

FIG. 10 1s a flowchart of a program code sequence accord-
ing to the embodiment of the present invention; and

FIG. 11 1s a flowchart of a conventional program code
sequence.

(L]
=]

ERRED

DETAILED DESCRIPTION OF THE PR

EMBODIMENT

FIG. 1 shows 1n block form a processor 100 according to an
embodiment of the present invention. As shown 1n FIG. 1, the
processor 100 1s connected to a memory 200 by a bus 210.
The processor 100 has a load-store umt 110, an instruction
decoder 120, a floating-point number arithmetic circuit 160, a
register file 170, and a control unit 190.

The load-store unit 110 reads an instruction of W bits (W
represents an integer of 1 or greater) or tloating-point number
data of F bits (F represents an integer of 1 or greater) from the
memory 200, or writes tloating-point number data of F bits
into the memory 200.

The instruction decoder 120 recerves an 1nstruction of W
bits from the load-store unit 110, and decodes the instruction
according to the mstruction format. Decoded data from the
istruction decoder 120 1s transmitted as a control signal to
various components of the processor 100.

The floating-point number arithmetic circuit 160 1s sup-
plied with data of N bits (represents an integer of 1 or greater)
from the instruction decoder 120 and floating-point number
data of F bits from the register file 170, operates on the
supplied data, and outputs data of F bits.

The register file 170 holds M floating-point number data
(M represents an integer of 1 or greater) of F bits. The register
file 170 reads floating-point number data from and writes
floating-point number data into the load-store unit 110 or the
floating-point number arthmetic circuit 160. Access to the
data held 1n the register file 170 1s controlled based on the
decoded data from the instruction decoder 120.

The control unit 190 1s used to control the hardware mod-
ules 1n the processor 100.

The floating-point number arithmetic circuit 160 has a
converting circuit 130, an arithmetic unit 140, and a selector
150. The converting circuit 130 comprises an integer con-
verter 300 for converting N-bit data as an integer from the
instruction decoder 120 1nto floating-point number data of F
bits, a floating-point number converter 400 for converting
N-bit data as an N-bit floating-point number from the instruc-
tion decoder 120 1nto F-bit tloating-point number data, and a
selector 135 for selecting output data from the integer con-
verter 300 or the floating-point number converter 400. The
arithmetic unit 140 operates on F-bit floating-point number
data supplied thereto. The selector 150 selects either output
data from the arithmetic unit 140 or output data from the
converting circuit 130, and supplies the selected output data
to the register file 170.

In FIG. 1, the mnstruction length 1s represented by W bits,
the floating-point number data width by F bits, and the data
width from the instruction decoder 120 by N bits. In the
description given below, 1t 1s assumed that each of the mstruc-
tion length and the floating-point number data width 1s typi-

US 7,949,696 B2

S

cally represented by 32 bits and the data width from the
instruction decoder 120 by 16 bits. However, the present
invention 1s not limited to such configurations. The processor
100 may be arranged to convert data of N bits 1n the instruc-
tion length of W bits 1nto tloating-point number data of F bits.

FIGS. 2A through 2F show an 1nstruction format of imme-
diate instructions according to the embodiment of the present
imnvention. As shown 1n FIG. 2A, an immediate 1nstruction
800 1s a 32-bat instruction having fields representing a func-
tion code 801 of 5 bits, a first operand 802 of 6 bits, a second
operand 803 of 5 bits, and an immediate value 804 of 16 bits.

The function code 801 1s a field representing the operation
code of the instruction. The first and second operands 802,
803 represent operands of the mstruction. Some 1immediate
instructions are iree of the second operand 803. The imme-
diate value 804 1s supplied as a 16-bit integer or a 16-bit
floating-point number.

FIGS. 2B through 2F illustrate various instructions accord-
ing to the immediate mstruction format, including an imme-
diate storage instruction (floating-point number), an immedi-
ate storage instruction (integer), an immediate addition
instruction, an immediate multiplication 1nstruction, and an
immediate division 1nstruction.

According to the immediate storage instruction (floating
decimal) shown 1n FIG. 2B, “tldfi” 1s designated as the func-
tion code 801, and a register “rd” 1s designated as the first
operand 802. A floating-point number “fimm16” of 16 bits 1s
designated as the immediate value 804. When the immediate
storage instruction (floating decimal) 1s executed, the 16-bit
floating-point number 1s converted by the floating-point num-
ber converter 400 1nto a 32-bit floating-point number, which
1s stored 1nto the register “rd” through the selectors 135, 150.

According to the immediate storage instruction (integer)
shown 1n FIG. 2C, “fldi1” 1s designated as the function code
801, and the register “rd” 1s designated as the first operand
802. An mteger “umml6” of 16 bits 1s designated as the
immediate value 804. When the immediate storage nstruc-
tion (1nteger) 1s executed, the 16-bit integer 1s converted by
the mteger converter 300 1nto a 32-bit tloating-point number,
which 1s stored ito the register “rd” through the selectors
135, 150.

According to the immediate addition mstruction shown 1n
FIG. 2D, “faddfi” 1s designated as the function code 801, the
register “rd” 1s designated as the first operand 802, and a
register “rs” 1s designated as the second operand 803. The
floating-point number “fimm16™ of 16 bits 1s designated as
the immediate value 804. When the immediate addition
instruction 1s executed, the 16-bit floating-point number 1s
converted by the tloating-point number converter 400 into a
32-bit floating-point number, which 1s supplied through the
selector 135 to one of the input terminals of the arithmetic unit
140. The artthmetic umt 140 adds the supplied 32-bit float-
ing-point number to the data of the register “rs”, and stores the
sum 1nto the register “rd” through the selector 150.

According to the immediate multiplication instruction
shown 1n FI1G. 2E, “Imulf1” 1s designated as the function code
801, the register “rd” 1s designated as the first operand 802,
and the register “rs” 1s designated as the second operand 803.
The floating-point number “fimm16” of 16 bits 1s designated
as the immediate value 804. When the immediate multiplica-
tion 1mstruction 1s executed, the 16-bit floating-point number
1s converted by the floating-point number converter 400 into
a 32-bit tloating-point number, which 1s supplied through the
selector 135 to one of the input terminals of the arithmetic unit
140. The arithmetic unit 140 multiplies the data of the register
“rs”” by the supplied 32-bit floating-point number, and stores
the product into the register “rd” through the selector 150.

10

15

20

25

30

35

40

45

50

55

60

65

6

According to the immediate multiplication instruction
shown 1n FIG. 2F, “tdivii” 1s designated as the function code
801, the register “rd” 1s designated as the first operand 802,
and the register “rs” 1s designated as the second operand 803.
The floating-point number “fimm16” of 16 bits 1s designated
as the immediate value 804. When the immediate division
instruction 1s executed, the 16-bit floating-point number 1s
converted by the floating-point number converter 400 1nto a
32-bit floating-point number, which 1s supplied through the

selector 135 to one of the input terminals of the arithmetic unit
140. The artthmetic unit 140 divides the data of the register

“rs”” by the supplied 32-bit floating-point number, and stores

the quotient 1into the register “rd” through the selector 150.
FIGS. 3A through 3F show examples of 16-bit floating-

point numbers according to the embodiment of the present
invention. As shown 1in FIG. 3A, a 16-bit floating-point num-
ber 720 1includes a code part 721 of 1 bit, an exponential part
722 of 5 bits, and a mantissa part 723 of 10 bits.

The code part 721 represents the code of the numerical
value, and stores either “1” indicative of being positive or <0
indicative of being negative.

The exponential part 722 represents an exponent in base
“10”, and has a biased expression with 15 added. Specifically,
as shown in FIG. 4, an iteger ranging from “-14" to “+15”
representative ol an exponent, or an integer of “+16” repre-
sentative of positive mfinity (+00), negative infinity (—o0), or
normumeric (NaN), or an integer of “-15" representative of
positive zero (+0), negative zero (-0), or an unnormalized
number 1s stored as a value to be biased 1n the exponential part
722.

The mantissa part 723 represents a mantissa normalized 1n
base “2”. A normalized value with the most significant bit
omitted 1s stored i1n the mantissa part 723. 16-bit floating-
point numbers as positive unnormalized numbers are handled
as positive zero (+0) and 16-bit floating-point numbers as
negative unnormalized numbers are handled as negative zero
(-0). As shown 1 FIG. 3B or 3C, 1f a 16-bit floating-point
number has “0”” or “1” 1n the code part 721 and all *“0s™ 1n the
exponential part 722 and the mantissa part 723, then the
16-bit floating-point number represents positive zero (+0) or
negative zero (-0).

As shown 1 FIG. 3D or 3E, 1t a 16-bit floating-point
number has “0” or *“1” 1n the code part 721, “11111” 1n the
exponential part 722, and all *“0s” 1n the mantissa part 723,
then the 16-bit tloating-point number represents positive
infinity (+00) or negative imfinity (—cc). As shown in FIG. 3F,
il a 16-bit floating-point number has “0” or “1” 1n the code
part 721, “11111” 1n the exponential part 722, and other
values than “0” 1n the mantissa part 723, then the 16-bit
floating-point number represents normumeric (NaN).

In FIGS. 3A through 3F, 1t 1s assumed that the exponential
part 722 1s of 5 bits, and the mantissa part 723 1s of 10 bats.
However, the present invention 1s not limited those bits, but
the exponential part 722 and the mantissa part 723 may con-
tain other combinations of bits.

FIG. § shows 1n block form details of the imteger converter
300 according to the embodiment of the present invention. As
shown 1n FIG. 3, the integer converter 300 serves to convert a
16-bit integer 710 that 1s embedded as the immediate value
804 in the immediate nstruction 800 1nto a single-precision
(32-b1t) floating-point number 790 according to the IEEE
754. The integer converter 300 comprises a code determining
circuit 310, an absolute value generating circuit 320, a nor-
malizing circuit 330, an exponent calculating circuit 340, a
rounding bit adding circuit 350, a rounding circuit 360, a
carry correcting circuit 370, and a bit rounding-down circuit

US 7,949,696 B2

7

380. The rounding mode i1n the integer converter 300 1s 1n
accordance with RN (Round to Nearest) of IEEE 734.

The code determining circuit 310 serves to determine the
code of a code-added integer 711 1n the 16-bit integer 710 that
1s supplied through a signal line 129. The determined code 1s
supplied as a code 791 of the 32-bit floating-point number 790
through a signal line 319. The determined code 1s also used to
invert a code 1n the absolute value generating circuit 320.

The absolute value generating circuit 320 serves to output
the absolute value of the code-added integer 711 1n the 16-bit
integer 710 that 1s supplied through the signal line 129, as a
32-bit absolute value. As shown 1n FIG. 6, the absolute value
generating circuit 320 comprises a code mnverter 321, a selec-
tor 322, and a bit expander 323. The code 1inverter 321 1nverts
the code of the code-added integer 711 1n the 16-bit integer
710 that 1s supplied through the signal line 129. The selector
322 selects the input data or the output data of the code
inverter 321 based on the determined code from the code
determining unit 321, and outputs the absolute value of the
code-added mteger 711. The bit expander 323 expands the
16-bit absolute value output from the selector 322 to a 32-bit
absolute value.

The normalizing circuit 330 serves to output a normalized
number which represents the normalized 32-bit absolute
value output from the absolute value generating circuit 320.
As shown 1n FIG. 6, the normalizing circuit 330 comprises a
counter 331 and a shifter 332. The counter 331 counts the
number of successive “0s” arranged from the most significant
bit toward the least significant bit of the 32-bit absolute value
output from the absolute value generating circuit 320. The
shifter 332 shifts leftwards the 32-bit absolute value output
from the absolute value generating circuit 320 based on the
count from the counter 331, and outputs the shifted value as a
32-bit normalized number. The normalized number thus
obtained 1s supplied to the rounding bit adding circuit 350
through a signal line 339. The count from the counter 331 1s
supplied to the exponent calculating circuit 340 through a
signal line 338.

The exponent calculating circuit 340 serves to calculate the
exponent ol a normalized number generated by the normal-
1zing circuit 330. As shown 1n FIG. 7, the exponent calculat-
ing circuit 340 comprises a code 1nverter 341, an adder 342,
and an adder 343. The code 1nverter 341 serves to invert the
code of the shifting count supplied from the counter 331
through the signal line 338. The adder 342 outputs a value
produced by subtracting the shifting count from “31”. The
adder 343 adds “127” to the value output from the adder 342.
In this manner, the exponent calculating circuit 340 calculates
the exponent of a normalized number generated by the nor-
malizing circuit 330. The calculated exponent 1s supplied to
an adder 371 and a selector 372 of the carry correcting circuit
370.

The rounding bit adding circuit 350 serves to generate a
rounding-bit-added normalized number from a normalized
number generated by the normalizing circuit 330. Specifi-
cally, as shown in FIG. 8, anormalized number 750 generated
by the normalizing circuit 330 1s converted 1nto a rounding-
bit-added normalized number 760 as follows: Bits 31 trough
8 of the normalized number 750 become bits 26 through 3 of
the rounding-bit-added normalized number 760. A bit 7 of the
normalized number 750 becomes a Guard bit 2 of the round-
ing-bit-added normalized number 760. A bit 6 of the normal-
1zed number 750 becomes a Round bit 1 of the rounding-bit-
added normalized number 760. A bit produced by ORing bits
5 through 0 of the normalized number 750 becomes a Sticky
bit 0 of the rounding-bit-added normalized number 760. The

10

15

20

25

30

35

40

45

50

55

60

65

8

most significant bit 27 of the rounding-bit-added normalized
number 760 1s set to “0” 1 order for the rounding circuit 360
to be able to detect a carry.

Reterring back to FIG. 7, the rounding circuit 360, which
serves to perform a rounding process, has adders 361, 362.
The adder 361 adds, to the rounding-bit-added normalized
number 760 from the rounding bit adding circuit 350, the
value of the bit 3 thereof. The adder 362 adds 3™ to the sum
produced by the adder 361. The sum produced by the adder
362 1s supplied as data to a shifter 373 and a selector 374 of the
carry correcting circuit 370. Carry information indicative of
whether there 1s a carry from the addition or not 1s supplied as
a selecting signal to the selectors 372, 374 of the carry cor-
recting circuit 370.

The carry correcting circuit 370 serves to correct an expo-
nent calculated by the exponent calculating circuit 340 and a
normalized number rounded by the rounding circuit 360. As
described above, the carry correcting circuit 370 has the adder
371, the selector 372, the shifter 373, and the selector 374.
The adder 371 adds *“1” to the exponent calculated by the
exponent calculating circuit 340. The selector 372 selects the
output from the adder 371 if there 1s a carry from the addition
performed by the adder 362, and selects the exponent from
the exponent calculating circuit 340 11 there 1s no carry from
the addition performed by the adder 362. The selector 372
supplies its output as an exponent 792 of the 32-bit floating-
point number 790 through a signal line 378.

The shifter 373 shifts the normalized number from the
rounding circuit 360 by one bit nghtwards. The selector 374
outputs the output from the shifter 373 if there 1s a carry from
the addition performed by the adder 362, and selects the
normalized number from the rounding circuit 360 11 there 1s
no carry from the addition performed by the adder 362. The
selector 372 supplies its output to the bit rounding-down
circuit 380 through a signal line 379.

Referring back to FIG. 3, the bit rounding-down circuit 380
rounds down bits 27, 26, 2 through 0 of the rounded normal-
1zed number supplied from the carry correcting circuit 370,
generating a mantissa of 23 bits. The bit rounding-down
circuit 380 supplies 1ts output as a mantissa 793 of the 32-bit
floating-point number 790.

FIG. 9 shows 1n block form details of the floating-point
number converter 400 according to the embodiment of the
present invention. The floating-point number converter 400
serves to convert a 16-bit floating-point number 720 into a
32-bit floating point number 790. The floating-point number
converter 400 has an exponent converting circuit 410 and a
mantissa converting circuit 420.

The exponent converting circuit 410 serves to convert an
exponent 722 of the 16-bit floating-point number 720 1nto an
exponent 792 of the 32-bit floating point number 790. The
exponent converting circuit 410 comprises adders 411, 412
and a selector 413. The adder 411 subtracts “15” as a biasing
value of the 16-bit floating-point number 720 from the expo-
nent 722 of the 16-bit floating-point number 720. The adder
412 adds “127” as a biasing value of the 32-bit floating point
number 790 to the sum from the adder 411.

The selector 413 selects either the sum from the adder 412,
a number “2355”, or a number “0” depending on the 16-bit
floating-point number 720. Specifically, if the 16-bit floating-
point number 720 represents positive infinity (+o0), negative
infinity (—cc), or normumeric (NaN), then the selector 413
selects “255” indicative of infimity or normumeric as the
exponent 792 of the 32-bit floating-point number 790. If the
16-bit floating-point number 720 represents positive zero
(+0), negative zero (-0), or an unnormalized number, then the
selector 413 selects “0” indicative of zero as the exponent 792

US 7,949,696 B2

9

of the 32-bit floating-point number 790. If the 16-bit floating-
point number 720 represents a floating-point number other
than those values, then the selector 413 selects the sum from
the adder 412 as the exponent 792 of the 32-bit floating-point
number 790.

The mantissa converting circuit 420 serves to convert a
mantissa 723 of the 16-bit floating-point number 720 1nto a
mantissa 793 of the 32-bit floating point number 790. The
mantissa converting circuit 420 has a selector 423. The selec-
tor 423 selects either a number produced by supplementing,
the mantissa 723 of 10 bits with “0” of 13 bits next to the
low-order position thereot, or a number produced by supple-
menting the mantissa 723 ot 10 bits with “0” o1 13 bits next to
the high-order position thereof, or “0” of 23 bits, depending,
on the 16-bit tloating-point number 720. Specifically, 1 the
16-bit tloating-point number 720 represents positive infinity
(+20), negative infinity (—o0), or normumeric (NaN), then the
selector 423 selects the number produced by supplementing
the mantissa 723 of 10 bits with “0” of 13 bits next to the
high-order position thereof as the mantissa 793 of the 32-bit
tfloating point number 790. If the 16-bit floating-point number
720 represents positive zero (+0), negative zero (-0), or an
unnormalized number, then the selector 423 selects “0” 01 23
bits as the mantissa 793 of the 32-bit floating point number
790. If the 16-bit floating-point number 720 represents a
floating-point number other than those values, then the selec-
tor 423 selects the number produced by supplementing the
mantissa 723 of 10 bits with “0” of 13 bits next to the low-
order position thereof.

The floating-point number converter 400 uses the code 721
of the 16-bit floating-point number 720 directly as the code
791 of the 32-bit floating-point number 790.

FIG. 10 shows a program code sequence according to the
embodiment of the present invention. In FIG. 10, a program
for determining the volume of a circular cone, for example, 1s
cited as the program code sequence. According to the pro-
gram, the volume v of a circular cone 1s determined based on
the radius r and the height h of the circular cone by the
tollowing equation:

ye—(txr*xh)/3

First, the data stored 1n a memory area for a vaniable r 1s
loaded into a register $10 in step S911. Then, the data stored
in a memory area for a variable h 1s loaded into a register $f1
in step S912. The data stored in the register $10 1s multiplied
by the data stored in the register $10, and the product is stored
in the register $10 in step S913. The multiplication represents
the calculation of the square of the radius r.

Then, the data stored in the register $10 1s multiplied by the
data stored in the register ${1, and the product is stored in the
register $10 in step S914. The multiplication represents mul-
tiplying the square of the radius r by the height h.

Then, the data stored in the register $10 is multiplied by an
immediate value of 3.14, and the product 1s stored in the
register $10 1n step S916. The immediate multiplication
instruction (fmulfl) described above with reference to FIG.
2E may be used for the multiplication. Specifically, both the
first and second operands 802, 803 are set to the data stored 1n
the register $10, and the immediate value 804 1s set to “3.14”
of 16 bits. Theretfore, the desired operation can be realized by
a single mstruction.

Then, the data stored in the register $10 is divided by an
immediate value of 3.0, and the quotient 1s stored in the
register $10 in step S918. The immediate division instruction
(1divil) described above with reference to FIG. 2F may be
used for the division. Specifically, both the first and second
operands 802, 803 are set to the data stored in the register $10,

10

15

20

25

30

35

40

45

50

55

60

65

10

and the immediate value 804 1s set to “3.0”” of 16 bits. There-
fore, the desired operation can be realized by a single instruc-
tion.

Finally, the data stored in the register $10 1s stored in a
memory area for a variable v 1n step S919. Consequently, the
calculated volume of the circular cone 1s stored in the memory
area for the variable v.

FIG. 11 shows a conventional program code sequence. An
SSE 1nstruction group (Streaming SIMD Extension instruc-
tions) disclosed 1n Nonpatent document 1 referred to above 1s
used as an example of an mstruction set for the conventional
program code sequence. In FIG. 11, a program for determin-
ing the volume of a circular cone 1s used as the conventional
program code sequence.

First, the data stored 1n the memory area for the variable r
1s loaded 1nto a register XMMUO 1n step S921. Then, the data
stored 1n the memory area for the vaniable h 1s loaded 1nto a
register XMM1 1n step S922. The data stored in the register
XMMO 1s multiplied by the data stored 1n the register XMMO,
and the product 1s stored 1n the register XMMO 1n step S923.
The multiplication represents the calculation of the square of
the radius r.

Then, the data stored 1n the register XMMUO0 1s multiplied by
the data stored in the register XMMI1, and the product 1s
stored 1n the register XMMO 1n step S924. The multiplication
represents multiplying the square of the radius r by the height
h.

The data stored 1n a memory area for a constant pi(3.14) 1s
loaded 1nto the register XMM1 1n step S923. Thereaftter, the
data stored in the register XMMUO 1s multiplied by the data
stored 1n the register XMM1, and the product 1s stored 1n the
register XMMO 1n step S926.

The data stored in a memory area for a constant dv (3.0) 1s
loaded 1nto the register XMM1 1n step S927. Thereafter, the
data stored 1n the register XMMO0 1s divided by the data stored
in the register XMM1, and the quotient 1s stored 1n the register
XMMO 1n step S928.

Finally, the data stored in the register XMMUO 1s stored 1n
the memory area for the variable v 1 step 5929. Conse-
quently, the calculated volume of the circular cone 1s stored 1n
the memory area for the variable v.

A comparison of the program code sequences shown 1n
FIGS. 10 and 11 indicates that the conventional program code
sequence shown 1 FIG. 11 requires extra instructions for
loading constants from the memory areas in steps S925,
S927. According to the program code sequence shown 1n FIG.
10, since the constants are embedded as immediate values 1n
the multiplication instruction (step S916) and the division
instruction (step S918), no instructions for loading those con-
stants are required, and hence the program code sequence 1s
shorter.

According to the embodiment of the present invention, as
described above, the tloating-point number arithmetic circuit
160 has the iteger converter 300 for converting the 16-bit
integer 710 into the 32-bit floating-point number 790, and the
floating-point number converter 400 for converting the 16-bit
floating-point number 720 1nto the 32-bit floating-point num-
ber 790. With this arrangement, the 16-bit immediate value
804 of the immediate instruction 800 can be converted nto
the 32-bit floating-point number 790 for a desired processing
operation.

More specifically, first, loading instructions for loading
numerical data from the memory can be reduced to reduce the
code size of the program. Secondly, since loading instructions
are reduced, it 1s not necessary to wait for data from the
memory, and the floating-point number arithmetic circuit can
be used more efliciently. Thirdly, since loading instructions

US 7,949,696 B2

11

are reduced, the number of times that the memory 1s accessed
1s reduced, and the bus between the tloating-point number
arithmetic circuit and the memory can be used more eifi-
ciently. Fourthly, inasmuch as a floating-point number of 32
bits 1s embedded as an immediate value of 16 bits 1 an
instruction, the memory can be used more efficiently. Fifthly,
because immediate values are used, registers for storing con-
stants are not required, and hence registers can be used more
elficiently.

In the illustrated embodiment of the present invention, the
arithmetic unit 140 has been described as a two-input arith-
metic unit. However, the arithmetic unit 140 may be a three-
input arithmetic unit. Furthermore, in the 1llustrated embodi-
ment, the converting circuit 130 1s connected to one of the
input terminals of the arithmetic unit 140. However, the con-
verting circuit 130 may be connected to each of plural input
terminals of the arithmetic unit 140.

The embodiment of the present invention represents an
exemplification of the present invention, and has specific
details associated with claimed elements referred to in the
scope of claims described below. The present invention 1s not
limited to the illustrated embodiment, and various changes
and modifications may be made therein without departing
from the scope of the invention.

Specifically, in claim 1, a floating-point number arithmetic
unit corresponds to the arithmetic unit 140, for example, and
a converting circuit to the converting circuit 130, for example.

In claim 2 or 7, an integer converter corresponds to the
integer converter 300, for example.

In claim 3 or 8, a floating-point number converter corre-
sponds to the floating-point number converter 400, for
example.

In claim 4 or 9, an integer converter corresponds to the
integer converter 300, for example, a floating-point number
converter to the floating-point number converter 400, for
example, and a converter selector to the selector 135, for
example.

In claim 5 or 10, an arithmetic selector corresponds to the
selector 150, for example.

Inclaim 6, 11, 12, 13, or 14, an instruction decoder corre-
sponds to the mstruction decoder 120, for example, a convert-
ing circuit to the converting circuit 130, for example, a float-
ing-point number arithmetic umt to the arithmetic unit 140,
for example, and a register to the register file 170, for
example.

In claim 135 or 16, an instruction decoder corresponds to the
instruction decoder 120, for example, a converting circuit to
the converting circuit 130, for example, and a floating-point
number arithmetic unit to the arithmetic umt 140, for
example.

The principles of the present invention are applicable to a
floating-point number arithmetic circuit or a processor having
floating-point number arithmetic instructions.

Although a certain preferred embodiment of the present
invention has been shown and described 1n detail, 1t should be
understood that various changes and modifications may be
made therein without departing from the scope of the
appended claims.

What 1s claimed 1s:

1. A floating-point number arithmetic circuit comprising:

an mstruction decoder decoding an instruction having an

immediate field, wherein the instruction performs an
arithmetic operation on an embedded data contained 1n
the immediate field, wherein the instruction decoder
provides the embedded data to a converting circuit as
one of an 1teger type or a floating-point number type,
and provides control signals to a converter selector, an

10

15

20

25

30

35

40

45

50

55

60

65

12

arithmetic selector, a floating-point number arithmetic
unit, based on decoded 1nstruction; and
the floating-point number arithmetic unit, configured with

a plurality of mnput terminals, performing a predeter-

mined tloating-point number arithmetic operation on a

floating-point number of a predetermined precision;

the converting circuit converting embedded data into said
floating-point number of predetermined precision and
supplying said floating-point number of said predeter-
mined precision to one of the plurality of input terminals
of said floating-point number arithmetic unit,

wherein said converting circuit has an iteger converter
converting an integer type as said embedded data into
said floating-point number of said predetermined pre-
c1s10n,

a floating-point number converter converting a tloating-
point number type having a precision different from
said predetermined precision as said embedded data
into said floating-point number of said predetermined
precision, and

the converter selector selecting either an output from
said integer converter or an output from said tloating-
point number converter based on the type of the
embedded data, and supplying the selected output to
one of the plurality of input terminals of said floating-
point number arithmetic unit; and

the arithmetic selector selecting and outputting either an
output from said floating-point number arithmetic unit
or an output from said converting circuit and supplies the
selected output to a register file.

2. A processor comprising;

an mnstruction decoder decoding an 1nstruction having an
immediate field, wherein the instruction performs an
arithmetic operation on an embedded data contained 1n
the immediate field, wherein the instruction decoder
provides the embedded data to a converting circuit as
one of an 1teger type or a floating-point number type,
and provides control signals to a converter selector, an
arithmetic selector, a floating-point number arithmetic
unit, based on decoded 1nstruction; and

the converting circuit converting embedded data contained
in said immediate field of the instruction decoded by
said 1nstruction decoder into a floating-point number
having a predetermined precision,

wherein said converting circuit has an iteger converter
converting an integer type contained in said immedi-
ate field into said floating-point number having the
predetermined precision,

a floating-point number converter converting a floating-
point number type 1n said immediate field and having
a precision different from said predetermined preci-
s1on 1nto said floating-point number of said predeter-
mined precision, and

the converter selector selecting either an output from said
integer converter or an output from said floating-point
number converter based on the type of the embedded
data, and supplying the selected output to one of the
plurality of input terminals of said floating-point number
arithmetic unit; and

the floating-point number arithmetic unit, configured with

a plurality of mput terminals, performing a predeter-
mined floating-point number arithmetic operation on
said floating-point number of a predetermined precision
from said converting circuit to one of the plurality of
input terminals of said floating-point number arithmetic
unit;

US 7,949,696 B2

13

the arithmetic selector selecting and outputting either an
output from said tloating-point number arithmetic unit
or an output from said converting circuit; and

a register storing a result of the predetermined floating-
point number arithmetic operation performed by said
floating-point number arithmetic unit wherein the regis-
ter writes another tloating-point number to another of
the plurality of mput terminals of said floating-point
number arithmetic unait.

3. A processor comprising:
an 1nstruction decoder decoding an 1nstruction of W bits
(W represents an integer of 1 or greater) having an
immediate field o N bits (N represents an integer of 1 or
greater), wherein the instruction performs an arithmetic
operation on an embedded data contained in the 1mme-
diate field, wherein the 1nstruction decoder provides the
embedded data to a converting circuit as one of an nte-
ger type or a tloating-point number type, and provides
control signals to a converter selector, an arithmetic
selector, a floating-point number arithmetic unit, based
on decoded instruction; and
the converting circuit converting embedded data of N bits
contained 1n said immediate field of the instruction
decoded by said instruction decoder 1nto a floating-point
number of F bits (F represents an integer of 1 or greater),
wherein said converting circuit has an iteger converter
converting an iteger type contained 1n said immedi-
ate field into said floating-point number having the
predetermined precision of F baits,
a tloating-point number converter converting a floating-
point number type 1n said immediate field and having
a precision different from said predetermined preci-
s10on 1nto said floating-point number of said predeter-
mined precision of F bits, and
the converter selector selecting either an output from
said integer converter or an output from said floating-
point number converter based on the type of the
embedded data, and supplying the selected output to
one of the plurality of input terminals of said floating-
point number arithmetic unit; and
the floating-point number arithmetic unit, configured with
a plurality of input terminals, performing a predeter-
mined floating-point number arithmetic operation on
said floating-point number of F bits from said converting
circuit to one of the plurality of input terminals of said
floating-point number arithmetic unait;
the arithmetic selector selecting and outputting either an
output from said tloating-point number arithmetic unit
or an output from said converting circuit; and
a register storing a result of the predetermined floating-
point number arithmetic operation performed by said
floating-point number arithmetic unit wherein the regis-
ter writes another floating-point number to another of
the plurality of mput terminals of said floating-point
number arithmetic unait.
4. A processor comprising:
an 1nstruction decoder decoding an instruction of 32 bits
having an immediate field of 16 bits, wherein the
istruction performs an arithmetic operation on an
embedded data contained i1n the immediate field,
wherein the instruction decoder provides the embedded
data to a converting circuit as one ol an integer type or a
floating-point number type, and provides control signals
to a converter selector, an arithmetic selector, a floating-
point number arithmetic unit, based on decoded 1nstruc-
tion; and

5

10

15

20

25

30

35

40

45

50

55

60

65

14

the converting circuit converting an integer or floating-
point number of 16 bits contained 1n the immediate field
of the mstruction decoded by said instruction decoder
into a tloating-point number of 32 bits,
wherein said converting circuit has an iteger converter
converting an integer type contained 1n said immedi-
ate field into said floating-point number having the
predetermined precision of 32 bits,
a floating-point number converter converting a tloating-
point number type 1n said immediate field and having
a precision different from said predetermined preci-
s1on 1nto said floating-point number of said predeter-
mined precision of 32 bits, and
the converter selector selecting either an output from
said 1integer converter or an output from said floating-
point number converter based on the type of the
embedded data, and supplying the selected output to
one of the plurality of input terminals of said floating-
point number arithmetic unit; and
the floating-point number arithmetic unit, configured with
a plurality of mput terminals, performing a predeter-
mined floating-point number arithmetic operation on
said tloating-point number of 32 bits from said convert-
ing circuit to one of the plurality of mput terminals of
said floating-point number arithmetic unait;
the arithmetic selector selecting and outputting either an
output from said floating-point number arithmetic unit
or an output from said converting circuit; and
a register storing a result of the predetermined floating-
point number arithmetic operation performed by said
floating-point number arithmetic unit wherein the regis-
ter writes another floating-point number to another of
the plurality of mput terminals of said floating-point
number arithmetic unit.
5. A processor comprising;
an 1nstruction decoder decoding an instruction of 32 bits
having an immediate field of 16 bits, wherein the
istruction performs an arithmetic operation on an
embedded data contained 1n the immediate field,
wherein the instruction decoder provides the embedded
data to a converting circuit as one of an mteger type or a
floating-point number type, and provides control signals
to a converter selector, an arithmetic selector, a floating-
point number arithmetic unit, based on decoded instruc-
tion; and
the converting circuit converting an integer of 16 bits con-
tained 1n the immediate field of the instruction decoded
by said instruction decoder into a floating-point number
ol 32 baits,
wherein said converting circuit has an integer converter
converting an integer type contained in said immedi-
ate field into said floating-point number having the
predetermined precision of 32 bits,
a floating-point number converter converting a floating-
point number type 1n said immediate field and having,
a precision different from said predetermined preci-
s10n 1nto said floating-point number of said predeter-
mined precision of 32 bits, and
the converter selector selecting either an output from
said 1nteger converter or an output from said tloating-
point number converter based on the type of the
embedded data, and supplying the selected output to
one of the plurality of input terminals of said floating-
point number arithmetic unit; and
the floating-point number arithmetic unit, configured with
a plurality of mput terminals, performing a predeter-
mined floating-point number arithmetic operation on

US 7,949,696 B2

15

said floating-point number of 32 bits from said convert-
ing circuit to one of the plurality of input terminals of
said floating-point number arithmetic unit;
the arithmetic selector selecting and outputting either an
output from said floating-point number arithmetic unit
or an output from said converting circuit; and
a register storing a result of the predetermined floating-
point number arithmetic operation performed by said
floating-point number arithmetic unit wherein the regis-
ter writes another tloating-point number to another of
the plurality of mput terminals of said floating-point
number arithmetic unait.
6. A processor comprising:
an 1nstruction decoder decoding an instruction of 32 bits
having an immediate field of 16 bits, wherein the
instruction performs an arithmetic operation on an
embedded data contained 1n the immediate field,
wherein the 1nstruction decoder provides the embedded
data to a converting circuit as one of an integer type or a
floating-point number type, and provides control signals
to a converter selector, an arithmetic selector, a floating-
point number arithmetic unit, based on decoded 1nstruc-
tion; and
the converting circuit converting a floating-point number
of 16 bits contained in the immediate field of the mstruc-
tion decoded by said instruction decoder 1nto a floating-
point number of 32 bits,
wherein said converting circuit has an integer converter
converting an iteger type contained 1n said immedi-
ate field into said floating-point number having the
predetermined precision of 32 bits,
a tloating-point number converter converting a floating-
point number type 1n said immediate field and having
a precision different from said predetermined preci-
s1on 1nto said floating-point number of said predeter-
mined precision of 32 bits, and
the converter selector selecting either an output from
said integer converter or an output from said floating-
point number converter based on the type of the
embedded data, and supplying the selected output to
one of the plurality of input terminals of said floating-
point number arithmetic unit; and
the floating-point number arithmetic unit, configured with
a plurality of input terminals, performing a predeter-
mined floating-point number arithmetic operation on
said floating-point number of 32 bits from said convert-
ing circuit to one of the plurality of mput terminals of
said floating-point number arithmetic unit;
the arithmetic selector selecting and outputting either an
output from said tloating-point number arithmetic unit
or an output from said converting circuit; and
a register storing a result of the predetermined floating-
point number arithmetic operation performed by said
floating-point number arithmetic unit wherein the regis-
ter writes another floating-point number to another of
the plurality of mput terminals of said floating-point
number arithmetic unait.
7. A processor having, as an 1nstruction set, a tloating-point

number arithmetic instruction having an immediate field of N
bits (N represents an mteger of 1 or greater), comprising:

an mstruction decoder extracting an embedded data of N
bits contained in said immediate field, wherein the
instruction performs an arithmetic operation on the
embedded data contained in the immediate field,
wherein the 1nstruction decoder provides the embedded
data to a converting circuit as one of an integer type or a
floating-point number type, and provides control signals

5

10

15

20

25

30

35

40

45

50

55

60

65

16

to a converter selector, an arithmetic selector, a floating-
point number arithmetic unit, based on decoded instruc-
tion; and
the converting circuit converting the extracted data of N
bits 1nto a floating-point number of F bits (F represents
an 1teger of 1 or greater),
wherein said converting circuit has an iteger converter
converting an integer type contained in said immedi-
ate field into said floating-point number having the
predetermined precision of F baits,
a floating-point number converter converting a floating-
point number type 1n said immediate field and having
a precision different from said predetermined preci-
s10on 1nto said tloating-point number of said predeter-
mined precision of F bits, and
the converter selector selecting either an output from
said 1nteger converter or an output from said tloating-
point number converter based on the type of the
embedded data, and supplying the selected output to
one of the plurality of input terminals of said floating-
point number arithmetic unit; and
the floating-point number arithmetic unit, configured with
a plurality of mput terminals, performing a predeter-
mined floating-point number arithmetic operation on
said floating-point number of F bits from said converting,
circuit to one of the plurality of input terminals of said
floating-point number arithmetic unit;
the arithmetic selector selecting and outputting either an
output from said floating-point number arithmetic unit
or an output from said converting circuit and supplies the
selected output to a register file.
8. A processor having, as an instruction set, a floating-point

number arithmetic mstruction having an immediate field of
16 bits, comprising:

an instruction decoder extracting an embedded data of 16
bits contained in said immediate field, wherein the
instruction performs an arithmetic operation on the
embedded data contained 1n the immediate field,
wherein the mstruction decoder provides the embedded
data to a converting circuit as one of an mteger type or a
floating-point number type, and provides control signals
to a converter selector, an arithmetic selector, a floating-
point number arithmetic unit, based on decoded instruc-
tion; and
the converting circuit converting the extracted data of 16
bits 1nto a floating-point number of 32 bats,
wherein said converting circuit has an iteger converter
converting an integer type contained in said immedi-
ate field into said floating-point number having the
predetermined precision of 32 bits,

a floating-point number converter converting a floating-
point number type 1n said immediate field and having
a precision different from said predetermined preci-
s10on 1nto said tloating-point number of said predeter-
mined precision of 32 bits, and

the converter selector selecting either an output from
said 1integer converter or an output from said floating-
point number converter based on the type of the
embedded data, and supplying the selected output to
one of the plurality of input terminals of said floating-
point number arithmetic unit; and

the floating-point number arithmetic unit, configured with
a plurality of mput terminals, performing a predeter-
mined floating-point number arithmetic operation on
said floating-point number of 32 bits from said convert-
ing circuit to one of the plurality of mput terminals of
said floating-point number arithmetic unait;

US 7,949,696 B2

17

the arithmetic selector selecting and outputting either an
output from said floating-point number arithmetic unit
or an output from said converting circuit.

9. The floating-point number arithmetic circuit according,

to claim 1, further comprising:

a register {ile that writes another floating-point number to
another of the plurality of mnput terminals of said float-
ing-point number arithmetic unait.

10. The processor according to claim 7, further compris-

ng:

5

18

a register file that writes another floating-point number to
another of the plurality of mput terminals of said float-
ing-point number arithmetic unait.

11. The processor according to claim 8, further compris-

ng:

a register file that writes another floating-point number to
another of the plurality of mnput terminals of said float-
ing-point number arithmetic unait.

	Front Page
	Drawings
	Specification
	Claims

