12 United States Patent

US007921353B1

(10) Patent No.: US 7,921,353 B1

Murray 45) Date of Patent: Apr. 5, 2011
(54) METHOD AND SYSTEM FOR PROVIDING 2006/0259462 Al* 11/2006 Timmonsccc...... 707/3
CLIENT-SERVER INJECTION FRAMEWORK 20006/0277248 Al1* 12/2006 Baxteretal. 709/201
2007/0073701 Al1* 3/2007 Mileretal. 707/10
;J(;}EG ASYNCHRONOUS JAVASCRIPT AND 2007/0130293 Al* 6/2007 Dongetal. 709/219
OTHER PUBLICATIONS
(75) Inventor: Gregory L. Murray, Santa Clara, CA | o | |
(US) Jitesh Pillai, “Like Yahoo, Google Adds CllS’[C.ileGd Search Engine”,
Saturday, Oct. 28, 2006, Google Search Engine, pp. 1-4.*
(73) Assignee: 823(9[1}38?merica, Inc., Redwood City, * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Chau Ngl?yen _ _
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Martine Penilla &
U.S.C. 154(b) by 805 days. Gencarella, LLP
(21) Appl. No.: 11/784,902 (57) ABSTRACT
_ A method and system for dynamically loading content to a
(22) Filed: Apr. 9, 2007 portion of a native global page on a client at runtime includes
(51) Int.CL receiving.a request at the client for the. content for the pt?rtion
GOGF 17/00 (2006.01) of the qatlve g:.obal page. The rft,—‘-que?t 1dentifies the portion of
GO6F 7/00 (2006.01) the native glo.:)al page requesting t:_le content @d a-type of
GOGF 17/30 (2006.01) resource required from a Server. The request, 1dentifying a
(52) US.CL ... 715/200- 715/201- 715/202- 715/234- server side resource to service the request, 1s forwarded from
707 /722’; 707/73 i 707 /736; 707/75 5’ the client to the server. In response to the request, the client
(58) Field of Classification Search 715/200, ~ receives the identified server side resource that includes a
715/204-208. 234 240. 243 201 202 707 /722” plurality of components. The plurality of components 1s
j ’ j ’ 7(;7 73 2: 736, 75 5 parsed at the client to verify the components are received in a
See application file for complete search history. required sequence. When 1t 1s determined that the plurality of
components are recerved 1n the required sequence, a first set
(56) References Cited of components are selected from the received plurality of
components and injected 1mnto a region for the portion of the
U.S. PATENT DOCUMENTS native global page. A second set of components are selected
7,103,642 B1* 9/2006 Chenetal.coovenn. 709/218 from the received plurality of components and integrated into
2002/0138331 Al : 9/2002 Hosea etal. 705/10 the native global page, such that the integrated components
2004/0006743 A1* 12004 Oikavwa ot oo 715/513 When exceuted are executed in the global scope of the native
2005/0108648 Al* 5/2005 Olanderetal. ... 715744 global page.
2005/0108732 Al1* 5/2005 Mussonetal. 719/328
2005/0256940 Al* 11/2005 Hendersonet al. 709/219 19 Claims, 7 Drawing Sheets

(Begin)
’

webpage

Receive request for content to a portion of a

405

!

Forward request to a server for server-side resource

410

Pl ol

l

client's request

Identify dynamic resource at the server to service

r—r— 415

'

Extract the identified server-side resource and
retumn resource having plurality of components in an
asynchronous response to the client

- 420

I

resource

receive plurlaity of components for server side

425

FTm—

components from the plurality of components of the] 430

L

webpage

identify first set of components from the plurality of
components and inject the identified first setof | 435
components into a region for the portion of the

j

Identify second set of components from the plurality
of components and intagrate identified second set
of components into the webpage

440

o

'

Render the content of the portion of the webpage
within the global scope of the webpage

445

o

'
<D

U.S. Patent Apr. 5, 2011 Sheet 1 of 7 US 7,921,353 B1

100
Client Side /
page.css 101 130
page.js ? fl\ﬂﬂ./()
D t Titl B
e i ocument Title . I~~~/
tab'l-fiss AN — \
tab1.js mﬁ.gg Tab 1 | —
tabT.html 7" ; | 101-A
| o~
b2, i ’
P M‘“‘;? Tab 2
tabZjs 1~ | 101-B
tabZhtml | | A A 200
I — B - v
f Server Side

Figure 1

U.S. Patent Apr. 5, 2011 Sheet 2 of 7 US 7,921,353 B1

' ' 100 200
Client Side T~V /
101-B lcont 1 Native Global Page (on client) S Side —
N cont 2_| \ 101-A 150-A--...
".‘ A o - -:.":}- Q
cont 3 3 A 5 . (JAR)
“ fil
— \—(< e
150-C
~101LC 150-B
Injector
140 _
» Engine
> Serviet N5
110-A |JavaScript Engine D
o Request O| Gbt Request
Manager é TTP Request with
Dynamic Content _/1\15 ontent parzglmelers)
Receipt Handler = Dynamic page 140
nject HTMIL—— (With HTML, Embedded
___Inject CSS{Resource Parser;’/—\ R and Link CSS &
120 |A Embedded and Link
Resource “é' JavaScript) 205
Execute Executioner W
Script (evaluate & aﬂ %5 |o _
execute) = N T Server Side
K 130 i <>
~—____ e
| Injector
Engine
Serviet

Figure 2A

U.S. Patent Apr. 5, 2011 Sheet 3 of 7 US 7,921,353 B1

List of List of _ _ | _ _
Embedded Embedded ListoflLink Listof Link List of contents of
Native Global page __Scripts 0SS Script CSS dynamic page
, Remove
(101-A List Add 10 1o cont
) Global list st
A1 D1
A B1 C1 A1 Y -
A2 Y -
B1 Y -
B5 Y -
A2 C1 N N
RS C3 D2 C3 Y v
C4 Y -
B D' Y .
D2 N -
\ C4 U5 D5 Y -
(101-8
con
) ~ 165 t1
(. g [et 7.
101 150 1565 160 con
cont3
Link of N
Global page content list HTMLs (
C7 cont1 170
C8 cont2
d cont3 168
’\)
D2
D9
C9Y
175
AN

Figure 2B

US 7,921,353 B1

Sheet 4 of 7

Apr. 5, 2011

U.S. Patent

| st
§94n0s3. e J_

sl-921n0sal

“ I.m 82N 0S.; _

30.nosayoiweuiqisb
sl'e

. ssoeoinoses o

Ssliemd |

€9Jn0sal| AI-

‘9IINM0SI

80Jnosayoiueuigiab
$50°90.n

WY 924N0SdI
WY 32Jn0S3al

D03 18[54)3 10]10112197,7q) E<] « TN

_E;.med

¢ ainbi4
_ ..|_ a] _ - - ') -
) - ! —
3${90IN0S8. obedqam | ___
Sf oL /uEld -m_.mmmm._.pmmw_«r_ _Sfounosa) , ____
30IN0S9] TEEeeS bleibojul ‘oyenlehy 9ndax3 | |
\ s[-92JN0sP) 4 |
O......_Hw-m-r.w,...r-inﬂu-‘_. . -n “—Go _ “ “ _
139 d1Ut “ “ "
SS9 259'90.N0SP] : : _
Remosalf | P oo SSOgNOSBIUIM
3L 1obieGoIeUAP=PUA TBIONLTS | 852°221N098 JUBIUOD] :o_tom ayepdn ,
199 " "
|

sal=jabiepgoeuip=ac
13O diiH

139 d11H

J0yo8iu|>
82Jn0SaYy JueUAQ

[<puewwo)auibu] 18|

auibu3
10103{uy

— i

e — — —

19A19S

il

jLLIL}

mw.__ DOWW‘__

218)pnud

u.v_ e o o o o o e

sanbald i | H)

Eur.@nu.‘_ NOS3aJ YlM

JUa1UOS UoIIOd Sjep S |

. 3 i
HI4'92In058 1S9Nbal 92I110S3Y 199) M

}Jo0) ' ‘ | pedy
“ " " | pajeal obe
i ' ,
" “ : : ﬂm>m | :

| _ " _ -+ J nue
' _) _ _
! _) md “ ,
<A1 | e 2k
ISeAE> @C_@Cm | abed DS EAR > 5 IN -
Jusi|o

U.S. Patent Apr. 5, 2011 Sheet 5 of 7 US 7,921,353 B1

(o
s

Receive request for content to a portionofa 405
webpage

B

| Forward request to a server for server-side resource| 410
LA

Identify dynamic resource at the server to service
client's request ~— 415

Extract the identified server-side resource and
. . o~ 420
return resource having plurality of components in an

asynchronous response to the client

receive plurlaity of components for server side

, resource T

parse and con—rj:s ruct ONée o:r:m:or:e ;ISf—f——S O

components from the plurality of components of the | 430
_____ server-side resource _

425

[E— VR
Identify first set of components from the plurality of

components and inject the identified first set of | _ 435
components into a region for the portion of the
webpage

I R

' Identify second set of components from the plurality | 444
of components and integrate identified second set

of components into the webpage
I T
| F_ier;cler the content_of Ehe_porti_on of the webpage | 445
within the global scope of the webpage ’““’

End

Figure 4

U.S. Patent Apr. 5, 2011 Sheet 6 of 7 US 7,921,353 B1

(_Bean

| Receive request for content to a portion of a L505
webpage

e

I
| Forward request to a server for server-side | 510
resource j

r__———_l—_—__ - -
receive response for server side resource from l\/515
server including a plurality of components

L_ S

S, A
parse the response from server, ensure plurality 590

of components are received in required order and{~—
| construct lists of components

—
. A
Identify a first set of plurality of components andw525
inject the identified first set of components into
the portion of the webpage
_

|dentify a second set of the plurality of
components and integrate the identified second | 53
set of components into the webpage to enable
executing the components |

e I el —

-y
Render the content of the portion of the webpage
within the global scope of the webpage e 939

Cem

Figure 5

U.S. Patent Apr. 5, 2011 Sheet 7 of 7 US 7,921,353 B1

=

Receive request for content to a portion of a
webpage from the client

605

. |

ldentify dynamic resource at the server to service 610
I the request

Extract the dynamic resource at the server 615

A
1

‘ Forward resource as a dynamic page to the clienf|]

=5

Figure 6

Us 7,921,353 Bl

1

METHOD AND SYSTEM FOR PROVIDING
CLIENT-SERVER INJECTION FRAMEWORK
USING ASYNCHRONOUS JAVASCRIPT AND
XML

FIELD OF THE INVENTION

The present invention relates generally to client-server
computing systems, and more particularly to, a method and
system for providing a Client-Server Injection Framework

using Asynchronous JavaScript And XML (AJAX).

BACKGROUND
Description of the Related Art

A webpage 1s a resource of information that may be
accessed locally or from remote servers using a web browser.
The webpage consists of files and contents that are either
static 1n nature or are dynamic with the contents provided
“on-the-1ly” when requested by the web browser. A webpage
may include contents from a single HITML file or may include
contents from several HIML files. One way of representing
multiple HITML files on a single webpage 1s by use of frames.
Frames use HTML techniques to display multiple indepen-
dent sections within the single webpage with each section
represented by a frame. The contents of each section (frame)
maybe provided from a different HTML file. The frames have
independent navigation allowing one to independently inter-
act with each of the frame. Although frames provide the
necessary technique to represent multiple HTML files 1n a
single webpage, frames have theirr own drawbacks. Content
loaded using a frame will have a separate navigation context
which makes page flow difficult. The embedded content wall
also have a separate and JavaScript and CSS context which
turther makes the embedded content less integrated with the
contain page. Frames can be less desirable for composing
JavaScript centric widgets as si1zing and re-sizing can be
difficult with frames.

To overcome the problems of using frames in webpages,
portlets were employed. A portlet 1s a reusable web compo-
nent that generates dynamic content. Portlets are platform
independent Java classes compiled to an architecture neutral
bytecode that can be loaded dynamaically into and run by a
web server. Portlets provide similar functionality as the
frames with multiple HIML files represented on a single
webpage. However, portlets came with their own set of issues
and problems. When the portlets are loaded on the webpage,
the whole webpage 1s refreshed. This feature of having the
whole webpage refresh every time a portlet 1s loaded leads to
inetficient use of networking and processing resources. The
problem gets exacerbated when multiple portlets on a
webpage have to be loaded.

In view of the foregoing, there 1s a need for a method and
system that will overcome the aforementioned problems by
providing a framework for a client side JavaScript Engine that
can manage client-side events, load and 1nject new content on
the client dynamically, and interact with server side compo-
nents while effectively and efficiently using network and
processing resources.

SUMMARY

The present invention {ills the need by providing a frame-
work that 1s divided between a client and a server for dynamic
loading of webpage contents at runtime. The framework
includes a client-side JavaScript Engine in asynchronous

10

15

20

25

30

35

40

45

50

55

60

65

2

communication with a server-side Injector servlet. The client-
side JavaScript engine manages the events on the client and
forwards requests to the server-side component which may be
a servlet, ISF component or static resource which exists in the
same domain as the orniginal request page. The JavaScript
engine may be used in combination with a server-side Injector
servlet which manages the events on the server and responds
to the requests from the client-side JavaScript Engine using
asynchronous communication. The data returned by the
server-side Injector servlet are dynamically loaded into the
webpage on the client so that the data when executed,
executes within a global scope of the webpage on the client. It
should be appreciated that the present invention can be imple-
mented 1n numerous ways such as a system or a method.

In one embodiment, a method for dynamically loading
content for a portion of a native global page on a client at
runtime, 1s disclosed. The method includes receiving a
request at the client for a content associated with the portion
ol the native global page. The request identifies the portion of
the native global page requesting the content and a type of
resource required from a server. The request 1s forwarded
from the client to the server. In response to the request, the
clientrecerves the identified server side resource that includes
a plurality of components. The client parses the plurality of
components to ensure the components are received 1n a
required sequence. When 1t 1s determined that the plurality of
components are received 1n the required sequence, a first set
of components are selected from the plurality of components
and 1njected 1nto a region associated with the portion of the
native global page. A second set of components are selected
from the received plurality of components and integrated nto
the native global page, such that the integrated components
when executed are executed in the global scope of the native
global page.

In another embodiment, a system for dynamically loading
content to a portion of a native global page on a client at
runtime 1s described. The system includes a JavaScript
Engine on the client and an Injector servlet on a server. The
JavaScript Engine 1s configured to recerve and handle a
request that 1s triggered by an event at the client. The request
includes a plurality of content parameters that define a type of
resource required from the server and the portion of the native
global page from which the content request originated. The
JavaScript engine, in turn, includes a dynamic content receipt
handler, a resource parser and a resource executioner. The
dynamic content receipt handler 1s configured to receive a
server side resource that includes a plurality of components
associated with the request based on the content parameters.
The resource parser 1s configured to parse the recerved server
side resource to 1dentily the plurality of components, ensure
the plurality of components are recetved i a required
sequence and to 1dentify and inject a first set of components
from the plurality of components into a region for the portion
within the native global page 1n the order the components
appear 1n the portion of the native global page. The resource
executioner 1s configured to 1dentily a second set of compo-
nents from the recerved plurality of components of the server
side resource and to integrate the second set of the plurality of
components with a global list of components pre-existing on
the native global page, 1n the order they appear on the native
global page so that the second set of the plurality of compo-
nents of the server side resource when executed, execute 1n
the global scope ol the native global page. The mnjector servlet
on the server 1s configured to receive the request forwarded by
the JavaScript Engine on the client, evaluate the request,

Us 7,921,353 Bl

3

identily a server side resource and to forward the identified
server side resource to the client in response to the request
received from the client.

The present invention, thus, describes a method and system
tor dynamically loading content to a portion of a native global
page on a client at runtime. The embodiments of the present

invention provide the contents to the client using asynchro-
nous communication. The contents are loaded and rendered
on the client dynamically thereby providing up-to-date infor-
mation on the client without overloading the network or pro-
cessing resources.

BRIEF DESCRIPTION OF THE DRAWINGS

The 1invention may best be understood by reference to the
following description taken 1n conjunction with the accom-
panying drawings. These drawings should not be taken to
limit the invention to the preferred embodiments, but are for
explanation and understanding only.

FIG. 1 1llustrates a standard template of a webpage ren-
dered on the client, in one embodiment of the invention.

FIGS. 2A and 2B illustrate an overview of a client-server
computing system involved in dynamically loading content to
a portion of a native global page, 1n one embodiment of the
invention.

FI1G. 3 illustrates a sequence diagram involved in executing
various operations at a client and a server, 1n one embodiment
ol the invention.

FI1G. 4 1llustrates a flow chart of the operations involved in
dynamically loading content to a portion of a native global
page, in one embodiment of the invention.

FIG. 35 illustrates a tlow chart of client-side operations
involved 1n dynamically loading content to a portion of a
native global page, 1n one embodiment of the invention.

FIG. 6 illustrates a tlow chart of server-side operations
involved 1 dynamically loading content to a portion of a
native global page, 1n accordance with one embodiment of the
invention.

DETAILED DESCRIPTION

The present invention provides a framework divided
between a client and a server for dynamically loading content
to a portion of a native global page at the client during runt-
ime. The framework provides logic on the client that may be
used to interact with server-side logic to dynamaically load
specific content to a portion of a native global page on the
client asynchronously from the server without the need for
reloading the whole page. Several embodiments for dynami-
cally loading content to a portion of a native global page
rendered at the client are described. It should be appreciated
that the present invention can be implemented 1n different
ways such as a system or a method. It will be apparent to those
skilled 1n the art that the present mvention may be practiced
without some or all of the specific details set forth herein.

To facilitate an understanding of the embodiments, a
generic client-server computing system with a generic tem-
plate of a typical webpage rendered at the client will be
described first. The process of the disclosed embodiments
will then be described with reference to the generic template.
In the current application, browser, browser client and client
are used 1interchangeably to refer to a client 1n a client-server
computing system. A client 1s a computer or computing
device that runs client soitware (referred to as a browser) to
access the Internet and render content.

FI1G. 1 illustrates a generic client-server computing system
with a generic template of a native global page (webpage) 101

10

15

20

25

30

35

40

45

50

55

60

65

4

rendered at a client 100, i1n one embodiment of the invention.
The client 100 1s a computer or computing system that runs
client software (referred to as a browser). In addition to the
browser, the client 100 may include software in the form of a
JavaScript engine (not shown). The JavaScript engine 1s a
JavaScript code that 1s made available to the webpage and to
other applications running on the client 100. The JavaScript
engine 1s configured to manage the events, interact with other
objects on the client 100 and with a server 200, receive and
render data forwarded by the server 200. An AJAX engine
(not shown) available at the client 100 1s configured to interact
with the JavaScript engine and with the server 200 using
asynchronous communication. The AJAX engine may be
integrated within the JavaScript engine or may be available to
the JavaScript engine. The AJAX engine 1s also a JavaScript
code that 1s made available to any application runming on the
client 100. In one embodiment, JavaScript 1s sometimes
referred to as the “ECMAScript”. ECMAScript1s available as
“Standard ECMA-262: ECMAScript Language Specifica-
tion”, which 1s herein incorporated by reference. The AJAX
engine 1s configured to interact with other objects on the client
100 and with the server 200 asynchronously. The AJAX
engine forwards requests for resources to the server 200 and
receives data from the server 200 asynchronously. The data
for a portion of the webpage 1s loaded and rendered on the
client 100 using the JavaScript Engine dynamically without
having to re-load the entire content of the webpage.

A native global page (webpage) 101, includes a plurality of
regions, region A 101-A, region B 101-B, region C 101-C,
with each region associated with one or more contents. When
the 1nitial webpage 101 1s loaded, contents for some of the
regions may be loaded during the initial load of the webpage
and some of the regions may be loaded on an as-needed basis.
For example, in the embodiment illustrated 1n FI1G. 1, content
related to region C 101-C may be rendered during the nitial
load of the webpage 101 and Regions A 101-A and B 101-B
may include contents that may be rendered on an as-needed
basis.

The contents associated with the different regions may be
received from a single source or from a plurality of sources on
the server 200 and may be of type text, image, graphic user
interface, video, audio or any combinations thereof. The
types of content available on a webpage are not restricted to
the ones listed above but may contain other forms so long as
they may be rendered on a webpage and accessed. Each of the
contents includes a plurality of components associated with 1t
such as HITML code, cascading style sheets and JavaScript
code. The HITML codes and cascading style sheets (CSS) for
the contents of each portion are injected into an approprate
region of the webpage and the associated JavaScript codes are
initialized, evaluated and executed such that the contents are
rendered in the appropriate region of the webpage.

Referring to FIG. 1, A, B and Crepresent regions within the
webpage 101. The contents of A and B are not loaded when
the imitial native webpage 1s rendered. When the content of A
and/or B need(s) to be updated or loaded, a request for appro-
priate resource 1s sent from the client 100 to a server 200
asynchronously. The server 200 returns a plurality of compo-
nents in the form of HIMLs, CSSs, and JavaScripts in
response to the request. The plurality of components are then
identified, loaded, associated with the appropriate region of
the webpage 101, evaluated and executed so that the contents
may be rendered in the appropriate region of the webpage
101.

By providing a framework that includes a JavaScript
engine along with an AJAX engine on the client 100 interact-
ing with a server 200 using asynchronous communications,

Us 7,921,353 Bl

S

an effective mechanism 1s provided to dynamically load con-
tent to a portion of a webpage 101 and render the portion
during runtime, without having to re-load the entire content of
the webpage 101 on the client 100. This 1s especially usetul in
instances where more than one portion has to be loaded/re-
loaded on the client 100. Using this mechanism, only affected
data are uploaded resulting 1n effective use of the network and
processing resources while maintaining the integrity of the
remaining contents of the webpage 101 on the client 100 1n an
eificient and effective manner.

It 1s noteworthy that the present invention 1s not limited to
the architecture of FIG. 1. For example, hand-held computers,
notebook or laptop computers, set-top boxes or any other
computing system (wired or wireless) capable of connecting
to the Internet and running computer-executable process
operations, as described below, may be used to implement the
various aspects of the present invention. Additionally, the
soltware program, 1n general, should be viewed as pieces of
code, and such code can be written 1n other languages so long
as 1ts functionality enables the process operations of the
present invention.

A detailed overview of a client-server system and system
resources mmvolved 1n carrying out the present invention will
now be described with reference to FIGS. 2A and 2B. Refer-
ring to FIG. 2A, a client 100, 1n the client-server computing,
system 1llustrated 1n FIG. 1, may include software in the form
of a JavaScript engine 110 on the client 100. The JavaScript
engine 110 1s a JavaScript code that 1s installed on the browser
of the client 100 and 1s made available to an application
running on the client 100. The JavaScript code of the JavaS-
cript engine 110 either interacts with an AJAX engine, having
asynchronous requests, available on the client 100 or includes
asynchronous requests. The asynchronous requests enable
asynchronous communication between the client 100 and a
server 200.

The JavaScript engine 110 1s configured to manage events
related to a webpage 101 rendered on the client 100, forward
requests for a server-side resource to a server 200, recerve the
server-side resource from the server 200 1n response to the
request, evaluate and load the data recerved from the server
200 onto the client 100 asynchronously. To accomplish this,
the JavaScript engine 110 includes a runtime script in the
form of a request manager 110-A to manage requests origi-
nating from the webpage 101 on the client 100, define and
forward the requests to the server 200. The requests may
originate at the client 100 1n response to an event triggered on
the webpage 101. The events that may trigger a request at the
client 100 may include anyone of native global page load, a
user action, such as menu clicks, or any other events. The
request triggered by an event on the client 100 1s for one or
more contents to a portion of the webpage 101. As used
herein, the term “script” should be broadly understood to
include any type of program code which can be executed by
one or more computing systems.

The request manager 110-A, in one embodiment of the
invention, 1s a JavaScript object that 1s capable of interacting
with the server 200 and with other objects on the client 100
including JavaScript objects. The request manager 110-A 1s
configured to receive requests triggered by an event at the
webpage 101, define the request and forward the request to a
server 200. The request manager 110-A accomplishes this by
first analyzing the request recerved from the webpage 101,
identifies a type of resource required to service the request
and a server that can provide the required resource. The
request manager 110-A defines the request using a plurality
of content parameters and forwards the request to the appro-
priate server 200. The content parameters may include,

5

10

15

20

25

30

35

40

45

50

55

60

65

6

among other parameters, one or more of request 1dentifica-
tion, server identification that can provide the requested
resource, type of resource required to service the request and
the portion 1dentification from where the request originated.
Therequest from the webpage 101 may be for one of dynamic
resource or static resource.

In one embodiment, an optional JavaScript framework
interface 1n the form of Dojo framework 130 may be used at
the client 100 to manage the communication with the server
200. The Dojo framework 130 1s a platform independent
communication mechanism that can be used on the client 100
to abstract any browser differences that may exist during the
communication between the JavaScript engine 110 and the
server 200. In this embodiment, the request 1s forwarded to
the server 200 through the Dojo framework 130.

The server 200 1s equipped with an Injector servlet 210.
The Injector servlet 210, 1s configured to interact with other
runtime scripts on the server 200 and with the JavaScript
Engine 110. The Injector servlet 210 may be implemented
using Java Servlet code, a Java Server Faces (JSF) code or any
other technology so long as 1t 1s capable of interacting with
other runtime scripts on the server 200 and with the JavaScript
engine 110. The Injector servlet 210 manages requests
received from the JavaScript engine 110 through a network
140, analyzes the request and 1dentifies a server-side resource
to service the request. The server-side resource includes a
plurality of components available at the server 200 or avail-
able on other servers 203 that are accessible by the server 200
through the network 140. The Injector serviet 210 provides
uniform access to all server side resources including static
resource, dynamically generated resource and resource
within a resource file. To provide a faster response for the
requested resource, the Injector servlet 210 may cache com-
monly accessed content resource within a memory of the
server 200. When the Injector servlet 210 recerves a request
for server-side resource, the Injector servlet 210 checks the
cache first for the server-side resource, then a web root direc-
tory 11 the resource 1s unavailable 1n the cache and finally in
the resource file available to the server 200.

The Injector servlet 210 forwards the identified resource
including a plurality of components to the JavaScript engine
110 on the client 100, 1n response to the request. The plurality
of components include CSSs (embedded and link), JavaS-
cripts (embedded and link) and HTMLs. The Injector servlet
210 may forward the plurality of components for the dynamic
resource to the client 100 individually or as apooled response.
In one embodiment, the Injector servlet 210 forwards the
pooled response for the dynamic resource as a dynamic page
with the 1dentified components organized 1n a specific order.

To assist 1n the processing of the response received from
the server 200, the JavaScript engine 110 on the client 100
includes a script 1n the form of a Dynamic Content Receipt
Handler (DCRH) 115. The DCRH 115 1s configured to inter-
act with other objects on the client 100 and with the server 200
and, 1n one embodiment, 1s a JavaScript object. The DCRH
115 receives the plurality of components from the Injector
servlet 210 and verifies to ensure that the plurality of compo-
nents are recerved 1n a particular order. The DCRH 115, inone
embodiment, recerves the plurality of components through a
Dojo framework 130. The order in which the plurality of
components are to be recetved may be defined at the DCRH
115. In one embodiment of the invention, the order of receipt
ol the plurality of components 1s defined 1n the DCRH 1135 as
HTMLs first, followed by CSSs and finally JavaScripts as
they relate to the content of the portion of the native global
page 101, as illustrated in FIG. 3. In the embodiment where
the plurality of components are received at the client 100 as a

Us 7,921,353 Bl

7

dynamic page 170, the dynamic page 170 1s parsed to ensure
that the plurality of components within the dynamic page are
in the specific order. Although a specific order 1s mentioned 1n
receiving the plurality of components, the invention 1s not
restricted to this sequence and can recerve the plurality of
components in any other specified order so as to enable
dynamic loading of the content to the portion of the native
global page 101. Upon successiul verification that the plural-
ity of components have been received 1in the required order,
the plurality of components are made available to other
objects within the JavaScript engine 110. I the verification 1s
unsuccessiul, the DCRH 115 discards the plurality of com-
ponents. In one embodiment, after discarding the plurality of
components, the DCRH 115 provides an unsuccessiul status
to the server 200 so that the server 200 may attempt to re-send
the plurality of components in the correct order.

In addition to DCRH 115, the JavaScript engine 110
includes a script 1n the form of a resource parser 120. The
resource parser 120 1s capable of interacting with other
objects on the client 100, including the DCRH 11.5. In one
embodiment of the mvention, the resource parser 120 is a
JavaScript object. The resource parser 120 1s configured to
receive the plurality of components from the DCRH 1185,
parse the plurality of components, identify a first set of com-
ponents and inject the first set of components 1nto a region
associated with the portion of the native global page, 1n the
order they are received from the server 200. In one embodi-
ment, the first set of components, defined by HTMLs, embed-
ded CSSs and embedded JavaScripts associated with the con-
tent for the portion of the native global page 101, are retrieved
using Asynchronous JavaScript and XML (AJAX) interac-
tions and injected using JavaScript manipulations of the
HTML document (dynamic HITML techniques). The request
from the client 100 identifies the portion and provides the
necessary information to the resource parser 120 to enable
successiul 1injection of the identified first set of components
into the appropnate region for the portion.

The resource parser 120 parses the plurality of components
received from the server through the DCRH 115. The
resource parser 120 1dentifies each of the components and
constructs one or more lists of components. In one embodi-
ment, the resource parser 120 identifies each of the compo-
nents based on the type of component and constructs a list for
cach type of component. The type of component maybe one
of HTML, embedded JavaScript, link JavaScript, embedded
CSS or link CSS. The construction of the list of components
1s explained in greater detail hereunder with reference to FIG.
2B.

FI1G. 2B 1llustrates a dynamic page 170 that includes a list
of components associated with content for a portion B 101-B
of the native global page 101 as received from a server 200, 1n
one embodiment of the mvention. This dynamic page 170
includes a plurality of HI'MLs, embedded CSSs, link CSSs,
embedded JavaScripts and link JavaScripts. Links, as used
herein, refers to resources that are links to external resources.
The resource parser 120 parses the plurality of components
received from the server 200 and constructs a list of compo-
nents based on the type of component parsed. Thus, the
resource parser 120 constructs a list for each of embedded
JavaScripts 150, embedded CSSs 155, link JavaScripts 160,
link CSSs 165 and HI'MLs 168 that includes appropriate
components from the plurality of components parsed. In one
embodiment of the invention where the plurality of compo-
nents are included in a dynamic page 170, the resource parser
120 upon including a component into the respective list of
components based on the type, may remove the component
from the dynamic page 170. A plurality of flags or indicators

5

10

15

20

25

30

35

40

45

50

55

60

65

8

may be used to track the components in the dynamic page
during the parsing phase. In one embodiment, a remove-
from-dynamic-page indicator may be used to successiully
monitor the status of each of the components 1n the dynamic
page. As and when, a component 1s parsed, identified and
integrated into the approprate list of component, the remove-
from-dynamic-page indicator maybe set. At the end of the
parsing phase, the components that have the remove-from-
dynamic page indicator set, may be deleted from the dynamic
page 170.

Upon successiul construction of the lists of component
based on the component type, the resource parser 120 1den-
tifies the first set of components from the lists of components
and 1njects these components 1nto an appropriate region for
the portion of the native global page. In one embodiment, the
identified first set of components include all the components

from the lists of embedded JavaScripts 150, embedded CSSs
155 and HI'MLs 168. As the embedded JavaScripts, embed-
ded CSSs and HIMLs are specific to the content for the
portion ol the native global page, these components are
injected and evaluated 1n the context of the portion of the
native global page. The mjection of the identified first set of
components 1s carried out synchronously 1n the order they
appear on the dynamic page 170.

Referring back to FIG. 2A, 1n addition to the DCRH 115
and the resource parser 120, the JavaScript engine 110 on the
client 100 1ncludes a script 1n the form of a resource execus-
tioner 125. The resource executioner 123 1s capable of inter-
acting with other objects on the client 100 of the JavaScript
engine 110, including the DCRH 115 and the resource parser
120. In one embodiment of the invention, the resource execu-
tioner 125 1s a JavaScript object. The resource executioner
125 1s configured to receive the list of components from the
DCRH 115, identily a second set of components from the list
of components, integrate the identified second set of compo-
nents into the components of the native global page 101, so
that the components from the second set of components are
initialized, evaluated and the JavaScripts executed in the glo-
bal scope of the native global page 101. In one embodiment,
the second set of components include Link CSSs that identify
the style and format of the contents and Link JavaScripts that
identify the behavior of the contents associated with the por-
tion of the native global page 101.

In order to accomplish the integration of the second set of
components with the components of the native global page
101, a global list of pre-existing components as they appear
on the native global page 101 1s maintained at the JavaScript
engine 110 and 1s made available to the resource executioner
125. The resource executioner 125, after identifying the sec-
ond set of components, compares the second set of compo-
nents against the global list of components to 1dentily those
components that are not available 1n the global list of com-
ponents. The resource executioner 125, then, integrates the
identified components 1nto the global list of components such
that only one 1nstance of each of the components 1s on the
global list. The components are integrated synchronously 1n
the order they appear on the list. The second set of compo-
nents may include components from the lists of Link CSSs
160 and Link JavaScript codes 165. By integrating the 1den-
tified components 1nto the global list, the content for the
portion of the native global page 101, when executed, are
executed 1n the global scope of the native global page 101.

To further assist 1n the successiul integration of the second
set of components of the dynamic page with the global list of
components of the native global page, a plurality of flags or
indicators may be used. In one embodiment, an add-to-glo-
bal-list indicator may be used to successiully monitor and

Us 7,921,353 Bl

9

identify the status of each of the components in the dynamic
page 170. In an embodiment illustrated 1n FIG. 2B, the com-
ponents from the second set of components are compared
with the global list of components and the components that
are available on the global list have the add-to-global-list
indicator set to “N” and the components that are not available
on the global list have the add-to-global-list indicator set to
“Y” so that the appropriate components are integrated into the
global list.

The operational details of an embodiment of the present
invention using the resources available on the client 100 and
the server 200 described with reference to FIG. 1, are now
discussed with reference to FIG. 3. FIG. 3 illustrates the
sequence logic of obtaining resource at the client 100. An
application executing on a client 100 renders a webpage
(native global page) 101 on the client 100. The webpage 101
rendered on the client 100 may include different types of data
including a text, a picture, a graphic user interface, a video, an
audio or any combinations thereof. It should be noted that the
types of data available on a webpage are not restricted to the
ones listed above but may contain other forms so long as they
may be rendered on a webpage and accessed. A request for
obtaining content for a portion of the webpage 101 1s initiated
on the client 100. The content may be for a portion that 1s not
yet rendered or need updating. The request for the content
may be triggered by an event, such as an ‘onkeypress’ or an
‘onkeyrelease’, related to the request on the client 100. The
request includes a plurality of content parameters that 1den-
tily the request, the type of resource required and a server 200
to which the request 1s mapped. The content parameters may
include a Universal Resource Locator (URL) of the server
200, a request 1dentification, content 1dentification, content
type, and content description. The request may be for a static
resource, a dynamic resource or a resource from a resource
file available to the server 200. A JavaScript engine 110 on the
client 100 receives and processes the request. The JavaScript
engine 110 iterprets the request and creates a HI'TP GET
request to the server 200. In one embodiment, the HIT'TP GET
request includes a request for dynamic resources from the
server 200. The dynamic resource may include the style,
format for the content to be rendered on the client 100, the
dynamic code and the data associated with the content. In this
embodiment, the dynamic resource may include resource.css
(the cascading style sheet (both embedded and link) that
defines the layout style), resource.html (the dynamic html
code), resource.js (the JavaScript (both embedded and link)
that defines the format) and data associated with the content.

The JavaScript engine 110 forwards the HTTP GET
request to an Injection servlet 210 on the server 200 through
a network (not shown). An optional server communication
framework interface, such as Dojo framework 130, may be
used to manage the communication with the server 200. The
server communication framework 1s a platform independent
communication mechanism that may be used on the client
100 or on the server 200 to abstract any browser differences
that may exist during the communication between the client
controller 110 and the server 200. In one embodiment 11lus-
trated 1n FIG. 2, the server communication framework, 1n the
form of Dojo framework, 1s used on the client 100. Embodi-
ments of the current ivention are not restricted to a Dojo
framework. Other server communication framework may be
used so long as the framework 1s able to abstract any browser
differences that may exist during the communication between
the JavaScript engine 110 and the server 200.

The server 200 recerves the HT'TP GET request from the
JavaScript engine 110 on the client 100 and analyzes the

request. The Injection servlet 210 1dentifies the appropriate

10

15

20

25

30

35

40

45

50

55

60

65

10

resource that can service the request. The identified resource
may include a plurality of components, such as resource.html,
resource.css and resource.js, available to the Injection servlet
210 on the server 200. The Injection servlet 210 extracts and
forwards the identified plurality of components that define the
server-side resource to the JavaScript engine 110, 1n response
to the request. The Injection servlet 210 may forward the
identified components individually or may pool the plurality
of components into a pooled response and forward the pooled
response as a dynamic page 170 to the client 100. The Injector
servlet 210 forwards the plurality of components asynchro-
nously to the JavaScript engine 110 on the client 100. In one
embodiment where the Dojo framework 1s available on the
client 100, the Injector servlet 210 forwards the response
asynchronously to the JavaScript engine 110 through the
Dojo framework mechanism. The JavaScript engine 110 on
the client 100 receives the plurality of components for the
server-side resource, ensures that the components are
received 1n a specific order, constructs a list of components
based on type of component, identifies and 1njects a first set of
components 1to a region associated with the portion of the
webpage 101, 1dentifies and integrates a second set of com-
ponents with the components of the webpage 101 so that
when the components associated with the content for the
portion of the webpage 101 i1s executed, the components are
executed 1n the global scope of the webpage 101.

The method for dynamically loading content to a portion of
a native global page (webpage) on a client 100 at runtime 1s
now described 1n detail with reference to tlow charts 1llus-
trated 1n FIGS. 4, 5, and 6. FIG. 4 1llustrates the process
operation 1nvolved in one embodiment of the invention. FIG.
5 1llustrates the client-side operations ivolved 1n one
embodiment of the mvention. FIG. 6 illustrates the server-
side operations mvolved 1n one embodiment of the invention.

The method begins at the client 100 when a request 1s
initiated for content to a portion of the native global page
(webpage) 101 rendered on the client 100, as shown 1n opera-
tion 405 of FIG. 4. The content may be for a portion of a
webpage 101 that has not yet been rendered or that needs
updating. The request from the client 100 could 1include con-
tent parameters such as an address to a server 200 1n the form
of a Uniform Resource Locator (URL) along with a plurality
of other parameters that are used 1n 1dentifying the request
and the content. The request 1s triggered by an event related to
the request on the client 100. The request 1s received by a
JavaScript engine 110 on the client 100. The JavaScript
engine 110 forwards the request along with one or more
content parameters to the server 200 to which the request 1s
mapped based on the content parameters, as shown 1n opera-
tion 410. Communication between the JavaScript engine 110
on the client 100 and the server 200 1s done asynchronously.

An Injector servlet 210 on the server 200 receives the
request along with the content parameters, analyzes the
request and identifies server-side resource to service the
request at the client 100, as shown 1n operation 415. The
identified dynamic server side resource may include a plural-
ity of components available to the server 200. The Injector
servlet 210, upon receipt of the request, checks 1ts cache for
the resource, then a web root directory. If the identified
resource 1s not available in the cache or the web root directory,
the Injector servlet 210 proceeds to check resource files avail-
able to the server 200. In one embodiment, the Injector servlet
may proceed to forward the request to an application program
interface (API) such as Java Server Page (JSP) available on
the server 200 that dynamically generates the identified
resource upon receipt of the request. In another embodiment,
the server-side resource may be available through a second

Us 7,921,353 Bl

11

servlet. In this embodiment, the Injector servlet 210 may
forward the request to the second servlet on the server 200 or
accessible to the server 200 requesting the 1dentified server-
side resource.

The Injector servlet 210 retrieves the plurality of compo-
nents defining the dynamic server-side resource and returns
the components to the client 100 asynchronously, as shown in
operation 420. The components maybe pooled together 1nto a
pooled response and the pooled response maybe forwarded to
the client 100.

The JavaScript engine 110 recerves the plurality of com-
ponents for the server-side resource forwarded by the Injector
servlet 210, as shown 1n operation 425. The JavaScript engine
110 parses the plurality of components to ensure that the
components are recerved 1n a required order and constructs
one or more lists of components, as shown 1n operation 430.
In one embodiment, the lists of components may be con-
structed based on the component type. The JavaScript engine
110 then 1dentifies a first set of components from the lists of
components and injects the first set of components nto a
region associated with the portion of the webpage 101, as
shown 1n operation 435. The JavaScript engine 110 identifies
a second set of components from the lists of components and
integrates the identified second set of components with a
global list of components pre-existing on the webpage 101
such that each of the components 1n the global list of the
webpage 101 are distinct, as shown 1n operation 440. The
method concludes with the rendering of the content for the
portion of the webpage 101 on the client 100 within the global
scope of the webpage 101, as shown 1n operation 445.

The client side operations are illustrated 1n FIG. 5. The
client side operations begin with a request for a server-side
resource mitiated at a webpage rendered on a client 100, as
illustrated 1 operation 305 of FIG. 5. The request 1s triggered
by an event on the client 100. The request 1s analyzed and
defined by a JavaScript engine 110 and forwarded to a server
200 to which the request 1s mapped, as shown 1n operation
510. The client 100 recerves the server-side resource includ-
ing a plurality of components from the server 200 1n response
to the request, as shown 1n operation 515. In one embodiment
the response 1s recerved as a pooled response 1n a dynamic
page 170. The JavaScript engine 110 parses the received
response to verily that the plurality of components are
received 1n a required order and constructs lists of compo-
nents, as shown i operation 520. In one embodiment, the lists
of components are constructed based on type of component.
Upon verification and construction of lists of component, the
JavaScript engine 110 1dentifies a first set of components
from the lists of components and injects the first set of com-
ponents into a region associated with the portion of the
webpage 101, as shown 1n operation 325. The first set of
components may be specific to the portion of the webpage
101 and hence can only be rendered in the context of the
portion of the webpage. The 1njection of the components are
carried out synchronously in the order they appear on the
native global page 101. The JavaScript engine 110 1dentifies
a second set of components from the lists of components,
compares the second set of components against a global list of
components associated with the webpage 101 and integrates
those components that are not available on the global list, as
shown 1n operation 530. The integration of the components
into the global list of components enables the rendering of the
components for the portion of the global page within the
global scope of the webpage 101. The client-side operations
conclude with the rendering of the content for the portion of
the webpage 101 on the client 100 within the global scope of
the webpage 101, as shown 1n operation 535.

10

15

20

25

30

35

40

45

50

55

60

65

12

The server side operations are 1illustrated in FIG. 6. The
server side operation begins when a request 1s recerved for a
server-side resource at a server 200 mapped to the client 100,
as shown 1n operation 605. The request originates on the
client 100 and includes content parameters that indicate the
type of resource requested by the client 100. The type of
request may include one of a static resource, dynamic
resource, or resource from a resource file available to the
server 200. In one embodiment, the request 1s for a dynamic
server-side resource. An Injector servlet 210 on the server 200
receives the request and identifies a dynamic server-side
resource on the server 200 to service the request, as shown in
operation 610. The Injector servlet 210 checks a cache avail-
able on the server 200 for the server-side resource. If not
available 1n the cache, then 1t proceeds to check the web root
directory and then 1n the resource files available to the server
200. In one embodiment, the Injector servlet 210 forwards the
request to a second servlet where the server-side resource 1s
generated or to a Java Server Page (ISP) 11 the resource 1s
generated dynamically by the JSP. The Injector servlet 210
extracts a plurality of components defiming the server-side
resource or receives the plurality of components for the
dynamically generated server-side resource from the JSP or
the second servlet. In one embodiment, the Injector servlet
210 pools the plurality of components recerved into a pooled
response, as shown in operation 615. In one embodiment of
the mvention, the pooled response 1s a dynamic page. The
server side process concludes with the Injector servlet 210
forwarding the pooled response to the client 100 1n response
to the request, as shown 1n operation 620.

The mvention may be practiced with other computer sys-
tem configurations including hand-held devices, micropro-
cessor systems, microprocessor-based or programmable con-
sumer electronics, minicomputers, mainirame computers and
the like. The mvention may also be practiced 1n distributing
computing environments where tasks are performed by
remote processing devices that are linked through a network.

With the above embodiments 1n mind, 1t should be under-
stood that the invention may employ various computer-imple-
mented operations mvolving data stored i computer sys-
tems. These operations are those requiring physical
mamipulation of physical quantities. Usually, though not nec-
essarily, these quantities take the form of electrical or mag-
netic signals capable of being stored, transierred, combined,
compared, and otherwise manipulated. Further, the manipu-
lations performed are often referred to 1n terms, such as
producing, identilying, determining, or comparing.

Any of the operations described herein that form part of the
invention are useful machine operations. The 1nvention also
relates to a device or an apparatus for performing these opera-
tions. The apparatus may be specially constructed for the
required purposes or it may be a general purpose computer
selectively activated or configured by a computer program
stored 1in the computer. In particular, various general purpose
machines may be used with computer programs written in
accordance with the teachings herein, or it may be more
convenient to construct a more specialized apparatus to per-
form the required operations.

The 1invention can also be embodied as computer readable
code on a computer readable medium. The computer readable
medium 1s any data storage device that can store data, which
can thereafter be read by a computer system. Examples of the
computer readable medium include hard drives, network
attached storage (NAS), read-only memory, random-access
memory, CD-ROMs, CD-Rs, CD-RWs, magnetic tapes, and
other optical and non-optical data storage devices. The com-
puter readable medium can also be distributed over a network

Us 7,921,353 Bl

13

coupled computer systems so that the computer readable code
1s stored and executed 1n a distributed fashion.

It will be obvious, however, to one skilled 1n the art, that the
present imvention may be practiced without some or all of
these specific details. In other instances, well known process
operations have not been described 1n detail 1n order not to
unnecessarily obscure the present invention.

Although the foregoing mmvention has been described 1n
some detail for purposes of clarity of understanding, 1t will be
apparent that certain changes and modifications can be prac-
ticed within the scope of the appended claims. Accordingly,
the present embodiments are to be considered as illustrative
and not restrictive, and the invention 1s not to be limited to the
details given herein, but may be modified within the scope
and equivalents of the appended claims.

What 1s claimed 1s:

1. A method for dynamically loading content to a portion of
a native global page on a client at runtime, the method com-
prising:

receiving a request for the content for the portion of the

native global page, the request identiiying the portion of
the native global page and a type of resource required
from a server;

torwarding the request from the client to the server, the

request from the client identifying a server-side resource
to service the request;
receiving at the client the 1dentified server-side resource,
the 1dentified server side resource including a plurality
of components associated with the requested content for
the portion of the native global page, wherein the plu-
rality of components include dynamic resources that
define style and format for rendering data associated
with content of the server-side resource at the client;

parsing the plurality of components at the client to ensure
the plurality of components are received 1n a required
sequence;

when the plurality of components are received in the

required sequence,

constructing a plurality of lists of components from the
plurality of components received from the server
based on a type of component parsed, wherein each of
the plurality of lists of components having compo-
nents of a specific type;

injecting a first selection of the plurality of components
into a region for the portion of the native global page,
the first selection of the plurality of components being
specific to the portion of the native global page; and

integrating a second selection of the plurality of compo-
nents 1to a global list of pre-existing components for
the native global page, wherein the integrated com-
ponents are evaluated and executed so as to render the
components for the portion of the webpage in the
global scope of the native global page, and wherein
the parsing, constructing, injecting and integrating are
performed automatically at the client without user
interaction.

2. The method for dynamically loading content to a portion
of a native global page on a client at runtime of claim 1,
wherein the request 1s triggered by an event at the client.

3. The method for dynamically loading content to a portion
of a native global page on a client at runtime of claim 2,
wherein the event 1s any one of page load or user selection.

4. The method for dynamically loading content to a portion
of a native global page on a client at runtime of claim 1,
wherein the request includes a plurality of content param-
eters.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

5. The method for dynamically loading content to a portion
of a native global page on a client at runtime of claim 4,
wherein the content parameters include any one or more of
request identifier, portion identifier, a region for the portion of
the native global page to load the contents, a server 1dentifier
for requesting the server side resource.

6. The method for dynamically loading content to a portion
of a native global page on a client at runtime of claim 1,
wherein the server side resource 1s a dynamic server side
resource presented at the client as a dynamic page.

7. The method for dynamically loading content to a portion
ol a native global page on a client at runtime of claim 6,
wherein an Injector servlet on the server 1s configured to
provide the dynamic server side resource to the client, the
Injector servlet providing uniform access to the dynamic
server side resource.

8. The method for dynamically loading content to a portion
of a native global page on a client at runtime of claim 7,
wherein the Injector servlet obtains the dynamic server side
resource from any one of a server side cache, a root directory
or a resource file available to the server.

9. The method for dynamically loading content to a portion
of a native global page on a client at runtime of claim 1,
turther comprising:

maintaining the global list of a plurality of components
pre-existing on the native global page at the client.

10. The method for dynamically loading content to a por-
tion of a native global page on a client at runtime of claim 9,
wherein integrating one or more components from the server
side resource further comprising:

identifying a second set of one or more components from
the plurality of components of the server side resource
that are unavailable in the global list of components for
the native global page; and

updating the global list of components for the native global
page with the 1dentified second set of components of the
server side resource so that the 1dentified second set of
components of the server side resource when executed at
the client executes in the global scope of the native
global page.

11. The method for dynamically loading content to a por-
tion of a native global page on a client at runtime of claim 10,
wherein the global list of components for the native global
page are updated with the second set of 1dentified components
of the server side resource in the order they appear on the
native global page.

12. The method for dynamaically loading content to a por-
tion of a native global page on a client at runtime of claim 1,
wherein the server side resource 1s provided to the client
asynchronously.

13. A system for dynamically loading content to a portion
of a native global page on a client at runtime, the system
comprising;

a JavaScript Engine on the client to handle a request, the
request triggered by an event on the client, the request
defining a type of resource required from a server and the
portion of the native global page {from which the content
request originated, the request including a plurality of
content parameters, the JavaScript engine further
including,

a dynamic content receipt handler configured to recerve
a server side resource associated with the request
based on the content parameters, the server side
resource including a plurality of components associ-
ated with the requested content for the portion of the
native global page, wherein the plurality of compo-
nents mnclude dynamic resources that define style and

Us 7,921,353 Bl

15

format for rendering data associated with content of
the server-side resource at the client;

a resource parser configured to parse the recerved server
side resource to 1dentily the plurality of components,
ensure the plurality of components are received 1n a
required sequence, construct a plurality of lists of
components from the plurality of components
recerved from the server based on a type of compo-
nent parsed, wherein each of the plurality of lists of
components having components of a specific type,
and to 1dentily and inject a first set of components
from the plurality of components into a region for the
portion within the native global page 1n the order the
components appear 1n the portion of the native global
page, the first set of components being specific to the
portion of the native global page;

a resource executioner configured to evaluate the
recerved plurality of components of the server side
resource and to 1dentily and integrate a second set of
components from the plurality of components mto a
global list of components pre-existing at the native
global page i the order they appear on the native
global page, wherein the second set of the plurality of
components of the server side resource when
executed renders the components for the portion of
the webpage 1n the global scope of the native global
page, and wherein the parsing, constructing, injecting
and integrating of the plurality of components are
performed automatically by the JavaScript Engine at
the client without user interaction; and

a server communicatively connected to the client, the
server including an injector servlet, the injector servlet
configured to recerve the request forwarded by the Java-

Script engine on the client, evaluate the request, 1dentify

a server side resource and to forward the identified

server side resource to the client i response to the

request recerved from the client,
wherein the native global page includes at least one por-
tion, the portion associated with a plurality of compo-
nents and the server side resource includes a plurality of
components.
14. The system for dynamically loading content to a por-
tion of a native global page on a client at runtime of claim 13,

5

10

15

16

wherein the content parameters 1dentify a region for the por-
tion within the native global page to inject the first set of the
plurality of components of the recerved server side resource.
15. The system for dynamically loading content of a native
global page on a client at runtime of claim 13, wherein the
JavaScript engine 1s further configured to maintain a global
list of components that pre-exist 1n the native global page.
16. The system for dynamically loading content to a por-
tion of a native global page on a client at runtime of claim 13,
wherein integrating a second set of plurality of components
turther comprising:
a)1dentifying a second set of one or more components from
the plurality of components of the server side resource
that are unavailable 1n the global list of components of
the native global page; and
b) updating the global list of components of the native
global page with the identified second set of components
in the order the second set of components appear on the
native global page so that the 1dentified second set of
components may be executed 1n the global scope of the
native global page.
17. The system for dynamically loading content of a native
global page on a client at runtime of claim 13, wherein the
request from the JavaScript engine 1s for a dynamic server

5 side resource and wherein the plurality of components from

30

35

40

the server 1s for the dynamic server side resource, the dynamic
server side resource presented by the server to the client as a
dynamic page.

18. The system for dynamically loading content to a por-
tion of a native global page on a client at runtime of claim 17,
wherein the plurality of components associated with the
server side resource presented in the dynamic page includes
one or more of embedded JavaScript, embedded Cascading
Style Sheet, JavaScript link, Cascading Style Sheet link,
Hypertext Markup Language code that define the contents to
the portion within the native global page.

19. The system for dynamically loading content to a por-
tion of a native global page on a client at runtime of claim 13,
wherein the injection servlet provides uniform access to a
plurality of server side resources, the server side resource
obtained from any one of server side cache, a root directory or
a resource lile available to the server.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

