12 United States Patent
Wang

US007941807B2

US 7,941,807 B2
May 10, 2011

(10) Patent No.:
45) Date of Patent:

(54) TRANSITIONAL RESOLUTION IN A JUST IN
TIME ENVIRONMENT

FOREIGN PATENT DOCUMENTS

JP 2000047879 2/2000

(75) Inventor: Zhong Liang Wang, Markham (CA) OTHER PUBLICATIONS

(73) Assignee: International Business Machines Vijay Sundaresan, Practical Virtual Method Call Resolution for Java,
2000.*

Corporation, Armonk, NY (US)
Ishizaki, K. et al., “A Study of Devirtualization Techniques for a

Java™ Just-In-Time Compiler”, ACM Digital Library, IBM
Research, Tokyo Research Laboratory; 2002, pp. 294-310.

Pechtchanski, I. et al., “Dynamic Optimistic Interprocedural Analy-

sis: a Framework and an Application”, ACM Digital Library, IBM
Research, T. J. Watson Research Center; 2001, pp. 195-210.

Sundaresan, V. et al., “Practical Virtual Method Call Resolution for
Java”, ACM Digital Library, Sable Research Group, School of Com-

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1788 days.

(21) Appl. No.: 10/835,881

(22) Filed: Apr. 30, 2004 puter Science Mc Gill Umiversity, Montreal, Quebec, Canada, 2000,
_ o pp. 264-280.
(65) Prior Publication Data Zaks, A. etal., “Sealed Calls in Java Packages”, ACM Digital Library,
IS 2005/0246695 A1 Nov. 3. 2005 IBM Research, Haifa, Israel, 2000, pp. 83-92.
(51) Int.Cl (Continued)
GO6l" 3/00 (2006.01)
GO6EF 9/44 (2006.01) Primary Examiner — Lechi Truong
(52) US.CL oo, 719/316; 717/118 (74) Attorney, Agent, or I'irm — Steven M. Greenberg, Hsq.;
(58) Field of Classification Search 719/310, Carey, Rodriguez, Greenberg & Paul
719/311, 316; 717/148, 118
See application file for complete search history. (57) ABSTRACT
(56) References Cited A reference to data in program code 1s resolved during execu-

tion of the program code. A request to resolve the reference 1s
classified based on a state of the referenced data and a source
of the request. A transitional resolution for the reference 1s

U.S. PATENT DOCUMENTS

5,778,231 A * 7/1998 van Hoffetal. 717/143 ¢ req on _
6,026,485 A * 2/2000 O’Connoretal. 712/226 provided 11 the referenced data state indicates no accessible
6,324,687 Bl 11/2001 Beadle et al. definition and resolution of the reference is allowed according,
6,481,006 B1 ~ 11/2002 Blandy et al. to the request classification. A tull resolution for the reference
6,604,167 Bl 8/2003 Blandy et al. . . . D .
6763307 B1* 79004 Bracha et al 719/339 1s provided 11 the referenced data state indicates an accessible
6:9 10: 207 B2* 6/2005 Steinbusch 717/153 definition according to the request classification. The request
7,426,576 B1* 9/2008 Bangaetal. 709/245 1s removed only 11 the reference resolution 1s a full resolution.
7.493.616 B2* 2/2009 Yachetal. 718/100

2003/0093775 Al 5/2003 Hilton

2003/0103507 Al* 6/2003 Lynchetal. 370/392 30 Claims, 5 Drawing Sheets

[PERFORM SPECIFICATION-CONFORMANCE CHECKING |~ 324
~TOES

NF:—ﬂFﬁ:mcmmn-cnmmnmcn CHECKING " 326

PASS?
| PROVIDE THE ADDRESS TO RESOLVE THE REFERENCE I" 328

FPRODUCE AN INDICATION THAT REFERENCE IS 330
TRANSITIONALLY RESOLVED

®]

N,—c 15 REFERENCE FULLY RESOLYED?
0

YF
REPLACE CONTROL PASS INSTRUCTION WITH ORIGINAL

ACCESS INSTRUCTION REFERENCING THE DATA/CLASS 334
OF THE REFERENCE

INCORPORATE THE DETERMINED MEMORY ADDRESS |~ 334
INTO THE RESOLUTION

:=|----""""332

e
- L

HH STORE THE ORIGINAL ACCESS INSTRUCTION

y
140 * ADD AN INSTRUCTION AFTER THE ORIGINAL ACCESS

INSTRUCTION TO CONTINUE EXECUTION AFTER THE
CONTROL PASS INSTRUCTION

©
342
CONTINUE EXECUTION

SIH}/

US 7,941,807 B2
Page 2

OTHER PUBLICATIONS Inspec Abstract for, “Design, Implementation, and evaluation of

e . o Optimizations 1n a Just-in-Time Compiler”, Ishizaki, K. et al., Pro-
Inspec Abstract for, “Overview of the IBM Java Just-in-Time Com- ceedings of the ACM 1999 Java Grande Conference, pp. 119-128.

piler”, Suganuma T. et al. IBM Systems Journal, vol. 39, No. 1, pp. IBM Research Disclosure (43169), “Removing Unnecessary Calls to

175-193, 2000. o | | Java Constructors”, Jan. 2002/151.
Inspec Abstract for, “Just in Time Instrumentation Technique”,

Ronsse, M. et al., Computer Architecture News, vol. 29, No. 1, pp.
43-54, Mar. 2001. * cited by examiner

U.S. Patent May 10, 2011 Sheet 1 of 5 US 7,941,807 B2

122
PROGRAM

CODE
106

120

EXECUTION ENVIRONMENT

VIRTUAL
JIT COMPILER

124 128

116

102
N INPUT/OUTPUT
110 108 114 DEVICE

MEMORY CPU INPUT/OUTPUT

INTERFACE

BUS
112

100/

FIG. 1

U.S. Patent May 10, 2011 Sheet 2 of 5 US 7,941,807 B2

RECEIVE BYTECODE FOR COMPILATION 202

INITIATE BYTECODE COMPILATION 204

DETERMINE ALL REFERENCES TO BE RESOLVED IN THE 206
BYTECODE

RESOLVE ALL POSSIBLE REFERENCES IN BYTECODE 208

210
ANY REFERENCES UNRESOLVED?

NO

YES

REPLACE INSTRUCTION TO ACCESS REFERENCED DATA/
CLASS BY INSTRUCTION TO PASS CONTROL TO THE
VIRTUAL MACHINE TO RESOLVE THE REFERENCE
DURING EXECUTION

212

CONTINUE WITH OTHER COMPILATION PROCESSES 214

PROVIDE COMPILED BYTECODE WITH UNRESOLVED 216
REFERENCES TO THE VIRTUAL MACHINE

200 /‘

U.S. Patent May 10, 2011 Sheet 3 of 5 US 7,941,807 B2

RECEIVE REQUEST TO RESOLVE PREVIOUSLY
UNRESOLVED REFERENCE DURING EXECUTION OF

PROGRAM CODE

304
? YES
REFERENCED DATA/CLASS INITIALIZED?
O

IS
REQUESTING THREAD THE INITIALIZING
THREAD?

O

310
SUSPEND THREAD FROM FURTHER EXECUTION

LOAD AND INITIALIZE REFERENCED DATA/CLASS 312
PERFORM SPECIFICATION-CONFORMANCE CHECKING 314

316

302

306

308

PECIFICATION-CONFORMANCE CHECKIN

YES
RESOLVE REFERENCE 318

PRODUCE INDICATION THAT REFERENCES HAS BEEN 320

FULLY RESOLVED

O

o 322
ISSUE ERROR

300 / o

FIG. 3A

U.S. Patent May 10, 2011 Sheet 4 of 5 US 7,941,807 B2

PERFORM SPECIFICATION-CONFORMANCE CHECKING 324

326

PROVIDE THE ADDRESS TO RESOLVE THE REFERENCE 328
PRODUCE AN INDICATION THAT REFERENCE IS 330

TRANSITIONALLY RESOLVED
332
IS REFERENCE FULLY RESOLVED?
O
YES

REPLACE CONTROL PASS INSTRUCTION WITH ORIGINAL 334
ACCESS INSTRUCTION REFERENCING THE DATA/CLASS

OF THE REFERENCE

INCORPORATE THE DETERMINED MEMORY ADDRESS 3136
INTO THE RESOLUTION

338 STORE THE ORIGINAL ACCESS INSTRUCTION

340 ADD AN INSTRUCTION AFTER THE ORIGINAL ACCESS
INSTRUCTION TO CONTINUE EXECUTION AFTER THE

CONTROL PASS INSTRUCTION

342 CONTINUE EXECUTION

300 /

FI1G. 3B

U.S. Patent May 10, 2011 Sheet 5 of 5 US 7,941,807 B2

TRANSITIONAL
RESOLUTION
MECHANISM

ADDRESS
MECHANISM
424

CLASSIFIER

CLASS
MECHANISM

422 420

SOURCE
ASSESSMENT

426
RESOLUTION

TYPE
MECHANISM STATE.

402 404 ASSESSMENT
FULL MECHANISM

RESOLUTION 414
MECHANISM 416

ADDRESS REQUEST
MECHANISM CONTROLLER MODIFICATION
428 430 MECHANISM

RESOLUTION 40¢ RESOLUTION

TYPE DETECTION
MECHANISM MECHANISM

MECHANISM

412

INSTRUCTION
PATCH
MECHANISM
410

RETURN
MECHANISM

OTHER THREAD

MECHANISM

400 /

FIG. 4

US 7,941,807 B2

1

TRANSITIONAL RESOLUTION IN A JUST IN
TIME ENVIRONMENT

BACKGROUND OF THE INVENTION

The present invention relates to the field of reference reso-
lution 1n a just in time compilation environment.

Computer program code 1s compiled for implementation,
which ivolves reading the program code, analyzing the
semantic form for errors, optimizing the code to reduce cost
during execution and translating the code into a language
suitable for execution. During compiling, references in the
code to other classes or data are resolved to incorporate
memory locations for these referenced classes or data. How-
ever, 1f the references to be resolved are for classes or data that
have not been loaded then resolution of these references may
not be possible. Such references can be resolved during
execution of the program code as the references are encoun-
tered and the classes or data are loaded.

In a Java programming environment, the code 1s compiled
into bytecode that 1s interpreted by a Java Virtual Machine for
execution. Alternatively, a just 1n time compiler turns the
bytecode 1nto mstructions that can be executed directly by a
processor. Since classes may be dynamically loaded 1n the
Java environment, cross references among classes that are
loaded at different times are taken into account during refer-
ence resolution.

BRIEF SUMMARY OF THE INVENTION

A reference to data 1 program code is resolved during
execution of the program code. A request to resolve the ret-
erence 1s classified based on a state of the referenced data and
a source of the request. A transitional resolution for the ret-
erence 1s provided 1f the referenced data state indicates no
accessible definition and resolution of the reference 1is
allowed according to the request classification. A full resolu-
tion for the reference 1s provided 1f the referenced data state
indicates an accessible definition according to the request
classification. The request 1s removed only if the reference
resolution 1s a full resolution.

Other aspects and features of the present invention, as
defined solely by the claims, will become apparent to those
ordinarily skilled in the art upon review of the following
non-limited detailed description of the mnvention in conjunc-
tion with the accompanying figures.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 1s a system diagram of an exemplary computing
environment suitable for implementation of the present
imnvention;

FI1G. 2 1s a flow diagram 1llustrating a method of compiling
unresolvable references;

FIGS. 3A-B 1s a flow diagram illustrating a method of
resolving unresolved references during execution; and

FI1G. 4 1s a system diagram for resolving unresolved refer-
ences during execution.

DETAILED DESCRIPTION OF THE INVENTION

The present mvention now will be described more fully
hereinafter with reference to the accompanying drawings, in
which 1llustrative embodiments of the invention are shown.
This invention may, however, be embodied 1n many different
forms and should not be construed as limited to the embodi-

10

15

20

25

30

35

40

45

50

55

60

65

2

ments set forth herein; rather, these embodiments are pro-
vided so that this disclosure will be thorough and complete,
and will fully convey the scope of the mvention to those
skilled 1n the art. Like numbers refer to like elements through-
out.

As will be appreciated by one of skill in the art, the present
invention maybe embodied as a method, data processing sys-
tem, or computer program product. Accordingly, the present
invention may take the form of an entirely hardware embodi-
ment, an enftirely software embodiment or an embodiment
combining soltware and hardware aspects all generally
referred to herein as a “circuit” or “module.” Furthermore, the
present invention may take the form of a computer program
product on a computer-usable storage medium having com-
puter-usable program code embodied in the medium. Any
suitable computer readable medium may be utilized 1includ-
ing hard disks, CD-ROMs, optical storage devices, a trans-
mission media such as those supporting the Internet or an
intranet, or magnetic storage devices.

Computer program code for carrying out operations of the
present mvention may be written 1n an object oriented pro-
gramming language such as Java®, Smalltalk or C++. How-
ever, the computer program code for carrying out operations
of the present invention may also be written 1n conventional
procedural programming languages, such as the “C” pro-
gramming language. The program code may execute entirely
on the user’s computer, partly on the user’s computer, as a
stand-alone software package, partly on the user’s computer
and partly on a remote computer or entirely on the remote
computer. In the latter scenario, the remote computer may be
connected to the user’s computer through a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

The present invention 1s described below with reference to
flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to embodiments of the invention. It will be understood
that each block of the flowchart i1llustrations and/or block
diagrams, and combinations of blocks in the flowchart 1llus-
trations and/or block diagrams, can be implemented by com-
puter program instructions. These computer program instruc-
tions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable
data processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create
means for implementing the functions/acts specified 1n the
flowchart and/or block diagram block or blocks.

These computer program istructions may also be stored in
a computer-readable memory that can direct a computer or
other programmable data processing apparatus to function 1n
a particular manner, such that the mstructions stored in the
computer-readable memory produce an article of manufac-
ture including nstruction means which implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide steps for implementing the func-
tions/acts specified in the tflowchart and/or block diagram

block or blocks.

US 7,941,807 B2

3

FIG. 1 and the associated description represent an example
ol a suitable computing environment 100 in which the present
invention may be implemented. The computer 100 has differ-
ent layers of functionality that are built on top of each other to
cooperatively operate. A hardware layer 102 includes the
hardware resources 1n the computer 100. The operating sys-
tem layer 104 runs in conjunction with the hardware layer 102
and interconnects the hardware layer 102 with a software
layer 106. The software layer 106 contains the functionality
with which a user interacts.

The hardware layer 102 contains the physical components
of the computer 100 and includes a central processing unit
(CPU) 108, a memory 110, an input/output interface 114 and
a bus 112. The CPU 108, the memory 110 and the mput/
output interface 114 are connected with one another via the
bus 112. The input/output interface 114 1s configured so that
it can be connected to an mput/output unit 116.

The CPU 108 can be a commercially available CPU or a
customized CPU suitable for operations described herein.
Other variations of the CPU 108 can include a plurality of
CPUs interconnected to coordinate various operations and
tunctions. The computer 100 serves as an apparatus for per-
forming the present method by the CPU 108 executing the
present invention.

The operating system layer 104 includes an operating sys-
tem 118 that interfaces with the physical components in the
hardware layer 102. The operating system 118 may reside in
the memory 110, be executed by the CPU 108 and take
advantage of the bus 112 to interact with other components 1n
the hardware layer 102.

The software layer 106 includes an execution environment
120 that transforms program code 122 supplied by a user into
a form that can be executed by the computer 100. The execu-
tion environment 120 includes a compiler 120 that accepts the
program code 122 and translates 1t into an intermediate form.
A virtual machine 126 in the execution environment 120
obtains the intermediate form of the program code 122 and
interfaces with the operating system 118 to interpret the code
for execution on the computer 100 through interactions with
components in the hardware layer 102. The virtual machine
126 may also provide the intermediate form to a just 1n time
(JIT) compiler 128 that compiles the program code 122 for
direct execution by the CPU 108. The virtual machine 126
retains the state of the program code 122 during execution
including an indication of all data and class definitions that
have been loaded into the execution environment 120.

The present invention may be incorporated in the JI'T com-
piler 128 and the virtual machine 126 which may be embod-
ied 1 a program stored 1n, for example, the memory 110.
Alternatively, the present invention may be recorded on any
type of recording medium such as a magnetic disk or an
optical disk. The present invention recorded on such a record-
ing medium may be loaded into the memory 110 of the
computer 100 via the mnput/output unit 116 (e.g. a disk drive).

Compilation requests are imitiated by the virtual machine
126 based on criteria for execution benefits by compiling a
particular section of the intermediate form. The JI'T compiler
128 compiles these sections into a form that can be directly
executed by the CPU 108. The direct execution form 1s pro-
vided to the virtual machine 126 and used in a manner that 1s
beneficial for the virtual machine 126. For example, upon
encountering these sections during a later or a subsequent
execution of the program code 122 these sections need not be
compiled again and the compiled form can be executed
directly.

The JIT compiler 128 attempts to resolve any references to
data or classes in the bytecode during compilation. An

10

15

20

25

30

35

40

45

50

55

60

65

4

instruction to resolve the reference 1s 1nserted nto the com-
piled bytecode (known as binary code) prior to the original
istruction accessing the reference. The original access
instruction may be a load, store or other such instruction.
Resolution of references involves incorporating the memory
address of the definition of the data or class to which the
references refer into the binary code where the reference 1s
located and removing the mstruction to resolve the reference.
Although the memory address of the definition of the refer-
enced class or data 1s available, 1f the definition of the data or
class has not yet been completely loaded into the execution
environment 120 then the reference cannot be fully resolved.
This situation may occur, for example, when classes are
dynamically loaded. As a result, not all references are tully
resolved at compilation. In such a situation the defimition of
the referenced data or class may not be 1n a state that 1s equally
accessible to all executing threads and as such the reference 1s
considered to have no accessible definition. Such a state 1n
which the referenced data/class 1s equally accessible to all
executing threads may be when the data/class 1s fully loaded
and 1nmitialized or not loaded nor 1nitialized.

During compilation, the JIT compiler 128 obtains informa-
tion about data and class references from the virtual machine
126. For any references that cannot be resolved, instructions
are generated to resolve the reference during execution.

FIG. 2 1llustrates a method 200 of compiling unresolvable
references. Bytecode 1s recerved from the virtual machine
126 for compilation 1n step 202. Compiling 1s started and the
initial compilation processes are performed in step 204. All
references to be resolved are determined 1n step 206. The
references that can be resolved are resolved 1n step 208. In
step 210 1t 1s determined 11 there are any references that have
not been resolved. A reference 1s considered to be unresolv-
able during compilation 11 the definition of the data or class
that 1s referred to has not been loaded into the execution
environment 120.

For each reference that is unresolved, as determined in step
210, the 1nstructions 1n the bytecode to access the referenced
data or class (erther load or store instruction) are replaced 1n
the binary code by 1nstructions to pass control to the virtual
machine 126 during execution to resolve the reference. The
virtual machine 126 will resolve the reference during execu-
tion when the classes and data have been loaded into the
execution environment 120.

After the unresolved references have been considered or 1f
there were no unresolved references, compilation continues
with other processes 1n step 214. After the bytecode has been
compiled the resulting binary code 1s provided to the virtual
machine 126 1n step 216.

During execution of the binary code, the virtual machine
126 1s called to resolve a reference whenever an unresolved
reference 1s encountered. However, during execution there
may be multiple threads executing the same section of the
program code 122. For any references that have not been
resolved, each of these threads are competing to completely
resolve the reference. Some of these reference resolutions
may have semantic constraints that affect the order of such
resolution action.

There are three actions that can cause a class to be loaded,
prepared and initialized: creating a new object of a class,
reference to a static field of a class and invocation of a static
method of a class. After the class 1s loaded and successtully
initialized then these actions can proceed. In the execution
environment 120 with the JI'T compiler 128, normally com-
peting threads can resolve references and take advantage of
cach other (1.e., a particular unresolved reference doesn’t
need to be resolved over and over again by different threads).

US 7,941,807 B2

S

However, before the loaded class 1s completely imtialized,
some resolutions of unresolved references which are to be
done to move forward (e.g., class initialization itself needs
them to be resolved and refers to the unresolved references)
should appear to other threads as still unresolved otherwise
the semantic order 1s broken. That 1s, betfore a class 1s com-
pletely imtialized a static field reference happens to that class.

FIGS. 3A-B illustrate a method 300 of resolving unre-
solved references during execution. A request to resolve a
previously unresolved reference is recerved by the virtual
machine 126 during execution of the program code 122 in
step 302.

Steps 304 to 308 classity the reference resolution request
as being one of: (a) data/class already loaded and 1mitialized;
(b) data/class loaded but not imitialized, thread not eligible to
resolve reference; (¢) data/class loaded but not 1mitialized,
thread eligible to resolve reference; and (d) data/class not
loaded nor mnitialized. If the request 1s classified as (a) data/
class already loaded and 1n1tialized then processing continues
with step 314. If the request 1s classified as (b) data/class
loaded but not iitialized, thread not eligible to resolve refer-
ence then processing continues with step 310. If the request 1s
classified as (c) data/class loaded but not 1mitialized, thread
cligible to resolve reference then processing continues with
step 324. Iftherequest s classified as (d) data/class not loaded
nor 1mtialized then processing continues with step 312.

It 1s determined 1n step 304 whether or not the data or class
to which the reference refers has been 1nitialized (or loaded
into the execution environment 120).

If the request 1s classified as (d), the referenced data/class
has not been loaded nor initialized, then the reterenced data/
class 1s loaded 1n step 312 and specification-conformance
checking 1s performed 1n step 314. If the specification-con-
formance checking passes as determined 1n step 316 then the
reference 1s resolved 1n step 318 1n a conventional manner.
Such a full resolution may imvolve incorporating the memory
address of the referenced data/class with the reference, per-
forming accessability checking of the referenced data/class
and removing the request to resolve the reference (which 1s
performed 1n a later step). After the reference has been
resolved an indication that this was a full resolution 1s pro-
duced 1n step 320.

If the specification-conformance checking does not pass,
as determined 1n step 316 then an error 1s 1ssued in step 322
alter which processing continues in step 342.

There are different ways of producing the indication and
the resolution result. The resolution request 1s a call to the
virtual machine 126. The call can return multiple results with
one of them being the indication and another being the
address of the referenced data/class. The address may be
4-byte aligned, 1.e., the lower 2 bits are 0. The lowest bit can
be used to indicate whether this resolution 1s a transitional
one. For example, 11 the returned result has 1 as the lowest
bit’s value, then this resolution 1s a transitional one, other-
wise, 1t 1S a full resolution.

If the referenced data/class has been completely loaded, as
determined 1n step 304, then step 306 determines 11 the ret-
erenced data/class has been initialized. If the referenced data/
class has been 1nitialized then the request 1s classified as (c¢)
and specification-conformance checking 1s performed 1n step
314. If the specification-conformance checking passes as
determined 1n step 316 then the reference 1s resolved 1n step
318 1n a conventional manner. After the reference has been
resolved an 1ndication that this was a full resolution 1s pro-
duced 1n step 320. If the specification-conformance checking
does notpass, as determined 1n step 316 then an error 1s 1ssued
in step 322 after which processing continues in step 342.

10

15

20

25

30

35

40

45

50

55

60

65

6

If the referenced data/class has not been initialized then
step 308 determines 11 the requesting thread 1s the initializing
thread for the referenced data/class. A thread can resolve the
reference to an unminitialized data/class 1f the thread 1s per-
forming the data/class imitialization. All other threads (1.e.
those not mtializing the data/class) are considered to be
ineligible to resolve the reference 11 the referenced data/class
1s not completely imtialized and if the referenced data/class
has been loaded. If the referenced data/class 1s loaded but not
initialized and the thread 1s not the mnitializing thread then the
request 1s classified as (b) and then execution of the thread 1s
suspended 1n step 310. Such suspension may provide time for
the referenced data/class to be completely loaded before step
304 1s repeated to determine if the loading has been com-
pleted.

If the requesting thread 1s the initializing thread then the
request 1s classified as (¢) and specification-conformance
checking 1s performed 1n step 324. If the specification-con-
formance checking passes, as determined 1n step 326 then a
transitional resolution 1s used for the reference so that pro-
cessing of the thread can continue. Such a transitional reso-
lution provides the appearance of a full resolution form the
perspective of other threads; however the resolution request
in the binary code 1s not removed therefrom as 1s the case with
a full resolution. As a result, the next time the thread i1s
executed the request to resolve the reference will be per-
formed again. The address of the referenced data/class 1s
provided 1n step 328. This address 1s the same address that
would be provided with the full resolution (step 318). An
indication that this 1s a transitional resolution 1s provided 1n
step 330.

If the specification-conformance checking fails, as deter-
mined 1n step 326, then an error 1s 1ssued 1n step 322 after
which processing continues 1n step 342.

After resolution (either transitional or full) has been per-
formed, step 332 determines whether the resolution was full
or transitional. If the reference was fully resolved then the
instruction in the binary code that transferred control to the
virtual machine 126 to resolve the reference 1s replaced by the
original access instruction for the reference 1n step 334. The
determined memory address for the reference 1s also incor-
porated with the access instruction 1n step 336. After this the
reference 1s considered to be resolved and execution contin-
ues 1n step 342.

I1 the resolution was transitional as determined 1n step 332
then the original access mstruction for the reference 1s stored
in step 338. The access instruction can be stored 1n an area that
can only be accessed by the thread, for example, on a stack for
the thread requesting the resolution. A return instruction 1s
added after the access instruction in step 340 after which other
processing continues in step 342. The return instruction 1s
arranged to by-pass the mstruction call to the virtual machine
126 for reference resolution and return to the instruction point
at which the retference should be resolved. The thread can then
continue execution as if the unresolved reference was actually
resolved. Next time, when the resolution point 1s encountered
again, the reference 1s still unresolved. The same procedure 1s
repeated until the mstruction call of the virtual machine 1s
replaced by the access instruction. From that point on, the
unresolved reference appears to all parties as truly resolved.

After an unresolved reference 1s fully resolved (as opposed
to transitionally resolved), the mstructions used for resolution
are removed. Next time, when the code 1s executed, it appears
that the reference 1s resolved from the beginning (e.g. during
compilation).

FIG. 4 illustrates a system 400 for resolving unresolved
references during execution. The system 400 comprises a

US 7,941,807 B2

7

controller 406 1n communication with a classifier 414, a tran-
sitional resolution mechanism 404, a full resolution mecha-
nism 402, an other thread mechanism 412 and a request
modification mechanism 416, all of which function together
to resolve references during execution.

The controller 406 receives the request to resolve the ref-
erence and provides the classifier 414 with relevant informa-
tion to classily the status of the request including information
on the thread requesting the resolution (e.g. data/class 1nitial-
1zing thread, etc.) and the status of the referenced data/class
(e.g. loaded, unloaded or being loaded). The classifier 414
comprises a state assessment mechamsm 418, a source
assessment mechanism 420 and a class mechanism 422. The
state assessment mechanism 418 assesses the state of the
referenced data/class to determine whether 1t 1s loaded, not
loaded or being loaded. The source assessment mechanism
420 determines whether the source of the request to resolve
the reference initiated from a thread that was an 1mitializing
thread. The class mechamism 422 classifies the reference
resolution request as being one of: (a) data/class already
loaded and 1itialized; (b) data/class loaded but not 1nitial-
1zed, thread not eligible to resolve reference; (¢) data/class
loaded but not mitialized, thread not eligible to resolve refer-
ence; and (d) data/class not loaded not initialized. The appro-
priate classification 1s provided to the controller 406.

The controller 406 1invokes either the transitional resolu-
tion mechanism 404, the full resolution mechanism 402, or
the other thread mechanism 412 depending on the classifica-
tion provided by the classifier 414.

The full resolution mechanism 402 comprises an address
mechanism 428 and a resolution type mechanism 430 that
function together to provide a full resolution to the reference
and 1s invoked when the classification 1s (a) data/class already
loaded and 1mitialized or (d) data/class not loaded or 1nitial-
ized. In the case of a classification of (d) then the class 1s
loaded and 1nitialized by the full resolution mechanism 402.
Toresolve the reference, the address mechanism 428 provides
the memory address of the referenced data/class and the reso-
lution type mechanism 430 provides an indication that the
resolution 1s a full resolution.

The transitional resolution mechanism 404 comprises an
address mechanism 424 and a resolution type mechanism 426
that function together and are invoked when the classification
1s (¢) data/class loaded but not imtialized, thread 1s eligible to
resolve the reference. The transitional resolution mechanism
404 provides a transitional resolution that enables processing
to continue and provides the appearance of a full resolution
but without the data/class being completely loaded and so
therefore cannot be a full resolution. The transitional address
mechanism 424 provides an address (which 1s the same
address provided by the full resolution mechanism 402) and
the resolution type mechamsm 426 provides an indication
that the resolution 1s only transitional. A transitional resolu-
tion will be fully resolved at a later time after the data/class
has been loaded.

The other thread mechanism 412 1s invoked when the clas-
sification 1s (b) data/class not loaded but being loaded, thread
1s not eligible to resolve reference. It the classification 1s (b)
then the other thread mechanism 412 suspends processing of
the requesting thread to wait until the data/class has been
loaded. The request. 1s sent back to the controller 406 after 1t
has been suspended where 1t will be provided to the classifier
414 to determine if the classification has been changed (i.e.,
has the data/class been loaded).

The request modification mechanism 416 comprises an
instruction patch mechanism 408, a return mechanism 410
and a resolution detection mechanism 432 that collectively

10

15

20

25

30

35

40

45

50

55

60

65

8

function to modify the request based on the type of the reso-
lution. The resolution detection mechanism 432 determines
whether the resolution was a transitional resolution or a full
resolution. If the resolution of the reference 1s a full resolution
then the instruction patch mechanmism 408 replaces the
instruction to pass control to the virtual machine 126 to
resolve the reference. The control pass instruction 1s replaced
with the original instruction that involved accessing the ref-
erenced data/class. The memory location of the referenced
data/class 1s also imncorporated with the original mstruction.

If the resolution was a transitional resolution then the
return mechanism 410 completes processing of the request to
resolve the reference. The return mechanism 410 stores the
original instruction that mvolved accessing the referenced
data/class 1n a store that can only be accessed by the thread. A
return 1struction 1s added after the stored instruction to con-
tinue execution after the control pass mstruction.

The following example 1s an example of the use of a tran-
sitional resolution 1n a just 1n time environment. The follow-
ing example takes advantage of functionality found in the
Java language; however, this should not be taken to limit the
present invention to the use of such language.

class Control {
public static void checking() {
if (Inventory.total!=0) {

do something; }
else {
do something else;} }

//Other code which may call checking()

h

class Inventory {
public static int total;
f/class mtialization code

1

Control.checking();
total=certain number;

i
/fother code

In the above example there. 1s a cross reference between the
method checking 1n class Control and the value total 1n class
Inventory. If there are two execution threads, one executing
the code of class Control while the other 1s loading class
Inventory, when reference to Inventory.total in the method
checking comes to be resolved in connection with the Control
thread, the class Inventory has not yet been completely
loaded; thus the reference to Inventory.total 1s not yet valid 1n
the context of the Control thread. At the same time the same
reference to Inventory.total 1n the method checking 1s valid in
the context of the Inventory thread since 1t 1s part of the class
initialization process. To resolve this issue, the transition
resolution 1s used for Inventory.total.

When the method checking 1n Control 1s compiled, Inven-
tory 1s not yet completely loaded so the address of Invento-
ry.total 1s not yet known so this reference cannot be com-
pletely resolved. To proceed with generation of executable
code, the mstruction to load Invenotry.total 1s replaced by a
call to the runtime environment that will be made during
execution of the code. When the method checking 1is
executed, this call to the runtime environment will be encoun-
tered. The runtime environment will load the class Inventory,
if necessary, and determine the address of inventory.total.

The resolution of Inventory.total will contain both the
address and an 1ndication as to whether or not this is a tran-
sitional resolution. If the resolution 1s transitional then the
instruction in the code that contains the reference to Invento-

US 7,941,807 B2

9

ry.total will be stored 1n a private area for the thread, for
example on the stack. A return instruction will also be added
to the 1nstruction on the thread-private area of the stack.

Reference in the context of the present invention maybe
references to data, classes or any other vaniable. For the sake
of simplicity, the references may be described as being a
reference for data where data 1n this context may be consid-
ered to 1nclude classes, data and other variables.

The flowcharts and block diagrams of FIGS. 2-4 illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flow charts or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, 1n some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustrations, and combinations of blocks 1n the block dia-
grams and/or flowchart 1llustrations, can be implemented by
special purpose hardware-based systems which perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

It 1s apparent to one skilled 1n the art that numerous modi-
fications and departures from the specific embodiments
described herein may be made without departing from the
spirit and scope of the invention.

That which 1s claimed 1s:

1. A computer-implemented method of resolving a refer-
ence to data 1n program code during execution thereot, the
method comprising:

classitying, within a processor, a request to resolve the

reference based on

a state of the data referenced and

a source of the request;

providing a transitional resolution for the reference upon

the data referenced state indicating no accessible defi-
nition, and

resolution of the reference 1s allowed according to clas-
sification of the request.

2. The method of claim 1 further comprising:

providing a full resolution for the reference upon the state
of the referenced data indicating an accessible definition
according to the classification of the request.

3. The method of claim 2 further comprising:

removing the request only upon resolution of the reference

being a tull resolution.

4. The method of claim 3 wherein removing the request
only upon resolution of the reference being a full resolution
COmMprises:

determining whether the resolution of the reference 1s a full

resolution or a transitional resolution;

replacing the request with an original instruction icorpo-

rating the resolved reference upon the resolution being a
full resolution;

storing the original instruction incorporating a return con-

trol 1nstruction.

5. The method of claim 4 wherein storing the original
instruction incorporating a return control nstruction coms-
prises:

10

15

20

25

30

35

40

45

50

55

60

65

10

incorporating the return control instruction after the origi-
nal instruction to continue execution of the program
code after the request.

6. The method of claim 2 wherein providing a full resolu-
tion for the reference upon the state of the referenced data
indicating an accessible definition according to the classifi-
cation of the request comprises:

providing a memory address for the data referenced; and

providing an indication that the resolution 1s a full resolu-

tion.

7. The method of claim 1 wherein classitying a request to
resolve the reference based on a state of the data referenced
and a source of the request comprises:

determining whether the state of the data referenced 1ndi-

cates no accessible definition, an accessible definition or
accessible definition being loaded;

determining whether the source of the request allows reso-

lution of the reference; and

classifying the request as:

full resolution upon the state being an accessible defini-
tion 1s available,

transitional resolution upon the state being no accessible
definition and the source allows resolution,

no resolution upon the state being no accessible defini-
tion and the source does not allow resolution, or

suspend upon the state being accessible definition being,
loaded and the source does not allow resolution.

8. The method of claim 7 wherein determining whether the
source of the request allows resolution of the reference com-
Prises:

identifying the source as allowing resolution of the refer-

ence upon the source of the request being an 1nitializing
thread.

9. The method of claim 1 wherein providing a transitional
resolution for the reference upon the data referenced state
indicating no accessible definition and resolution of the ret-
erence 1s allowed according to classification of the request
COmprises:

providing a memory address for the data referenced; and

providing an indication that the resolution is a transitional

resolution.

10. A computer-implemented method of resolving a refer-
ence to data 1n program code during execution thereot, the
method comprising:

determining, within a processor, whether the state of the

data referenced indicates no accessible definition, an
accessible definition or accessible definition being
loaded:

determining whether the source of the request allows reso-

lution of the reference; and

classitying the request as:

tull resolution upon the state 1s an accessible definition
being available,

transitional resolution upon the state being no accessible
definition and the source allows resolution,

no resolution upon the state being no accessible defini-
tion and the source does not allow resolution, or

suspend upon the state being accessible definition being
loaded and the source does not allow resolution;

providing a transitional resolution for the reference 1s upon

the data referenced state indicating no accessible defi-

nition and resolution of the reference 1s allowed accord-

ing to classification of the request;

providing a full resolution for the reference upon the state

of the referenced data indicates an accessible definition
according to the classification of the request.

US 7,941,807 B2

11

11. The method of claim 10 wherein determining whether
the source of the request allows resolution of the reference
COmMprises:

identifying the source as allowing resolution of the refer-
ence upon the source of the request being an 1nitializing
thread.

12. The method of claim 10 further comprising:

determining whether the resolution of the reference 1s a full
resolution or a transitional resolution;

replacing the request with an original instruction incorpo-
rating the resolved reference upon the resolution being a
full resolution;

storing the original instruction incorporating a return con-
trol 1nstruction.

13. A computer hardware system for resolving a reference
to data 1n program code during execution thereot, the system
comprising;

a Processor;

a classifier configured to classify a request to resolve the
reference, wherein classifications are based on a state of
the data referenced and a source of the request; and

a transitional resolution mechanism configured to
communicate with the classifier, and
provide a transitional resolution for the reference upon

the state of the data referenced indicating no acces-
sible definition and resolution of the reference 1s
allowed according to classification of the request.

14. The system of claim 13 further comprising:

a Tull resolution mechanism configured to
communicate with the classifier, and
provided a full resolution for the reference upon the state

of the data referenced indicating an accessible defini-
tion according to the classification of the request.

15. The system of claim 14 further comprising:

a request modification mechanism configured to commu-
nication with the transitional resolution mechanism and
the full resolution mechanism to remove the request only
upon resolution of the reference being a full resolution.

16. The system of claim 15 wherein the request modifica-
tion mechanism comprises:

a mechanism configured to determine whether the resolu-
tion of the reference 1s a full resolution or a transitional
resolution;

an struction patch mechanism configured to replace the
request with an original instruction incorporating the
resolved reference upon the resolution being a full reso-
lution; and

a return mechamsm configured to store the original instruc-
tion 1ncorporating a return control instruction aiter the
original instruction to continue execution of the program
code after the request.

17. The system of claim 14 wherein the full resolution

mechanism comprises:

an address mechanism configured to provide a memory
address for the data referenced; and

aresolution type mechanism configured to provide an indi-
cation that the resolution 1s a full resolution.

18. The system of claim 13 wherein the classifier com-

Prises:

a state assessment mechanism configured to determine
whether the state of the data referenced indicates no
accessible definition, an accessible definition or acces-
sible definition being loaded;

a source assessment mechanism configured to determine
whether the source of the request allows resolution of the
reference 11 the source of the request 1s an 1mitializing

thread; and

10

15

20

25

30

35

40

45

50

55

60

65

12

a class mechanism configured to classify the request as:

tull resolution upon the state 1s an accessible definition 1s
available,

transitional resolution upon the state being no accessible
definition and the source allows resolution,

no resolution upon the state being no accessible defini-
tion and the source does not allow resolution, or

suspend upon the state being accessible definition being,
loaded and the source does not allow resolution.

19. The system of claim 13 wherein the transitional reso-
lution mechanism comprises:

an address mechanism configured to provide a memory
address for the data referenced: and

a resolution type mechanism configured to provide an 1ndi-
cation that the resolution 1s a transitional resolution.

20. A computer program product for resolving a reference
to data 1 program code during execution thereof, the com-
puter program product comprising:

a computer readable storage medium having computer
readable program code stored therein, the computer
readable program code, which when executed on a com-
puter system, causes the computer system to perform the
steps of:

classitying a request to resolve the reference based on
a state of the data referenced and
a source of the request; and

providing a transitional resolution for the reference upon
the data referenced state indicates no accessible defini-

tion, and
resolution of the reference 1s allowed according to clas-
sification of the request.

21. The computer program product of claim 20 further
comprising;

providing a full resolution for the reference upon the state
of the referenced data indicating an accessible definition
according to the classification of the request.

22. The computer program product of claim 21 further

comprising;

removing the request only upon resolution of the reference
being a tull resolution.

23. The computer program product of claim 22 wherein
removing the request only upon resolution of the reference
being a tull resolution comprises:

determining whether the resolution of the reference 1s a full
resolution or a transitional resolution;

replacing the request with an original instruction incorpo-
rating the resolved reference upon the resolution being a
full resolution;

storing the original instruction incorporating a return con-
trol 1nstruction.

24. The computer program product of claim 23 wherein
storing the original instruction incorporating a return control
instruction comprises:

incorporating the return control instruction after the origi-
nal instruction to continue execution of the program
code after the request.

25. The computer program product of claim 21 wherein
providing a full resolution for the reference upon the state of
the referenced data indicating an accessible definition accord-
ing to the classification of the request comprises:

providing a memory address for the data referenced; and

providing an indication that the resolution 1s a full resolu-
tion.

26. The computer program product of claim 20 wherein

classiiying a request to resolve the reference based on a state
of the data referenced and a source of the request comprises:

US 7,941,807 B2

13

determining whether the state of the data referenced indi-
cates no accessible definition, an accessible definition or
accessible definition being loaded;
determining whether the source of the request allows reso-
lution of the reference; and
classilying the request as:
full resolution upon the state being an accessible defini-
tion 1s available,
transitional resolution upon the state being no accessible
definition and the source allows resolution,
no resolution upon the state being no accessible defini-
tion and the source does not allow resolution, or
suspend upon the state being accessible definition being
loaded and the source does not allow resolution.
27. The computer program product of claim 26 wherein
determining whether the source of the request allows resolu-
tion of the reference comprises:

identifying the source as allowing resolution of the refer-
ence upon the source of the request being an 1nitializing
thread.

28. The computer program product of claim 20 wherein
providing a transitional resolution for the reference upon the
data referenced state indicating no accessible definition and
resolution of the reference 1s allowed according to classifica-
tion of the request comprises:

providing a memory address for the data referenced; and

providing an indication that the resolution 1s a transitional

resolution.

29. A computer program product for resolving a reference
to data 1n program code during execution thereof, the com-
puter program product comprising:

10

15

20

25

30

14

a computer readable storage medium having computer
readable program code stored therein, the computer
readable program code, which when executed on a com-
puter system, causes the computer system to perform the
steps of:

determining whether the state of the data referenced 1ndi-
cates no accessible definition, an accessible definition or
accessible definition being loaded;

determining whether the source of the request allows reso-
lution of the reference;

classitying the request as
full resolution upon the state being an accessible defini-

tion 1s available,
transitional resolution upon the state being no accessible
definition and the source allows resolution,
no resolution upon the state being no accessible defini-
tion and the source does not allow resolution, or
suspend upon the state being accessible definition being,
loaded and the source does not allow resolution;
providing a transitional resolution for the reference upon
the data referenced state indicating no accessible defi-
nition and resolution of the reference 1s allowed accord-
ing to classification of the request; and

providing a full resolution for the reference upon the state
of the referenced data indicating an accessible definition
according to the classification of the request.

30. The computer program product of claim 29 further

comprising:

removing the request only upon resolution of the reference
being a full resolution.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

