US007913078B1

a2 United States Patent (10) Patent No.: US 7.913.078 B1

Stewart et al. 45) Date of Patent: *Mar. 22, 2011
(54) COMPUTER NETWORK VIRUS 5,889,943 A 3/1999 i et al.
PROTECTION SYSTEM AND METHOD 5,918,054 A 6/1999 Jury et al.
5,940,614 A 8/1999 Allen et al.
(76) Inventors: Walter Mason Stewart, Potomac, MD 5,956,481 A * 971999 Walshetal. 726/23
|) . 6,026,502 A 2/2000 Wakayama
(US); Marcelo Carrera, Silver Spring, 6007 194 A 7000 Touboul
MD (US); Robert G. Hook, Alexandria, 6309 4’731 A 77000 Waldin ef al
VA (US); Ronald Rust, Leesburg, VA 6,170,055 Bl 1/2001 Mever et al.
(US); Charles Shotton, Leesburg, VA 6,185,678 Bl 2/2001 Arbaugh et al.
(US) 6,192,477 Bl 2/2001 Corthell
6,253,324 Bl 6/2001 Field et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35
U.5.C. 154(b) by 317 days. FOREIGN PATENT DOCUMENTS
This patent 1s subject to a terminal dis- P 11-167533 6/1999
claimer. (Continued)
(21) Appl. No.: 11/650,561
OTHER PUBLICATIONS

(22) Filed: Jan. 9, 2007 | o |
U.S. Appl. No. 11/140,464 entitled “E-mail virus protection system

Related U.S. Application Data and method”, inventors Walter Stewart et al., filed May 31, 2005.

(63) Continuation-in-part of application No. 11/140,464, (Continued)
filed on May 31, 2005, now Pat. No. 7,506,155, which
1s a continuation of application No. 09/704,790, filed

on Nov. 3, 2000, now Pat. No. 6,901,519. Primary Examiner — Pramila Parthasarathy
(60) Provisional application No. 60/213,254, filed on Jun. (74) Attorney, Agent, or Firm — Sterne, Kessler, Goldstein
22, 2000. & Fox P.L.L.C.
(51) Int.CL
HO4L 9/00 (2006.01) (57) ABSTRACT
(52) US.CL ... 713/152; 713/151; 713/1350; 726//22; A network is protected from viruses through the use of a
52) Field of Classification Search 7?\[6 24 sacrificial server, which may be physical or virtual. Any
(58) Field of Classification Search OLe executable programs or other suspicious parts of mmcoming

See application file for complete search history. ¢-mail messages are forwarded to a sacrificial server, where

they are converted to non-executable format such as Adobe
Acrobat PDF and sent to the recipient. The sacrificial server1s
US PATENT DOCUMENTS then checked for virus activity. After the execution 1s com-
pleted, the sacrificial server 1s rebooted.

(56) References Cited

5,623,600 A 4/1997 Ji et al.
5,740,370 A 4/1998 Battersby et al.
5,832,208 A 11/1998 Chen et al.
5,842,002 A 11/1998 Schnurer et al. 64 Claims, 5 Drawing Sheets

ATTACHMENT(S) FROM E-MAIL SERVER |.f' 301

LOGICALLY BREAK CONNECTION (108} TO THE E-MAL SECURITY SERVER J302

!

OPEN ATTACHMENT USING STANDARD E-MAIL PROCESS |/ 303

I

CONVERT ATTACHMENT(S) PORTION TO SECURE FORMAT | ~304

l

| ENCRYPT SECURE PORTION USING THIS TESTER'S KEY |~-30%

!

RE-ESTABLISH CONNECTION TG THE E-MAIL | 306
SEGURITY SERVER VIACONNECTION (108)

'

COPY SECURE ATTACHMENT TO GATEKEEPER VIA CONNECTION (188) L 307

RUN CURRENT VIRUS CHECKER 70 DETERMINE IF THE SYSTEM GHANGED }~ 9%

308 el
NO ANY vEs | ACTIVATE VIRUS ALERT
UNEXPECTED TO AUTHORIZED

1 CHANGES 7 PERSONNEL

314,
USING THIS TESTER'S HET‘I THIS FUNCTION | EXECUTED A"GHOST"

ENCRYPT ATTACHMENT

45 i PERFORMS A QUICK COPYREBOOT FROM
/ _ RELOAD OF THEC THE READ ONLY CD
RE-ESTABLISH CONNECTION | DRIVE. INCLUDING ROM {110}
TO THE EMANL SECURITY THE VALIDATED AND | ”
SERVER VIA CHECKSUMMED 1 [
CONNEGTION (108) SYSTEM FROM RE-ESTABLISH CONNECTION
THE READ ONLY CD | TO THE E-MAIL SECURITY
31869 l ROM (110] SERVER VIA
COPY ATTACHMENT TC CONNEC NON (108

GATEKEEPER V1A i 113
CONNECTION (108) m

US 7,913,078 B1
Page 2

U.S. PATENT DOCUMENTS

6,253,367 Bl 6/2001 Tran et al.
6,311,273 Bl 10/2001 Helbig et al.
6,377,691 Bl 4/2002 Switt et al.
6,401,210 Bl 6/2002 Templeton
6,487,664 Bl 11/2002 Kellum
6,487,994 B2 12/2002 Ahern et al.
6,609,196 Bl 8/2003 Dickinson et al.
6,721,784 B1* 4/2004 Leonardetal. 709/206
6,839,741 B1* 1/2005 Tsal ..ccoovvvvviiiinviinninnn.n, 700/217
6,901,519 B1* 5/2005 Stewartetal. 726/24
7,191,219 B2 3/2007 Udell et al.
7,263,561 Bl 8/2007 Green et al.
7,487,544 B2 2/2009 Schultz et al.
7,640,361 Bl 12/2009 Green et al.
2002/0035696 Al 3/2002 Thacker
2003/0225844 A1 12/2003 Kuroda
2005/0235164 A1 10/2005 Gassoway
2009/0132658 Al 5/2009 Glickstein

FOREIGN PATENT DOCUMENTS

JP 11-252158 9/1999
JP 2000-29799 1/2000
OTHER PUBLICATIONS

U.S. Appl. No. 11/971,754 entitled “Computer Network Virus Pro-
tection System and Method”, inventors Walter Stewart et al., filed

Jan. 9, 2008.

“CERT® Advisory CA-1999-04 Melissa Macro Virus,” http://www.
cert.org/advisories/CA-1999-04 html.

“CERT® Advisory CA-2000-04 Love Letter Worm,” http://www.
cert.org/advisories/CA-2000-04 html.

“Declude Virus,” htto://'www.declude.com/Virus/index html, ©
2000-2002 Computerized Horizons.

“ViruSate Firewall 1.5 Software Plus-In Blocks Viruses, Vandals.”
http://www.cryptosoft.com/snews/feb98/16029806.htm.
“ViruSafe™ Firewall,” http://www.Bristol.de/virusafe2 html.
Brown, Reader Response Reveals e-mail hoax, Mar. 1998, Roanoke
Times & World New start p. AS.

Cornetto, Advances in Web Technology cause e-mail client prob-
lems, Aug. 1998, InfoWorld, vol. 20, p. 13.

Horwitt, Communication Software: 104 Packages to get you on line,
Nov. 1983, Business Computer Systems, vol. 2, abstract.

Microsoit, Microsoft Computer Dictionary, 1997, Microsoit Press,
3rd Edition, p. 173.

Microsoft, Microsoft Press Computer Dictionary, 1997, Microsoft
Press, 3rd Sup. Edition, p. 141.

Newton, Newton’s Telecom Dictionary, 1998, Telecom Books,
14.sup.th Edition, pp. 334-335.

Rad, Virus threat bytes computer users, Aug. 1998, Houston
Chronicle.com, start p. 6.

U.S. Appl. No. 11/971,754 entitled “Computer Network Virus Pro-
tection System and Method”, Non-Final rejection dated Feb. 24,
2009, inventors Walter Stewart et al., filed Jan. 9, 2008, 7 pgs.

U.S. Appl. No. 09/704,790 entitled “E-mail virus protection system
and method”, Non-Final rejection dated May 21, 2003, inventors
Walter Stewart et al., filed Nov. 3, 2000, 16 pgs.

U.S. Appl. No. 09/704,790 entitled “E-mail virus protection system
and method”, Non-Final rejection dated Dec. 18, 2002, mventors
Walter Stewart et al., filed Nov. 3, 2000, 21 pgs.

U.S. Appl. No. 09/704,790 entitled “E-mail virus protection system
and method”, Final rejection dated Nov. 25, 2003, inventors Walter
Stewart et al., filed Nov. 3, 2000, 18 pgs.

U.S. Appl. No. 09/704,790 entitled “E-mail virus protection system
and method”, Final rejection dated Oct. 23, 2003, inventors Walter
Stewart et al., filed Nov. 3, 2000, 18 pgs.

U.S. Appl. No. 11/140,464 entitled “E-mail virus protection system
and method”, Non-Final rejection dated Apr. 3, 2008, mventors
Walter Stewart et al., filed May 31, 2005, 4 pgs.

U.S. Appl. No. 11/140,464 entitled “E-mail virus protection system
and method”, Non-Final rejection dated Aug. 24, 2006, inventors
Walter Stewart et al., filed May 31, 2005, 16 pgs.

U.S. Appl. No. 11/140,464 entitled “E-mail virus protection system
and method”, Final rejection dated May 24, 2007, inventors Walter
Stewart et al., filed May 31, 2005, 14 pgs.

U.S. Appl. No. 09/704,790 entitled “E-mail virus protection system
and method”, Notice of Allowability dated May 4, 2004, inventors
Walter Stewart et al., filed Nov. 3, 2000, 4 pgs.

U.S. Appl. No. 11/140,464 entitled “E-mail virus protection system
and method”, Notice of Allowability dated Oct. 31, 2008, inventors
Walter Stewart et al., filed May 31, 2005, 2 pgs.

U.S. Appl. No. 12/392,768 entitled, “Computer Virus Protection”,
inventors Walter Stewart et al., filed Feb. 25, 2009.

U.S. Appl. No. 11/971,754 entitled “Computer Network Virus Pro-
tection System and Method”, Non-Final rejection dated Aug. 7, 20009,
inventors Walter Stewart et al., filed Jan. 9, 2008, 13 pgs.
Non-Final Office Actionin U.S. Appl. No. 12/392,768, mailed Jun. 9,
2010, 6 pgs.

* cited by examiner

U.S. Patent Mar. 22, 2011 Sheet 1 of 5 US 7,913,078 B1

ETHERNET CONNECTION CONTAINS A VARIABLE

NUMBER OF SACRIFICIAL TASTE TESTERS

EMAL DEPENDING ON HISTORICAL ATTACHMENT VOLUMES.

ORIGINATOR ST
03 READ ONLY
. 104,
109 ’ SACRIFICIAL }
e | ST
INTERNET ! TESTER !
l SERVER 103 READ ONLY ,
| @ @ CD ROM DRIVE |
l =0} — II l
' SACRIFICIAL '
] 102 TASTE |
TESTER
| 03 READONLY
{ CD ROM DRIVE |
, 5 104 l
 ONLY "SAFE" SACRIFICIAL |
| AUTHORIZED RondLoS |
| EMAIL GETS .
BEYOND THIS
POINT |

- SRSl T ekl TS Sl S el

COMPANY 105

WORKSTATION] 106?
106 = COMPANY ‘ COMPANY
/El E-MAIL D WORKSTATION

= (=03 SERVER =T

106 @ g B
COMPANY
PRINTER

COMPANY
WORKSTATION FIG. 1

U.S. Patent Mar. 22, 2011 Sheet 2 of 5 US 7,913,078 B1

201
RECEIVE E-MAIL 203
FROM NETWORK
R LLLE <~ THE LOG CONTANS DATE, TIME,
202 DATE /TIME | ADDRESSEE, MESSAGE ID (IF ANY)
STAMP + | PLUS ANYROUTING INFO.IT ALSO
LOG THE EVENT EMAL | CONTANS ALL UNOPENED (AND
204 AND UN-EXECUTED) ATTACHMENTS.
ATTACH THIS DATA IS PERIODICALLY
ARCHIVED.

STRIP OFF THE
ADDRESSEE INFORMATION

THE E-MAIL PORTION OF THE MSG. IS PASSED

205
CONVERT E-MAIL PORTION | | THROUGH CONVERT STEPS THAT ELIMINATE
TO SECURE FORMAT ALL BUT ALPHANUMERIC ASCIl DATAFROM
THE E-MAIL

THE USER PROVIDES A LIST OF
APPROVED ATTACHMENT TYPES.

206

S THERE ISIT AN IS THERE
N APPROVED MBEDDED CODE™' C°
ATTACHMENT ATTACHMENT (MACROS) ?

? ?

ADD E-MAIL MESSAGE
"CONTAINS A DISAP-

ISITIN

PROVED ATTACHMENT® E DIS.
APPROVED
210 214 LIST ?
CONSTRUCT A "SAFE" ADD E-MAIL MESSAGE
E-MAL MSG. CONTAINING "CONTAINS A DISAP- NO
ADDRESSEE INFO. PROVED ATTACHMENT®
SECURE FORMAT MSG.
DATA AND THE 215

ATTACHMENT HYPERLINKS CONVERT ATTACHMENT
TO SECURE (DISPLAY
ONLY) FORMAT
A S S T

U.S. Patent Mar. 22, 2011 Sheet 3 of 5 US 7,913,078 B1

209

ANY ATTACHMENTS TO THE EMBEDDED CODE

USER'S E-MAIL SERVER "

YES CREATE A TEST
219 AUTHORIZATION VALUE
FOR THE MACRO(S)
NO DECRYPTED
AUTHENTICATION
GOOD ? M6

ISITIN

THE DIS-
APPROVED

YES

THE USER PROVIDES LIST?
ALIST OF APPROVED
RECEIVE AND DECRYPT SEND ATTACHMENT TO
TRAFFIC FROM THE "SACRIFICIAL PC”
SACRIFICIAL PC PROCESSOR VIA LINK
(108) AND CONTINUE
AT (210)
FROM
221 300

U.S. Patent

Mar. 22, 2011

Sheet 4 of 5 US 7,913,078 B1

ATTACHMENT(S) FROM E-MAIL SERVER |30

LOGICALLY BREAK CONNECTION (108) TO THE EMAIL SECURITY SERVER |90
OPEN ATTACHMENT USING STANDARD E-MAIL PROCESS }-303

CONVERT ATTACHMENT(S) PORTION TO SECURE FORMAT | -304

ENCRYPT SECURE PORTION USING THIS TESTER'S KEY }-30°

RE-ESTABLISH CONNECTION TO THE E-MAIL | /306
SECURITY SERVER VIACONNECTION (108}

COPY SECURE ATTACHMENT TO GATEKEEPER VIA CONNECTION (108) |L/-307

RUN CURRENT VIRUS CHECKER TO DETERMINE IF THE SYSTEM CHANGED

NO

314

ENCRYPT ATTACHMENT
USING THIS TESTER'S KEY

3151

RE-ESTABLISH CONNECTION

TO THE E-MAIL SECURITY
SERVER VIA

CONNECTION (108)

316

COPY ATTACHMENT TO

GATEKEEPER V1A
CONNECTION (108)

308

309 310

ACTIVATE VIRUS ALERT
TO AUTHORIZED
PERSONNEL

ANY
UNEXPECTED
CHANGES ?

YES

311

THIS FUNCTION EXECUTED A"GHOST"
PERFORMS A QUICK COPY REBOQOT FROM
RE-LOAD OF THE C THE READ ONLY CD
DRIVE, INCLUDING ROM (110)

THE VALIDATED AND o
CHECKSUMMED

SYSTEM FROM RE-ESTABLISH CONNECTION
THEREAD ONLYCD | TO THE E-MAIL SECURITY
ROM (110) SERVER VIA

CONNECTION (108)

313
END

FIG. 3

US 7,913,078 Bl

Sheet 5 of 5

2011

b/

Mar. 22

U.S. Patent

1401%

$S820.d J18U)0 10 |auUlsY

¥ "Old

aulyoey |
[enuiA |

oUIYoBW
[ENLIA

cOP cov

auIUoBN
[ENUIA

h

)

cOv

aulyoe |eoisAyd

R

US 7,913,078 Bl

1

COMPUTER NETWORK VIRUS
PROTECTION SYSTEM AND METHOD

REFERENCE TO RELATED APPLICATTONS

The present application 1s a continuation-in-part of U.S.
patent application Ser. No. 11/140,464, filed May 31, 2005

now U.S. Pat. No. 7,506,155, which 1s a continuation of U.S.
patent application Ser. No. 09/704,790, filed Nov. 3, 2000,
now U.S. Pat. No. 6,901,519, which claims the benefit of U.S.
Provisional Application No. 60/213,254, filed Jun. 22, 2000.
The disclosures of all of those applications are hereby incor-
porated by reference in their entireties into the present dis-
closure.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present mvention relates generally to computer sys-
tems and computer networks. In particular, the present inven-
tion relates to a system and method for detecting and nullify-
ing the effects of computer viruses. Still more particularly, the
present invention relates to a system and method for detecting,
and nullifying the effects of computer viruses from messages
and attachments (or payloads) delivered by electronic com-
munications through a network.

2. Description of the Related Art

Computer viruses are a destructive aspect of the computer
revolution that threatens its potential growth and usability.
Significant time and money are lost annually combating the
elfects of this msidious, and seemingly endemic, problem. A
computer virus 1s actually just an unauthorized block of
executable computer code purporting to be harmless or 1s
hidden 1n another valid computer program. Once the valid
program 1s executed, the unauthorized virus code 1s also
activated. The effect of such viruses can be simple pranks,
such as causing messages to be displayed on the screen, or
more serious activities, such as destroying programs and data.
Once executed, they often spread quickly by attaching them-
selves to other programs in the system. Infected programs
may in turn continue the cancerous replication by copying the
virus code to still other programs. The proliferation of Inter-
net E-mail has only accelerated the problem 1in that local
viruses can now spread internationally 1n a matter of hours.
Moreover, viruses and other malware are no longer limited to
¢-mail, but instead can now be spread by other types of
clectronic communication, such as instant messages and
Internet relay chat (IRC).

Prior art attempts to reduce the eflects of viruses and pre-
vent their proliferation by using various virus detection
schemes have been only marginally successtul. The reason
for the limited success 1s that the prior art methods attempt to
identiy the existence of a virus before taking steps to protect
a user. For example, many virus detection programs use a
method known as “behavior interception,” which monitors
the computer or system for key system functions such as
“write,” “erase,” “format disk,” etc. When such operations
occur, the virus detection program prompts the user for input
as to whether such an operation i1s expected. If the suspect
operation was not expected (e.g., the user was not operating
any program that employed such a function), the user can
abort the operation. Another virus detection method, known
as “signature scanning,’ scans program code that 1s being
copied onto the system. Again, the virus detector searches for
recognizable patterns of program code, such as the program
attempting to write into specific file or memory locations, that
betray the possible existence of a virus. Yet another prior art

10

15

20

25

30

35

40

45

50

55

60

65

2

approach to virus detection performs a checksum (math-
ematical signature) on critical programs stored on a system
that are known to be free of viruses. If a virus later attaches
itself to one of these programs, the checksum value—which s
periodically recalculated—will be different and thus, the
presence ol a virus detected.

While all of these methods work to some degree, they tend
to suffer from one critical drawback: They depend on recog-
nizing the virus as a virus before instituting any protection for
the user. All too often, new (unrecognized) viruses must first
wreak havoc on a significant number of victims before the
new virus’ 1dentifying characteristics are recognized and
included 1n the (ever-lengthening) watch lists of the various
virus protection programs available to government and indus-

try.

SUMMARY OF THE INVENTION

The present invention overcomes limitations of the prior art
by implementing a system and method that eliminates the
threat of viruses transmitted on a computer network by ren-
dering any viruses inoperable. As discussed above, all viruses
are programs. Like all programs, they are designed to runin a
specific or predictable environment. Viruses depend on a host
computer’s operating system to recognize them as valid pro-
grams. They also depend on the host computer’s central pro-
cessing unit (CPU) to understand the virus’ commands and
obey them. Non executable entities are, by nature, incapable
of launching a virus. Therefore, 1f a host computer converts all
data received (e.g., e-mail and attachments) to non-execut-
able entities, any embedded virus 1s rendered inoperable. The
present mvention describes a method and system of virus
protection that mvolves passing all electronic communica-
tions through various conversion states that, while harmless
to text and attachments, the conversions are lethal to execut-
able code (viruses).

The present invention 1s applicable to all types of electronic
communications. Examples include MIME (Multipart Inter-
net Mail Extension) compliant messages, e-mail messages in
general, instant messages (IM) or other computer-mediated
messages delivered by an Internet Protocol (IP) transport
protocol (e.g., HI'TP, SMTP, SIP, or RPC) or any other trans-
port protocol (e.g., a proprietary protocol). While illustrative
embodiments will be disclosed with reference to e-mail, 1t
will be understood that the invention 1s not so limited.

Even though the majority of e-mail and other electronic
communications recerved by a company or government
agency should contain no valid executable components, a
small percentage of attachments, such as “working drafts,”
and standard contract templates may require user updating or
valid executable macros. Therefore, the present invention
also describes a system and method of i1dentifying
“Approved” embedded macros and—as long as they have not
been modified—allowing them to survive the virus killing
cConversions.

Finally, the present invention also includes a unique “sac-
rificial PC” system and method capable of safely executing,
detecting (via examination of the results of execution), and
sately recovering from potentially virus-laden electronic
communications.

BRIEF DESCRIPTION OF THE DRAWINGS

A preferred embodiment will be set forth 1n detail with
reference to the drawings, 1n which:

FIG. 1 shows a block diagram of an e-mail gatekeeper
system:

US 7,913,078 Bl

3

FIGS. 2 and 2 A show a tlow chart of operations carried out
in the e-mail gatekeeper system:;

FIG. 3 shows a tlow chart of operations carried out by a
sacrificial processor; and

FI1G. 4 shows a conceptual diagram of a physical machine
running multiple virtual machines.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

Though not essential to every embodiment of this mven-
tion, the preferred embodiment makes use of the following
concepts and principles:

1. Recipients of e-mails and other electronic communica-
tions are ultimately more qualified to determine what
information 1s acceptable than a generalized software
program or system

2. If given an opportunity, a user can clearly define which
clectronic communication types and attachments he or
she does or does not wish to receive.

3. The ability of users to accept macros and other forms of
executable code commonly used 1n modern computer
generated business forms and templates must be main-
tained.

4. All information 1s potentially important to a user. There-
fore, software systems, including security programs,
should not arbitrarily delete or withhold content without
specific knowledge and authorization of the owner of the
communication system.

5. The value of information tends to decrease over time.
Theretore, information contained 1n electronic commu-
nications should not be unreasonably delayed.

The gatekeeper method and system described herein oper-

ate under the following rules and definitions:

1. Any macro or executable code that alters the physical
appearance ol an e-mail or other electronic communica-
tions 1s considered by the gatekeeper to be a customized
form.

2. All customized forms requiring user input must be
authorized by the owner of the communication system.

In an etfort to provide recipients with all of the contents of
all communications and attachments (not prohibited by the
owner of the communication system) all unauthorized form
will be executed; however, the form’s output (not the form
itsell) will be delivered to the user 1n a “safe” non-executable
format.

The Gatekeeper method and system described defines an
ability to authorize and authenticate all forms.

The virus detection system and method of a preferred
embodiment of the present invention preferably operates on a
system as depicted 1n FIG. 1.

An itermediary E-mail security server (102), referred to
as “the Gatekeeper” intercepts all e-mail messages and
attachments sent by a sender (101) via a communications
network, such as the Internet (109). The arriving unopened
¢-mail and attachments are archived and logged (202) with a
date and time stamp, plus any routing information available.
Address data 1s then stripped oif the e-mail (204) for attach-
ment to the “sate” e-mail constructed at (210). The e-mail
portion of the Internet e-mail recerved from (201) 1s passed
through a conversion process (205) that eliminates all execut-
able code leaving only alphanumeric message text. Any
imbedded hyperlinks or email addresses, while still 1dentifi-
able as links or addresses, are rendered inoperable as execut-
able “links.” The Gatekeeper (102) then checks to see if the
arriving e-mail contains an attachment (206). I the e-mail
contains no attachment, processing continues at step (210).

10

15

20

25

30

35

40

45

50

55

60

65

4

If the e-mail contains an attachment, the attachment types
(extensions) are validated against several lists provided by the
client during the installation process. The e-mail attachment
type 1s first checked against a list of client approved accept-
able file extensions (207). I the attachment extension 1s notin
the approved list, it 1s considered either disapproved or
unknown and then the attachment type i1s checked against a
list of client disapproved file extensions (212). I1 the attach-
ment extension type 1s found in the disapproved list, a mes-
sage 1s constructed indicating that “this e-mail contains a
disapproved attachment” (211). The disapproval message 1s
included in the safe e-mail constructed in step (210).

I1 the e-mail contains an attachment with an extension that
1s not 1n either the “disapproved” or “approved” lists, the
entire attachment 1s passed through a conversion process
(215) that eliminates all executable code leaving only alpha-
numeric message text. This process will generally create a
readable copy of the attachment, but will not allow the attach-
ment to open any processes or applications, including execut-
able virus code. I the included attachment from (206) 1s of an
approved extension type, attachment inspection processing
continues at (208), which checks the approved attachment
extension to see 1f 1t contains any executable code (macros).
This process mmvolves reading the attachment file’s internal
format and identifying any executable code, such as macros
that may be present. Any executable code found 1s noted and
identified for authentication (209). An encrypted authentica-
tion 1dentifier 1s created for the executable code by passing 1t
through an algorithm (such as a checksum, hashing, Boolean
exclusive-or, or digital subtraction algorithm) (213), that
umquely identifies the string of executable code. The unique
identifier 1s then encrypted using a key known only to the
Gatekeeper program or server. The authentication identifier 1s
then compared to a list of approved code contained by the
Gatekeeper and supplied by the Client (216). Since this sys-
tem and method described validates only the executable code
(macros), the non-executable data portion of the attachment
can safely be changed or updated interactively. It the attach-
ment contains approved macros, the original attachment 1s
made available to the recipient. If the attachments contain
unapproved macros, the attachment 1s forwarded to an avail-
able sacrificial PC processor (103) via data link (108) for
conversion to a non-executable format and further detailed
virus testing. The method just described for detecting,
authenticating, and approving a macro can be used to authen-
ticate and approve any form of executable code embedded in
an attachment or 1n the body of an e-mail message. Such code
can include compiled programs, interpretive code, scripts,
batch language, markup language code, or the like located in
any part of the e-mail message, including the body and the
attachments.

Sacrificial PC processing begins with the original e-mail
attachment being passed to an available sacrificial PC (103)
via a data link (108) connecting the Gatekeeper server (102)
with the sacrificial PC. Once the transfer of the attachment 1s
complete the data link (108) 1s intentionally broken. This
climinates the possibility of any unintended communications
back to the Gatekeeper. The original attachment 1s then
opened using standard Windows application processing sup-
plied by the client (303). The opened attachment 1s then
passed through a process (304) which converts the attachment
to a non-executable 1mage format, such as Portable Docu-
ment Format (PDF). Note there are many suitable image
formats. The process would choose one selected by the client.
The safe 1mage format version of the attachment i1s then
encrypted 1n the sacrificial PC’s unique authentication key
assigned by the Gatekeeper at startup. The data link (108) to

US 7,913,078 Bl

S

the Gatekeeper 1s then re-established (306) and the encrypted
non-executable attachment 1s returned to the Gatekeeper
(307).

All communications from a sacrificial PC to the Gate-
keeper are interrogated by the Gatekeeper’s communications 3
processor (220). Before being accepted by the Gatekeeper as
a valid message, the data must pass a strict authentication test
(219). The authentication process 1s as follows.

At System startup (and periodically, 1f desired) the Gate-
keeper creates a randomly generated set of authentication 10
parameters to be used by each sacrificial PC when commu-
nicating with the Gatekeeper. When a sacrificial PC wants to
communicate with the Gatekeeper 1t first sends a handshake
packet to the Gatekeeper 1dentitying the specific PC request-
ing communication. It also sends a short (unencrypted) clear- 15
text portion of the data to be communicated encapsulated
within the handshake packet.

Once the Gatekeeper acknowledges the handshake, the
sacrificial PC sends the full information packet to the Gate-
keeper. A random amount of the packet has been encryptedin 20
the sacrificial PC’s unique key. The specific amount of data
encrypted by the sacrificial PC was determined by one of the
authentication parameters sent by the Gatekeeper at startup.
The Gatekeeper decrypts all data packets 1t receives based on
the assumed key of the specific sacrificial PC. In other words, 25
“If you are who you say you are, you encrypted your data in
the following way.” Once decrypted, the Gatekeeper com-
pares the clear text portion of the data received 1n the hand-
shake packet with the decrypted data packet (219). I they
match, the data 1s accepted; 1f they do not, the data 1s not 30
accepted. The authentication technique 1s based on known
“challenge and response” authentication techniques. Another
technique used 1s a time-out technique. It the gatekeeper does
not hear back from a sacrificial PC 1 a given time, 1t 1s
assumed that the sacrificial PC has succumbed to a virus. That 35
sacrificial PC is then re-ghosted 1n the manner described 1n
the present disclosure and then restarted.

Once the sacrificial PC has sent the read only ““safe”™ attach-
ment back to the Gatekeeper, a special validation process
examines the sacrificial PC to determine 1f any unexpected 40
changes have occurred (308) and (309) on the sacrificial PC.
Unexpected changes could include the addition or deletion of
files, files that change name, extension, or content unexpect-
edly, (including morphing of the tested attachment itself),
attempted sensing of the date and time features of the sacri- 45
ficial PC, etc.

Also, when the opportunity 1s available, as with attach-
ments created using the Microsoit suite of office products, the
sacrificial PC processor takes advantage of the “Enable Mac-
ros” “Disable Macros™ feature. This built-in feature makes it 50
possible to open a document without allowing any embedded
code (macros) to execute. Two copies of the same document
can then be created, one created with macros executed and
one created without macros executed. The two copies of the
same document can then be examined to determine 1f execut- 55
ing the macro had any effect on the information content of the
document. By comparing the two documents, the sacrificial
PC can determine whether or not the macro 1s relevant to the
particular document being tested.

If execution of the macro was necessary to produce the 60
information contained 1n the tested document, then the mac-
ro’s contribution 1s contained 1n the print image copy of the
document produced by the sacrificial PC when it executed the
document with macros enabled. This 1s the copy that is sent to
the recipient. 65

Similarly, 1f testing the document with “macros enabled”
has no 1mpact on the content of the document, then the sus-

6

pect macro 1s not necessary. It logically follows then, that the
suspect macro 1s either irrelevant to the content the particular
version of the document being tested or, 1t 1s a virus. In either
case, the sacrificial PC has mtercepted and nullified the sus-
pect macro’s impact on the recipient.

Any unexpected changes 1n the system trigger a virus alert.
Standard user security processes alert all authorized person-
nel (310). A special “ghosting” reload of the operating system
then takes place. The process 1s as follows.

Each Sacrificial PC 1s configured with two hard drives.
Each hard drive 1s configured with a single active partition
and contains a safe copy of the operating system obtained
from the read-only device (104). The designated active par-
titton—defined at start-up—is “toggled” between the two
physical hard drives. This 1s done to increase the speed of
reloading and to maximize the availability of sacrificial PCs.
The unused drive—which 1s the one used to test the last
attachment—is re-loaded, via ghosting software (311), with a
fresh copy of the operating system obtained from the read
only CD ROM (104). The connection between the Gate-
keeper (102) and the sacrificial PC (103) 1s then re-estab-
lished.

Once the sacrificial PC 1s re-ghosted, it 1s brought back on
line and the GateKeeper assigns it a new authentication Key
and encryption length parameter.

Once the Gatekeeper sends data to a sacrificial PC, it notes
the time the data was sent. If no data 1s recerved back from a
sacrificial PC within a specified period of time (typically two
minutes), the Gatekeeper assumes the sacrificial PC has
become the victim of a virus and died. When this occurs, the
Gatekeeper signals a virus alert and requests human interven-
tion to recover the dead sacrificial PC.

The method and system described above can also be imple-
mented with the sacrificial PC implemented as a virtual
machine or environment 1n the operating system of another
computer. This computer could be the gatekeeper, an e-mail
server or any other computer.

The method and system described above can also be imple-
mented with the gatekeeper system implemented as part of
another system, such as a component of an already existing
¢-mail server.

More generally, the various servers can be logical parti-
tions on a single machine rather than physically separate
servers. For example, the gatekeeper server, the sacrificial
servers, or both can be emulated or partitioned execution
spaces on a single host computer. In that case, each sacrificial
server should have 1ts own emulated or partitioned execution
space. The network communications between the gatekeeper
server and the sacrificial servers can occur via shared
memory, hardware backplane, an internal communications
protocol, operating-system-level networking protocols, or
interprocess communications between emulated or parti-
tioned spaces on a host computer.

An explanation and examples of virtual machines will now
be given. Broadly, as shown 1in FIG. 4, a physical machine 400
runs multiple virtual machines 402 under control of a kernel
or other process 404.

Several technmiques could be used. Three such techniques
are: 1. Emulated CPU/OS combination on a guest operating
system; 2. “Virtualized” OS co-hosted with a native operating
system; and 3. Multi-level Secure operating system hosting
separate execution partition.

The first1s the traditional implementation of “virtual” com-
puting. An example would be multiple virtual computers
running inside an application like VMWare (Windows) or
Virtual PC (Mac OS X). In these cases, all of the hardware 1s

emulated 1n software, and the storage media are simulated

US 7,913,078 Bl

7

disk drives using a data file in the host operating system to
represent the storage for the virtual operating system. Re-
ghosting simply becomes a process of destroying (terminat-
ing) the virtual machine, deleting the data file used as storage

for the emulated disk drive(s), and copying fresh versions of 5

the disk file data for a new virtual machine to run on.

The second 1s a newer technique implemented by software
like WINE (Windows/Linux) and Parallels (Mac OS X)and 1s
probably not a preferred implementation, as 1t would allow
potentially infected processes to run on the same hardware as
the host O/S. Most virtualization schemes use the same disk
emulation technique as described above 1n the first example,
so reloading the virtual OS and associated “hard disk” would
be a matter of copying clean versions of the data files to the
proper location and restarting the virtualized OS.

The third 1s the technique used by many classified systems
ivolved i dealing with multiple levels of security and data
access on a single hardware platform. It 1s implemented 1n
native operating systems like VxWorks. This 1s a certified
soltware and hardware platform that can be partitioned 1nto
multiple process spaces. Each process space 1s given specific
physical memory and hardware devices 1t can interact with
and all are managed from a central “kernel” that manages
multitasking between the various secure partitions. In this
case, reloading (ghosting) the system would happen much
more as it would 1n the case of separate physical machines,
with clean copies of the drives being loaded from read-only
media such as a DVD or CD-ROM.

The gatekeeper system and method described uses the file
and macro authentication and encrypted client approval tech-
niques described above to protect itself from both internal and
external “hacking” attacks that may attempt to substitute,
modily, destroy or otherwise nullify gatekeeper files and pro-
grams.

While a preferred embodiment has been set forth 1n detail
above, those skilled 1n the art who have reviewed the present
disclosure will readily appreciate that other embodiments can
be realized within the scope of the invention. For example, the
use of certain hardware, operating systems, or the like should
be construed as illustrative rather than limiting. Also, the
concept of computer-mediated messages should be construed
to include such messages as transmitted by technologies that
ex1st now or may be invented 1n the future, such as electro-
chemical and quantum photon link technologies. Therefore,
the present invention should be construed as limited only by
the appended claims.

We claim:
1. A method for protecting against a potentially virus-
infected message, the method comprising:
receiving an original message comprising an executable
code 1n a gatekeeper server;
forwarding the original message from the gatekeeper
server to a sacrificial server;
creating from the original message a non-executable for-
mat message by using one of a plurality of application-
level conversion processes selected 1n accordance with a
type of the message, the non-executable format retaining
an appearance, human readability and semantic content
of the original message; and
forwarding the non-executable format message to an
intended recipient of the original message.
2. The method of claim 1, wherein the executable code 1s
contained 1n a body of the original message.
3. The method of claim 2, wherein the executable code
comprises a hypertext link, and wherein the creating com-
prises deactivating the hypertext link.

10

15

20

25

30

35

40

45

50

55

60

65

8

4. The method of claim 1, wherein the executable code 1s
contained 1n an attachment of the original message.

5. The method of claim 4, wherein a plurality of sacrificial
servers are in communication with the gatekeeper server, the
attachment from the gatekeeper server 1s forwarded to one of
the plurality of sacrificial servers, and the creating 1s carried
out on the sacrificial server to which the attachment has been
forwarded.

6. The method of claim 35, wherein the plurality of sacrifi-
cial servers are physically separate from the gatekeeper
Server.

7. The method of claim 5, wherein the plurality of sacrifi-
cial servers are logically separate from the gatekeeper server,
with separation being provided by emulated or partitioned
execution space that 1s distinct for each sacrificial server and
the gatekeeper server.

8. The method of claim 4, wherein the creating comprises:

maintaining a list of approved attachment file types and

extensions;

determining whether the attachment 1s of a type or exten-

stion which 1s 1n the list of approved attachment file types
and extensions; and

11 the attachment 1s not of a type or extension which 1s in the

list of approved attachment file types and extensions,
informing the recipient that a message containing a non-
approved attachment has been received.

9. The method of claim 1, further comprising examining,
the sacrificial server for virus activity.

10. The method of claim 9, further comprising rebooting
the sacrificial server from a safe copy of an operating system
obtained from a read-only device.

11. The method of claim 1, further comprising authenticat-
ing communication between the gatekeeper server and the
sacrificial server using a challenge-and-response technique.

12. The method of claim 1, wherein the creating comprises:

maintaining a list of approved executable code;

determining whether the executable code 1s 1n the list of
approved executable code; and

deactivating the executable code 11 the executable code 1s

not 1n the list of approved executable code.

13. The method of claim 12, wherein the list of approved
executable code i1ncludes information for determining
whether the approved executable code has been altered, and
the creating further comprises:

determining whether the executable code has been altered;

and

deactivating the executable code 11 the executable code has

been altered.

14. The method of claim 13, wherein the determiming
whether the executable code has been altered 1s performed
through an algorithmic techmque.

15. The method of claim 14, wherein the algorithmic tech-
nique 1s a check-summing technique.

16. The method of claim 14, wherein the algorithmic tech-
nique 1s a hashing technique.

17. The method of claim 14, wherein the algorithmic tech-
nique 1s a Boolean exclusive-or technique.

18. The method of claim 14, wherein the algorithmic tech-
nique 1s a digital-subtraction technique.

19. The method of claim 1, wherein the creating comprises:

forming a {irst copy and a second copy of at least a portion

of the original message containing the executable code;
executing the executable code 1n the first copy but not the
second copy; and

11 the executable code 1n the first copy has been executed,

comparing the first copy to the second copy to determine
an effect of the executable code.

US 7,913,078 Bl

9

20. The method of claim 1, wherein the gatekeeper server
and the sacrificial server are implemented as virtual
machines.

21. A system for protecting against a potentially virus-
infected message, the system comprising:

a workstation computer on a network associated with an
intended recipient of an original message comprising an
executable code;

a gatekeeper server, 1n communication with the worksta-
tion computer, for receiving the original message; and

a sacrificial server on the network for creating from the
original message a non-executable format message by
using one of a plurality of application-level conversion
processes selected 1n accordance with a type of the mes-
sage, the non-executable format retaining an appear-
ance, human readability and semantic content of the
original message and forwarding the non-executable
format message to the workstation computer.

22. The system of claim 21, wherein the gatekeeper server
1s an emulated or partitioned execution space on a host com-
puter.

23. The system of claim 21, wherein the sacrificial server1s
an emulated or partitioned execution space on a host com-
puter.

24. The system of claim 21, wherein the gatekeeper server
and the sacrificial server are emulated or partitioned execu-
tion spaces on a host computer, and wherein the gatekeeper
server and the sacrificial server communicate via shared
memory, hardware backplane, internal communications pro-
tocol, operating system level networking protocols, or inter-
process communications between emulated or partitioned
execution spaces on the host computer.

25. The system of claim 21, wherein the executable code 1s
contained 1n a body of the original message.

26. The system of claim 25, wherein the executable code
comprises a hypertext link, and wherein the creating com-
prises deactivating the hypertext link.

27. The system of claim 21, wherein the executable code 1s
contained 1n an attachment of the original message.

28. The system of claim 21, wherein the sacrificial server1s
one of a plurality of sacrificial servers which are 1n commu-
nication with the gatekeeper server.

29. The system of claim 28, wherein the plurality of sacri-
ficial servers are physically separate from the gatekeeper
SErver.

30. The system of claim 28, wherein the plurality of sacri-
ficial servers are logically separate from the gatekeeper server
and execute 1n emulated or partitioned execution spaces.

31. The system of claim 28, wherein the plurality of sacri-
ficial servers are examined for virus activity.

32. The system of claim 31, wherein the network further
comprises a read-only device, and wherein the sacrificial
servers are rebooted from a safe copy of an operating system
obtained from the read-only device.

33. The system of claim 28, wherein communications
between the gatekeeper server and the sacrificial servers are
authenticated using a challenge-and-response technique.

34. The system of claim 21, wherein the network maintains
a list of approved attachment file types and extensions, deter-
mines whether the attachment 1s of a file type or extension
which 1s 1n the list of approved attachment file types and
extensions, and, if the attachment 1s not of a file type or
extension which is 1n the list of approved attachment file types
and extensions, informs the recipient that a message contain-
ing a non-approved attachment has been received.

35. The system of claim 21, wherein the network maintains
a list of approved executable code, determines whether the

10

15

20

25

30

35

40

45

50

55

60

65

10

executable code 1s 1n the list of approved executable code, and
deactivates the executable code 11 the executable code 1snotin
the list of approved executable code.

36. The system of claim 35, wherein the list of approved
executable code includes information for determining
whether the approved executable code has been altered, the
network determines whether the executable code has been
altered, and the executable code 1s deactivated 11 the execut-
able code has been altered.

377. The system of claim 36, wherein the system determines
whether the executable code has been altered through an
algorithmic technique.

38. The system of claim 37, wherein the algorithmic tech-
nique 1s a check-summing technique.

39. The system of claim 37, wherein the algorithmic tech-
nique 1s a hashing technique.

40. The system of claim 37, wherein the algorithmic tech-
nique 1s a Boolean exclusive-or technique.

41. The system of claim 37, wherein the algorithmic tech-
nique 1s a digital-subtraction technique.

42. The system of claim 21, wherein the sacrificial server
creates the non-executable format message by:

forming a first copy and a second copy of at least a portion

of the original message containing the executable code;
executing the executable code 1n the first copy but not the
second copy; and

11 the executable code 1n the first copy has been executed,

comparing the first copy to the second copy to determine
an effect of the executable code.

43. The system of claim 21, wherein the gatekeeper server
and the sacrificial server are implemented as virtual
machines.

44. A sacrificial server for protecting against a potentially
virus infected message, the sacrificial server comprising:

communication means for receiving an original message

attachment from a network; and

processing means for creating from the original message

attachment a non-executable format message attach-
ment by using one of a plurality of application-level
conversion processes selected 1n accordance with a type
of the message, the non-executable format retaining an
appearance, human readability and semantic content of
the original message and for returning the non-execut-
able format message attachment to the network.

45. The sacrificial server of claim 44, wherein the process-
ing means creates the non-executable format message attach-
ment by:

forming a {irst copy and a second copy of at least a portion

of the original message attachment containing an
executable code:

executing the executable code 1n the first copy but not the

second copy; and

11 the executable code 1n the first copy has been executed,

comparing the first copy to the second copy to determine
an effect of the executable code.

46. The sacrificial server of claim 44, wherein the sacrifi-
cial server 1s examined for virus activity.

47. The sacrificial server of claim 46, wherein the sacrifi-
cial server determines whether the original message attach-
ment has been altered through the use of an algorithmic
technique.

48. The sacrificial server of claim 47, wherein the algorith-
mic technique 1s a check-summing technique.

49. The sacrificial server of claim 47, wherein the algorith-
mic technique 1s a hashing techmque.

50. The sacrificial server of claim 47, wherein the algorith-
mic technique 1s a Boolean exclusive-or technique.

US 7,913,078 Bl

11

51. The sacrificial server of claim 47, wherein the algorith-
mic technique 1s a digital-subtraction technique.

52. The sacrificial server of claim 46, wherein the sacrifi-
cial server further comprises a read-only device and 1s reboo-
ted from a safe copy of an operating system obtained from the
read-only device.

53. The sacrificial server of claim 44, wherein communi-
cations between the network and the sacrificial server are
authenticated using a challenge-and-response technique.

54. The sacrificial server of claim 44, wherein the sacrifi-
cial server stores a list of approved attachment file types and
extensions, determines whether the attachment 1s of afile type
or extension which 1s 1n the list of approved attachment file
types and extensions, and, 11 the attachment 1s notof a file type
or extension which 1s in the list of approved attachment file
types and extensions, and informs the network that a message
containing a non-approved attachment has been recerved.

55. The sacrificial server of claim 44, wherein the sacrifi-
cial server maintains a list of approved executable code, deter-
mines whether the attachment contains executable code and
whether the executable code 1s 1n the list of approved execut-
able code, and deactivates the executable code if the execut-
able code 1s not 1n the list of approved executable code.

56. The sacrificial server of claim 55, wherein the list of
approved executable code includes information for determin-
ing whether the approved executable code has been altered, 1f
the executable code 1s 1n the list of approved executable code,
the sacrificial server determines whether the executable code
has been altered, and the executable code 1s deactivated 1t the
executable code has been altered.

57. The sacrificial server of claim 44, wherein the sacrifi-
cial server 1s an emulated or partitioned execution space on a
host computer.

58. An article of manufacture mncluding a non-transitory
computer-readable medium having instructions stored
thereon, execution of which by a computing device causes the
computing device to perform operations comprising:

receiving an original message comprising an executable

code 1n a gatekeeper server;

forwarding the orniginal message from the gatekeeper

server to a sacrificial server;

creating from the original message a non-executable for-

mat message by using one of a plurality of application-
level conversion processes selected 1n accordance with a
type of the message, the non-executable format retaining,
an appearance, human readability and semantic content
of the original message; and

forwarding the non-executable format message to an

intended recipient of the original message.

59. The article of manufacture of claim 58, wherein the
creating comprises:

5

10

15

20

25

30

35

40

45

50

12

maintaining a list of approved attachment file types and

extensions;

determining whether the attachment 1s of a type or exten-

sion which 1s 1n the list of approved attachment file types
and extensions; and

11 the attachment 1s not of a type or extension which 1s in the

list of approved attachment file types and extensions,
informing the recipient that a message containing a non-
approved attachment has been received.

60. The computer readable medium article of manufacture
of claim 38, wherein the creating comprises:

maintaining a list of approved executable code;

determiming whether the executable code 1s 1n the list of

approved executable code; and

deactivating the executable code 1f the executable code 1s

not 1n the list of approved executable code.

61. The article of manufacture of claim 58, wherein the
gatekeeper server and the sacrificial server are implemented
as virtual machines.

62. An apparatus for protecting against a potentially virus
infected message, the apparatus comprising:

a gatekeeper device configured to:

receive an original message attachment from a network,
and

forward the original message to a sacrificial server,
wherein the sacrificial server i1s configured to create
from the original message attachment a non-execut-
able format message attachment by using one of a
plurality of application-level conversion processes
selected 1n accordance with a type of the message, the
non-executable format retaining an appearance,
human readability and semantic content of the origi-
nal message and for returming the non-executable for-
mat message attachment to the network.

63. The apparatus of claim 62, wherein the gatekeeper
device and the sacrificial server are implemented as virtual
machines.

64. A system comprising:

a gatekeeper device configured to recetve an original mes-

sage comprising an executable code; and

a sacrificial processor configured to:

receive the original message from the gatekeeper device,

create from the original message a non-executable for-
mat message by using one of a plurality of applica-
tion-level conversion processes selected 1n accor-
dance with a type of the message, the non-executable
format retaining an appearance, human readability
and semantic content of the original message, and

forward the non-executable format message to an
intended recipient of the original message.

¥ ¥ H ¥ H

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,913,078 Bl Page 1 of 1
APPLICATION NO. : 11/650561

DATED : March 22, 2011

INVENTORC(S) . Stewart et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title Page 2, item (56), under “Other Publications™, in Column 1, Line 8, delete “htto:” and insert
-- http: --.

Column 10, line 60, in Claim 47, delete “through the use™” and insert -- through use --.

Column 12, line 10, in Claim 60, delete “The computer readable medium article™ and insert
-- The article --.

Signed and Sealed this
Twelith Day of July, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,913,078 Bl Page 1 of 1
APPLICATION NO. : 11/650561

DATED : March 22, 2011

INVENTORC(S) . Stewart et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 3, line 17: Replace “program or system’™ with -- program or system. --

Column 3, line 43: Replace “unauthorized form™ with -- unauthorized forms --

Column 3, line 63: Replace “imbedded hyperlinks™ with -- embedded hyperlinks --

Column 4, line 20: Replace “attachment from” with -- attachment form --

Column 5, line 31: Replace “techmque 187 with -- technique 1s --

Column 5, line 32: Replace “authentication techmques.” with -- authentication techniques. --
Column 6, line 2: Replace “content the particular” with -- content of the particular --
Column 6, line 58: Replace “Several techmques™ with -- Several techniques --

Column 8, line 51: Replace “algorithmic techmque.™ with -- algorithmic technique. --
Column 10, line 63: Replace “techmque is a”* with -- technique 1s a --

Column 10, line 65: Replace “techmque 1s a hashing techmque™ with -- technique 1s a hashing
technique --

Column 10, line 67: Replace “techmque 1s a” with -- technique 1s a --

Column 11, line 2: Replace “digital-subtraction techmque™ with -- digital-subtraction
technique --

Column 11, line 16: Replace *, and informs the network™ with -- | informs the network --

Signed and Sealed this
Sixth Day of December, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

