US007921433B2
12 United States Patent (10) Patent No.: US 7,921,433 B2
McCain et al. 45) Date of Patent: *Apr. S, 2011
(54) METHOD AND SYSTEM FOR PROVIDING 6,003,050 A 12/1999 Silver et al.
VERSION CONTROL OF PARAMETERS IN A 222852%, ﬁ- %88(1) E:Edast?r |
COMMAND-BASED API USING JAVA 666,666 Bl 72001 Trel aia;aé]?glet al.
SERIALIZATION 6,356,946 Bl 3/2002 Clegg et al.
6,438,559 Bl 8/2002 White et al.
(75) Inventors: Brian S. McCain, Tucson, AZ (US); 6,457,066 B1* 9/2002 Meinetal.c.ocoo.. 719/330
Amy L. Therrien, Tucson, AZ (US) 6,470,494 B 10/2002 C_han et al.
6,519,594 B:h 2/2003 Ia
(73) Assignee: International Business Machines 6732542 B1* 8004 Meinotal. ..o 7197330
Corporation, Armonk, NY (US) 6,848,108 B1 1/2005 Caron
6,850,979 Bl 2/2005 Saulpaugh et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35
Tlhi_s patent 1s subject to a terminal dis- Lukasz Opyrchal et al., Efficient Object Serialization in Java, IEEE,
Claler. 1999, pp. 96-101.
(21) Appl. No.: 12/111,676 (Continued)
(22) Filed: Apr. 29, 2008 Primary Examiner — Van H Nguyen
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Scully, Scott, Murphy &
Presser, P.C.
US 2008/0201417 Al Aug. 21, 2008
(37) ABSTRACT

Related U.S. Application Data A technique for determining whether a server host supports

(63) Continuation of application No. 10/697,761, filed on the functions 1n a command sent by a client host. The client

Oct. 30, 2003, now Pat. No. 7,409,693. host formulates a command including a command object that
contains parameter objects. The parameter objects, which
(51) Int. CL. represent the functions, are serialized, e.g., using the Java
GO6l 9/44 (2006.01) serialization command, and communicated to the server host.
(52) US.CL ., 719/328; 719/316 The server host attempts to deserialize the parameter objects.
(58) Field of Classification Search 719/310-313, IT 1t 15 successiul, it 1s concluded that the server host supports
719/315, 316, 328, 330; 709/201-203,217-219 the functions represented by the parameter objects. Or, 1t 1s
See application file for complete search history. concluded that the server host 1s incompatible with the func-
tions represented by one or more parameter objects that can-
(56) References Cited not be deserialized. The server host may be a storage server,
and the functions may be storage-related, such as a copy type
5,682,536 A 10/1997 Atkinson et al.
5,944,781 A 8/1999 Murray 4 Claims, 2 Drawing Sheets
Ward'h
INVOKE CLIENT-SIDE API
l 210
PASS IN PARAMETER QBJECTS
PROYIDE A E}H'l.ﬁ.ﬂﬂ CBJECT S
THAT CONTAINS THE PARAWETER
0BJECTS
& 220
SERTALTZE COMMAND OBJECT
AND FAH&HE_TEH 0B.JECTS
& - 223
SEND SERIALIZED 0BJECTS
T0 S_EH'UEH
l 230
SERVER ATTEMPTS TO
l DESERIALIZE OBJECTS l
. 230 a0
CAN'T DESERIALIZE CAN DESERIALIZE L~
ALL PARAMETER OBJECTS ALL PARAMETER OBJECTS
' 40 '

PARAMETER{S) NOT UT COMMAND | 299
SUPPORTED TNCTIONE FONR LIRS
- REPRESENTED BY THE
PARAMETERS

! PRI
SEND ERRDR MESSAGE
0 CLIENT

US 7,921,433 B2
Page 2

U.S. PATENT DOCUMENTS

0,868,447 Bl 3/2005
6,970,869 B1 11/2005
7,117,504 B2 10/2006
7,209,929 B2* 4/2007

7,275,087 B2* 9/2007
2003/0055862 Al 3/2003
2003/0191803 Al 10/2003
2003/0204645 Al 10/2003

Slaug

ter et al.

Slaug
Smith

Dominguez et al.
Vaschillo et al.

Bhat

hter et al.
et al.

Chinnici et al.
Sharma et al.

.......... 707/781

************* 709/218

OTHER PUBLICATIONS

William Grosso, Java RMI, Chapter 10: Serialization, Oct. 2001.
Jung Gyu Park et al., Specializing the Java Object Serialization Using
Partial Evaluation for a Faster RMI, IEEE, 2001, pp. 451-458.
Lecture notes from MSc Programming in Java, Univ. Of Edinburgh,
Aug. 25, 2003, Spp.

The Java™ Tutorial, Aug. 25, 2003, 8pp.

* cited by examiner

U.S. Patent Apr. 5, 2011 Sheet 1 of 2 US 7,921,433 B2

FIG. 1
100 150

CLIENT HOST SERVER HOST
103 153

MEMORY MEMORY

110 160

PROCESSOR
113 169

PROCESSOR

NE TWORK
INTERFACE

NE TWORK
INTERFACE

130

U.S. Patent Apr. 5, 2011 Sheet 2 of 2 US 7,921,433 B2

FIG. 2

INVOKE CLIENT-SIDE API

209

210
PASS IN PARAMETER OBJECTS

215
PROVIDE A COMMAND OBJECT

THAT CONTAINS THE PARAMETER
0BJECTS

220
SERIALIZE COMMAND OBJECT
AND PARAMETER OBJECTS

220
SEND SERIALIZED OBJECTS
10 SERVER

230
SERVER ATTEMPTS T0
DESERIALIZE OBJECTS

235
CAN'T DESERIALIZE CAN DESERTALIZE 230
ALL PARAMETER 0BJECTS ALL PARAMETER OBJECTS

240
PARAMETER(S) NOT CARRY OUT COMMAND 255
SUPPORTED INCLUDING FUNCTIONS
REPRESENTED BY THE
4 PARAMETERS

SEND ERROR MESSAGE
T0 CLIENT

US 7,921,433 B2

1

METHOD AND SYSTEM FOR PROVIDING
VERSION CONTROL OF PARAMETERS IN A
COMMAND-BASED API USING JAVA
SERIALIZATION

RELATED APPLICATION

This application 1s a continuation of U.S. Ser. No. 10/697,
761, filed Oct. 30, 2003, now U.S. Pat. No. 7,409,693, the
entire contents of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The mvention relates generally to the field of computer
systems and, more specifically, to a technique for determining
whether a server-side host supports a command provided by a
client-side host.

2. Description of the Related Art

Computer systems mnclude host computers that communi-
cate with one another via a network to run network applica-
tions. Typically, software 1s distributed and run on two or
more hosts to realize the application. The network applica-
tions have application-layer protocols that define the format
and order of the messages that are exchanged between the
hosts, and what actions to take when a message 1s transmitted
or recerved. In particular, a network application typically
includes a client side and a server side. In this case, the
application may be referred to as a client/server application. A
client side on one host may commumnicate with a server side on
another host. The client 1s usually the host that initiates a
communication or session with another host.

However, difficulties arise when the client host and server
host are running different versions of the network application
or other software. In this case, the client may provide a com-
mand to the server requesting 1t to perform a specific function
that the server does not support. Various approaches have
been developed to address this problem. For example, the
client may send additional data to the server such as a code-
word that identifies the version the client 1s using. However,
this approach lacks generality and requires that a special
protocol for coding and decoding the version data be imple-
mented.

BRIEF SUMMARY OF THE INVENTION

To overcome these and other deficiencies 1n the prior art,
the present mvention provides a technique for determining,
whether a server supports different functions that are repre-
sented by parameter objects in a command that 1s sent to a
server-side host by a client-side host.

In a particular aspect of the invention, a method for pro-
viding a command from a client-side host to a server-side host
1s provided. The method includes invoking a client-side appli-
cation programming intertace (API) at the client-side host to
pass 1n a set of parameter objects, and to provide a command
object that contains the parameter objects; wherein each of
the parameter objects represents a different parameter of a
command; serializing the command and parameter objects to
provide serialized command and parameter objects; and com-
municating the serialized command and parameter objects to
the server-side host as the command.

In another aspect of the invention, a method for processing,
a command from a client-side host at a server-side host 1s
provided. The method includes recerving serialized com-
mand and parameter objects at the server-side host as a com-
mand from the client-side host; wherein the command object

10

15

20

25

30

35

40

45

50

55

60

65

2

contains the parameter objects, and each of the parameter
objects represents a different parameter of the command; and
deserializing the serialized command and parameter objects
to determine whether the server-side host 1s compatible with

the different parameters represented by the parameter objects.
A related program storage device 1s also provided.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, benefits and advantages of the
present invention will become apparent by reference to the
following text and figures, with like reference numbers refer-
ring to like structures across the views, wherein:

FIG. 11llustrates a client-side host and a server-side host in
a computer system; and

FIG. 2 illustrates a method for providing version control.

DETAILED DESCRIPTION OF THE INVENTION

Generally, the present invention provides a technique for
providing version control of parameters 1n a command-based,
client-server network application programming interface
(API). In a client-server network API, the levels of function-
ality supported by the client and server may differ. Moreover,
in a command-based API, new functionality may be repre-
sented as new additional parameters to the commands. For
example, for a server host 1n a storage subsystem, the func-
tions may be storage-related. The functions may specily, e.g.,
a copy type to be performed, a location to store data, or other
storage action to be taken. For instance, 1n the IBM® Enter-
prise Storage Server (ESS) storage subsystem, one function
may be a normal, continuous flash copy (an 1nstant copy of
data, such as a point-in-time copy of a volume), while another
function may be an incremental flash copy. The functions may
also be thought of as optional features that may or may not be
supported by different server hosts. The programming chal-
lenge 1s how to determine 1f a specific parameter ol a com-
mand from the client portion of the API 1s supported by, e.g.,
compatible with, the server portion of the API. The present
invention addresses this challenge by using Java deserializa-
tion of class type to determine 11 the server supports a specific
parameter and the function represented by the parameter.

FIG. 1 illustrates a client-side host 100 and a server-side
host 150 1n a computer system. The client host 100 includes a
processor 110, memory 105 and network iterface 115, while
the server host 150 similarly includes a processor 160,
memory 155 and network interface 165. The network inter-
faces 115 and 165 communicate with one another via a net-
work 130 such as the Internet. The client-side host 100 may
implement a client-side API that comprises a client-side of a
command-based API, while the server-side host 150 may
implement a server-side API that comprises a server-side of
the command-based API. In a command-based API, one or
more hosts send commands to one or more other hosts. For
example, a command-based API may be used by a storage
subsystem host and remote hosts that send data to the storage
subsystem host to be backed up. The remote hosts may 1ssue
commands to the storage subsystem host to instruct it to
backup their data, or to retrieve previously backed up data, for
instance.

The general operation and configuration of the processors
110, 160, memories 105, 155 and network interfaces 115,165
1s well known 1n the art and 1s therefore not described 1n
detail. The components 1llustrated are provided to assist 1n
understanding the invention. The hosts 100, 150 may be gen-
eral-purpose computers, workstations, servers, portable
devices such as PDAs, or other computer devices. The func-

US 7,921,433 B2

3

tionality described herein can be achieved by configuring the
hosts 100 and 150 with appropnate soiftware. In one
approach, the software comprises an object-oriented software
such as Java code that 1s stored 1n the memories 105, 155. In
this case, the memories 105, 155 are program storage devices.
The software 1s executed using the processors 110, 160 1n a
known manner.

FI1G. 2 illustrates a method for providing version control.
At block 205, the client-side API method 1s invoked at the
client host 100, passing 1n a set of parameter objects (block
210). At block 215, a command object 1s provided that con-
tains the parameter objects. At block 220, the command
object and parameter objects are serialized by the client host’s
code, such as Java code. At block 225, the serialized objects
are sent from the client host 100 to the server host 150 over the
network 130. The server host 150 receives the serialized
parameters and, at block 230, attempts to desernalize them.
The serialized command object 1s also received and deserial-
1zed. If the server host 150 can’t successtully deserialized all
of the parameter objects (block 235), e¢.g., the Class type of
one or more of the parameters 1s not known by the server host
150, 1t 1s concluded that the server host 150 does not support
the one or more parameters that cannot be successtully dese-
rialized (block 240). In this case, the server host 150 may send
an error message to the client host 100 mnforming 1t that the
one or more parameters are not supported. The client host 100
may then decide, e.g., to reformulate 1ts command so that the
one or more unsupported parameters are not included, or to
locate another server host that may be compatible with the
one or more parameters 1 question. I the server host 150 can
successiully deserialize all of the parameter objects (block
250), 1t carries out the command, including the functions
represented by the parameters (block 255).

Specifically, in accordance with the invention, each new
parameter for a command based API 1s defined as a unique
new Java Class type. Each parameter Class may or may not
contain data. Java Serialization 1s used to transmit parameters
from a Java Client, e.g., client host 100, to a Java Server, e.g.,
server host 150. Whenever anew parameter (class)1s added to
the client host 100, and the parameter 1s sent to the server host
150, the server host 150 will either deserialize the parameter
successtully if the server supports the functionality repre-
sented by the parameter, or fail to successiully desenalize it,
indicating that the server does not support the parameter/
functionality. A particular advantage of this technique for
providing version control 1s that only one definition for a
parameter 1s required. The version control information and
the functionality are contained within one object, so no addi-
tional, separate version control data 1s needed. The Class type
itsell 1s the only unique data necessary to determine whether
the API at the server host 150 supports a given functionality.
Thus, an important aspect of the mvention 1s how the classes
for commands and parameters are organized. Example dec-
larations of classes are provided further below.

Serialization 1s the process of converting an object to a byte
stream. Deserialization 1s the opposite process. When an
object 1s serialized, information about 1ts class and other
objects that 1t refers to 1s also saved. To serialize an object
using Java, an object 1s passed as an argument to the writeOb-
ject() method of an object of class java.10.0ObjectOutput-
Steam which, 1n turn, 1s built from an object of class java.1o.
FileOutputStream. Moreover, an object 1s serializable when
its class implements the Senalizable interface. This 1s an
empty iterface that doesn’t contain any method declarations,
but simply 1dentifies classes whose objects are serializable.
During deserialization, the readObject() method 1s invoked
on an object of class java.10.ObjectlnputStream, which 1s

5

10

15

20

25

30

35

40

45

50

55

60

65

4

built upon a java.io.FilelnputStream object. It the server host
150 cannot locate a class file needed to make sense of a
parameter object during deserialization, the exception java.
lang.ClassNotFoundException 1s thrown.

Example code for performing serialization 1s as follows:

Class Commandl implements Serializable{
Parameter| | parms;
Public Command]l (Parameter| | parms);

J3
Class Parameter implements Serializable { };
Class ParameterA { } extends Parameter {

Public static ParameterA Option = new ParameterA();
};

Class ParameterB { } extends Parameter{
Public static ParameterB Option = new ParameterB();
h

// Example code to create command and serialize:

Parameter[] parms = {ParameterA.Option, ParameterB.Option }
Command]l commandInstance = new Commandl1(parms);
outputStream.writeObject(commandInstance);

Example code for performing deserialization 1s as follows:

Try {
Commandl command = (Command]l) inputStream.readObject();

} catch (ClassNotFound Exception) {
// This means the command is not supported
handleNotSupported();

h

Generally, the command serialization and parameter seri-

alization are recursive. The process can be outlined as fol-
lows:

1) A Command contains Parameters.

2) Code 1nvokes Command.writeObject().

3) Command.writeObject method knows that in order to
serialize a Command object, 1t must serialize everything con-
tained within that object.

4) So, then Command.writeObject() invokes Parameter.
writeObject().

5) Parameter.writeObject() knows that 1n order to serialize
a Parameter object, it must senalize everything contained
within the Parameter.

6) All parameter data 1s serialized at this point. Parameter
serialization 1s done.

7) Control turns back to Command.writeObject(). All
Parameters have been serialized. Any other data 1n Command
1s serialized and Command Serialization completed.

8) Command.writeObject completes.

Moreover, the process may be analogized to nested Rus-
sian dolls. For mstance, say we had three nested Russian
dolls—big, medium and small. The top call would be to
BigDoll.writeObject(), which under the covers would
invoke, MediumDoll.writeObject(), which under the covers
would invoke LittleDoll.writeObject(). Deserialization 1s
similar (outside—1n).

While the above examples are provided using Java™,
which 1s a high-level object-oniented programming language
developed by Sun Microsystems, Inc., the invention 1s suit-
able for use with other object-oriented programming lan-
guages as well.

US 7,921,433 B2

S

The mvention has been described herein with reference to
particular exemplary embodiments. Certain alterations and
modifications may be apparent to those skilled 1n the art,
without departing from the scope of the invention. The exem-

plary embodiments are meant to be illustrative, not limitingof 3

the scope of the invention, which 1s defined by the appended
claims.

What is claimed 1s:

1. A program storage device, tangibly embodying a pro-
gram ol 1nstructions executable by a server-side host to per-
form a method for processing a command from a client-side
host, the method comprising:

receiving a serialized command and parameter objects at

the server-side host as the command {from the client-side
host, the senialized command and parameter objects
obtained by mvoking a client-side application program-
ming interface (API) at the client-side host to pass 1n a
set of parameter objects, and to provide a command
object that contains the parameter objects, wherein each
of the parameter objects represents a different parameter
of a command, said different parameter representing a
different function and each new parameter for the com-
mand 1s defined as a unique new class type, and serial-
izing the command and parameter objects to provide
serialized command and parameter objects;
desenalizing, by said server-side host, the serialized com-
mand and parameter objects to determine whether the
server-side host 1s compatible with the diflerent param-
cters of the command that are represented by the param-

10

15

20

25

6

cter objects, the server-side host determining that the
server-side host 1s not compatible with one or more of
the different parameters 11 the server-side host does not
support a class type associated with said one or more of
the different parameters, and

reformulating, by said client-side host, the command to
delete one or more parameters determined to be incom-
patible, wherein:

i1 the server-side host cannot successiully deserialize at
least one of the serialized parameter objects, the server-
side host sends an error message to the client-side host to
inform the client-side host that the server-side host does
not support the parameter represented by the at least one
serialized parameter object that cannot be successiully
deserialized.

2. The program storage device of claim 1, wherein:

the server-side host cannot successfully deserialize the
serialized parameter objects whose class type 1s not rec-
ognized by the server-side host.

3. The program storage device of claim 1, wherein:

the server-side host uses a server-side API of a command
based API to attempt to deserialize the serialized com-
mand and all parameter objects.

4. The program storage device of claim 3, wherein:

the serialized command and parameter objects are obtained
at the client-side host by invoking a client-side APl atthe

client-side host that comprises a client-side of the com-
mand-based API.

	Front Page
	Drawings
	Specification
	Claims

