US007925064B2
12 United States Patent (10) Patent No.: US 7,925,064 B2
Cloutier et al. 45) Date of Patent: Apr. 12, 2011
(54) AUTOMATIC MULTI-DIMENSIONAL (56) References Cited
INTRAVASCULAR ULTRASOUND IMAGE
SEGMENTATION METHOD U.S. PATENT DOCUMENTS
: _ 4,794,931 A 171989 Yock ...ovvvvviiiiiiniiii, 600/439
(75) Inventors: Guy Cloutier, Repentigny (CA); 55590001 A 9/1996 Lobregt ... 382/256
Marie-Hélene Roy-Cardinal, Montreal 5,771,895 A 6/1998 SIaBEr ....o.vvvveveeerenennn. 600/462
(CA); Jean Meunier, Outremont (CA); 5,830,145 A 11/1998 Tenhoff ..........cc.cvvn.. 600/463
Gilles Soulez, Outremont (CA),, Eric 6,381,350 Bl 4/2002 Klingensmith et al. ...... 382/128
Therasse, Montréal (CA) 6,496,181 B1 12/2002 Bomeretal. ................. 345/167
(Continued)
(73) Assignees: Val-Chum, Limited Partnership,
Montreal, Quebec (CA); FOREIGN PATENT DOCUMENTS
Valorisation-Recherche, Limited EP 1727349 7/2007
Partnership, Montreal, Quebec (CA) (Continued)
( *) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS

patent 1s extended or adjusted under 35

U.S.C. 154(b) by 1101 days. Antiga et al. ,“Computational Geometry for Patient Specific Recon-

struction and Meshing of Blood Vessels from MR and CT
Anglography,” IEEE Transactions on Medical Imaging, 22:674-684,

21) Appl. No.: 10/579,381

1) Ppe. 0 2003.

(22) PCT Filed: Nov. 15, 2004 (Continued)
(86) PCT No.: PCT/CA2004/001970 Primary Examiner — Samir A Ahmed

Assistant Examiner — Atiba O Fitzpatrick

371 1 . .
3 (c)(1), (74) Attorney, Agent, or Firm — Fulbright & Jaworski L.L.P.

(2), (4) Date:  Feb. 6, 2007

(57) ABSTRACT
(87) PCIPub.No.. W02005/048190 The present invention generally relates to intravascular ultra-
PCT Pub. Date: May 26, 2005 sound (IVUS) 1mage segmentation methods, and 1s more
specifically concerned with an intravascular ultrasound
(65) Prior Publication Data image segmentation method for characterizing blood vessel

vascular layers. The proposed 1mage segmentation method
for estimating boundaries of layers 1n a multi-layered vessel
provides 1mage data which represent a plurality of 1mage

US 2007/0165916 Al Jul. 19, 2007

(30) Foreign Application Priority Data clements of the multi-layered vessel. The method also deter-
NOV. 13,2003 (CA) oo, 2449080  minesaplurality ofinitial interfaces corresponding to regions
of the image data to segment and further concurrently propa-

(51) Int.Cl. gates the 1nitial interfaces corresponding to the regions to
GO6K 9/00 (2006.01) segment. The method thereby allows to estimate the bound-

(52) US.ClL oo, 382/128  aries of the layers of the multi-layered vessel by propagating
(58) Field of Classification Search ......... 382/128-134: the 1mitial interfaces using a fast marching model based on a

198/920-925 356/39-49: 600/407—414 probability function which describes at least one characteris-

600/424-426: 345/581-618 tic of the image elements.
See application file for complete search history. 31 Claims, 14 Drawing Sheets

. nm'-m 0519

“Intima and
plaqtle

L
(T
P

':‘i:'h: ﬂ': A0 -... ‘ '. u )
% Surmunding Rt
Ussues QIR

H_" '




US 7,925,064 B2
Page 2

U.S. PATENT DOCUMENTS

6,718,193 B2  4/2004 Knoplioch et al. .......... 600/407
2003/0053667 Al  3/2003 Paragiosetal. ............. 382/128
2003/0118221 Al 6/2003 Deschamps et al. ......... 382/128
2003/0197704 Al 10/2003 Teketal. .ococovvoeverer.. 345/474
2004/0019267 Al 1/2004 Paragios et al. ............. 600/407
2004/0024315 Al 2/2004 Chalanaetal. .............. 600/443
2007/0216678 Al 9/2007 Rouetetal. ....ocooovnn..... 382/154

FOREIGN PATENT DOCUMENTS
EP 1306803 5/2003
JP 10-137238 5/1998
JP 2003-503141 1/2003
WO WO 99/13432 3/1999
WO WO 00/19904 4/2000
WO WO 03/041584 5/2003
WO WO 04/001671 12/2003
WO WO 2004/079654 9/2004
OTHER PUBLICATIONS

Boukerroui et al., “Segmentation of ultrasound 1mages- multiresolu-
tion 2D and 3D algorithm based on global and local staftistics,”

Pattern Recognition Letters, 24:779-790, 2003.

Bovenkamp et al., “Multi-Agent IVUS Image Interpretation,” SPIE
Proceedings: Medical Imaging 2003 Image Processing, 5032:619-
630, 2003.

Bruining et al., “ECG-gated versus nongated three-dimensional
intracoronary ultrasound analysis: implications for volumetric mea-
surements,” Catheterization and Cardiovascular Diagnosis, 43:254-
260, 1998.

Brusseau et al., “Fully Automatic Luminal Contour Segmentation 1n
Intracoronary Ultrasound Imaging- A Statistical Approach,” IEEE
Trans. Med. Imag., 23:554-566, 2004.

Cardinal et al., “Intravascular Ultrasound Image Segmentation: A
Fast-Marching Method,” Lecture Notes in Computer Science,
2879:432-439, 2003.

Chalana and Kim, “A Methodology for Evaluation of Boundary
Detection Algorithms on Medical Images,” IEEFE Trans. Med. Imag.,

16:642-652, 1997.

Colombo et al., “Intracoronary Stenting Without Anticoagulation
Accomplished With Intravascular Ultrasound Guidance,” Circula-
tion, 91:1676-1688, 1995.

De Korte et al., “Intravascular elasticity imaging using ultrasound:
feasibility studies in phantoms,” Ulfrasound Med. Biol.,23:735-746,
1997.

De Winter et al., “Retrospective Image-Based Gating of
Intracoronary Ultrasound Images for Improved Quantitative Analy-
sis: The Intelligate Method,” Characterization and Cardiovascular
Diagnosis, 61:84-94, 2004,

Delignon et al., “Estimation of Generalized Mixtures and Its Appli-
cation 1n Image Segmentation,” IEEE Transactions on Image Pro-
cessing, 6:1364-1375, 1997.

Dempster et al., “Maximum Likelithood from Incomplete Data viathe
EM Algorithm,” J. Roy. Stat. Soc. B, 39:1-38, 1977.

Dutt and Greenleaf, “Statistics of the log-compressed echo enve-
lope,” J. Acoust. Soc. Am., 99:3817-3825, 1996.

Gussenhoven et al., “Arterial Wall Characteristics Determined by
Intravascular Ultrasound Imaging: An in Vitro Study,” J. Am. Coll.
Cardiol., 14:947-952, 1989,

Haas et al., “Segmentation of 3D intravascular ultrasonic images
based on a random field model.” Ultrasound Med. Biol., 26:297-306,
2000.

Hagenaars et al., “Gamma radiation induces positive vascular remod-
cling after balloon angioplasty: a prospective, randomized
intravascular ultrasound scan study,” Jourrnal of Vascular Surgery,
36:318-324, 2002.

Han et al., “A Fast Minimal Path Active Contour Model,” [EEFE
Iransactions on Image Processing, 10:805-873, 2001.

Hastie et al., The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, Springer, New York, pp. 236-243, 2001.
Jain et al., “Deformable template models: A review,” Signal Process-
ing, 71:109-129, 1998,

Kallel et al., “Speckle Motion Artifact Under Tissue Rotation,” IEEE

Trans. Ultrason., Ferroelect., Freq. Contr., 41:105-122, 1994.
Klingensmith et al., “Evaluation of Three-Dimensional Segmenta-
tion Algorithms for the Identification of Luminal and Medial-
Adeventitial Borders in Intravascular Ultrasound Images,” IEEE
Trans. Med. Imag., 19:996-1011, 2000.

Koning et al., “Advanced contour detection for three-dimensional
intracoronary ultrasound: a validation- in vitro and in vivo,” Int. J.
Cardiovascular Imaging, 18:235-248, 2002,

Kovalski et al., “Three-dimensional automatic quantitative analysis
of intravascular ultrasound 1mages,” Ultrasound Med. Biol., 26:527 -
537, 2000,

Malladi et al., “Shape Modeling with Front Propagation: A Level Set
Approach,” IEEE Trans. Pattern Anal. Machine Intell., 17:158-175,
1995.

Maurice et al., “Adapting the Lagrangian speckle model estimator for
endovascular elastography: theory and validation with simulated
radio-frequency data,” J. Acoust. Soc. Am., 116:1276-1286, 2004.
Mignotte and Meunier, “A multiscale optimization approach for the
dynamic contour-based boundary detection 1ssue,” Computerized
Medical Imaging and Graphics, 25:265-275, 2001.

Mintz et al., “American College of Cardiology Clinical Expert Con-
sensus Document on Standards for Acquisition, Measurement and
Reporting of Intravascular Ultrasound Studies (IVUS). A report of
the American College of Cardiology Task Force on Clinical Expert
Consensus Documents.” J. Am. Coll. Cardiol., 37:1478-1492, 2001.
Mintz et al., “Atherosclerosis in angiographically “normal”coronary
artery reference segments: an intravascular ultrasound study with
clinical correlations,” J Am. Coll. Cardiol., 25:1479-1485, 1995.
Mojsilovic et al.,, “Automatic segmentation of intravascular
ultrasound 1mages: a texture-based approach,” Ann. Biomed. Eng.,
25:1059-1071, 1997.

Nadkarni et al., “Image-based Retrospective Cardiac Gating for
Three-Dimensional Intravascular Ultrasound Imaging,” SPIE Pro-
ceedings: Medical Imaging: Ultrasonic Imaging and Signal Process-
ing, 4687:276-284, 2002.

Nissen and Yock, “Intravascular Ultrasound: Novel Pathophysiologi-
cal Insights and Current Clinical Applications,” Circulation,
103:604-616, 2001.

Nissen, “Application of Intravascular Ultrasound to Characterize
Coronary Artery Disease and Assess the Progression or Regression of
Atherosclerosis,” Am. J. Cardiol., 89:24B-318, 2002.

Osher and Sethian, “Fronts Propagating with Curvature Dependent
Speed: Algorithms Based on Hamilton-Jacobi Formulations,” J.
Comput. Phys., 79:12-49, 1988.

Pieczynski, “Hidden Markov Fields and Iterative Conditional Esti-
mation,” Traitement du Signal, 11:141-153, 1994 (English Abstract).
Pujol et al., “Intravascular Ultrasound Images Vessel Characteriza-
tion using AdaBoost,” Lecture Notes in Computer Science, 2674:242-
251, 2003.

Sethian, “A fast marching level set method for monotonically advanc-
ing fronts,” Proceedings of the National Academy of the Sciences
USA, 93:1591-15935, 1996.

Sethian, In: Level Set Methods and Fast Marching Methods: Evolv-
ing Interfaces in Computational Geometry, Fluids Mechanics, Com-
puter Vision and Materials Science, 2”¢ ed., Cambridge University
Press, 1999.

Shankar, “A General Statistical Model for Ultrasonic Backscattering
from Tissues,” IEEE Transactions on Ultrasonics, Feroelectronics,
and Freq. Control, 47.727-736, 2000.

Shaw et al., “Determinants of Coronary Artery Compliance in Sub-
jects With and Without Angiographic Coronary Artery Disease,” JJ
American College of Cardiology, 39:1637-1643, 2002.

Sifakis et al., “Bayesin Level Sets for Image Segmentation,” J. Visual
Commun. Imag. Rep., 13:44-64, 2002.

Ta1 et al., “In vivo femoropopliteal arterial wall compliance in sub-
jects with and without lower limb vascular disease,” J. Vascular
Surgery, 30:936-945, 1999.

Takano et al., “Mechanical and Structural Characteristics of Vulner-
able Plaques: Analysis by Coronary Angloscopy and Intravascular
Ultrasound,” J American College of Cardiology, 38:99-104, 2001.
Von Birgelen et al., “ECG-Gated Three-dimensional Intravascular
Ultrasound,” Circulation, 96:2944-2952, 1997,



US 7,925,064 B2
Page 3

Von Birgelen et al., “Morphometric analysis in three-dimensional
intracoronary ultrasound: an in vitro and 1n vivo study performed
with a novel system for the contour detection of lumen and plaque,”
Am. Heart J., 132:516-527, 1996.

Wagner et al., “Statistics of Speckle in Ultrasound B-Scans,” IEEFE
Transactions on Sonics and Ultrasonics, 30:156-163, 1983.

Wear et al., “Statistical properties of estimates of signal-to-noise ratio
and number of scatterers per resolution cell,” Journal of the Acous-
tical Society of America, 102:635-641, 1997.

Weichert et al., “Virtual 3D IVUS wvessel model for intravascular
brachytherapy planning. I. 3D segmentation, reconstruction, and
visualization of coronary artery architecture and orientation,” Med.
Phys., 30:2530-2536, 2003.

Xu et al., “Image Segmentation Using Deformable Models,” Hand-
book of Medical Imaging, vol. 2: Medical Image Processing and
Analysis, Sonka and Fitzpatrick (eds.), SPIE Press, 2000.

Zhang et al., “Tissue Characterization in Intravascular Ultrasound
Images,” IEEE Trans. Med. Imag., 17:889-899, 1998.

Zhong et al., “Object Tracking Using Deformable Templates,” Sixth
International Conference on Computer Vision, pp. 410-445, 1998.
Zhu et al., “Retrieval of Cardiac Phase from IVUS Sequences,” SPIE

Proceedings: Medical Imaging. Ultrasonic Imaging and Signal Pro-
cessing, 5035:135-146, 2003.

Supplementary European Search Report, 1ssued 1in European Appli-
cation No. EP 04818371, dated May 30, 2008.

Buhler et al., “Geometric methods for vessel visualization and quan-
tification—A survey,” Technical Report VRVIS Research Center.,
Vienna Austria, http://www.vrvis.at/TR/2002/TR_VRVis_ 2002
035_ Full.pdf, 2002.

Rotger et al., “Multimodal registration of intravascular ultrasound
images and anglography,” Proceedings of the XX Congreso Annual
De La Sociedad Espanola De Ingenieria Biomedica, http://www.cvc,
uab.es/~petia/david_ zaragoza 2002 .pdf, 2002.

Zhu et al., “IVUS Image segmentation based on contrast,” Proceed-
ings of the SIOE—The International Society for Optical Engineering
SPIE-INT Soc. Opt. Eng. USA, 4684: 1721-1733, 2002,



U.S. Patent

Apr. 12,2011 Sheet 1 of 14

T 11:332:41 0509

- --|‘
- Pa

" Intima and

'r::.,..'..:‘;:}-‘;‘.;:hi.“; .,"-:‘ R ;ir&t; v n . "‘ L
ALY o lgta oM w3 UL e =t

% Surrolinding : 7
etissues

- a
F w

-
1

i L]

= B

[ ]

FIGURE 1

T 113319 D298

FIGURE 2

'l"‘l—.:l_—Ll Ll

ittt I S

oy

<0 1CO

FIGURE 3

— Lnen
- = {edla
-«.» InbMa and Plaque

»= = SuTzUnding TISSLOE
[ 1 VUS histocmam

e L‘-i el o ey, . i PR i

US 7,925,064 B2



US 7,925,064 B2

Sheet 2 of 14

Apr. 12,2011

U.S. Patent

B L RN TR R R TR

—ra

e ¥

LR o

L o ok )

L}

a0kl fmedes Tocad R L)

Ll B ]
FATY W AR WEE S

P . - . Lo
-.tli.-.....l_..-_....l.__._l...l-...a.._.._.r...._u_n__._..... -_ .J...-_l..._.lu

Tah Al AN L B 1T T

s o ol = S e s S A b mp e o big i i bt 8 AR U PRI ATETIT PTIT Y AN LT T s apt] L

v o

..R
ﬂw&ﬁi.ﬁnﬂﬂ‘f.

. g )
S et ety reeranr <o A

§2%

FIGURE 4

09 0661

24

*
-

ey

=dd .

.1...&,5.1!

L

o

FIGURE 5



U.S. Patent Apr. 12, 2011 Sheet 3 of 14 US 7,925,064 B2

Segmented contours {2)

S (1)

EE Dol b iF

in vivo

TR MY -
- e e
- ."\-k__#
S T )
: -t

.

FIGURE 6



U.S. Patent Apr. 12, 2011

oy
by

u
I A

[
re

¥
Bl '!|~... :_.'I-I-

-
"in

>
-
i

Ll
5
L)
-

X

" a'i.I.

; 'ur:ﬁ"

" l.'.b'-.- -y

T _.
P
3

L] ‘.l'

+41
L

FIGURE 7A FIGURE 7B

FIGURE 8A FIGURE 8B

]

b T

- - el 9
-* kS
,""r‘_-'-.
- W

!

Sheet 4 of 14

FIGURE 7C

FIGURE 8C

US 7,925,064 B2

FIGURE 7D

FIGURE 8D



U.S. Patent Apr. 12, 2011 Sheet 5 of 14 US 7,925,064 B2

FIGURE 9A FIGURE 9B FIGURE 9C

11:32011 0294 173311 0234 11:32011 0294

FIGURE 10A FIGURE 10B FIGURE 10C

FIGURE 11



US 7,925,064 B2

Sheet 6 of 14

Apr. 12, 2011

U.S. Patent

‘ L ]

P

iy, "
n __t-‘_.__il._

-
- _._..m..l...T\brl...._..r__

.-__ll. M

i -

..
RN T W Y
i II..-._ln..H.._I-.__-l_.-_ \
Jadeany vt

. .l.-l-___.lu..__.i i 3

-, .-—.lu
....u.!_p._,

L[
-_1___-..'. '.ﬁ.l1

e SELL I

- o=
..-_“_,: -'-lfi-

o gl -

+
1
L
“
!

. “-i

Ty
.a
- wt e
C S )
1 ]
LY

I.'-J'
4-.""!
-

T
....-
L]

-

]
*

a

FIGURE 12B

FIGURE 12A

136b

136d

132

130

FIGURE13B

FIGURE 13A



U.S. Patent Apr. 12, 2011 Sheet 7 of 14 US 7,925,064 B2

L e 10145143 0009
s . -

FIGURE14A FIGURE 14B FIGURE 14C FIGURE14D

150

FIGURE 15



U.S. Patent

Apr. 12,2011

0 2

q

Savrooth

FIGURE 16

FIGURE 17

Sheet 8 of 14

"t

aftifact

10

12

14

16

18

Posltion In he vessal (mm) or Frame acquisilion time (s)

US 7,925,064 B2

20



U.S. Patent Apr. 12, 2011 Sheet 9 of 14 US 7,925,064 B2

TAKING REFERENCE POINT A (FIGURE 5) ALONG
INITIALIZATION CONTOUR B (FIGURE 4)
ESTIMATING THE LUMEN BOUNDARY

171

TRANSPOSING REFERENCE POINT A ON THE 2D
IVUS FRAME TO HELP GENERATE INITIAL
INTERFACE

172

TRANSPOSING MORE THAN ONE REFERENCE
POINTS COMING FROM MORE THAN ONE
LONGITUDINAL PLANE ON THE 2D VUS FRAME

173

COMPUTING AND USING SLIGHTLY SHRUNK
SPLINES PASSING THROUGH REFERENCE POINTS
TO GENERATE THE INITIAL INTERFACES

174

MANUALLY GENERATING INITIALIZATION
CONTOURS IN A FEW LONGITUDINAL PLANES
CONTAINING IVUS DATA VOLUME INFORMATION TO
GENERATE THE INITIAL INTERFACES

175

INITIALIZING CONCURRENT SEGMENTATION OF
MULTIPLE VESSEL LAYERS BY MEANS OF THE
INITIAL INTERFACE

176

ALTERNATIVELY RESTARTING FROM ANY
PREVIOUS REFERENCE POINTS THE INITIAL
INTERFACE TO EXPLORE SECTIONS OF IVUS DATA
SERIES MORE DIFFICULT TO INTERPRET

177

FIGURE 18



U.S. Patent Apr. 12, 2011 Sheet 10 of 14 US 7,925,064 B2

ULTRASONIC TRANSDUCER TO AQUIRE

IVUS DATA SERIES 181

182
MEMORY TO STORE IVUS 2D IMAGES
183
CALCULATIOR TO RUN EM ALGORITHM
AND FAST MARCHING METHOD 184

FIGURE 19



U.S. Patent Apr. 12, 2011 Sheet 11 of 14 US 7,925,064 B2

UNDERSAMPLING THE IVUS IMAGE BY 2
191

MAPPING THE SEGMENTATION RESULTS OF THE
UNDERSAMPLED DATA INTO THE NEXT LEVEL OF
RESOLUTION

192

USING THE SEGMENTATION MAPPED RESULTS TO
INITIALIZE THE INTERFACE PROPAGATION AT THE
PRESENT RESOLUTION LEVEL

193

FIGURE 20

PERFORMING AT LOW RESOLUTION LEVEL A FAST
COARSE EXPLORATION OF A WIDE PROPAGATION
AREA TO BRING PROPAGATING INTERFACES

201

CLOSER TO DESIRED BOUNDARIES

REDUCING THE PROPAGATION AREA AT EACH

HIGHER RESOLUTION LEVEL 202

TO OVERCOME LOSS OF INFORMATION AT LOW
RESOLUTION LEVELS, USING A PDF-BASED
VELOCITY FUNCTION

203

FIGURE 21



U.S. Patent Apr. 12, 2011 Sheet 12 of 14 US 7,925,064 B2

STARTING THE INITIALIZATION PROCEDURE ON A
SMALL SUBSET OF 2D IVUS CONTIGUOUS FRAMES 211

SEARCHING A GENERALLY ELLIPTICAL RING
SHAPED REGION CORRESPONDING TO THE MEDIA 212

STRUCTURE

REDUCING THE SEARCH OF THE INITIAL LUMEN
INTERFACE TO THE INSIDE REGION OF THE MEDIA | 213

CALCULATING A LUMEN LIKELIHOOD MAP AND
GROWING A LUMEN REGION FROM THIS MAP 214

FITTING THE MEDIA AND LUMEN REGIONS TO.
INDIVUDUAL CONTIGUOUS 2D IVUS FRAMES THAT 215
WERE USED IN THE SUBSET

FIGURE 22



U.S. Patent Apr. 12, 2011 Sheet 13 of 14 US 7,925,064 B2

SIMULATING N REALIZATIONS OF “X”’ ACCORDING
TO POSTERIOR DISTRIBUTION 221

Ly Xy @ (xly ’ér)

CALCULATING VALUE OF 0’
222

REPEATING OPERATION 221 AND 222 UNTIL
CONVERGENCE OF THE PDF MIXTURE PARAMETER 223
ESTIMATE IS ACHIEVED

FIGURE 23



U.S. Patent Apr. 12, 2011 Sheet 14 of 14 US 7,925,064 B2

INITIATING WALL PULSATION ASSESSMENT DURING

THE INTIAL CONTOUR CALCULATION PROCEDURE 231

DIVIDING THE WALL PULSATION INTO A DISCRETE

NUMBER OF PHASES 232

ASSIGNING A LABEL TO EACH OF THE PULSATION

PHASE 233

ASSIGNING THE CORRESPONDING PULSATION

PHASE LABEL TO THE 2D IVUS FRAMES 234

ADJUSTING THE LABELS ACCORDING TO THEIR INITIAL
VALUES, TO THE VARIATION IN AREA DIFFERENCE
MEASUREMENTS AND WITH RESPECT TO THE EXPECTED
VALUE OF THE PERIODIC VARIATION

235

DIVIDING THE 4D DATA SET INTO 3D DATASETS
CORRESPONDING TO THE DIFFERENT PHASES OF THE
BLOOD VESSEL’S PULSATION

236

MAKING VOLUMIC MEASUREMENTS OF THE

SEPARATE 3D SETS 237

FIGURE 24



US 7,925,064 B2

1

AUTOMATIC MULTI-DIMENSIONAL
INTRAVASCULAR ULTRASOUND IMAGE
SEGMENTATION METHOD

This application is a national phase application under 35 >

U.S.C. §371 of International Application No. PCT/CA2004/
001970 filed 15 Nov. 2004, which claims priority to Canadian
Patent Application No. 2,449,080 filed 13 Nov. 2003, the

contents of which are incorporated herein by reference 1n
their entirety. 10

FIELD OF THE INVENTION

The present invention generally relates to 1mage segmen-
tation. More specifically but not exclusively, the present 15
invention 1s concerned with an intravascular ultrasound
image segmentation technique for characterizing blood ves-
sel vascular layers from intravascular ultrasound image

SCQUCIICCS.
20

BACKGROUND OF THE INVENTION

Over the past few years, intravascular ultrasound (IVUS)
technology has become very useful for studying atheroscle-
rotic disease. IVUS 1s a medical imaging technique that pro- 25
duces cross-sectional 1images as a catheter 1s pulled-back
inside a blood vessel. These images show the lumen but also
the layered structure of the vascular wall. IVUS provides
quantitative assessment of the vascular wall, information
about the nature of atherosclerotic lesions as well as the 30
plaque shape and size such that 1n clinic, IVUS was rapidly
recognized as a valuable tool 1n diagnosis and 1n pre-inter-
vention analysis of atherosclerosis.

The ability to characterize the vascular wall was 1nitially
demonstrated 1n 1989 by Gussenhoven et al., in “Arterial wall 35
characteristics determined by intravascular ultrasound 1mag-
ing: An 1n vitro study” (J. Am. Coll. Cardiol., vol. 14, no. 4,
pp. 947-952, 1989). Also, studies of the m1d-90s by Mintz et
al., 1n “Atherosclerosis in angiographically ‘normal’ coronary
artery reference segments: An intravascular ultrasound study 40
with clinical correlations™ (J. Am. Coll. Cardiol., vol. 25, no.
7,pp. 1479-1485, 1995), showed, based on IVUS, that 40% of
angiographically normal vessel were 1n fact atherosclerotic.

By using IVUS, it was also demonstrated by Colombo et
al., 1 “Intracoronary stenting without anticoagulation 45
accomplished with intravascular ultrasound guidance™ (Cir-
culation, vol. 91, pp. 1676-1688, 1995) that conventional
stent 1implantation resulted in incomplete apposition and
expansion causing thrombosis, which had the result of chang-
ing the clinical practice. 50

IVUS 1s also expected to play an important role 1n athero-
sclerosis research. For example, as demonstrated by Nissen et
al., 1n “Application of intravascular ultrasound to characterize
coronary artery disease and assess the progression or regres-
sion of atherosclerosis™ (Am. J. Cardiol., vol. 89, pp. 24B- 55
31B, 2002), IVUS helps to achieve precise evaluation of the
disease 1n new progression-regression therapies. Experts also
generally agree that IVUS 1maging adds precious comple-
mentary mformation to angiography which only shows a
projection of the lumen, as taught by Nissen et al., 1n “Intra- 60
vascular ultrasound: Novel pathophysiological insights and
current clinical applications” (Circulation, vol. 103, pp. 604-
616, 2001).

Over the last few years, new signal processing strategies
were applied to IVUS signals for extracting information on 65
the elastic properties of the vascular wall. For example, a new
imaging technique named “intravascular or endovascular

2

ultrasound elastography” was proposed by de Korte et al., in
“Intravascular elasticity imaging using ultrasound—Feasibil-
ity studies in phantoms” (Ultrasound Med. Bio., vol. 23, pp.
735-746,1997). Recently, Brusseau et al. 1n “Fully automatic
luminal contour segmentation in intracoronary ultrasound
imaging—A statistical approach” ([EEE Trans. Med. Imag.,
vol. 23, pp. 554-566, 2004) suggested to use a pre-segmen-
tation of the structures of the vascular wall 1dentified from
IVUS images to help implementing elastography algorithms.
This constitutes another important domain of application of
IVUS multi-dimensional image segmentation.

The tomographic nature of IVUS makes 3D reconstruction
of the vessel wall possible. Furthermore, 2D and 3D quanti-
tative measurements of atherosclerotic disease such as plaque
volume, 1intima-media thickness, vascular remodeling, and
lumen area stenosis can be retrieved from IVUS data as dis-
closed by Mintz et al., 1n “American college of cardiology
clinical expert consensus document on standards for acquisi-
tion, measurement and reporting of intravascular ultrasound
studies (IVUS)” (J. Am. Coll. Cardiol, vol. 37, no. 5, pp.
1478-1492, 2001).

However, a typical IVUS acquisition generally contains
several hundreds of 1images, which has the effect of making
analysis of the data a long and fastidious task that 1s further
subject to an important variability between intra-observers
and inter-observers when non-automatic methods are used.
These aspects generate important constraints against the
clinical use of IVUS. Other constraints related to the use of
IVUS 1nclude poor quality image due to speckle noise, imag-
ing artifacts, and shadowing of parts of the vessel wall by
calcifications.

So far, a number of segmentation techniques have been
developed for IVUS data analysis and were introduced to
overcome the hereinabove discussed drawbacks. Generally
speaking, a portion of these techniques are based on local
properties of 1mage pixels, namely with the gradient-based
active surfaces as introduced by Klingensmith et al., 1n
“Evaluation of three-dimensional segmentation algorithms
for the 1dentification of luminal and medial-adventitial bor-
ders 1n intravascular ultrasound images™ (IEEE Trans. Med.
Imag., vol. 19, no. 10, pp. 996-1011, 2000) and the pixel
intensity combined to gradient active contours as itroduced
by Kovalski et al., in “Three-dimensional automatic quanti-
tative analysis of intravascular ultrasound images™ (Ultra-
sound Med. Biol., vol. 26, no. 4, pp. 527-537, 2000).

Graph search was also mvestigated using local pixel fea-
tures, for instance, with Sobel-like edge operator as disclosed
by Zhang et al., in “Tissue characterization in intravascular
ultrasound 1mages™ (/EEE Trans. Med. Imag., vol. 17, no. 6,
pp. 889-899, 1998) and with gradient associated to line pat-
terns correlation as demonstrated by Von Birgelen et al., in
“Morphometric analysis in three-dimensional intracoronary
ultrasound: An 1n vitro and 1n vivo study using a novel system
for the contour detection of lumen and plaque™ (Am. Heart J.,
vol. 132, no. 2, pp. 516-327, 1996).

The other portion of the IVUS segmentation work was
based on more global or region information. For instance,
texture-based morphological processing was considered as
disclosed by Mojsilovic et al., 1n “Automatic segmentation of
intravascular ultrasound 1mages: A texture-based approach”
(Ann. Biomed. Eng., vol. 25, no. 6, pp. 1059-1071, 1997).
Gray level variances were then used for the optimization of a
maximuim a posteriort (IMAP) estimator modeling ultrasound
speckle and contour geometry as demonstrated by Haas et al.,

in “Segmentation ol 3D intravascular ultrasonic images based
on a random field model” (Ultrasound Med. Biol.,vol. 26,no.

2, pp. 297-306, 2000).
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In addition, some studies defining only the lumen boundary
and not using the full IVUS potential can be found in the

literature. Still, 1in 2001, the clinical expert consensus from
the American College of Cardiology 1n the hereinabove cited
document by Mintz et al. reported that no IVUS edge detec-
tion method had found widespread acceptance by clinicians.

Recently, graph search was revisited using other edge {fil-
ters, as disclosed by Koning et al., 1n “Advanced contour
detection for three-dimensional intracoronary ultrasound: A
validation—in vitro and i vivo” (Int. J. Cardiac Imag., vol.
18, pp. 235-248, 2002).

Other recent models and methods were proposed, such as
clliptical template fitting as demonstrated by Weichert et al.,
in “Virtual 3D IVUS model for intravascular brachytherapy
planning: 3D segmentation, reconstruction, and visualization
of coronary artery architecture and orientation” (Med. Phys.,
vol. 30, no. 9, pp. 2530-2536, 2003 ) and multiagent segmen-
tation by Bovenkamp et al., 1n “Multiagent IVUS 1mage
interpretation” (SPIE Proceedings: Medical Imaging 2003:
Image Processing, vol. 5032, San-Diego, USA, 2003, pp.
619-630). However, these new models were again using local
pixel or edge information and they were not taking advantage
of the statistical information of IVUS data (speckle texture).

Since 1image pixels in IVUS have pixel gray values gener-
ally distributed according to a Rayleigh probability density
function (PDF) 1n B-mode (brightness modulation) imaging
of uniform scattering tissues, as demonstrated by Wagner et
al., m “Statistics of speckle 1n ultrasound B-scans” (/EEE
Tvans. Son. Ultrason., vol. 30, no. 3, pp. 156-163, 1983), it 1s
believed that PDF features can be of value for IVUS segmen-
tation. This information i1s hypothetically more suitable for
IVUS 1mage analysis, especially when contrast 1s low
between layers of the vascular wall. In addition, because the
IVUS radio-frequency (RF) mode generally provides a better
spatial resolution than B-mode 1maging, 1t 1s also expected
that the Gaussian PDF of RF images can be exploited for
Image segmentation.

Since the atherosclerotic plaque structure on the vascular
wall can have an 1rregular and complex shape that 1s rarely
clliptical, a fast marching method as disclosed by Sethian 1n
“Level Set Methods and Fast Marvching Methods: Evolving
Interfaces in Computational Geometry, Fluids Mechanics,
Computer Vision and Materials Science” (2nd ed. Cam-
bridge, UK: Cambridge University press, 1999) and by Osher
et al., mm “Fronts propagating with curvature-dependent
speed: Algorithms based on hamilton-jacobi formulations”
(J. Comput. Phys., vol. 79, pp. 1249, 1988), can be used to
handle topological changes and contour 1rregularities gener-
ated by IVUS 1mages. Further, the fact that a fast marching
method propagates 1nterfaces in the direction of the bound-
aries through an exhaustive analysis of the propagationregion
has the effect of decreasing the variability of segmentation
results.

SUMMARY OF THE INVENTION

More specifically, 1n accordance with the present inven-
tion, there 1s provided an 1mage segmentation method for
estimating boundaries of layers 1n a multi-layer body, the
method including providing image data of the multi-layer
body, the image data representing a plurality of 1image ele-
ments. The method further includes determining a plurality of
initial interfaces corresponding to regions of the image data to
segment, and concurrently propagating the imitial interfaces
corresponding to the regions to segment and thereby estimat-
ing the boundaries of the layers of the multi-layer body.
Propagating the initial interfaces including using a fast
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marching model based on a probability function describing at
least one characteristic of the image elements.

There 1s furthermore provided an i1mage segmentation
method for estimating boundaries of layers in a multi-layer
body, the method including providing image data of the
multi-layer body, the image data representing a plurality of
image elements. The method further includes determining a
plurality of mnitial interfaces corresponding to regions of the
image data to segment, and concurrently propagating the
initial interfaces corresponding to the regions to segment the
regions and estimate the boundaries of the layers of the multi-
layer body. Propagating the 1nitial interfaces includes using a
fast marching model based on a gradient function describing
at least one characteristic of the image elements.

There 1s furthermore provided an 1mage segmentation
method for estimating boundaries of layers in a pulsating
multi-layer blood vessel, the method including: providing
IVUS image data of the pulsating multi-layer blood vessel,
determining 1nitial interfaces corresponding to the regions of
the IVUS 1mage data to segment, dividing wall pulsations of
the IVUS 1mage data into a discrete number of phases with

adjustable pulsation phase labels, assigning the pulsation
phase labels to 2D IVUS frames of the IVUS 1mage data,
dividing the IVUS 1mage data according to the phases and
propagating the initial interfaces according to a fast marching
model by simultaneously estimating a mixture of probability
density functions in the IVUS 1mage data for each of the
regions to segment and according to each of the phases.

There 1s furthermore provided an i1mage segmentation
method for estimating boundaries of layers 1n a multi-layer
body, the method including: providing image data of the
multi-layer body, the image data representing a plurality of
image elements. The method further includes determining
initial mterfaces corresponding to the regions of the image
data to segment and propagating the mitial interfaces accord-
ing to a fast marching model. Propagating the initial inter-
faces includes, for each region to segment, simultaneously
estimating a speed function for the propagation of the mitial
interfaces based on a probability fTunction describing at least
one characteristic of the image elements, and mapping a time
function of the propagating initial interfaces.

There 1s furthermore provided a data acquisition system for
segmenting 1images by estimating boundaries of layers 1n a
multi-layer body, including: a catheter including a transducer
for providing 1image data representing a plurality or image
clements and a data acquisition tool including: a digitizer 1n
communication with the transducer for digitizing the image
data, a memory for recerving and storing the digitized image
data, a calculator for estimating, for each of the layers, prob-
ability functions describing at least one characteristic of the
image elements, a processor in communication with the
memory and the calculator for simultaneously estimating the
boundaries of the layers of the digitized image data by using
a fast marching model based on the estimated probability
functions.

The foregoing and other objects, advantages and features
of the present invention will become more apparent upon
reading of the following non-restrictive description of illus-
trative embodiments thereof, given by way of example only
with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

In the appended drawings:
FIG. 1 1s a 2D IVUS frame view representing the various
layers of a blood vessel 1n 1mage data which 1s used 1n a
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segmentation method for detecting layer boundaries accord-
ing to an 1llustrative embodiment of the present invention;

FIG. 2 1s another 2D IVUS frame view representing one
irregularly shaped layer of the blood vessel shown 1n FIG. 1;

FIG. 3 1s a chart view showing the gray levels present in
IVUS mmage data and the mixture of the probability density
functions detected per layer;

FIG. 4 1s a longitudinal view generated from IVUS 1mage
data showing an operation of a method for detecting the layer
boundaries;

FIG. 5 1s a 2D IVUS frame view intersecting the longitu-
dinal view of FIG. 4 at point A;

FI1G. 6 1s a flowchart schematically representing simulated
IVUS image data generated from a plurality of 2D IVUS
frames as the one shown 1n FIG. 1;

FIG. 7a 1s a cross-sectional view of a simulated blood
vessel reconstructed according to a segmented 2D IVUS

frame;

FIG. 75 1s a 2D IVUS frame view of the simulated blood
vessel of FIG. 7a and generated by the method shown 1n FIG.
6.

FI1G. 7c1s a 2D IVUS frame view showing the segmenta-
tion results on the 2D IVUS frame view of FIG. 75, with the
boundaries detected by the 3D fast marching method based on
probability density functions;

FIG. 7d 1s a 2D IVUS frame view showing the segmenta-
tion results on the 2D IVUS frame view of FIG. 754, with the
boundaries detected by the 3D gradient fast marching
method;

FIG. 8a 1s another cross-sectional view of a simulated

blood vessel reconstructed according to a segmented 2D
IVUS frame;

FI1G. 86 1s a 2D IVUS frame view of the simulated blood
vessel of FIG. 8a and generated by the method shown 1n FIG.
6.

FI1G. 8¢ 1s a 2D IVUS frame view showing the segmenta-
tion results on the 2D IVUS frame view of FIG. 85, with the
boundaries detected by the 3D fast marching method based on
probability density functions;

FIG. 84 1s a 2D IVUS frame view showing the segmenta-
tion results on the 2D IVUS frame view of FIG. 85, with the
boundaries detected by the 3D gradient fast marching
method;

FI1G. 9a 1s a 2D IVUS frame view similar to the one shown
in FIG. 1;

FIG. 956 1s a 2D IVUS frame view showing the segmenta-
tion results on the 2D IVUS frame view of FIG. 94, with the
boundaries detected by the 3D fast marching method based on
probability density functions;

FI1G. 9¢ 15 a 2D IVUS frame view showing the segmenta-
tion results on the 2D IVUS frame view of FIG. 94, with the
boundaries detected by the 3D gradient fast marching
method;

FIG.10a1sa 2D IVUS frame view similar to the one shown
in FIG. 1;

FIG. 1056 1s a 2D IVUS frame view showing the segmen-
tation results on the 2D IVUS frame view of FIG. 10qa, with
the boundaries detected by the 3D fast marching method
based on probability density functions;

FIG. 10c¢ 1s a 2D IVUS frame view showing the segmen-
tation results on the 2D IVUS frame view of FIG. 104, with
the boundaries detected by the 3D gradient fast marching,
method;

FIG. 11 1s a longitudinal view showing a volumic recon-
struction of the vessel layers detected according to the fast-
marching method based on probability density functions;
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FIG.12a1s a 2D IVUS frame view representing the various
layers of a blood vessel on simulated RF image data;

FIG. 126 1s a 2D IVUS frame view showing the segmen-
tation results on the RF image data of FIG. 124, with the
boundaries detected by the 3D fast-marching method based
on probability density functions;

FIG. 13a 1s a detailed schematic view showing a first
example of propagation area for detecting a layer boundary
using the fast marching method;

FIG. 13b 1s a detailed schematic view showing another
example of propagation area for detecting a layer boundary
using the fast marching method;

FIG. 14a1s a 2D IVUS frame view which 1s undersampled
with respect to a typical 2D IVUS frame and which may be
used according to a second illustrative embodiment of the
present invention;

FIG. 145 1s another 2D IVUS frame view which 1s under-
sampled with respect to a typical 2D IVUS frame but with a
higher resolution than the 2D IVUS view shown in FIG. 14a;

FIG. 14¢ 1s another 2D IVUS frame view which 1s under-
sampled with respect to a typical 2D IVUS frame but with a
higher resolution than the 2D IVUS view shown 1n FIG. 145,

FIG. 144 1s a typical 2D IVUS frame view with a higher
resolution than the 2D IVUS views shown 1n FIG. 14a to 14¢;

FIG. 15 1s a detailed schematic view showing template
regions of a vessel for detecting layer boundaries 1n a method
according to a third illustrative embodiment of the invention;

FIG. 16 1s a cross-sectional longitudinal view of an IVUS
image data showing a sawtooth artifact typically caused by
pulsations of blood vessels;

FIG. 17 1s a chart view showing layer areas resulting from
segmentation detected by a 3D fast marching method based
on probability density functions according to a fifth 1llustra-
tive embodiment of the present invention;

FIG. 18 1s a flowchart representing a method for determin-
ing the 1mtialization contours according to the first illustrative
embodiment of the present invention;

FIG. 19 1s a block diagram representing an 1in-vivo IVUS
data acquisition and processing device according to the first
illustrative embodiment of the present invention;

FIG. 20 1s a flowchart representing an IVUS method for
initializing propagating interfaces generated from lower reso-
lution segmentation results according to the second 1llustra-
tive embodiment of the present invention;

FIG. 21 1s a flowchart representing an exploration method
from a wide propagating area at low resolution to a reduced
propagating area at high resolution according to the second
illustrative embodiment of the present invention;

FIG. 22 1s a flowchart representing a template region
searching method for automatically finding 1nitial interfaces
ol the layers according to the third illustrative embodiment of
the present invention;

FIG. 23 1s a flowchart representing an automatic estimation
method of the probability density function mixture param-
cters based on the 1terative conditional estimation according
to the fourth illustrative embodiment of the present invention;
and

FIG. 24 1s a flowchart representing the method for using
layer pulsation assessment in the boundary detection segmen-
tation process of the fast-marching method according to the
fifth 1llustrative embodiment of the present invention.

Iy

DETAILED DESCRIPTION OF THE
ILLUSTRATIVE EMBODIMENTS

The non-restrictive illustrative embodiments of the present
invention relate to a method and device for concurrently
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estimating boundaries between the plurality of layers of a
blood vessel from IVUS 1mage data. The method and device
involve a segmentation of the IVUS 1mage data by propagat-
ing 1nterfaces 1n each layer to be estimated from 1nitial inter-
faces that are generated from the IVUS image data. The
technique for estimating the boundaries of the various layers
uses a fast marching method based on probability functions,
such as for example a probability density function (PDF) or
gradient function to estimate the distribution color map of
images, such as for example to estimate the gray levels or the
multi-colored levels in 1mages.

The following description 1s organized as follows. First of
all, a PDF estimation technique for the different vessel layers
will be presented. Then, an IVUS 3D fast marching method
based on the estimated PDFs and based on the gray level
gradient will be explained and followed by an 1mtializing

technique. Finally, segmentation results on experimental
B-mode data, simulated B-mode and simulated RF data and

will be reported and discussed.

IVUS images are generally provided from an ultrasound
transducer at the tip of a catheter that 1s pulled back inside a
blood vessel and produces a plurality of IVUS 2D frames. A
typical IVUS 2D frame 1s 1llustrated 1in FIG. 1. As 1llustrated,
the 2D frame of FIG. 1 shows the catheter and some layers of
the blood vessel such as, for example, the lumen, the intima
and plaque, the media and the surrounding tissues. FIG. 2
illustrates how the boundary of the lumen may be irregularly
shaped.

The IVUS 2D frames are ultrasonic images made from a
plurality of pixels generally colored with various shades of
gray. In B-mode (brightness modulation) or RF-mode (radio-
frequency) imaging, such as for example 1 IVUS data, a

Rayleigh or a Gaussian probability density function (PDF)
can be used, respectively, to model the color map distribution
of the ultrasonic speckle pattern 1n a uniform scattering tissue.
When more than one layer of tissue 1s present, the color map
distribution of a whole IVUS 1mage data can then be modeled
by amixture of Rayleigh or Gaussian PDFs, depending on the
mode selected on the instrument.

The 1llustrative embodiment that follows generally consid-
ers IVUS B-mode imaging, but one ordinary skilled 1n the art
will easily understand that similar equations can be provided
tor Gaussian PDFs i1f the RF-mode 1s considered. For more
details, see Hastie et al., 1n “The elements of statistical learn-

ing. Data mining, inference and prediction” (New York, USA:
Spinger, pp. 236-242, 2001).

In this first 1llustrative embodiment, a Rayleigh probability
density function (PDF) p(x) models the gray level color map
distribution by using a parameter a*, where X is the gray level
taking values situated, for example, intherange|[1, ..., 256].
In this particular example, the Rayleigh probability density
tfunction (PDF) 1s given by equation 1:

(1)

with x,a*>0, and the variance o°=a*(4-m)/2.

IVUS data are modeled by a mixture of M Rayleigh PDFs

(corresponding to M different layers of the blood vessel) with
parameters O=1{(mw,a, )} _Mwhere ;18 the proportion ot the
i component of the mlxture of the M Raylel gh PDF's, so that
2, . w;~1. The global data PDF mixture then becomes:
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M (2)
Pao(x|0) = > w;p(x|a})
=1

To describe the PDF mixture for the global IVUS data, the

parameters (w,, ajz) of each PDF composing the mixture need
to be estimated. In IVUS data, the occurring probability of the
gray level values x, or observed data, can generally be mea-
sured by computing the image histogram, as shown in FIG. 3,
but the blood vessel layer to which each pixel of an IVUS
image belongs 1s generally unknown or hidden for images
that are not already segmented.

The Expectation-Maximization algorithm (EM) 1s an 1tera-

tive computation technique of maximum likelithood estimates
for mmcomplete data, as presented by Dempster et al., 1n
“Maximum likelithood from incomplete data via the EM algo-
rithm™ (J. Roy. Stat Soc. B, vol. 39, no. 1, pp. 1-38, 1977),
which can be used to provide the unknown parameters or
hidden information of the probability density functions
(PDFs). Because the IVUS data are incomplete in terms of
maximum likelihood estimation, the EM algorithm can be
applied to evaluate the missing or hidden mixture parameters
of the Rayleigh or Gaussian PDFs.

The EM algorithm therefore helps to describe the global
data PDF mixture because ©, a mixture parameter maximiz-
ing the likelihood of p(x18®), cannot be solved analytically. A
hidden variable Y representative of the tissue class (vascular
layer to which the pixel belongs) and taking values situated in
the range [1, . . ., M], must be introduced at this point. The
log-likelihood of the joint distribution of (X, Y)={(x,.,y)}._,",
where N represents the size of the IVUS data, 1s:

3)
log(px.yio(, y1©)) = > logp(y)p(x:| yi, ©)

The first step of the EM algorithm 1s called the Expectation
Step which calculates the cost function Q(®,0"=E[ log(P
(X,Y10))IX,0'"], the expected value of the log-likelihood of
(X,Y), the joint distribution, given the observed data X and
O'={(w',a,)},_,", a previous estimate of the PDF mixture
parameters.

The next step is to determine a new estimate ® of the PDF
mixture parameters by maximizing Q(®,0") with respect to
parameters ©; this operation can now be performed analyti-
cally.

The detailed PDF parameter estimation procedure via the
EM algorithm 1s therefore:

Initialize ®', the previous estimate of PDF mixture param-

eters.

Expectation Step:

Evaluate the cost function:

Q(0©, ®") = Ey[log(P(X, Y|©) | X, O] (4)

M N (3)
Zzlmg(wjp(x |a)p(y; = jlx;, @)

J=1 i=1

? 2/
f“.fP(-’ff ‘ a; )
M

!
RZI W} pr(x; | af )

Calculate p(y; = j|x;, ©) =
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according to Bayes rule, and using the previous parameter
estimate ®' and Equation 1.

Maximization Step:

Calculate (:),, the new estimate of the PDF mixture

parameters:
( ( % 1) (6)
o= argmas,, ; 00, O) +1]1 _ZMJ’
\ \ /=1 /7
1 N
= EZ; plyi = jlxi, ©)

where A=N 1s a Lagrangian making the sum of the w,
equal to 1.

Ei? = argmax > Q(®, ©) (7)
J

N
Z p(yi = jlx;, ©)x;
.y

N2
a; =

" .
2__21 plyi = jlxi, &)

If ©=0', update previous estimate ©'=0, and repeat the
Expectation and Maximization steps.

In summary, the EM algorithm maximizes the likelihood of
the joint distribution of the observed and hidden data by
estimating the posterior distribution with py 5 ¢ (¥1X,0"). An
interesting property of the EM algorithm 1s that it 1s guaran-
teed that the likelihood of the observed data X increases at
cach iteration.

For computation efficiency, the EM algorithm 1s generally
applied to a randomly drawn subset of the observed data X,
which are, 1n this case, a portion of the pixels from the whole
IVUS data. For instance, the subset size may be about 400 000
pixels when a complete IVUS pullback generally contains
over 80 000 000 pixels.

EM algorithms are otherwise well known to those of ordi-
nary skill i the art and, accordingly, will not be further
described in the present specification.

The estimated gray level PDFs of the blood vessel layers
can then be used to establish a segmentation model 1n the fast
marching framework. The fast marching method 1s derived
from the level-set model disclosed by Sethian 1n “Level Set
Methods and Fast Marching Methods: Evolving Interfaces in

Computational Geometry, Fluids Mechanics, Computer
Vision and Materials Science” (2nd ed. Cambndge, UK:

Cambridge University press, 1999) and by Osher et al., 1n
“Fronts propagating with curvature-dependent speed: Algo-
rithms based on hamilton-jacob1 formulations™ (J. Comput.

Phys., vol. 719, pp. 1249, 1988). The fast marching method
helps to follow intertace propagation.

In the level-set model approach, an initial interface 1s
defined as the zero level of a function ¢ of a higher dimension
than the interface. The value ¢(x) of a point x=(x1, x2, . . .,
x )eR” is the distance between that point and the initial inter-
face. The function ¢ moves 1n 1ts normal direction according
to a speed function F. The evolution of function ¢ 1s given by
the following Equation 8 with initial interface ¢(x,t=0).
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Ao (8)
—— +FIV¢[=0.

The level-set model 1s applicable to image segmentation by
interpreting 1mage boundaries as the final position of the
propagating intertace, as disclosed by Sethian 1n “Level Set
Methods and Fast Marching Methods: Evolving Interfaces in
Computational Geometry, Fluids Mechanics, Computer
Vision and Materials Science” (2nd ed. Cambridge, UK:
Cambridge University press, 1999)and by R. Malladietal., n
“Shape modeling with front propagation: A level set
approach” (IEEE Trans. Pattern Anal. Machine Intell., vol.
17, no. 2, pp. 158-175, 1995).

To achieve thus, the speed function F 1s defined 1n terms of
image or shape features and should become close to zero
when the propagating interface meets with image boundaries.
Since the speed value 1s near zero, the propagating interface
stops on the 1image boundary, which generally ends the seg-
mentation process.

Fast marching 1s a particular case of the level-set model. It,
consists of an interface evolving under a unidirectional speed
function. In this case; for a positive speed function, the propa-
gating interface must be inside the region to segment (or
outside for a negative speed function), because the propagat-
ing interface does not explore the region located inside the
initial interface.

In the fast marching formulation, the evolution of the
propagating mterface 1s expressed in terms of the arrival time
T(x) of the interface at point (x). The function T satisfies the
tollowing Equation 9, stating that the arrival time difference
between two adjacent pixels increases as the velocity of the
interface decreases.

VTIF=I. (9)

The propagation of the interface 1s done via the construc-
tion of the arrival time function T(x). The construction algo-
rithm, as disclosed by Sethian 1n “A fast marching level set
method for monotonically advancing fronts.” (Proceedings of
the National Academy of Sciences of the United States of
America, vol. 93, pp. 1591-1595, 1996), selects the interface
point X having the smallest arrival time and calculates the
arrival times of its neighbors. This 1s repeated until the inter-
face has propagated across the whole 1mage or until the
propagating interface i1s considered stationary (when the time
gradient 1s sufficiently high).

The level-set and fast marching equations are independent
of the mterface dimension. On a discrete 3D grid, neighbors’
arrival times are updated by solving the following approxi-
mation of Equation 9:

1

2
Fi,j,k

(10)

= max(D;%, T, -D%, T, 0)* +

max(D; %, T, =D;%, T, 0)° + max(D;3, T, —D;{%, T, 0)

1, f.k

For the x dimension,

Dz‘,j,kﬂT :I(E}tl.‘,j,k_ z',j,k)/ A

where A 1s the grnid element size and (1,1,k) 1s the 3D posi-
tion of the point having i1ts arrival time calculated. Similar
definitions apply for D, ;T and D, , ;®T, in the y and z
dimensions.

As stated hereinabove, since multiple contours (lumen,
intima and media) must be 1dentified on the IVUS data, image

i.j.k
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segmentation 1s simultaneously done via a multiple interface
extension of the fast marching method as disclosed by Sifakis
¢t al., 1n “Bayesian level sets for image segmentation” (J. Vis.
Commun. Image R., vol. 13, pp. 44-64, 2002). A speed func-
tion 1s then defined for each propagating interface and the T
map 1s built by selecting the point with the smallest arrival
time value from all propagating interfaces.

Therelore, the fast marching method with multiple propa-
gating interfaces enables simultaneous segmentation of dii-
terent layers of the blood vessel. The multiple interfaces
directly depict the layered structure of the blood vessel and
provide that the boundaries do not overlap.

In the PDF-based fast marching method, each interface
associated to a vessel layer evolves at a velocity defined 1n

terms of the PDF P, _, of the corresponding anatomical struc-
ture. The propagation speed of the interface mel., where L 1s
theset1, 2,..., N, ofthe N, evolving interfaces, 1s given by
Equation 11.

11
Fin(is J, k) = -

/ 1 ] / vl
[a o ogh,, (/) |
N,,,E 1
\

SEV Z 1Ggp.‘f(fs)

Nt =1 gpmier

I 1sthe gray level value of pixel s at position (1,1,k) 1n image
I,P (I)andP,(I ) arethe measured occurring probabilities of
pixel I 1 region m and 1, respectively. Because the occurring
probability 1s more significant for a region than for a single
pixel, the speed function 1s calculated over a certain number
N., of neighbors, which are pixels located around position
(1,1,k), such as for example, the 26-connected pixels around
position (1,].k). According to Equation 11, the m interface
velocities will usually be positive and take higher values
when 1nside a region having a grayscale distribution close to
P_.

As the propagating intertaces approach the boundaries of
the blood vessel layers, neighbors start to be distributed under
other components of the PDFs as stated hereinabove, which
has the effect of generally increasing P,(I.) and decreasing
P_(I.) and therefore, decreasing the interface speed. The
velocity function of Equation 11 has a general form that may
be used with any types of PDF and provides neighborhood
averaging.

When used for multiple propagating interfaces, the fast
marching segmentation method ends when all adjacent
propagating interfaces meet with their respective boundaries.
Propagating interfaces thus evolve until the arrival time T
map 1s completely built.

Since the gray level gradient 1s a widely accepted image
feature, comparisons can be made between the heremabove
disclosed PDF implementation of the fast marching segmen-
tation and a gray level gradient implementation of the fast
marching segmentation. In the latter case, the speed function
1s given by:

1 (12)

.
b1 ) = TN G eI . 1)

where G, 1s a Gaussian smoothing filter of standard devia-
tion 0. The speed function of Equation 12 generally propa-
gates 1nterfaces faster on low gradient regions.

As stated hereinabove, the fast marching segmentation
method generally requires that the initial interface 1s located
inside the region to segment. This requirement can be
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achieved with an mitialization procedure, 1n which 1nitializa-
tion contours are manually traced with respect to data

extracted along longitudinal planes of the IVUS data. It can
also be automatically performed by considering a prior infor-
mation on the whole IVUS data set, as will be further
described hereimaftter.

Generally speaking, the step of selecting data along longi-
tudinal planes within the IVUS data 1s used, instead of using
data from a single 2D IVUS frame, since longitudinal planes
are able to provide information about the whole series of data
along the length of the blood vessel. Further, the number of
manually or automatically traced initialization contours on
the longitudinal plane 1s independent of the number of IVUS
2D frames.

Initialization contours may be drawn from different num-
bers of longitudinal planes along the blood vessel. As an
example, 3 longitudinal planes taken at equally spaced angles
over 360 degrees may be selected to cut the IVUS data vol-
ume. The mitialization contours provide reference points for
generating the set of 1mitial interfaces on each IVUS 2D
frame, for each of the layers to be estimated. This 1s generally
accomplished by attributing respective reference points to the
IVUS 2D frame corresponding to each initialization contour
points.

In the 1llustrative embodiment of FIGS. 4 and 5, a reference
point A 1s taken along to one 1nitialization contour B estimat-

ing the lumen boundary on the longitudinal plane shown 1n
FIG. 4 (Operation 171 of FIG. 18). For instance, the reference

point A of FIG. 4 1s transposed on the IVUS 2D frame of FIG.
5 to help generate the 1mitial interface of the lumen on the
IVUS 2D frame (Operation 172 of FIG. 18). More than one
reference points generally coming from more than one lon-
gitudinal plane are then transposed on the IVUS 2D frame
(Operation 173 of FIG. 18). This mnitialization step 1s gener-
ally done for each boundary layer of the blood vessel which
needs to be estimated.

For each IVUS 2D frame, slightly shrunk splines passing
through these reference points are computed and used to
generate the 1nmitial interfaces (Operation 174 of FIG. 18).
Therefore, using this procedure, only a few longitudinal
planes containing IVUS data volume information are
required to manually generate the mitialization contours in
the longitudinal planes and thereby to generate the initial
interfaces (Operation 175 of FI1G. 18) required to initialize the
concurrent segmentation of multiple vessel layers (Operation
176 of FIG. 18), over several hundreds of images which 1s a
typical number for a typical IVUS data.

The 1itial longitudinal contours can also alternatively be
restarted from any previous reference points (Operation 177
of FIG. 18). In this manner, the user can explore, on-line and
casily, sections of an IVUS data that were more difficult to
interpret on longitudinal planes.

Experimental Testings

Experimental testings of the hereinabove proposed non-
restrictive illustrative method of FIG. 18 were conducted on a
total of 8 m-vivo IVUS pullbacks (600 frames/IVUS data)
from diseased superficial femoral arteries. These experimen-
tal testings were performed on 6 different patients before
undergoing balloon angioplasty. B-mode IVUS data were
acquired with a data acquisition system, such as for example
a Jomed equipment (In-vision gold, Helsingborg, Sweden),
using a 20 MHz ultrasonic transducer (181 in FIG. 19). IVUS
2D B-mode images of size 10x10 mm were digitized (digi-
tizer 182 in FI1G. 19) on 384x384 pixel matrices and stored in
a memory (183 1n FIG. 19) using the DICOM standard. The
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acquisition was done at a 10 images/sec frame rate and the
catheter pullback velocity was set to 1 mmy/sec generating 0.1
mm thick 2D slices. Acquisition parameters were set by a
clinician to optimize 1mage quality; more specifically, the
gain varied from 46 to 54 and the grayscale look-up table was
set to 5. Image acquisition was not ECG-gated.

To evaluate the robustness of the PDF mixture parameter
estimation of w; and afj the hereinabove described EM algo-
rithm was run 10 times 1n a calculator (184 1n FIG. 19) for one
IVUS catheter pullback, with different subsets of pixels at
cach run of the algorithm. Average PDF mixture parameters
and standard deviations were calculated for the detected Ray-
leigh PDFs. Since pixel subsets were from the same IVUS
data, PDF mixture parameters were expected to generally
converge toward the same values.

Once this robustness validation was completed, the EM
algorithm was applied at the beginning of each segmentation,
because PDF mixture parameters are specific to each IVUS
data, as gain and other parameter settings are different
between each IVUS data, and as echogenicity of each layer 1s
variable from one patient to the other. The detected PDF
mixtures were composed of 4 distributions (lumen, 1ntima,
media, and surrounding tissues), but a skilled reader waill
casily understand that the EM algorithm 1s general and may
estimate more PDF distributions of heterogeneous vessel lay-
ers 1f required.

Testings were conducted on in-vivo blood vessels and
numerical simulations of blood vessel IVUS data. The in-vivo
B-mode IVUS 1mages were segmented with 3D multiple
interface fast marching using automatically detected gray
level Rayleigh PDFs and, as a comparison, using the gray
level gradient. All catheter pullbacks were segmented three
times with both 3D methods using different sets of initial
contours. Lumen, mtima (plaque), and media boundaries
were obtained. To quantify the variability of boundary detec-
tion under various initializations, average and Haussdorf
point-to-point distances, as disclosed by Chalana et al., in “A
methodology for evaluation of boundary detection algo-
rithms on medical images” ([EEE Trans. Med. Imag., vol. 16,
no. 3, pp. 642-652, 1997), between resulting contours from
different mitial contour sets were calculated. Haussdort dis-
tance represents the worst case since 1t generates the maxi-
mum distance between different segmentation results. Aver-
age and Haussdort distances directly depict point-to-point
contour variations.

Detected boundaries from a whole IVUS catheter pullback
represent a blood vessel in 3D that can be reconstructed.
Reconstruction of the lumen and media contours was made
from a simple, smoothed contour stack (see FIG. 11).

In addition to the above-described in-vivo validation of the
illustrative embodiment of the segmentation method, numer:-
cal simulations of IVUS data were conducted to evaluate
segmentation accuracy. Since the exact geometry of the simu-
lated data 1s generally entirely known, direct performance
calculations of the detected boundary with respect to the exact
geometry ol the simulated data can be obtained. The simu-
lated B-mode IVUS data were first segmented using the same
procedure as for the in-vivo data, also including 3 different
sets of mitial longitudinal view generating mnitialization con-
tours. Lumen, intima (plaque), and media boundaries were
obtained. Average and Haussdorl point-to-point distances
between detected contours and ground truth boundary posi-
tion were calculated for the segmentation results from each
set of mitial contours.

Because the simulation method described 1n FIG. 6 allows
synthesizing both RF and B-mode IVUS data, the herein-

above described fast-matching segmentation method was
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also tested by using automatically detected gray level Gaus-
sian PDFs from the 3D simulated RF images.

The mmage-formation model that was used to simulate
IVUS data (echograms) 1s detailed by Maurice et al., 1n
“Adapting the Lagrangian speckle model estimator for endo-
vascular elastography: Theory and validation with simulated
radio-frequency data” (J. Acoust. Soc. Am., vol. 116, pp.
1276-1286, 2004). Under assumptions such as space-invari-
ance of the imaging system, IVUS 1mages were modeled by a
convolution operation between the point-spread function,
which 1s the equivalent radio-frequency image of a single
ultrasound scatterer, and the function describing the acoustic
impedance mismatch of each scatterer of the simulated tissue
structures composing the IVUS data. In other words, the
point-spread function expresses the intrinsic characteristics
of the ultrasound 1imaging system.

The implementation of the image-formation model was
made for a 20 MHz transducer with a 60% bandwidth at -3
dB and a beam width of 0.1 mm. For the purpose of these
simulations, the media was selected 2 times more echogenic
than the lumen; the plaque, 1.5 times more echogenic than the
media; and the surrounding tissues 2 times more echogenic
than the media. The echogenicity can be seen as the image
intensity retlecting the acoustic impedance mismatch of the
scatterers. The signal to noise ratio (SNR) was set to 20 dB.

FIG. 6 shows the image formation model used to simulate
RF and B-mode IVUS data. From real 2D 1n vivo IVUS
images, as the one shown in box C, the segmented contours or
vessel boundaries (lumen, plaque of the intima, media) are
created (box D) from manually traced contours on the IVUS
2D 1mage 1n box C. Box E shows the function z(X,y) repre-
senting the acoustic impedance variations within the 2D
frame from box D, and box F shows a function z(r,p ) express-
ing the same acoustic impedance variations mapped within
the 2D frame 1n polar coordinates. Box G shows the polar
point spread function h(r, ¢) with a beam width that increases
with depth and element H 1s a 2D-convolution operator. Pro-
cessing of function z(r,¢) (box F) with the polar point spread
function h(zr, ¢) (box ) through the 2D-convolution operator
(element H) produces a simulated polar radio-frequency (RF)
image I(r,¢) (box I). Box K illustrates the polar B-mode
image 1 5(1, ¢) that was computed using the Hilbert transform
(see element L) of I(r,¢), as presented by Kallel et al. 1n
“Speckle motion artifact under tissue rotation.” (/EEE Trans.
Ultrason., Ferroelect., Freq. Contr., vol. 41, pp. 105-122,
1994). Box M shows the Cartesian B-mode image or simu-
lated IVUS 1mage 1 (X, v) calculated from the polar B-mode
image 1 (1, ¢). This simulation strategy was repeated for the
whole 1mage data of an IVUS catheter pullback within a
diseased superficial femoral artery.

Results and Discussions

As stated heremabove, the EM algorithm was applied 10
times on 1 IVUS catheter pullback to evaluate the robustness
of the PDF mixture parameter estimation. At each run, PDF
parameters were estimated on different pixel subsets of the
same IVUS data (subsets contained approximately 400 000
pixels). Average mixture parameters for each detected Ray-
leigh PDF are shown 1n the following Table 1. An example of
automatically detected Rayleigh PDF mixture 1s also shown
in FIG. 3 in dotted lines for each layer components, with the
hereinbefore presented IVUS pullback gray level histogram
of the whole data set.
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TABLE ]
Layer
Component W (%) a”
Lumen 29.40 £ 0.10 0.6456 + 0.0021 >
Intima and 20.96 £ 0.50 347.70 £ 13.02
Plaque
Media 13.55 £0.14 22.68 £0.53
Surrounding 36.09 £ 0.67 229458 + 34,01
Tissues

10

Table I shows that small variations were found between
different runs of the EM algorithm. It can be stated that
mixture detection of the various boundary layers 1s a robust

and stable process with standard deviations of w and a* rang-
ing from 0.3% to 3.7% for several runs of the EM algorithm
applied on different pixel subsets of the IVUS catheter pull-
back. The EM algorithm was thus applied to the 8 available
IVUS catheter pullbacks to study PDF variability between
different patients. The results are shown in the following
Table II.

15
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TABLE 11
Layer
Component w (%) a’ 25
Lumen 18.82 £10.44 5.52 £12.50
Intima and 27.81 £14.54 1052.40 + 1405.97
Plaque
Media 15.87 = 3.61 339.46 + 817.80
Surrounding 37.50 £ 13.82 2580.49 = 654.49 30
Tissues
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FIGS. 7b and 8b respectively show the simulated IVUS
cross-sectional 2D B-mode images of the first and second
examples of a simulated blood vessel, which can be obtained
from the above-described method schematically illustrated 1in
FIG. 6. In FIGS. 7¢ and 8¢, the detected boundaries of the
lumen, the thickened intima and media are estimated with the

detected gray level PDFs method and, in FIGS. 74 and 84,
with the gray level gradient method.

The typical simulated IVUS segmentation results shown in
FIGS. 7a to 84 illustrate that detected boundaries were very
close to the blood vessel layer boundaries. They also reveal

that the external boundary of the media 1s smoother with the
PDF fast marching than the gradient-based method, but that
the lumen, which can have a rougher surface, was detected

with sufficient details. Gradient methods seemed to trace
speckle contours on object boundaries, because speckle gen-
erally has high gray level intensity differences.

The following Table III includes the results of the average
distance (AD) and Haussdort distance (HD), which 1s the
maximum distance between the estimated boundary and the
true boundary 1n mm, between detected boundaries obtained
from different mnitialization steps and ground truth values
(true boundaries) obtained from the simulated geometry. In
this table, FMM refers to the fast marching segmentation
method. Symbol * indicates a statistically significant better

performance with p<0.05 on paired t-test, whereas symbol §
refers to a statistical significance of p<0.01.

TABLE II1
[L.umen Plaque Media
Segmentation Method AD (mm) HD (mm) AD (mm) HD (mm) AD (mm) HD (mm)
FMM-3D 0.072 £0.062 0.226 £0.074 0.061 £0.038 0.154 = 0.046* 0.063 =+ 0.038 0.164 £ 0.048§
5541;8/[—3[) 0.069 £ 0.056§ 0.197 £0.085§  0.060 £0.044 0.173 £ 0.050 0.063 =+ 0.044 0.180 £0.052
Gradient

Because of instrument settings and echogenicities specific
to the different vascular structures for a given patient, Table 11
emphasizes the generally high vanability between mixture
parameters of distinct IVUS catheter pullbacks. These results
suggest that the EM algorithm 1s capable of fitting various
Rayleigh PDF mixtures from different patients.

45
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The numerically simulated and 1n-vivo IVUS 1mages can
then be segmented with 3D multiple interface fast marching,
methods using automatically detected gray level PDFs and

gray level gradient for comparison purposes. For the experi-
mental testing, all IVUS catheter pullbacks were segmented
three times with both 3D methods using different sets of

initial intertaces obtained from the initialization contours

55

generated from the longitudinal planes.
60

The results obtained for the simulated segmentation of the
IVUS mmages with the detected gray level Rayleigh PDFs
method and with the gray level gradient method are shown in
FIGS. 7ato 8d. F1GS. 7a to 7d are concerned with a first blood

vessel geometry, shown 1n FIG. 7a, and FIGS. 8a to 84 are
concerned with a second blood vessel geometry shown 1n
FIG. 8a.

65

The average and Haussdort distance were chosen as com-
parison metrics instead of area or perimeter differences
because they directly depict point-to-point contour varia-
tions. As can be seen 1n Table III, very low average and
Haussdort distances values were obtained, for both PDF- and
gradient-based three-dimensional (3D) fast marching, dem-
onstrating that the method 1s very powertul for simulated
B-mode IVUS segmentation. In fact, average deviation
ranged from 0.060 to 0.072 mm and worst point-to-point
distances were between 0.154 and 0.226 mm, which 1s highly
satisfactory. Lower Haussdort distances were obtained on
lumen boundary with the gradient method (p<0.01) because
the blood and intima interface generally produces bright ech-
oes for which the gradient information 1s significant. How-
ever, on less contrasting boundaries such as the intima

(plaque) and media intertaces, statistically significant lower
Haussdort distances (p<<0.05) were achieved with the PDF-
based method.

Examples of results obtained with the gray level Rayleigh
PDF method and with the gray level gradient method for the
in-vivo IVUS data are displayed in FIGS. 94 to 10¢. The
lumen, mtima and media detected boundaries are presented
for a first cross-sectional IVUS 1mage (FI1G. 9a) and a second

different cross-sectional IVUS image (FIG. 10a).
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In FIGS. 96 and 105, the detected boundaries of the lumen,
the intima and media are estimated with the gray level PDF
based fast-marching method and, i FIGS. 9¢ and 10¢, with
the gray level gradient based fast-marching method.

A qualitative analysis of the gray level PDF and gray level
gradient fast marching segmentation methods reveals that the
detected boundaries are very close to all vessel layers. More
specifically, FIGS. 9a to 10¢ show that vessel layer bound- "
aries of m-vivo IVUS images can be identified even 11 the
contrast 1s very low, as 1llustrated at 4 o’clock for the collat-
eral vessel in FIG. 9a. Also, detected boundaries on FIGS.
106 and 10¢ demonstrate that non-circular lumen may be
detected with fast marching methods. 13

The following Table IV shows the average distance (AD)
and the Haussdort distance (HD) between detected bound-

aries on n-vivo data for the gray level PDF and gray level

gradient fast marching methods for different manual initial- 2¢
1zations of the interfaces.
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As mentioned hereinabove, the PDF-based fast-marching

segmentation method can further exploit RF data 1n place of

B-mode data. On RF data, the EM algorithm generally
searches for a mixture of Gaussian PDFs describing the dif-

terent layered structures of the vessel wall on IVUS 1mages.

FIG. 12a shows a simulated 2D RF image taken from the
whole 3D data set, whereas FI1G. 125 presents an example of
segmentation results obtained with the PDF method applied
on RF IVUS data. Qualitatively, similar performance can be

appreciated when comparing those results to FIG. 8c. How-
ever, quantitatively, better accuracy 1s generally expected
because of the higher resolution of RF images when com-
pared to B-mode data.

In a preliminary version of the IVUS fast marching seg-
mentation method disclosed by Roy Cardinal et al., 1n “Intra-
vascular ultrasound image segmentation: A fast marching

method” (Lecture Notes in Computer Sciences. Proceedings
of MICCAI 2003: Medical Image Computing & Computer

TABLE IV
[.umen Plaque Media
Segmentation Method AD (mm) HD (mm) AD (mm) HD (mm) AD (mm) HD (mm)
FMM-3D 0.092 £0.095 0.270 £0.147* 0.092 £ 0.078  0.256 £0.102¢ 0.092 £0.083  0.256 £ 0.113%
EhD/Iij[—I‘vD 0.092 £0.104 0.317 £0.148  0.090 = 0.080* 0.287 £0.092  0.085 £ 0.088* 0.302 = 0.107
Gradient

In Table IV, FMM refers to the fast-marching segmentation
method, symbol * indicates a statistically significant better ;s
performance with p<t0.05 on paired t-test, whereas symbol §
means a statistical significance of p<<0.01.

Results indicate that gray level PDF fast marching has the

smallest Haussdort distances (p<0.01), which remains under 4,

0.270 mm for all boundaries compared to a value of up to

0.317 mm for the gray level gradient implementation. PDF
fast marching also has relatively small average distances

between contours, of 0.092 mm and lower, but are signifi- 45

cantly higher than mntima and media average distances
obtained with the gray level gradient method (p<t0.05). How-
ever, the differences between these distances are generally
small (lower than the pixel size). Thus, 3D fast marching s,
detected boundaries have small variations when 1nitialized

differently and the maximum distance to the closest point,
representing the worst case, generally stays low. This tends to
indicate that the segmentation performance 1s good inregions s
lacking information, for example when the boundaries to be
detected are covered with catheter ring-down artifacts of lost
behind calcium deposits.

FIG. 11 shows a 3D reconstruction of the lumen and media

contours obtained with gray level PDF 3D fast marching
segmentation for which a double stenosis in that patient 1s
clearly seen. In the figure, the light gray corresponds to the

inner portion of the media, whereas the dark gray 1s the vessel o5

lumen. The gray level gradient fast marching method pro-
vided similar qualitative results (data not shown).

Assisted Intervention, vol. 2879, 2003, pp. 432-439), a 2D

version of the fast marching method was implemented.
Generally speaking, a 2D IVUS algorithm uses segmenta-

IVUS 1mages of the catheter pullback to

correct 1mitial interfaces. The 2D segmentation model dis-

tion from previous

closed by Roy Cardinal in the above-mentioned study was
applied to a small IVUS catheter pullback of 200 images.
Depending on the IVUS application, any dimensions can be
considered for implementing the fast-marching PDF or gra-
dient based method. The present multi-dimensional method 1s
general and conceptually considers 1D to ND dimensions,
where N 1s the order of the method. Note that N=4 considers
time varying 3D IVUS data.

Since a bigger IVUS B-mode clinical database was avail-

able for the present study, the 2D version of the fast marching
segmentation was applied to all available catheter pullbacks.
The 2D implementation of fast marching arrival time (from

Equation 10) and speed functions (from Equations 11 and 12)

1s generally straightforward. In 2D, 8-connected pixels (26
connected pixels for the hereinabove presented method) were
used for averaging neighbors 1n the speed function calcula-
tion.

—

T'he following Table V shows the average distance (AD)
and the Haussdort distance (HD) between boundaries of the
detected vessel layers, from different initializations with 2D

fast-marching segmentation. As for the 3D fast marching

method, the results are for automatically detected PDF- and
gradient-based algorithms.
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TABLE 'V
Lumen Plague Media
Segmentation Method AD (mm) HD (mm) AD (mm) HD (mm) AD (mm) HD (mm)
FMM-2D 0.093 £0.096 0.279 £0.149 0.093 £0.078 0.262 £0.102 0.091 £0.083 0.262 £0.113
EIBI?Z-LZD 0.096 £0.106 0316 £0.147  0.095 £ 0.088 0.299 £0.100  0.085 £0.090 0.304 £0.104
Gradient

A two way analysis of variance with pairwise multiple

comparisons using the Turkey test was performed on average
and Haussdorf distances for 2D (Table V) and 3D (Table IV)
fast marching.

Statistical tests showed that average distances from the 2D
fast marching detected boundaries 1n Table V were not dii-
terent from the 3D fast marching results for all blood vessel
layers. It should be noted that 2D algorithms used segmenta-
tion from previous 1mages of the catheter pullback to correct
initial contours, which increased boundary precision. Thus,
alternatively, the segmentation performance can be increased
by combiming this type of correction strategy in the 3D fast
marching method, by using a multi-scale segmentation
approach to iitialize a higher resolution data set with low
resolution segmentation results of the same catheter pullback.
As for the 3D fast marching method, the gray level PDF {fast
marching 1n 2D had lower Haussdort distances than the gray
level gradient method (p<0.05). Since good average distance
performance was achieved with the gray level gradient
method 1n both 2D and 3D fast marching, this information can
be added with advantage to the PDF speed function of Equa-
tion 11.

A second non-restrictive illustrative embodiment of the
method and device according to the present invention will
now be described. For the sake of brevity, only the differences
between the method and device according to the first non-
restrictive 1llustrative embodiment and the second non-re-
strictive 1llustrative embodiment are described hereinbelow.

In the second non-restrictive i1llustrative embodiment, the
fast marching method has been modified to enhance the effi-
ciency in computing time. In the fast marching method 1n
accordance with the first illustrative embodiment, several
interfaces simultaneously propagate across the IVUS 1mage
data. In the propagation process, the propagating interfaces
and their neighboring areas are explored in a significantly
detailed manner. Generally, 1n the segmentation method as
described 1n the first illustrative embodiment, all pixels are
analyzed and the propagation process takes into account all
preceding interface neighbors through the arrival time map
construction. Computation time 1s thus increased as the mitial
interface propagates 1n a larger initial segmentation area.

In the first illustrative embodiment, the position of the
initial interfaces 1s calculated from a shrunk version of manu-
ally or automatic traced mmitialization contours taken along a
longitudinal plane. Examples of the position of 1nitial inter-
faces calculated from initialization contours are shown 1n
FIGS. 13a and 134.

The black region represents the unexplored propagating
area 130, the gray pixels on each side of the propagating area
130 correspond to the propagating interfaces 132,134 and the
arrows 136a,1365,136¢ and 1364 represent the propagation
direction of the propagating interfaces 132,134. The dashed
line 138 represents the desired boundary to reach and the solid
line 1s an example of mitial interface 140 from which the
initial propagating interfaces 132, 134 were calculated. In
FIG. 13a, the mterfaces will not detect the boundary 138
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because the propagation area 130 was not set wide enough to
completely include the boundary 138, as 1n FIG. 135. How-

ever, propagation 1 FIG. 13aq will be completed faster than
the case of FIG. 135.

Therefore, to decrease computational load, shrinking can
be diminished to create a smaller propagating area 130 (FIG.
13a). However, because the fast marching method propagates

an interface 132,134 under a unidirectional speed function
(see arrows 136a,13656 or 136¢,1364) the boundary 138 to be
detected must be located inside the propagating area 130 that
will be explored during the propagation.

A compromise between the dimension of the propagating
area 130 and the computation time 1s sought. With known 2D
fast marching segmentation method, this problem 1s generally
solved by using segmentation results from previous 2D
images of the catheter pullback to correct 1nitial interfaces.
The1nitial interfaces 140 are then more precise and the propa-
gating area 130 can be set with smaller dimensions.

In the 3D fast marching segmentation method of the first
non-restrictive illustrative embodiment, a correction similar
to this 2D correction principle can be made through a multi-
resolution or multi-scale representation and segmentation of
the IVUS data. An example of such multi-resolution 1images
in IVUS data 1s shown 1n FIGS. 14a-14d, where lower reso-
lution 1mages are obtained by undersampling the original
IVUS image by 2’ (Operation 191 of FIG. 20) where 1=3, 2, 1,
0 1s the resolution level corresponding to FIGS. 144, 145, 14¢
and 14d, respectively. High scale structures, such as for
example the lumen, are generally emphasized on lower reso-
lution 1mages.

The segmentation results of a lower resolution representa-
tion of the IVUS data are mapped imto the next level of
resolution (Operation 192 of FIG. 20). Boukerroui et al., in
“Segmentation of ultrasound images—multiresolution 2D
and 3D algorithm based on global and local statistics™ (Pat-
tern Recognition Letters, 24.779-790, 2003) and Mignotte et
al., 1n “A multiscale optimization approach for the dynamic
contour-based boundary detection 1ssue” (Computerized
Medical Imaging and Graphics, 25(3):2635-2775, 2001) pro-
pose related concepts.

These segmentation-mapped results are used to 1nitialize
the interface propagation at thus higher resolution level (Op-
eration 193 of FI1G. 20). Ata low-resolution level, a fast coarse
exploration of a wide propagating area 1s performed to bring
the propagating interfaces 132,134 closer to the desired
boundaries 138 (Operation 201 of FIG. 21). The propagation
area 130 can then be reduced at each higher resolution level
since the mterfaces 132,134 are iteratively corrected (Opera-
tion 202 of FIG. 21). A larger propagation area 130 can thus
be explored 1n less calculation over all possible resolutions.

At a resolution level 1, a pixel represents a 2'x2’ block of
pixels from the original resolution image. In FIGS. 14a to
144, the undersampling that was used resulted 1n loss of
information at low resolution levels. To overcome this loss of
information, a multiscale PDF-based velocity function (s1mi-
lar to Equation 11) 1s developed and used (Operation 203 of
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FIG. 21), where P(T ) 1s replaced with the likelihood of the
2'x2"block of pixels corresponding to I_ when the propagation
1s done at level 1, as given by equation 13:

P = | | Py (13)

S.{Eb!

where b, is the block of 2’x2’ pixels and P(1;) 1s the occur-
ring probability of the gray level value of pixel s, 1n the zero
resolution 1mage 1.

The multiresolution and multiscale fast marching segmen-
tation methods of FIGS. 20 and 21 generally allows to itera-
tively improve the accuracy of the detected boundaries with-
out increasing the computation time.

A third non-restrictive illustrative embodiment of the
method and device according to the present invention will
now be described. For the sake of brevity, only the differences
between the third non-restrictive illustrative embodiment and
the first non-restrictive illustrative embodiment will be
described hereinbelow.

In this third non-restrictive illustrative embodiment, the
fast marching method has been modified to automatically find
the 1nitial interfaces for the layers of the vessel wall (lumen,
inside and outside contours of the media) by using likelihood
maps of each components of the vessel wall (lumen, intima
and plaque, media, and surrounding tissues), which are cal-
culated according to the estimated PDF mixture parameters.
This approach can be seen as an alternative to the manual
initializations of the vessel interfaces described hereinabove.

The mitialization procedure generally finds a rough esti-
mate of the true boundaries of the layers that will be further
refined 1nto accurate wall contours with the multiresolution or
multiscale gray level PDF fast marching method.

The 1nmitialization procedure generally starts on a small
subset of contiguous 2D IVUS frames from the whole cath-
cter pullback (Operation 211 of FIG. 22). For mstance, the
subset may contain N, .. 2D IVUS frames to get as much
information as possible (N, . =ten (10) for example), while
keeping enough correlation between the 2D IVUS frames.
For better results, the selected 2D IVUS frames are generally
of good quality, with no calcification shadows and with a
generally homogeneous plaque, in order to maximize the
available information for determining the imitial interface.

To find these good quality 2D IVUS frames, a degree of
fitting 1s {irst calculated between each of the individual frame
histogram and the pullback PDF mixture (see FIG. 3). The
degree of fitting can be measured by the Kolmogorov-
Smirnov test that calculates the distance between the PDF
mixture and the normalized histogram of an IVUS 2D frame.
This test 1s used to determine 1f an empirical distribution
(IVUS histogram) differs from a theoretical distribution
(mixture). The Kolmogorov-Smirnov distance, between the

subset 11t of N, .. 1mages and the global IVUS data PDF P,

17l l

that should be minimized 1s:

i (s) (14)

K=22| N

jcinit s={

- P(;)

where 1 1s the gray level value of pixel s in 1mage I; k(1)
is the number of pixels having the gray level value I in the j”
image of the subset; and N 1s the number of pixels in 1image I.
The contiguous frames having the smallest Kolmogorov-
Smirnov distances are generally chosen. Since the mixture 1s
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calculated over the whole catheter pullback, 1t represents the
average lumen and blood vessel wall. This test thus generally
selects the frames that are similar to the average catheter
pullback, and these frames are used to start the calculation of
the mnitial interface.

Calculation of the initial interface 1s mitiated with the

search of an inner generally elliptical ring shaped region
corresponding to the media structure 150 (Operation 212 of

FIG. 22), as shown i FIG. 15. This media region 150 1s
distributed according to the hereimnabove disclosed media
PDF and enclosed between a surrounding tissue region 152
and a plaque region 154. The media region 150, the surround-
ing tissue region 152 and the plaque region 154 are generally
of fixed size to simplity the initialization procedure and
because only a rough estimate of the media 1s generally nec-
essary. The surrounding tissue region 152 and the plaque
region 154 do not have to represent the whole plaque and
surrounding tissues since they are defined to provide addi-
tional imnformation about the media region 150.

The mitialization procedure generally begins with the
search of the media region 150 of the blood vessel because i1t
1s believed that the elliptical constraints are more easily
assumed for this layer. It was indeed reported by Hagenaars et
al., 1n “Gamma radiation induces positive vascular remodel-
ing after balloon angioplasty: A prospective, randomized
intravascular ultrasound scan study” (Journal of Vascular Sur-
gery, 36(2):318-324, 2002) 1n which 15 patients out of 16 had
a dissection after angioplasty of the femoropopliteal artery
making the lumen 1rregularly shaped.

Since IVUS data acquisition 1s often conducted 1n athero-
sclerosis treatment trial in which patients undergo angio-
plasty, the irregularities of the layers should be taken into
account. Also, the search of the mmitial lumen interface i1s
reduced to the inside region of the media (Operation 213 of
FIG. 22), which generally prevent the propagating interface
from leaking into collateral branches when they are present.
Moreover, the elliptical shape of the initial media region 150
generally produces a closed initial interface, even 1f the media
1s hidden behind a calcification shadow.

In order to find the media region 150 1n the subset of 1nitial
IVUS frames, an energy function must be associated with the
template 158 of FIG. 15. In the deformable model framework
disclosed by Jain et al., 1n “Deformable template models: A
review” (Signal Processing, 71(2):109-129, 1998) and by
Zhong et al., 1n “Object tracking using deformable templates™
(In Sixth International Conierence on Computer Vision;
pages 410-445, 1998), the energy function i1s generally
defined to be minimal when the template fits the searched
region. Deformations are applied to the template 158 to
achieve a mimmum energy function on the image.

The energy function that should be mimimized to find the
media region 150 1s given by the following Equation 15:

(15)

1 .
&(R. ;) = —Z — >, D logPUi|n)

neER A

where P(171r,) is the occurring probability of the gray level
value of pixel s in the j” IVUS image of the initial subset
according to the PDF of regionr;; R={r,,r,,.r,} are the plaque
region (r,) 154, media region (r,,) 150 and tissue region (r,)
152 of the template 158; N_ . 1s the size of the imitial frame
subset.

Generally only linear transformations such as for example
translations, stretchings, and rotations are applied to the tem-

Ir2if
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plate 158 because only a generally rough estimate of the
media region 150 1s needed. The template 158 fitting 15 per-
formed at a reduced resolution level 1=1, as described 1n the
second non-restrictive 1llustrative embodiment, 1n order to
mimmize the computation time, while keeping a large enough
media to work with. Different known minimization algorithm
can be used for minimizing the deformation model.

The lumen region (not shown in FIG. 15) 1s then searched
from the defined mmitial media boundary. A region without
geometrical shape constraints 1s computed: the lumen likeli-
hood map 1s calculated and a lumen region 1s grown or propa-
gated using this map (Operation 214 of FIG. 22). The lumen
region generally starts at the IVUS catheter that 1s 1inside the
lumen and generally located in the vicinity of the center of all

pullback frames.

The lumen region grows by adding the pixels that are most
likely to be inside the lumen according to the occurring prob-
ability, for example 11 the log-likelihood

of pixel sinthe N, . 1mage subset according to the PDF of the
lumen regionr, 1s low enough. The region 1s generally forbid-
den to grow beyond the boundary of the media region 150.

The media and lumen regions are then adjusted or fitted to
the N_ . contiguous 2D IVUS frames that were used 1n the
initial subset (Operation 215 of FIG. 22). Linear transiorma-
tions may be applied to these media and lumen regions to
maximize their likelihood to each of the contiguous 2D IVUS
frames. This step 1s usually performed as for the heremnabove
described media deformable template, but the nitial intima
and plaque region 154 1s bounded by the lumen region and the
media region 150, and the initial surrounding tissues region
152 1s bounded on only one side by the media region 150.

This procedure 1s generally repeated for the next subset of
contiguous 2D IVUS frames in the catheter pullback. How-
ever, the process for each contiguous 2D IVUS frame gener-
ally starts with the results of the previous defined media
template 158. The growth of the lumen region generally starts
from a shrunk version of the previous average lumen region.
The whole IVUS 1mage pullback 1s therefore nitialized 1n
that manner.

Alternatively, the segmentation fast marching method as
described 1n the first illustrative embodiment may use a com-
bination of the gray level gradient information and the gray
level PDF information in the calculation of the initial inter-
faces 1f using only the gray level PDF information turns out to
be insufficient to generate an automatic initialization as
described 1n the third illustrative embodiment. The gray level
gradient information could also be integrated to the interface
velocity function of Equation 11.

In the case of very low-quality images or high ultrasound
attenuation limiting penetration within the vascular wall, the
proposed 1nitial boundary calculation procedure might fail to
find some 1nitial contours or region boundaries. For these
particular cases, minimal user interaction might be required
to correct some regions ol the interfaces. If necessary, this
interaction may further be included 1n the segmentation pro-
cess to mimimize the occurrences of having to re-segment
accurately found boundaries.

In the case where a single boundary 1s available, such as for
example the boundary between the lumen and the intima, the

clliptical template may be modified 1n such a way as to pro-
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vide a two (2) region template generally corresponding to the
regions between the single boundary. The energy function of
equation 15 thus becomes generally restrained to two (2)
regions and the remaining initialization procedure remains
generally similar to the case of the multiple boundary 1nitial-
1zation.

A tourth non-restrictive illustrative embodiment of the
method and device according to the present invention will
now be described. For the sake of brevity, only the differences
between this fourth 1llustrative embodiment and the first 1llus-
trattve embodiments will be described.

In this fourth non-restrictive 1llustrative embodiment, the
fast marching method has been modified to replace the EM
local algorithm presented 1n the first 1llustrative embodiment.
The EM algorithm 1s a local algorithm 1n which the neighbors
information 1s missing. This information 1s generally
required, such as for example, 1 the case of heterogeneous
plaque where the PDFs are generally more difficult to esti-
mate. In addition, convergence 1s generally very slow with the
EM algorithm such that 1t can take a sigmificant number of

iterations in order to be able to estimate the mixture parameter
® of Equation (2).

The automatic mitial contour detection procedure pre-

sented 1n the previously presented third 1llustrative 1s based on
the IVUS PDF information. In cases where the EM algorithm
cannot be used, the iterative conditional estimation (ICE)
algorithm that was previously proposed for the mixture
parameter estimation of incomplete data by Pieczynski in
“Champs de markov caches et estimation conditionnelle
iterative” (Traitement du Signal, 11(2):141-153, 1994) gen-
erally represents a more robust algorithm, which generally
converges faster than the EM algorithm.

In the PDF mixture estimation presented 1n the first 1llus-
trative embodiment, the random variables (X, Y) are referred

to as the complete data whereY 1s the gray level taking values

imn[l,...,256] (observed data), and X 1s the tissue label taking
values [1, ..., M] for a PDF mixture modeling M different
tissues (hidden information). For the set of pixels S, the

realization y=(y_)..- 01Y 1s the IVUS B-mode or RF 1mage
and x=(x_).. -are the unknown pixel labels. The EM algorithm
1s considered local because the labels x_ are considered 1inde-
pendent. In the ICE algorithm, X 1s supposed Markovian 1.¢.

P.(x) 1s defined with respect to the following neighborhood
energy function:

P(x) = exp(—z DHlx, xr)] (16)
(3,1)

where ¢ 1s an energy function and the summation 1s for all

pairs of pixel neighbors (s,1).

The first operation of the ICE algorithm 1s to simulate, such
as for example with the Gibbs sampler, n realizations
(X, ..., X )of X according to the posterior distribution
P, F:e,(xIy,,@)')j with ©' the initial or the previous iteration
estimate of the PDF mixture parameter ® (Operation 221 of
FIG. 23). The posterior distribution 1s computed using Bayes
rule from the known P,(X) and Py, 5 ¢ (Y1X, ®"); and the neigh-
borhood V _ of pixel s:
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e}ip(—z d(xs, X:) —log pey (Vs |x5)] (17)

=

P@" (-xs | .}”s) — [y

Z erﬂ:{— 2 Plxs =k, x) —logper (ys | x5 = k)]

eV
k=1

With these simulations of the hidden data, n sets ((x;,

v), ..., (X .y)) of complete data are available.
The next operation (Operation 222 of FIG. 23) 1s to calcu-
late the new value of

A F

14 A
0 = E[@(xl, V) + ...+ 0O(x,, y)],

where © is a parameter estimator of the complete data (maxi-
mum likelihood for example). Operations 221 and 222 of
FIG. 23 are generally repeated until convergence of the mix-
ture parameter estimate 1s achieved (Operation 223 of FIG.
23).

For the Rayleigh mixture, 1t 1s assumed that each layer
structure of the B-mode 1mages 1s a generally uniform scat-
tering tissue with a significantly large number of diffusers
because the Rayleigh PDFs model the gray level distribution
of the ultrasound signal under that condition, as disclosed by

Wagner et al., 1n “Statistics of speckle 1n ultrasound B-scans”™
(IEEE Transactions on Sonics and Ultrasonics, 30(3):156-

163. 1983). The same reasoning applies to Gaussian PDFs
describing RF IVUS 1mages.

In the case of highly heterogeneous plaque layer of a dis-
cased patient, the Rayleigh or Gaussian PDF might not be
suificient to model the pixel gray level distribution. Distribu-
tions other than Rayleigh or Gaussian have been imnvestigated
in modeling of the ultrasound B-mode envelopes or RF sig-
nals, respectively: Rician distribution as disclosed by Wear et
al., 1n “Statistical properties of estimates of signal-to-noise
rat1o and number of scatterers per resolution cell” (Journal of
the Acoustical Society of America, 102(1):635641, 1997), K
distribution as disclosed by Dutt et al., 1n “Statistics of the
log-compressed echo envelope” (Journal of the Acoustical
Society of America, 99(6):3817-3825; 1996) and Nakagami
distribution as disclosed by Shankar in “A general statistical
model for ultrasonic backscattering from tissues” (IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, 47(3):727-736, 2000).

The ICE algorithm generally has no limitation for the type
of statistical distribution to be modeled, as long as a parameter
estimate of the complete data can be calculated. Moreover, 1f
a model of mixed distribution types i1s necessary, the gener-
alized ICE algorithm (GICE) as disclosed by Delingnon et al.,
in “Estimation of generalized mixtures and its application 1n
image segmentation” (IEEE Transactions on Image Process-
ing, 6(10):1364-1375, 1997) can be used. GICE generally
provides parameter estimates for mixtures composed of a
various number and type of statistical distributions.

A fifth non-restrictive 1illustrative embodiment of the
method and device according to the present invention will
now be described. For the sake of brevity, only the differences
between the fifth and first illustrative embodiments will be
described hereinbelow.

In this fifth non-restrictive illustrative embodiment, the
segmentation fast marching method allows to treat and ana-
lyze, in addition to the volumic information obtained from the
boundary layer detections of the blood vessels, dynamic data
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retrieved from IVUS pullbacks defining a fourth dimension.
The dynamic data generally relates to the cyclic pulsation
occurring in the blood vessels.

The cyclic variations of the vessel dimensions combined to
cardiac motion (for coronary IVUS) was described, 1n the
literature, as the sawtooth artifact which 1s generally visible
on longitudinal view of the IVUS volume and generally
caused by the blood vessel pulsations. As shown by the arrow
in FIG. 16, the sawtooth artifact 1s also present in IVUS data
of femoral arteries even without cardiac motion. In common
femoral arteries for instance, diameter measurements gener-
ally vary from 6.8 mm 1n diastole to 7.2 mm 1n systole for
patients with lower limb peripheral vascular disease, as dis-
closed by Tai1 et al. 1n “In vivo femoropopliteal arterial wall
compliance 1n subjects with and without lower limb vascular
disease.” (Journal of Vascular Surgery, 30(5):936-945, 1999).

Electrocardiogram-gating (ECG-gating) acquisition was
proposed by von Birgelen et al., in “ECG-gated three-dimen-
sional itravascular ultrasound, feasibility and reproducibil-
ity of the automated analysis of coronary lumen and athero-
sclerotic plaque dimensions 1n humans™ (Circulation, 96(9):
2944-2932, 1997) to remove this artifact. This 1s generally
accomplished by acquiring 2D IVUS frames at a precise
moment of the cardiac cycle, commonly at the end of diastole,
which generally gives more accurate and reproducible volu-
mic measurements, as disclosed by von Birgelen et al. and by
Bruining et al., in “ECG-gated versus nongated three-dimen-
sional intracoronary ultrasound analysis: Implications for
volumetric measurements” (Catheterization, and Cardiovas-
cular Diagnosis, 43:254-260, 1998).

Because ECG-gating hardware 1s generally not wide-
spread, retrospective gating was proposed to remove the
cyclic changes on non-gated IVUS pullback. Change tracking
in semi-automatically detected lumen contour was first pro-
posed by Nadkarmi et al., 1n “Image-based retrospective car-
diac gating for three-dimensional intravascular ultrasound
imaging” (SPIE Proceedings: Medical Imaging: Ultrasonic
Imaging and Signal Processing, volume 4687, pages 276-
284, 2002).

Another method searched for cyclic variations in contour

features calculated 1n a pre-processing step as disclosed by de
Winter et al., 1n “Retrospective image-based gating of intra-
coronary ultrasound 1images for improved quantitative analy-
s1s: The intelligate method” (Catheterization and Cardiovas-
cular Diagnosis, 61:84-94, 2004). The most recent
retrospective gating proposed method 1s based on variations
of the images mean gray level values by Zhu et al., 1n
“Retrieval of cardiac phase from IVUS sequences” (SPIE
Proceedings: Medical Imaging: Ultrasonic Imaging and Sig-
nal Processing, volume 5035, pages 135-146, 2003) which
states that the bigger systolic lumen, that 1s hypoechoic, gen-
crally decreases the mean gray level value of the image.
Some measurements can be made from the cyclic vessel
variations. It was demonstrated by Shaw et al., 1 “Determi-
nants ol coronary artery compliance in subjects with and
without angiographic coronary artery disease” (Journal of the
American College of Cardiology, 39(10):1637-1643, 2002.)
that plaque compression 1s related to the vessel cross-sec-
tional compliance. Also the lumen cross-sectional area (CSA)
difference between systolic and diastolic measurements was
significantly greater 1n yellow plaque which generally con-
sists of thin, fibrous cap with lipid-rich core and inadequate
collagen content), than white plaque which consists of thick
fibrous cap or completely fibrous, as disclosed by Takano et
al., 1n “Mechanical and structural characteristics of vulner-
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able plaques: Analysis by coronary angioscopy and intravas-
cular ultrasound” (Journal of the American College of Cardi-
ology, 38(1):99-104, 2001).

Thus, the cyclic pulsation contains information about volu-
mic changes of the blood vessel wall that 1s generally lost
when the acquisition 1s ECG-gated. The vessel pulsation
information from non-gated acquisition may be kept and used
to reconstruct the vessel wall 1n 3D, at different moments of
the cardiac cycle. With this fourth-dimensional reconstruc-
tion of the vessel wall, volumic accuracy and reproducibility
can be achieved for measurements made on 3D 1mage sets at
specific moments of the cardiac cycle.

To perform 4D reconstruction of the blood vessel wall,
detected boundaries from each 2D IVUS frames first have to
be classified 1n ditferent wall pulsation phases. This step may
be achieved by searching periodic components 1n measure-
ments calculated from the detected boundaries.

FI1G. 17 shows the lumen area calculated from the segmen-
tation results obtained from the semi-automatic PDF-based
fast marching method as described hereinabove. A cyclic
variation 1s visible and could be assessed on these retrospec-
tive measurements. However, 1t 1s also possible to include the
wall pulsation assessment 1n the boundary detection process,
such that this information 1s used to help the segmentation of
the IVUS pullback.

The wall pulsation assessment may be mnitiated during the
initial contour calculation procedure (Operation 231 of FIG.
24), and refined when the boundary detection 1s finished. The
wall pulsation 1s then generally divided 1n a discrete number
of phases (Operation 232 of FIG. 24), such as for example
systole, beginning of diastole and end of diastole, and a label
1s assigned to each wall pulsation phase (Operation 233 of
FIG. 24). The pullback 2D IVUS frames are then classified
and assigned to the corresponding pulsation phase label (Op-
eration 234 of FIG. 24).

As shown 1 FIG. 17, the lumen area contains the cyclic
pulsation information. Further, the area vanation between
adjacent frames 1s generally used to define the classification.
Since the pulsation 1s usually periodic, the cyclic pulsation
information is used to deform the 1nitial subset template 158

according to varations of the expected pulsation in the mitial
contour calculation of individual IVUS images (Operation
215 of FI1G. 22). The assignment of the pulsation phase labels
to following frames can also take advantage of the periodic
information.

At the end of the imitialization process, each 2D IVUS
frame 1s 1dentified with a wall pulsation phase label. How-
ever, these labels may change because, at the end of the
segmentation process, more accurate lumen areas are calcu-
lated. The 1nitial labels are therefore adjustable according to
their 1n1tial value, to the variations in area difference mea-
surements and to the expected value according to the periodic
variation (Operation 235 of FIG. 24).

With this pulsation assessment, the 4D data set are divided
in 3D data sets composed of all IVUS 2D frames associated to
a specific cardiac phase label and corresponding to the differ-
ent phases of the blood vessel’s pulsation (Operation 236 of
FIG. 24). Volumic (boundary) measurements can then be
made on these separate 3D data sets (Operation 237 of FIG.
24).

Although the present invention has been described herein-
above by way of non-restrictive illustrative embodiments
thereol, 1t can be modified at will, within the scope of the
appended claims without departing from the spirit and nature
of the subject mvention.
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What 1s claimed 1s:

1. An 1mage segmentation method for estimating bound-
aries of layers 1n a multi-layer body, said method comprising:

providing image data of the multi-layer body using IVUS

image data, the image data representing a plurality of
image elements;

determining a plurality of mnitial interfaces corresponding

to regions of the image data to segment; and
concurrently propagating the mitial interfaces correspond-
ing to the regions to segment and thereby estimating the
boundaries of the layers of the multi-layer body, propa-
gating the initial interfaces comprising using a fast
marching model based on a probability function describ-
ing at least one characteristic of the image elements,
wherein the multi-layer body 1s a multi-layer blood vessel.

2. An 1mage segmentation method as defined 1n claim 1,
wherein:

determining each 1mitial interface comprises defimng the

initial interface as a zero level of a given function; and
propagating each initial interface comprises moving the
given function according to a speed function.

3. An 1mage segmentation method as defined 1n claim 1,
wherein the image elements comprise pixels and wherein the
fast marching model 1s based on a probability density func-
tion estimating a color map of the pixels for each region of the
image data.

4. An 1mage segmentation method as defined 1n claim 1,
wherein the 1mage elements comprise pixels and wherein the
fast marching model 1s based on a gradient function estimat-
ing a color map of the pixels for each region of the image data.

5. An 1mage segmentation method as recited 1n claim 1,
wherein determining each initial interface comprises:

manually tracing an 1nitialization contour in a longitudinal

plane of the IVUS 1mage data;

transposing reference points of the iitialization contour to

intersecting IVUS 2D frames of the IVUS 1mage data;
and

defining the mitial interface from the transposed reference

points in the IVUS 2D frames.

6. An 1mage segmentation method as defined 1n claim 3,
wherein defining the nitial interface comprises tracing
shrunk contours from an interface passing by the reference
points.

7. An 1mage segmentation method as recited in claim 5,
wherein manually tracing an 1imitialization contour comprises
tracing a plurality of initialization contours.

8. An 1mage segmentation method as recited in claim 7,
wherein transposing reference points of the mitialization con-
tour comprises transposing reference points from the plural-
ity ol mitialization contours.

9. An 1mage segmentation method as recited in claim 1,
wherein:

the 1mage elements comprise pixels each having a color

map; and

using a fast marching method comprises estimating a
color map of pixels 1n each of the regions to segment
in the IVUS 2D frames of the IVUS 1mage data using,
a mixture of probability density functions.

10. An 1mage segmentation method as defined 1n claim 9,
wherein the probability density functions comprise Rayleigh

probability density functions.
11. An 1image segmentation method as defined 1n claim 9,
wherein the probability density functions comprise Gaussian

probability density functions.
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12. An image segmentation method as recited 1n claim 9,
wherein using a mixture of probability density functions
comprises determining an occurring probability value of the
gray levels of the pixels.

13. An image segmentation method as recited 1n claim 9,
wherein using a mixture ol gray level probability density
functions comprises iteratively finding mixture parameters
via an Expectation Maximization (EM) algorithm, compris-
ng:

a) calculating a cost function given an observed value of
said color map and a previous estimate of said mixture
parameters;

b) maximizing said cost function to analytically evaluate a
new estimate of said mixture parameters;

¢) mitializing said previous estimate of said mixture
parameters to said new estimate of said mixture param-
eter 1f both are different; and

d) repeating a) to ¢) until said previous estimate of said
mixture parameters 1s the same as said new estimate of
said mixture parameters.

14. An 1image segmentation method as recited 1n claim 1,
wherein propagating the inmitial interfaces comprises con-
structing an arrival time function algorithm, comprising;:

a) defining a speed function for the initial interfaces in

terms of said probability function;

b) propagating the interface by selecting an interface point
having a smallest arrival time;

¢) calculating the arrival time and speed function of neigh-
bors of the interface point; and

d) repeating a) to ¢) until the propagating 1nitial interfaces
have all propagated across the regions to segment.

15. An 1image segmentation method as recited 1n claim 14,
wherein repeating a) to ¢) 1s performed until the propagating
initial interfaces are stationary.

16. An 1image segmentation method as recited 1n claim 14,
wherein said neighbors comprises a number of pixels located
around the interface point having the smallest arrival time.

17. An image segmentation method as recited 1n claim 1,
wherein providing IVUS 1mage data comprises pulling back
in the multi-layer blood vessel a catheter equipped with an
IVUS mmage data acquisition tool.

18. An image segmentation method as recited 1n claim 1,
wherein providing IVUS 1image data comprises:

a) acquiring IVUS data;

b) digitizing 1mage data from the IVUS data on a pixel

matrix;

¢) storing the pixel matrix in 2D IVUS frames; and

d) calculating an estimation of mixture parameters of a

probability density function forming said probability
function.

19. An 1image segmentation method as recited 1n claim 1,

wherein providing IVUS 1mage data comprises:

a) acquiring in-vivo 2D IVUS frames;

b) generating segmented contours by tracing 1initialization
contours on longitudinal planes of said IVUS 1image data
and transposing reference points of said 1nitialization
contours on said segmented contours; and

¢) applying an image-formation model to said segmented
contours generating simulated 2D IVUS frames.

20. An image segmentation method as recited in claim 19,

wherein applying an image formation model comprises:

a) applying an acoustic impedance variations function to
the segmented contours;

b) expressing said acoustic impedance variations function
in polar coordinates;
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¢) processing said acoustic impedance variations function
in polar coordinates with a polar spread function via a
2D convolution operator generating a polar radio-fre-
quency 1mage;

d) expressing said radio-frequency 1image 1n polar B-mode
image; and

¢) generating said simulated 2D IVUS frames by express-
ing said polar B-mode image in Cartesian coordinates.

21. An 1mage segmentation method for estimating bound-
aries of layers 1n a multi-layer body, said method comprising:

a) providing image data of the multi-layer body using
IVUS image data, the image data representing a plurality
of 1mage elements;

b) determining a plurality of 1nitial interfaces correspond-
ing to regions ol the image data to segment; and

¢) concurrently propagating the imitial mterfaces corre-
sponding to the regions to segment said regions and
estimate the boundaries of the layers of the multi-layer
body, propagating the initial interfaces comprising using
a fast marching model based on a gradient function
describing at least one characteristic of the image ele-
ments,

wherein the multi-layer body 1s a multi-layer blood vessel.

22. An 1image segmentation method as defined in claim 21,
wherein the 1mage elements comprises pixels having a gray
level, and wherein the fast marching model 1s based on a gray
level gradient function of the pixels for each region of the
image data.

23. An 1image segmentation method as recited in claim 1,
wherein providing IVUS 1mage data comprises undersam-
pling an initial resolution of said IVUS 1mage data 1n 1 reso-
lution levels of IVUS 2D frames, each resolution levels being
a 2’ fraction of said initial resolution of said IVUS image data.

24. An 1image segmentation method as recited 1n claim 23,
wherein propagating the initial interfaces according to a fast-
marching model comprises:

a) estimating probability functions 1n the IVUS 1mage data
for obtaining 1mage segmentation results of a first lowest
resolution level amongst remaining 1 resolution levels;

b) mapping the segmentation results into a second lowest
resolution level amongst remaining 1 resolution levels;
and

¢) repeating a) and repeating b) until the first lowest reso-
lution level 1s said 1nitial resolution level of said IVUS
image data.

25. An 1image segmentation method as recited 1 claim 1,
wherein providing IVUS 1mage data comprises generating |
scale levels of IVUS 2D frames from an 1nitial scale of said
[VUS image data, each scale level being a function of a 2/x2’
portion of said initial scale of said IVUS 1image data.

26. An 1mage segmentation method as recited 1n claim 25,
wherein propagating the initial interfaces according to a fast-
marching model comprises:

a) estimating probability functions 1n the IVUS 1mage data
for obtaining 1mage segmentation results of a first high-
est scale level amongst remaining 1 scale levels;

b) mapping the segmentation results into a second highest
scale level amongst remaining 1 scale levels; and

¢) repeating a) and repeating b) until the first highest scale
level 1s said 1nitial scale level of said IVUS 1mage data.

27. An 1image segmentation method as recited 1 claim 1,
wherein determining a plurality of initial interfaces com-
Prises:

a) selecting a subset of contiguous 2D IVUS frames from

said IVUS 1mage data;

b) generating 1nitial interfaces of an inner-layer region
estimating an inner layer of the multi-layer blood vessel;
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¢) searching an initial interface of a side layer of the vessel
from said inner-layer region;

d) calculating a likelihood map for said side layer and
growing a side-layer region from said map; and

¢) fitting said inner-layer region and said side-layer region
on each contiguous 2D IVUS frames of said subset.

28. An 1mage segmentation method as recited 1n claim 1,
wherein using a mixture ol gray level probability density
functions comprises iteratively finding mixture parameters
via a parameter estimation algorithm comprising;:

a) simulating realizations of a hidden data information
according to a posterior distribution;
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b) calculating an estimate of said mixture parameters with
a parameter estimator;

¢) repeating a) and b) until convergence of said mixture
parameters.

29. An image segmentation method as defined 1n claim 1,
wherein the image data comprises B-mode IVUS 1mage.

30. An image segmentation method as defined in claim 1,
wherein the image data comprises RF IVUS 1mage.

31. An image segmentation method as defined in claim 1,

o Wherein the fast marching model 1s based on a probability

function estimating the gray level distribution of pixels of the
image data.
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