12 United States Patent

Kim et al.

US007930510B2
(10) Patent No.: US 7,930,510 B2
45) Date of Patent: Apr. 19, 2011

(54) DYNAMIC STACK ALLOCATING METHOD
IN MULTI-THREADED OPERATING
SYSTEMS

(75) Inventors: Sang Cheol Kim, Gyeongsani-si (KR);
Hae Yong Kim, Daejeon (KR); Chang
Min Shin, Daejeon (KR); Jin Won Kim,
Pyeongtack-s1 (KR); Mi Sun Yu,
Daejeon (KR); Jin Ho Chang, Daejeon
(KR); Pyeong Soo Mah, Dae¢jecon (KR)

(73) Assignee: Electronics and Telecommunications
Research Institute, Daejeon (KR)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 555 days.

(21) Appl. No.: 12/031,248

(22) Filed: Feb. 14, 2008
(65) Prior Publication Data
US 2008/0276063 Al Nov. 6, 2008
(30) Foreign Application Priority Data
May 2, 2007 (KR) i 10-2007-0042626
(51) Int.CL
GO6l 12/00 (2006.01)

(52) US.CL ..., 711/171;711/172
(58) Field of Classification Search None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,950,221 A * 9/1999 Dravesetal. 711/100
6,381,738 B1* 4/2002 Choietal. 717/140
('START PROGRAM)

6,993,754 B2* 1/2006 Freudenbergeretal. 717/153
7,356,812 B2* 4/2008 Herschleb 717/159

2004/0143833 Al 7/2004 Heyrman et al.
FOREIGN PATENT DOCUMENTS

KR 1999-0050564 7/1999

KR 1020010038482 5/2001

KR 20010062966 7/2001
OTHER PUBLICATIONS

Sang Cheol Kim et al.; “A Dynamic Stack Allocating Method In
Multi-Threaded Operating Systems for Wireless Sensor Network

Platforms”; The International Symposium on Consumer Electronics

(ISCE 2007); Jun. 2003, 2007; pp. 1-6.

Christian Tismer; “Continuations and Stackless Python or How to
change a Paradigm of an existing Program™; Proceeding of the 8"
International Python Conference; Aug. 2000, pp. 1-13.

(Continued)

Primary Examiner — Than Nguyen

(74) Attorney, Agent, or Firm — Lowe Hauptman Ham &
Berner LLP

(57) ABSTRACT

Provided 1s a method of dynamically reallocating a thread
stack 1n a multi-threaded operating system, and more particu-
larly, a method of dynamically allocating a thread stack of a
multi-threaded operating system in an embedded system for
wireless sensor nodes. The method includes the steps of:
measuring sizes of data and non-data sections of a stack with
respect to each thread; determining a new size of the non-data
section of each stack based on the size of the data section of
the stack measured with respect to each thread; and adjusting
the size of the non-data section of each stack to the deter-
mined new size. According to the method, even without the
source code analysis, an amount of memory spaces to be used

can be reduced compared to that of a conventional static stack
allocation method.

13 Claims, 4 Drawing Sheets

TICK INTERRUPT GENERATION

L

INTERRUPT
SERVICE ROUTINE

EXECUTE PROGRAM

CALCULATE SIZES OF DATA AREA | | o1
AND NON-DATA AREA OF STACK

|

DETERMINE NEW SIZE OF NON-DATA| | 004

AREA OF STACK

|

ADJUST TO NEW SIZE OF NON-DATAL 1230

AREA OF STACK

RETURN

US 7,930,510 B2
Page 2

OTHER PUBLICATIONS “An Efficient Memory Allocation Scheme for Space Constrained

| Sensor Operating Systems,” Sangho Y1 et al., journal of Korea Infor-
Adam Torgerson; “Automatic Thread Stack Management for mation Science Society, vol. 33, No. 9, pp. 626-633, Sep. 2006.

Resource-Constrained Sensor Operating Systems”; B.S. Thesis of “Cache Miss Aware Dynamic Stack Allocation,” Sung-Joon Jang, a
Universitv of Colorado: Feb. 2005: 1-19 master’s thesis in Korea Advanced Institute of Science and Technol-
4) T80 S0 P B ogy, Feb. 2007.

Korean office Action dated Oct. 29, 2008, for Korean application No.
10-2007-0042626. * cited by examiner

U.S. Patent Apr. 19, 2011 Sheet 1 of 4 US 7,930,510 B2

MEMORY
LOW “ 1 NON-DATA AREA
A DATA AREA
110 : 7 : E
4
y | / A |
| |
|5 |
| | O3
)
I j I
USER STACK 1< | | S
| .
|
lvzi
HIGH' SYSTEM STACK -~ Z

130

U.S. Patent Apr. 19, 2011 Sheet 2 of 4 US 7,930,510 B2

G, @

TICK INTERRUPT GENERATION
INTERRUPT
SERVICE ROUTINE

EXECUTE PROGRAM
CALCULATE SIZksS OF DATA AREA 91()

AND NON-DATA AREA OF STACK

DETHRMINE NEW SIZE OF NON-DATA| | 004
AREA OF STACK
ADJUST TO NEW SIZk OF NON-DATAL {230

ARkA OF STACK

RETURN

.ﬂ_# | /_ﬂ : -ﬂ_m-ﬂ-ﬂ
: -ﬂ_m-ﬂ-ﬁ

US 7,930,510 B2

Sheet 3 of 4

(c)

Apr. 19, 2011
4()
l
40
40
ﬂ
(b)

_ _ _
ﬂ W m m
m o\2 c -

U.S. Patent

U.S. Patent Apr. 19, 2011 Sheet 4 of 4 US 7,930,510 B2

PG o

Algorithm StackReallocation(S, [y1, ..., yn])
while (|.5] > 1)
{
S; : the bottom element of S
PushPull(z;+,. Ay;); /* consider the overlap */
S=5—{5:};
)

Un = Yn T &’yn;

Function PushPull (2,1, Ay;)}
/* overlap testing */
overlap = Ay; > yiq1 and S;41 7 Sp;
1 (overlap)

{
PushPull(z;42, Ay, + Ay;21); /* Recursion */
Push(r;11, Ay;):

v !

S=5—{si+1};

j

else /* no overlap */

{
if (Ay; > 0) Push(ﬂfwlz Ayi);
it (Ay; < 0) Pull(z;41, —Ay;);

US 7,930,510 B2

1

DYNAMIC STACK ALLOCATING METHOD
IN MULTI-THREADED OPERATING
SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims prionity to and the benefit of
Korean Patent Application No. 2007-42626, filed May 2,
2007, the disclosure of which 1s mncorporated herein by ret-
erence 1n 1ts entirety.

BACKGROUND

1. Field of the Invention

The present mnvention relates to a method of dynamically
allocating a thread stack 1n a multi-threaded operating sys-
tem, and more particularly, to a method of dynamaically allo-
cating a thread stack 1n a multi-threaded operating system of
an embedded system for wireless sensor nodes.

The present mvention has been produced from the work
supported by the I'T R&D program of MIC (Ministry of
Information and Communication)/IITA (Institute for Infor-
mation Technology Advancement) [2006-S-085-01, Nano
OS for Automobile Sensor Nodes]

2. Discussion of Related Art

A wireless sensor networks include hundreds or thousands
of wireless sensor nodes. These wireless sensor nodes collect
information and process the immformation to communicate
with neighboring nodes. Generally, a wireless sensor node
includes with a small amount of memory (such as 2 KB to 10
KB), without a memory hardware protection device, 1.€., a
Memory Management Unit (MMU), because of low power
and low cost. However, to perform multiple tasks in parallel in
the memory-restricted embedded system, a multi-threaded
operating system 1s needed.

In general, 1n the multi-threaded operating system, thread
stacks are statically allocated in a memory space. In a static
allocating method, a stack space to be used by the correspond-
ing thread when a thread 1s generated 1s statically allocated
and 1s not changed when a program 1s executed. Therefore,
when the stack space allocated to the thread 1s partially used,
this causes waste of memory 1n the remaining space. Also, in
this method, a thread that requires more stack memory cannot
use the memory, and thus a problem such as a stack overtlow
frequently occurs.

In view of this drawback, while a method of allocating a
thread stack based on source code analysis has been sug-
gested, the source code analysis 1s very complicated and takes
too much time.

SUMMARY OF THE INVENTION

The present invention 1s directed to a method of dynami-
cally allocating a thread stack, which enables efficient use of
a memory space in a multi-threaded operating system of a
sensor node having a restricted memory space.

The present invention 1s also directed to a method of
dynamically allocating a thread stack based on stack usage
information, which 1s measured during the execution of a
program 1n a multi-thread operating system of a sensor node.

One aspect of the present invention provides a method of
dynamically allocating a thread stack in a multi-threaded
operating system comprising the steps of: measuring sizes of
data and non-data sections of a stack with respect to each
thread; determining a new size of the non-data section of each
stack based on the size of the data section of the stack mea-

10

15

20

25

30

35

40

45

50

55

60

65

2

sured with respect to each thread; and adjusting the size of the
non-data section of each stack to the determined new size.

When there 1s a difference between the current size of a
non-data section and the new size of the non-data section of a
lower stack, the step of adjusting the size of the non-data
section of each stack may comprise the step of transierring a
data section of a higher stack adjacent to the lower stack to a
higher memory region or a lower memory region by the
difference.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other features and advantages of the present
invention will become more apparent to those of ordinary
skill 1n the art by describing in detail exemplary embodiments
thereof with reference to the attached drawings 1n which:

FIG. 1 1illustrates the configuration of a general memory
map 1n a multi-threaded operating system:;

FIG. 2 illustrates a process of performing a method of
dynamically allocating a thread stack according to an exem-
plary embodiment of the present invention;

FIG. 3 illustrates an example of a process of stack alloca-
tion according to an exemplary embodiment of the present
invention;

FIG. 4 1llustrates another example of a process of stack

allocation according to an exemplary embodiment of the
present invention; and

FIG. 5 illustrates a stack allocation algorithm according to
an exemplary embodiment of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

The present invention will now be described more fully
hereinafter with reference to the accompanying drawings, in
which exemplary embodiments of the invention are shown.

FIG. 1 illustrates a general memory map of a multi-
threaded operating system. As 1llustrated, a heap section 110
and stack sections 120 and 130 may share a memory space, so
that the larger the heap section 110 becomes, the smaller the
stack sections 120 and 130 become, and vice versa. The stack
section 1s largely divided 1nto a system stack section 130 and
a user stack section 120, and the user stack section 120 1s
divided to be allocated to each of multi-threads. Each of the
multi-threads S, S,, S; and S, 1s divided into a data section
and a non-data section. Data sections X,, X,, X5, and X, are
memory regions where stack data has ever been contained in
the entire stack space, and non-data sections v, v,, v5, and y,,
are sections that do not include the stack data yet.

The non-data section may be an section excluding the data
section from the entire stack section. The size of the non-data
section should be determined by taking 1nto account the size
of the data section. When the size of the non-data section 1s
extremely large, considerable waste of a stack memory
occurs, and when 1t 1s extremely small, a stack overtlow may
occur. Generally, the appropriate size of the non-data section
may be about 10% to 20% of the size of the data section.

FIG. 2 illustrates a process of performing a method of
dynamically reallocating a thread stack according to an exem-
plary embodiment of the present invention. As illustrated in
FIG. 2, during execution of a program, a tick interrupt occurs
periodically. The tick interrupt 1s a timer interrupt that occurs
at periodic intervals. Whenever the tick interrupt occurs peri-
odically, an interrupt service routine performs reallocation of
a thread stack.

To be specific, 1n step 210, the sizes of the data and non-
data sections of each thread stack are calculated. After the size

US 7,930,510 B2

3

of the data section 1s measured, the size of the data section
may be deducted from the entire stack size to calculate the
s1ze ol the non-data section.

In the next step 220, the size of the data section of each
thread stack is taken into account to determine the new size of >
the non-data section. Since the data section 1s an section in
which data 1s actually stored, the data section cannot be
adjusted. Therefore, the size of the entire stack may be con-
trolled by adjusting the size of the non-data section only.

When the size of the non-data section 1s extremely small, it
should be larger, and when 1t 1s extremely large, 1t should be
smaller. The optimal size of the non-data section varies
depending on an application, and thus 1t 1s not easily deter-
mined. According to an exemplary embodiment of the present
invention, the optimal size of the non-data section may be
determined by taking into account the following:

(1) A new size of a non-data section should be determined
with reference to the current size of a data section. When the
current size of the data section 1s large, 1t 1s necessary to 2g
enlarge the non-data section. (For example, 1n the exemplary
embodiment, the size of the non-data section may be deter-
mined to be about 10% to 20% of the size of the data section);

(2) The new size of the non-data section should be equal to
or greater than a predetermined threshold value. Generally, 25
when a certain function 1s called, data corresponding to the
number of specific bytes 1s stored 1n a stack, for example,
current register values should be stored 1n the stack; and

(3) When the current size of the non-data section 1is
extremely small, it 1s necessary to enlarge 1t, and when 1t 1s
extremely large, 1t 1s necessary to reduce it. However, the
occurrence of stack overtlow should be considered while the
s1ze 1s reduced.

Finally, 1n step 230, the s1ze of the non-data section of each
thread stack should be re-adjusted as determined 1n step 220.
The adjustment of the size of the non-data section 1s sequen-
tially performed from a lower stack to a higher stack, and 1s
performed by transierring a data section of a stack to a higher
memory region or to a lower memory region. At this time, the 49

stack data should not be damaged, and the occurrence of
overhead should be minimized.

FI1G. 3 1llustrates an example of a process of reallocating a
stack according to an exemplary embodiment of the present
invention. In this example, 1t 1s assumed that there are four 45
threads, each of which has a thread stack having a size of 100
bytes. When thesizes of the data section and non-data section
of each thread stack are represented by (X, v,)(1<=1<=the
number of threads), the sizes of the data section and non-data
section of the four thread stacks may be represented as (30, 50
50), (80, 20), (60, 40), and (60, 40) as illustrated 1n (a) of FIG.

3. Also, it 1s assumed that the new size (y,, V-, V5, and y,) of

non-data sections of each thread stack i1s determined as (30,
60, 30 and 20) 1n the process of determining the new stack
s1ze. A process of changing to the non-data section having the 55
new size of the thread stack will be described as follows:

(1) The stack 1s extended toward lower addresses. There-
fore, size X, of a data section of Stack 1 1s not atffected by the
control of size y, of a non-data section of Stack 1, and thus
does not need to be changed; 60

(2) As 1llustrated 1n (b) of FIG. 3, to make size y, of the
non-data section of Stack 1 to 30 bytes, size x, of the data
section of Stack 2 1s decreased by 20 bytes (during this pro-
cess, size v, ol the non-data section of Stack 2 becomes 40
bytes); 65

(3) As 1illustrated 1n (¢) of FIG. 3, to make size y, of the
non-data section of Stack 2 to 60 bytes, size x; of the data

10

15

30

35

4

section of Stack 3 1s increased by 20 bytes (during this pro-
cess, size y, of the non-data section ot Stack 3 becomes 20
bytes);

(4) As 1llustrated 1n (d) of FIG. 3, to make size y; of the
non-data section of stack 3 to 30 bytes, size x, of the data
section of Stack 4 1s increased by 10 bytes (during this pro-
cess, size v, of the non-data section of Stack 4 becomes 30
bytes); and

(5) As 1llustrated in (e) of FIG. 3, size y, of the non-data
section of Stack 4 1s adjusted to 20 bytes.

When transferring size x, of the data section of Stack 2 to
a lower section 1n the above-mentioned process (2), it may be
shown that the data section of Stack 1 having size x, pulls the
data section of Stack 2 having size x,. Similarly, 1n the pro-
cesses (3) and (4), 1t may be shown that the data section
having size x, pushes the data section having size x._ ;.

In conclusion, defining Ay =y.-v,, when Ay, =0, it is unnec-
essary to transier size x_,. When Ay >0, the data section
having size X, pushes the data section having size x._, by Ay,
(represented by Push(x,_ ,, Ay,)). Similarly, when Ay <0, 1t 1s
shown that the data section having size X, pulls the data
section having size x., , by Ay, (represented by Pull(x,_ ,,-
Ay,)).

While overlap with a neighboring data section does not
occur in the process of transierring the data section 1n FIG. 3,
1t may occur 1n some cases.

FIG. 4 1llustrates a case when overlap with a data section
occurs 1n the process of reallocating a stack. As 1llustrated 1n
(a) o FI1G. 4, 1t 1s assumed that (x,,y,)=(60,20), (x,,y,)=(80,
20), (X5,v5)=(350,60) and (x,,y,)=(50,60) and the sizes (v, V-,

y_3:-5111d y_4) of non-data sections of stacks are determined as

I+ 1

(50, 40, 30 and 50) in the process of determiming the new size
of a stack. Here, since Ay, 1s 30 bytes, Push(x,, 30) 1s needed
for y, to be 50 bytes. However, when the data section having

s1Z€ X, 1s transterred to a higher memory region by 30 bytes,
a data section having size X, 1s damaged by 10 bytes so that an
overlap problem occurs. Therefore, to prevent the overlap
problem, the data section having size s, should be transterred
to a higher region first, and then the data section having size
X, should be transterred upward. When the same 1s applied to
X, and x,, the push operation should be recursively per-
formed.

A process of allocating a stack in consideration of the
overlap problem will be described below with reference to
FIG. 4.

(1) Betore performing Push(x,, 30), to make size y, of a
non-data section of a lower stack to 50 bytes, the data section
having size X, pushes the data section having size x, by
S0(Ay,+Ay,) bytes. When the push operation is performed, vy,
becomes 70 bytes as 1llustrated 1n (b) of FIG. 4.

(2) Now, Push(x,, 30) 1s performed. Even 1f the data section
having size x; pushes the data section having size X, by 30
bytes, the overlap problem does not occur between x, and x,.
After Push(x,, 30) 1s performed, v, becomes 50 bytes, and vy,
becomes 40 bytes, as 1llustrated 1n (¢) of FIG. 4.

(3) Although Push(x,, 20) 1s performed to make y, to 30
bytes, the overlap problem does not occur (refer to (d) of FIG.
4).

(4) vy, 1s adjusted to 50 bytes (refer to (¢) of FIG. 4).

As described above, when the allocation of a stack 1s per-
tformed, whether or not the overlap problem occurs should be
taken 1nto account before performing the push operation on a
data section. The stack allocation, 1n which the overlap prob-

lem 1s taken into account, will be described below 1n more
detail with reference to FIG. 5.

US 7,930,510 B2

S

FIG. 5 illustrates a stack allocation algorithm according to
an exemplary embodiment of the present invention. As 1llus-
trated, 1t 1s observed that when the overlap problem occurs, a
function PushPull(x,_ ,,Ay,) 1s repeatedly performed. A func-
tion PushPull(x._,,Ay.) serves to perform the combination of
pull and push operations with respect to X, 1n consideration of
the overlap problem. To be specific, PushPull(x,_ ,,Ay,) may
be represented as follows.

(Pull(X;.,, —Ay;), if Ay; <0
Push(X;,, Ay;), 1if Ay; >0, Ay; = y; +1
i 3
PushPull X;,\, Ay;) = Push[XHl,, > Ay,
r=i /
Push(X;,, Ay;), 1L Ay; >0, Ay; > vy; +1
k do nothing, if Ay; =0

That 1s,

(1) When a difference Ay, between the current size of a data
section of the i” stack and the new size of a non-data section
is less than 0, a data section of the i” stack having size x, pulls
a data section of the i+1? stack having size (x,.,) by Ay, (i.e.,
X, 1s transferred to a lower memory section by Ay,).

(2) When the difference Ay, between the current size of the
data section of the corresponding stack and the new size of the
non-data section exceeds O, but 1s equal to or less than y,_,, it
1s determined that the overlap problem does not occur, and
thus the data section having size X, pushes the data section
having size x._, by Ay, (1.e., X, , 1s transierred to a higher
memory region by Ay,).

(3) However, when the difference Ay, between the current
s1ze of the data section of the corresponding stack and the new
s1ze of the non-data section exceeds both 0 and vy, ,, 1t 1s
determined that the overlap problem occurs when the data
section having size x._,; 1s pushed by Ay.. Therefore, to pre-
vent the overlap problem, a series of push operations with
respect to one or more data sections of higher stacks should be
performed. When 1t 1s assumed that the overlap problem does
not occur in size (x,.k>=i1+2) of a data section of the k”” stack,
data sections of size X, to size X, allow the transfer without the
overlap problem. When 1t 1s assumed that the data section
having size x, push s the data section having size x,_,, a
memory space to be pushed 1s

E ﬁy;.

=i

A

k
Push| x; 41, Z Ay;

/

Therefore, 1s performed.

The present invention may be provided as one or more
computer-readable recording media implemented on one or
more products. The products may be a tloppy disk, a hard
disk, a CD ROM, a flash memory card, a PROM, a RAM, a
ROM or a magnetic tape. Generally, a computer-readable
program may be implemented using an arbitrary program-
ming language. Examples of available languages imclude C,
C*" and JAVA.

As described above, the amount of use of each thread stack
1s measured in the process of executing a program, and a stack
section 1s dynamically reallocated depending on the amount
of use of a stack in the present invention. As a result, a stack
space 1s more elficiently used 1n the present invention than in
a conventional method of statically reallocating a thread
stack.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

Further, since this method does not require such a compli-
cated process including source code analysis, it can be 1mple-
mented 1n a simple manner to accomplish a desired purpose.

In the drawings and specification, typical preferred
embodiments of the invention have been disclosed and,
although specific terms are employed, they are used 1n a
generic and descriptive sense only and not for purposes of
limitation. As for the scope of the invention, 1t 1s to be set forth
in the following claims. Therefore, it will be understood by
those of ordinary skill in the art that various changes in form
and details may be made therein without departing from the
spirit and scope of the present imvention as defined by the
tollowing claims.

What 1s claimed 1s:
1. A method of dynamically allocating a thread stack of
multi-threads in a multi-threaded operating system used in
wireless sensor node without a Memory Management Unut,
the method comprising the steps of:
measuring sizes ol data and non-data sections of the thread
stack with respect to each of the multi-threads;

determining a new size of the non-data section of the thread
stack based on the size of the data section of the thread
stack measured with respect to each of the multi-threads;
and

adjusting the size ol the non-data section of the thread stack

to the new size.

2. The method of claim 1, wherein the method 1s performed
at a sensor node.

3. The method of claim 1, wherein the method 1s performed
whenever a tick interrupt occurs.

4. The method of claim 1, wherein the new size of the
non-data section of the thread stack 1s determined to be equal
to or greater than a predetermined threshold value.

5. The method of claim 1, wherein the new size of the
non-data section 1s determined to be 10% to 20% of the size
ol the data section.

6. The method of claim 1, wherein the step of adjusting the
s1ze ol the non-data section of the thread stack is sequentially
performed from a lower stack to a higher stack.

7. The method of claim 6, wherein when there 1s a differ-
ence between the new size of a non-data section of a lower
stack and the current size of a non-date section, the step of
adjusting the size of the non-data section of the thread stack
comprises the step of transferring a data section of a higher
stack, the higher stack being adjacent to the lower stack, to a
higher memory region or a lower memory region by the
difference.

8. The method of claim 7, wherein when the difference 1s
less than O, the data section of the adjacent higher stack is
transierred to a lower memory region by the difference.

9. The method of claim 7, wherein when the difference
exceeds 0, the data section of the adjacent higher stack is
transierred to a higher memory region by the difference.

10. The method of claim 9, wherein the step of adjusting
the size of the non-data section of the thread stack further
comprises the steps of:

determiming whether or not an overlap occurs between

stacks adjacent to each other before transterring the data
section of the adjacent higher stack to a higher memory
region; and

transferring one or more data sections of higher stacks to a

higher memory region when it 1s determined that the
overlap occurs.

11. The method of claim 10, wherein when the difference
exceeds the size of the non-data section of the higher stack

US 7,930,510 B2

7

adjacent to the lower stack, it 1s determined that the overlap
OCCUrs.

12. The method of claim 1, wherein the multi-threaded
operating system includes a user stack and a system stack, and
the user stack 1s divided to be allocated to each of the multi-

threads.

8

13. A computer-readable recording medium, 1n which a
computer program for performing a method of claim 1 1s
recorded.

	Front Page
	Drawings
	Specification
	Claims

