US007925822B2
12 United States Patent (10) Patent No.: US 7,925,822 B2
Mosek 45) Date of Patent: Apr. 12, 2011
(54) ERASE COUNT RECOVERY 7,657,701 B2* 2/2010 Shanmuganathan ... 711/103
7,690,031 B2* 3/2010 Maetal.ooooiiiniinnnn. 726/9
_ ; : 2004/0083405 Al1* 4/2004 Changetal. 714/24
(75) Inventor: Amir Mosek, Tel Aviv (IL) 2004/0107377 AL* 6/2004 Wellscovvveevvrreerreenn, 713/500
_ _ 2004/0177212 Al1* 9/2004 Changetal. 711/103
(73) Assignee: SanDisk IL Ltd, Kfar Saba (IL) 2005/0108491 ALl* 5/2005 Wong etal. ..co.coocvvn..... 711/167
2005/0204187 Al* 9/2005 Leeetal.ccoooviniininnn... 714/8
(*) Notice: Subject to any disclaimer, the term of this 2007/0106919 A ¥ 5/2007 Changetal. 713/300
patent 1s extended or adjusted under 35 388;/// 83%%23(1) i: 12/%88; gﬂnzktﬂ etal. o ;(1) %/// g
1 P4 1 1 L0 R
U.8.C. 154(b) by 505 days. 2008/0082736 Al* 4/2008 Chow etal. 711/103
2008/0276038 Al* 11/2008 Tanakaetal. 711/103
(21) Appl. No.: 12/023,090 2009/0089485 AL1* 4/2009 Yehcccocovivviirennnan. 711/103
2009/0248962 Al* 10/2009 Kmmetal. 711/103
22) Filed: Jan. 31, 2008
(22) 7 OTHER PUBLICATIONS
(65) Prior Publication Data “XSR1.5 Wear Leveling Application Note”, May 2007, Flash Soft-
US 2009/0198869 A 1 Aug. 6, 2009 ?ﬁ.f.z?rel(}zr)o:p, Samsung Electronics Co., Ltd, Version 1.0, 4 pages (pp.
1-11, 1-2).
(51) Int. CI. H * cited by examiner
GO6F 12/00 (2006.01)
GO6F 13/00 (2006'O:~) Primary Examiner — Matt Kim
GO6E 15/28 (2006.01) B Assistant Examiner — Matthew R Chrzanowski
(52) US.CL .., 711/103; 711/E12.008 (74) Attorney, Agent, or Firm — Martine Penilla &
(58) Field of Classification Search None Gencarella, LLP
See application file for complete search history.
(37) ABSTRACT
(56) References Cited o
An erase count of a tlash memory block which1s lost, e.g., due
U S PATENT DOCUMENTS to power failure 1s updated or replaced by using known erase
5568493 A * 10/1996 Tou ef al 265/185.33 counts of other blocks of the flash memory. A flash manage-
5:531:723 A % 19/1906 Hasbun et al 711/103 ment algorithm assfigns a new erase count value instead of the
5,734,816 A * 3/1998 Niijimaetal.cccouven...... 714/8 lost one based on either a maximum value, an average value or
6,687,325 Bl * 2/2004 Wells .cooooveeiiviiiniiiiennn, 377/26 a value combining the maximum value of the known erase
;aggga?gi g% : igl//{ 3882 glﬁaﬂg ft i'ﬂl *************** 3657/} é/s I (1)% counts and some tolerance value. The known values may be
085, enetal. - - -
7085341 B2* 82006 Wells woovvo 7776 obtained from wear leveling data or from a stored erase his
7,181,611 B2* 2/2007 Changetal. 713/100 tory.
7,287,118 B2* 10/2007 Changetal. 711/103
7,400,492 B2* 82008 Tanakaetal. 711/103 26 Claims, 4 Drawing Sheets

— —

100

Receive command to erase block 1

!

Mo Is there a valid

count? 102

Perform erase count
recQvery
106

T

Yes
Erase

v

Calculate best candidate

block for erase
104

U.S. Patent Apr. 12, 2011 Sheet 1 of 4 US 7,925,822 B2

Receive command to erase block 1
100

/\ ver
Is there a valid erase
count? 102

Perform erase count Calculate best candidate
recovery block for erase

136 104

——— —— — ' e P A A L A R ——

FlG. |

U.S. Patent Apr. 12, 2011 Sheet 2 of 4 US 7,925,822 B2

| Obtain the erase count value of each block
200

Determine a maximum value from the

known erase count values
202

Set the erase count of block 1 to the

maximum value
204

G 2

U.S. Patent Apr. 12, 2011 Sheet 3 of 4 US 7,925,822 B2

Obtain the erase count value of eachblock
300

= el e o T

Calculate an average value from the known
erase count values

302

Set the erase count of block 1 to the average

value
304

FI1G, 3

U.S. Patent

FIG. 4

Apr. 12,2011 Sheet 4 of 4 US 7,925,822 B2

Obtain the erase count value of each block
400

Determine a maximum value from the

known erase count values
A()?

Add a tolerance value to the maximum

value
404

Set the erase count of block 1 to the sum
of the maximum value and the
tolerance value

406

US 7,925,822 B2

1
ERASE COUNT RECOVERY

FIELD OF THE INVENTION

The mvention relates 1n general to data storage devices and
methods for an Erase operation 1n tlash memories, and more
particularly to methods of updating a lost or mvalid erase
count of a given block of a tlash memory.

BACKGROUND OF THE INVENTION

Flash memory devices (or simply “flash devices™) are well
known 1n the art. Such devices may be used by a host system
for storing data in flash media, which may be of NOR or
NAND type. The operation of flash memory devices 1s typi-
cally controlled (managed) by a microprocessor-based con-
troller with the help of a non volatile random access memory
such as ROM/NOR and, in some cases, of a volatile random
access memory such as RAM, DRAM or PSRAM. The flash
device and the host system communicate via a communica-
tion port in the flash device. The components of the flash
device are typically housed together in a common housing.

The controller may perform read operations, write opera-
tions and erase operations on the flash media. Exemplarily,
NAND flash media are typically written in units called
“pages”’, each of which typically includes between 512 bytes
and 2048 bytes, and are typically erased i units called
“blocks™, each of which typically includes between 16 and 64
pages. After a block 1s erased by the tlash management algo-
rithm, 1t 1s normally marked immediately with an “erase
mark™ and an “‘erase count” for that block 1s immediately
updated by a counter (by the tlash management algorithm).
The erase count indicates the number of erase events per-
formed on each block. This count 1s important, as too many
erase operations performed on a given block lead to wear. In
order to prevent too much wear of a particular block, wear-
leveling algorithms are used to try and distribute the Frase
operations more or less evenly among the blocks.

The erase count of a specific block can be stored 1n the
block 1tself (reserved area) or 1n another flash area (such as in
a table that stores the erase counts of all blocks 1n the flash
memory).

It a power loss (power failure) occurs between the erase
operation and the erase count update operation, the flash
manager (controller) loses the erase count of the particular
block, as explained below. A typical process of updating an
erase count of an erased block 1s as follows: a) the existing
erase count 1s read 1nto a volatile memory (e.g. RAM); b) the
erase count 1n the RAM 1s incremented by 1; and ¢) the new
erase count 1s written into the erased block. A power failure
may cause the loss or invalidation of the erase count at any
stage of this updating process, since during the process the
flash manager 1s typically using and relying on an intermedi-
ate erase count stored 1n a volatile memory. By “invalid erase
count” 1s meant an erase count whose check sum (CRC) 1s
incorrect (1n some cases the erase count 1s stored with 1ts
CRC); an erase count that exceeds a maximum erase count
number (“maximum erase count” being defined, e.g., by the
flash memory manufacturer or by a wear leveling algorithm);
or an erase count that 1s out of the range of the “erase count
tolerance.”) Example detailed scenarios whereby an erase
count may become lost or invalidated are as follows:

1. When the tlash manager (using a flash management
algorithm) needs to erase a block, 1t reads the erase count of

10

15

20

25

30

35

40

45

50

55

60

65

2

the block to be erased from the flash media and copies 1t to a
volatile memory (RAM or DRAM). The tlash manager then
erases the block, the erase count 1s incremented and the erase
count checksum 1s calculated by the flash manager (which
stores the erase count and the erase count checksum in the
volatile memory). The tlash manager then aims to write the
updated erase count and the checksum 1nto the erased block.
During this time, 1.e., prior to writing or during writing, 1f
there 1s a power failure, the erase count and/or the checksum
may be only partially written. When the flash manager reads
the block erase count and tries to verity it with the checksum,
it will find a mismatch.

2. Another scenario 1s that at least one of the erase count
bits has been tlipped due to the fact that the flash manager has
not refreshed the block. When a block 1s not erased for a
period of time specified by the tflash manufacturer, the block’s
bits are tlipped. Consequently, 1t 1s required that 1n every such
period of time, every block needs to be erased in order to
avoid the situation of bit thps. When such a block (that stores
data and has not been erased for some time) 1s read by the flash
algorithm and 1ts erase count parameter bits have been
tlipped, the erase count will not match the checksum that 1s
also stored in the flash. In this case the flash algorithm may
consider the erase count as invalid. Another situation of
invalid erase count 1s when the bits of the checksum have been
tlipped. In this case the erase count will not match the check-
sum and thus the erase count will be considered an mvalid
erase count.

Existing approaches to overcome the problem of lost or
invalid erase counts include, first, marking the block whose
erase count 1s lost/invalid as a ““bad” block, 1.e. one that cannot
be written too, and, second, defining the block whose erase
count 1s lost/invalid as one that has not been erased yet (count
set to 0). Both of these approaches have disadvantages, the
first quickly leading to too many “bad” blocks, and the second
being too risky.

A typical prior art method operates as follows. In a first
step, the flash manager recerves a command to erase a block.
Next, the flash manager checks the counter of an erasable
block 1. IT the erase count 1s found, the flash manager deter-
mines the best block to erase in the memory (for example,
using a wear leveling procedure, as 1s well known 1n the art).
If an erase count 1s not found, the flash manager assigns a zero
erase count to block 1 or marks the block as a bad block, and
then proceeds to determine the best block to erase.

Accordingly, there 1s a widely recognized need for, and 1t
would be highly advantageous to have, a method of updating
or replacing a lost or 1nvalid erase count of a given block of a
flash memory, which would overcome the limitations of the
prior art.

SUMMARY OF THE INVENTION

The present inventor provides a method of updating a lost
or mvalid erase count of a given block which includes the
steps of obtaining a new erase count for the given block using,
known erase counts of other blocks of the flash memory and
assigning the new erase count to the given block.

In some embodiments, the step of obtaining includes cal-
culating an average value of the known erase counts and
setting the new erase count to the average value.

In some embodiments, the step of obtaining includes deter-
mining a maximum value of the known erase counts and
setting the new erase count to the maximum value.

US 7,925,822 B2

3

In some embodiments, the step of obtaining includes deter-
mimng a maximum value of the known erase counts and
setting the new erase count to a sum of the obtained maximum
value and a value of an erase count tolerance.

In some embodiments, the average value or the maximum
value 1s obtained using a wear-leveling algorithm.

In some embodiments, the average value or the maximum
value 1s obtained using an erase history.

In some embodiments, the wear leveling algorithm 1s run
on a platform selected from the group consisting of a flash
memory device, a host device and a network server.

In some embodiments, the step of obtaining 1s performed in
response to a power failure due to which a previous erase
count of the given block 1s lost.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention 1s herein described, by way of example only,
with reference to the accompanying drawings, wherein:

FIG. 1 shows a flow chart of a method according to an
example embodiment;

FI1G. 2 shows sub-steps ol the erase count recovery and new
erase count setting procedures for a block 1 some embodi-
ments;

FI1G. 3 shows sub-steps ol the erase count recovery and new

erase count setting procedures for a block in other embodi-
ments;
FI1G. 4 shows sub-steps ol the erase count recovery and new

erase count setting procedures for a block 1n yet other
embodiments.

DETAILED DESCRIPTION OF THE INVENTION

According to an example embodiment, a flash manager
using a flash management algorithm obtains a new erase
count for a block for which the erase count was lost, using
known erase counts of other blocks of the flash memory, and
assigns the new erase count to the block. In some embodi-
ments, the flash management algorithm performs wear level-
ing (and 1s also referred to as a wear leveling algorithm) and
the known erase counts may be obtained from wear leveling
information. The flash management algorithm may be
executed on the flash memory device processor/controller or
on another device (which 1s not a flash device). The other
device may be, ¢.g., a host side flash controller, a host side
volatile memory (“VM”, exemplarily a RAM or DRAM) or a
network server to which the flash device 1s operationally
connected. The flash management algorithm typically uses a
volatile memory to store an mtermediate erase count. This
volatile memory may but need not be located independently
of the flash memory and/or of the location from which the
flash management algorithm 1s executed (for example, the
volatile memory may but need not be located on the host
device RAM/DRM, or on the network server).

Obtaining known erase counts of blocks of a flash memory
from wear leveling information may be performed as follows.
When the flash manager needs to erase (according to the flash
management algorithm) a block, 1t reads (from a specific area
of the block that 1s reserved for storing the erase count) the
erase count of the block to be erased and copies it to a volatile
memory (RAM or DRAM). The flash manager then erases the
block, increments the erase count and calculates the erase
count checksum. The flash manager then stores the incre-
mented (updated) erase count and the calculated erase count
checksum in the volatile memory, and then aims to write the
updated erase count and the erase count checksum into the

10

15

20

25

30

35

40

45

50

55

60

65

4

erased block. This way of obtaining known erase counts from
wear leveling information 1s known to those of skill in the art.

As an alternative to obtaining the known erase counts from
wear leveling mformation, the known erase counts may be
obtained from an erase history, which may be stored, e.g., 1n
a logical or physical area dedicated for that purpose, on the
flash memory device, on a host device to which the flash
memory device 1s operatively connectable or on a network to
which both the host device and the tlash memory device are
operatively connectable. The logical or physical area dedi-
cated to storing erase history 1s, €.g., a table in which every
table entry 1s reserved for a specific physical block, e.g., entry
#n 1s dedicated for erase block #n. This dedicated area may
consist of more than one block. Obtaining known erase
counts of blocks of a flash memory from an erase history may
be performed as follows. When the flash manager needs to
erase (according to the tlash management algorithm) a block,
it reads (from the erase history) the erase count of the block to
be erased and copies 1t to a volatile memory (RAM or
DRAM). The flash manager then erases the block, increments
the erase count 1n the volatile memory (RAM or DRAM) and
calculates the erase count checksum. The flash manager then
stores the incremented (updated) erase count and the calcu-
lated erase count checksum 1n the volatile memory and then
aims to write the updated erase count and the erase count
checksum into the erased block. This way of obtaiming known
erase counts from an erase history 1s known to those of skill in
the art.

FIG. 1 shows a flow chart of a method 1nvolving a flash
management algorithm executed by a tlash manager, accord-
ing to an example embodiment. In a first step 100, the flash
manager receives a command to erase a block. In step 102, the
flash manager checks the counter of an erasable block 1. IT a
valid erase count 1s found (Yes), the flash manager determines
the best block to erase in the memory (for example, using a
wear leveling procedure, as 1s well known 1n the art) 1n step
104. IT a valid erase count 1s not found (No), the flash manager
initiates an erase count recovery procedure for block 1 as
described below and sets a new erase count value to this block
in step 106, aiter which the algorithm proceeds to step 104 of
selecting the best candidate to be erased.

FIG. 2 shows sub-steps of the erase count recovery and new
erase count setting procedures for block 1 1n step 106 1n some
embodiments. The flash manager obtains the erase count
value of each block of the memory 1n step 200. The ways 1n
which this may be performed, using wear leveling informa-
tion or using an erase history, has been described above. The
flash manager then determines a maximum value from the
known erase count values 1n step 202 and sets the erase count
of block 1 to the maximum value 1n step 204. In some embodi-
ments, the maximum value may be obtained from wear lev-
cling data, obtained through the flash management algorithm.
Determining the maximum value from wear leveling data
may be performed by the following operations.

When the flash manager finds that the erase count 1s not
valid, 1t needs to determine the maximum block erase count
value 1n the flash. One method of determining the maximum
erase count 1s, upon detection of an mvalid erase count of a
block that 1s aimed to be erased, to read the erase count values
of all blocks sequentially (from wear leveling information).
The flash manager stores a temporary parameter that includes
the maximum value of an erase count of the read blocks.
Herein, this parameter 1s called “temp max erase count™. Prior
to start reading the block erase count values sequentially, the
flash manager sets the value of the temp max erase count to 0.

US 7,925,822 B2

S

The flash manager then starts to read sequentially all the erase
counts. When 1t finds that a currently read block erase count is
larger than the temp max erase count value, 1t updates the
temp max erase count with the currently read block erase
count value. The process of determining the maximum erase
count 1s completed after the flash manager reads the last block
erase count and compares 1t to the temp max erase count.

Another method of determining the maximum erase count
1s to first perform the previous determination of the maximum
erase count just once. This operation may be performed by the
flash management algorithm only between the events of a
power up and the first time it needs to erase a block. After the
determination 1s performed once, every time the flash man-
ager completes the erase operation of a block, 1t checks 1f the
new updated erase count of the erased block i1s larger than the
temp max erase count. IT1t1s larger, the flash manager updates
the temp max erase count with the value of the erase count of
the block that has just been erased. All of these operations are
known to those of skill in the art. In other embodiments, the
maximum value may be determined from erase history data
that may be stored, e.g., on the flash memory device, on the
host device or on the network server to which both the host
device and the flash memory device are operatively connect-
able. Determining the maximum value from erase history
data may be performed as described above, but the retrieving
ol the erase count values 1s done from the erase history rather
than from wear leveling information.

FIG. 3 shows sub-steps of the erase count recovery and new
erase count setting procedures for block 11n step 106 1n other
embodiments. The flash manager obtains the erase count
value of each block of the memory 1n step 300. The ways in
which this may be performed, using wear leveling informa-
tion or using an erase history, has been described above. The
flash manager then calculates an average value from the
known erase count values 1n step 302 and sets the erase count
of block 1 to the average value 1n step 304. One method of
calculating the average erase count 1s to read the erase count
values of all blocks, add all values to a total erase count, divide
the total erase count by the number of blocks 1n the flash, and
store the result 1n a temporary average erase count (“temp
average erase count”) in a volatile memory. Another method
of calculating the average erase count includes performing
steps 300-304 only once, between the events ol a power up
and the first time the flash management algorithm needs to
erase a block. After the calculation 1s done once, the average
erase count 1s updated every time a block 1s erased as follows:
every time the flash management erases a block, it multiplies
the value stored 1n the temp average erase count by the num-
ber of blocks in the flash, yielding a “product”. The product
value 1s incremented by one, and the new incremented value
1s divided by the number of blocks 1n the tlash and then stored
back 1n the temp average erase count. All of these operations
are known to those of skill 1n the art.

An example for the latter method for calculating an average
erase count value 1s given next: Assume we have 4 blocks 1n
the flash. Assume two blocks have each an erase count of 6
and two blocks have each an erase count of 8. The average
erase count value calculated once 1s (6+6+8+8)/4=7. This
number 1s stored as the temp average erase count. Assume one
block (say with an erase count of 6) 1s erased. The temp
average erase count (7) 1s then multiplied by the number of
blocks (4) to get a product=28. The product is then incre-
mented by 1, 1.¢. 28+1=29. A new average erase count 1s then
calculated by dividing the incremented product by the num-
ber of blocks 29/4=7.25

As with the maximum value, the average value may be
obtained from erase history data that may be stored, e.g., on

10

15

20

25

30

35

40

45

50

55

60

65

6

the flash memory device, on the host device or on the network
server to which both the host device and the flash memory
device are operatively connectable. Calculating the average
value from erase history data may be performed as described
above, but retrieving the erase count values from the erase
history rather than from wear leveling information.

FIG. 4 shows sub-steps of the erase count recovery and new
erase count setting procedures for block 1 1n step 206 1n yet
other embodiments. The flash manager obtains the erase
count value of each block of the memory in step 400. The
ways 1n which this may be performed, using wear leveling
information or using an erase history, has been described
above. The tlash manager then determines a maximum value
from the known erase count values 1n step 402, adds to this
value a tolerance value 1n step 404, and sets the erase count of
block 1 to the sum of the maximum value and the tolerance
value 1n step 406. In some embodiments, the maximum value
may be determined from wear leveling data through the flash
management algorithm, as was described above with refer-
ence to FIG. 3. In other embodiments, the maximum value
may be determined from erase history data that may be stored,
¢.g., on the flash memory device, on the host device, or on the
network to which both the host device and the tlash memory
device are operatively connectable, as was described above
with reference to FIG. 3. This algorithm may employ an
assumed tolerance value such as an erase count value (e.g.,
10) or a percentage of the maximum value (e.g., 10%). The
tolerance value employed may be varied over a suitable range
of values and types of values, as will be understood by one of
skill 1n the art.

Example: assume the known erase counts for five blocks
are as follows: 1000, 1100, 800, 1500, and 600. Using the

maximum value, the new erase count for a sixth block with a
lost erase count would be 1500. Using the average value or
another arithmetic mean value, the new value would be 1000.
Using the maximum value plus a tolerance of 10 percent
would be 1500+150=16350. Using the maximum value plus a
tolerance value of 10 would be 1510.

The scope of the invention includes the method of updating,
or replacing a lost or invalid erase count of a given block of a

flash memory, described above. The scope of the mvention
also includes a flash memory system comprising a flash
memory and a controller for the memory employing this
method of updating or replacing a lost or invalid erase count.
The scope of the mvention also includes a computing system
comprising a memory system employing this method of
updating or replacing a lost or invalid erase count. The scope
of the invention also includes a computing system comprising
a memory and a host computer employing this method of
updating or replacing a lost or invalid erase count, where no
dedicated memory controller 1s used. The scope of the mnven-
tion also includes a computer-readable storage medium bear-
ing code for implementing this method of updating or replac-
ing a lost or invalid erase count.

The software running an algorithm of the method of the
invention may be implemented either within a dedicated
memory controller that 1s part of the memory devices or
within a host computer that attaches directly to the memory
(with no intervening controller) and runs software that man-
ages the memory.

While the invention has been described with respect to a
limited number of embodiments, 1t will be appreciated that
many variations, modifications and other applications of the
invention may be made. Those skilled in the art will appreci-
ate that the mvention can be embodied by other forms and

US 7,925,822 B2

7

ways, within the scope of the invention. The embodiments
described herein should be considered as 1llustrative and not
restrictive.

What 1s claimed 1s:

1. A method of updating a lost or invalid erase count of a
given block of a flash memory, the method comprising the
steps of:

a. obtaining a new erase count for the given block of a flash
memory, using known erase counts of other blocks of the
flash memory; and

b. assigning the new erase count to the given block,

wherein the step of obtaining includes calculating an aver-
age value of the known erase counts and setting the new
erase count to the average value.

2. The method of claim 1, wherein the calculating an aver-
age value includes calculating an average value using a wear-
leveling algorithm.

3. The method of claim 2, wherein the wear leveling algo-
rithm 1s run on a platform selected from the group consisting,
of a flash memory device, a host device and a network server.

4. The method of claim 1, wherein the calculating an aver-
age value includes calculating an average value using an erase
history.

5. The method of claim 1, wherein the wear leveling algo-
rithm 1s run on a platform selected from the group consisting,
of a flash memory device, a host device and a network server.

6. The method of claim 1, wherein the step of obtaining 1s
performed 1n response to a power failure due to which a
previous erase count of the given block 1s lost.

7. A method of updating a lost or invalid erase count of a
given block of a flash memory, the method comprising the
steps of:

a. obtaining a new erase count for the given block of a flash
memory, using known erase counts of other blocks of the
flash memory; and

b. assigning the new erase count to the given block, wherein
the step of obtaining includes determining a maximum
value of the known erase counts and setting the new
erase count to the maximum value.

8. The method of claim 7, wherein the determining a maxi-
mum value includes determiming a maximum value using a
wear-leveling algorithm.

9. The method of claim 8, wherein the wear leveling algo-
rithm 1s run on a platform selected from the group consisting
of a flash memory device, a host device and a network server.

10. The method of claim 7, wherein the determining a
maximum value includes determining a maximum value
using an erase history.

11. A method of updating a lost or invalid erase count of a
given block of a flash memory, the method comprising the
steps of:

a. obtaining a new erase count for the given block of a flash
memory, using known erase counts of other blocks of the
flash memory; and

b. assigning the new erase count to the given block, wherein
the step of obtaining includes determining a maximum
value of the known erase counts and setting the new
erase count to a sum of the obtained maximum value and
a value of an erase count tolerance.

12. The method of claim 11, wherein the determining a
maximum value includes determining a maximum value
using a wear-leveling algorithm.

13. The method of claim 11, wherein the determining a
maximum value includes determining a maximum value
using an erase history.

14. A non-transitory computer readable storage medium
having computer readable code embodied 1n the computer

10

15

20

25

30

35

40

45

50

55

60

65

8

readable storage medium, the computer readable code com-
prising instructions for updating a lost or mvalid erase count
of a given block of a flash memory, by:

a) obtaining a new erase count for the given block of a flash
memory, using known erase counts of other blocks ot the
flash memory; and

b) assigning the new erase count to the given block;

wherein the obtaining a new erase count for a given block
of a flash memory using known erase counts of other
blocks of the flash memory includes calculating an aver-
age value of the known erase counts, and wherein the
assigning the new erase count to the given block includes
setting the new erase count to the average value.

15. The computer readable storage medium of claim 14,
wherein the calculating an average value includes calculating
an average value using a wear-leveling algorithm.

16. The computer readable storage medium of claim 135,
wherein the wear leveling algorithm 1s run on a platform
selected from the group consisting of a flash memory device,
a host device and a network server.

17. The computer readable storage medium of claim 14,
wherein the calculating an average value includes calculating
an average value using an erase history.

18. The computer readable storage medium of claim 14,
wherein the obtaining a new erase count for a given block of
a flash memory using known erase counts of other blocks of
the flash memory 1s performed 1n response to a power failure
due to which a previous erase count of the given block 1s lost.

19. A non-transitory computer readable storage medium
having computer readable code embodied i the computer
readable storage medium, the computer readable code com-
prising instructions for updating a lost or invalid erase count
of a given block of a flash memory, by:

a) obtaining a new erase count for the given block of a flash
memory, using known erase counts of other blocks of the
flash memory; and

b) assigning the new erase count to the given block,
wherein the obtaining a new erase count for a given
block of a flash memory using known erase counts of
other blocks of the flash memory 1ncludes determining a
maximum value of the known erase counts, and wherein
the assigning the new erase count to the given block
includes setting the new erase count to the maximum
value.

20. The computer readable storage medium of claim 19,
wherein the determiming a maximum value includes deter-
mining a maximum value using a wear-leveling algorithm.

21. The computer readable storage medium of claim 20,
wherein the wear leveling algorithm 1s run on a platform
selected from the group consisting of a flash memory device,
a host device and a network server.

22. The computer readable storage medium of claim 19,
wherein the determiming a maximum value includes deter-
mining a maximum value using an erase history.

23. A non-transitory computer readable storage medium
having computer readable code embodied i the computer
readable storage medium, the computer readable code com-
prising instructions for updating a lost or mvalid erase count
ol a given block of a flash memory, by:

a) obtaining a new erase count for the given block of a flash

memory, using known erase counts of other blocks of the
flash memory; and

b) assigning the new erase count to the given block,
wherein the obtaining a new erase count for a given

US 7,925,822 B2

9

block of a flash memory using known erase counts of

other blocks of the flash memory includes determining a

maximum value of the known erase counts, and wherein

the assigning the new erase count to the given block

includes setting the new erase count to a sum of the

determined maximum value and a value of an erase
count tolerance.

24. The computer readable storage medium of claim 23,

wherein the determining a maximum value includes deter-

mimng a maximum value using a wear-leveling algorithm.

10

25. The computer readable storage medium of claim 23,
wherein the determining a maximum value includes deter-
mining a maximum value using an erase history.

26. The computer readable storage medium of claim 25,
wherein the wear leveling algorithm 1s run on a platform

selected from the group consisting of a flash memory device,
a host device and a network server.

	Front Page
	Drawings
	Specification
	Claims

