

US007907941B2

(12) United States Patent

Twitchell, Jr.

(54) DETERMINING PRESENCE OF RADIO FREQUENCY COMMUNICATION DEVICE

(75) Inventor: Robert W. Twitchell, Jr., Cumming, GA

(US)

(73) Assignee: Terahop Networks, Inc., Alpharetta,

GA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 642 days.

(21) Appl. No.: 11/618,931

(22) Filed: Jan. 1, 2007

(65) Prior Publication Data

US 2007/0155327 A1 Jul. 5, 2007

Related U.S. Application Data

- (60) Provisional application No. 60/766,223, filed on Jan. 1, 2006.
- (51) Int. Cl. H04M 3/00 (2006.01)
- (52) **U.S. Cl.** **455/418**; 455/41.2; 455/419; 370/310; 235/462.1; 340/10.1

(56) References Cited

U.S. PATENT DOCUMENTS

4,613,990 A 9/1986 Halpern 4,680,583 A 7/1987 Grover

(10) Patent No.: US 7,907,941 B2 (45) Date of Patent: Mar. 15, 2011

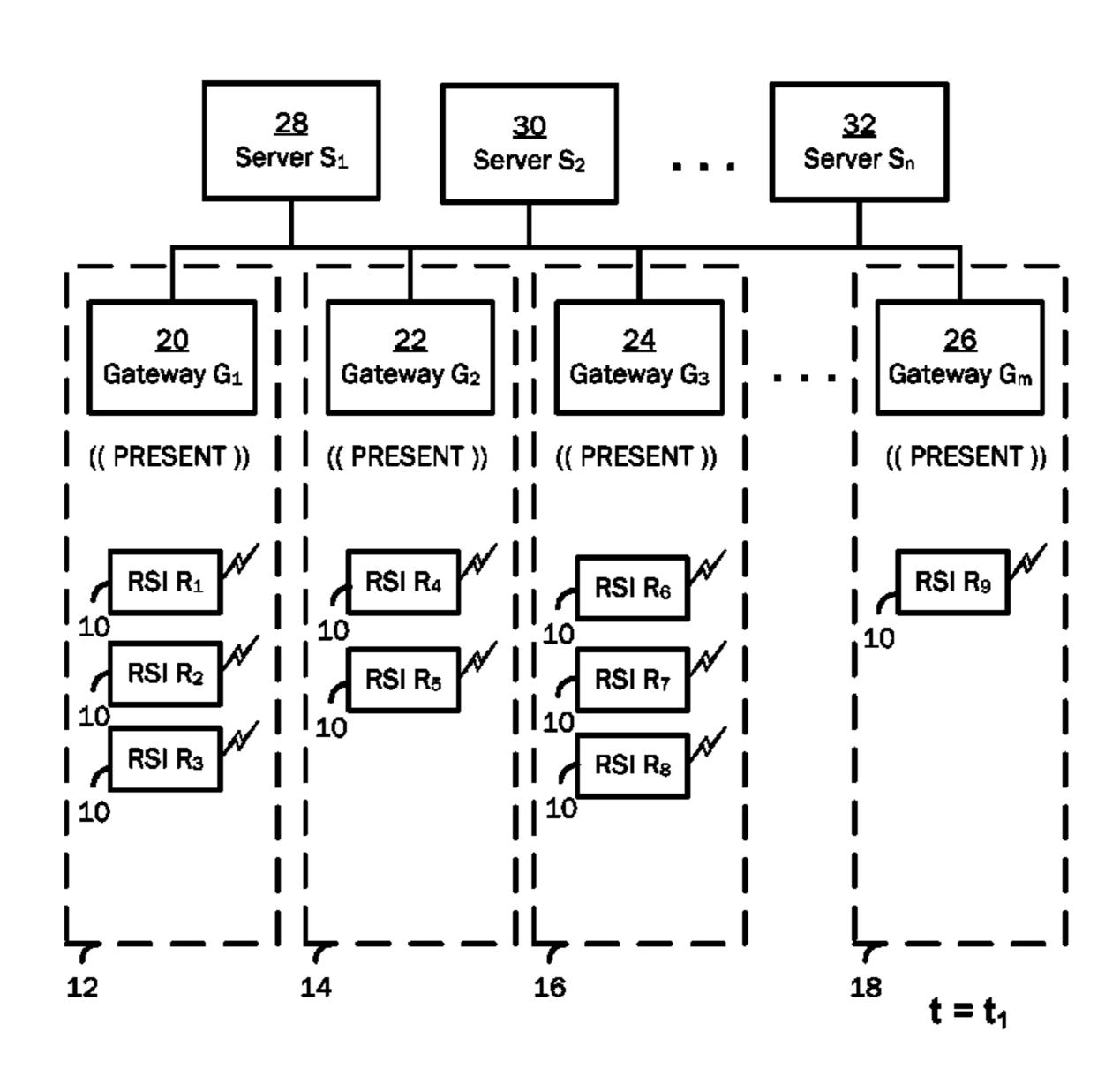
(Continued)

FOREIGN PATENT DOCUMENTS

EP 0467036 A2 1/1992 (Continued)

OTHER PUBLICATIONS

"Scalable Routing Strategies for Ad hoc Wireless Networks", Atsushi Iwata et al., IEEE Journal on Selected Areas in Communications, Special Issue on Adhoc Networks, Aug. 1999, pp. 1369-1379.


(Continued)

Primary Examiner — Kent Chang
Assistant Examiner — San Htun
(74) Attorney, Agent, or Firm — Tillman Wright, PLLC;
Chad D. Tillman; Jeremy C. Doerre

(57) ABSTRACT

A radio frequency communication device includes a receiver; a transmitter; an interface for receiving one or more sensor signals based on sensor-acquired data that is indicative of a predetermined condition; and electronic components. The electronic components are arranged and configured such that the device operates in at least two states. In the first state, the device responds to a Present Broadcast by making a Present Response. In the second state, the device does not respond to a Present Broadcast with a Present Response. The electronic components further are arranged and configured such that the device enters the second state from the first state upon responding to a Present Broadcast with a Present Response, and such that the device enters the first state from the second state upon receiving, through the interface, one or more sensor signals based on sensor-acquired data that is indicative of a predetermined condition.

30 Claims, 8 Drawing Sheets

IIS PATENT	DOCUMENTS	6,760,578 B2 7/2004 Rotzoll
		6,761,312 B2 7/2004 Rotzon 6,761,312 B2 7/2004 Piatek et al.
5,117,501 A 5/1992 5,129,096 A 7/1992	Childress et al.	6,765,484 B2 7/2004 Eagleson et al.
	Masumoto	6,816,063 B2 11/2004 Kubler et al.
5,265,025 A 11/1993		6,847,892 B2 1/2005 Zhou et al. 6,934,540 B2 8/2005 Twitchell, Jr.
	Meier et al.	6,940,392 B2 9/2005 Twitchen, 51.
	Francis et al.	6,972,682 B2 * 12/2005 Lareau et al 340/568.1
5,369,784 A 11/1994 5,400,254 A 3/1995		6,975,614 B2 12/2005 Kennedy
	Mahany	6,975,941 B1 * 12/2005 Lau et al
5,442,758 A 8/1995		7,012,529 B2 3/2006 Sajkowsky 7,027,773 B1 4/2006 McMillin
5,511,232 A 4/1996	O'Dea et al.	7,027,773 B1 4/2006 McMilling 7,072,668 B2* 7/2006 Chou
5,579,306 A 11/1996		7,098,784 B2 8/2006 Easley et al.
5,590,409 A 12/1996 5,502,533 A * 1/1007		7,126,470 B2 10/2006 Clift et al.
	McHenry et al 455/435.2 Piatek et al.	7,133,704 B2 11/2006 Twitchell, Jr.
5,604,892 A 2/1997		7,142,121 B2 11/2006 Chan et al.
5,640,151 A 6/1997	Reis et al.	7,155,264 B2 12/2006 Twitchell, Jr. 7,191,934 B2 3/2007 Miller et al.
	Frerking 455/435.1	7,200,132 B2 4/2007 Twitchell, Jr.
5,652,751 A 7/1997		7,209,468 B2 4/2007 Twitchell, Jr.
5,682,379 A 10/1997 5,686,902 A 11/1997		7,209,771 B2 4/2007 Twitchell, Jr.
5,732,077 A 3/1998		7,221,668 B2 5/2007 Twitchell, Jr.
5,761,195 A 6/1998		2001/0000019 A1 3/2001 Bowers et al. 2002/0002627 A1* 1/2002 Stead et al
, , ,	Rotzoll	2002/0002027 AT 1/2002 Stead et al
5,793,882 A 8/1998		2002/0089421 A1* 7/2002 Farringdon et al 340/506
5,833,910 A 11/1998 5,890,054 A 3/1999		2002/0098861 A1 7/2002 Doney et al.
·	Canada et al.	2002/0119770 A1 8/2002 Twitchell, Jr.
5,917,423 A 6/1999		2002/0146985 A1 10/2002 Naden 2003/0019929 A1* 1/2003 Stewart et al
5,939,982 A 8/1999	<u> </u>	2003/0013323 A1 1/2003 Stewart et al
5,943,610 A 8/1999		2003/0141973 A1 7/2003 Yeh et al.
5,950,124 A 9/1999 5,974,236 A 10/1999	-	2003/0144020 A1 7/2003 Challa et al.
5,977,913 A 11/1999		2003/0179073 A1 9/2003 Ghazarian
6,005,884 A 12/1999		2003/0209601 A1 11/2003 Chung 2004/0021572 A1 2/2004 Schoen et al.
6,006,100 A 12/1999		2004/0021372 A1 2/2004 School et al. 2004/0041731 A1 3/2004 Hisano
6,072,784 A 6/2000	ϵ	2004/0082296 A1 4/2004 Twitchell, Jr.
6,078,789 A 6/2000 6,091,724 A 7/2000		2004/0100415 A1 5/2004 Veitch et al.
	Hodzic et al.	2004/0121793 A1 6/2004 Weigele et al.
6,104,512 A 8/2000		2004/0135691 A1 7/2004 Duron et al. 2004/0183673 A1 9/2004 Nageli
6,118,988 A 9/2000		2004/0183073 AT 3/2004 Nagen 2005/0043068 A1 2/2005 Shohara et al.
6,125,306 A 9/2000		2005/0093702 A1 5/2005 Twitchell, Jr.
6,127,976 A 10/2000 6,134,587 A 10/2000	•	2005/0093703 A1 5/2005 Twitchell, Jr.
•	Caci 455/466	2005/0114326 A1* 5/2005 Smith et al
6,192,400 B1 2/2001		2005/0215280 A1 9/2005 Twitchell, Jr. 2005/0226201 A1 10/2005 McMillin
6,198,913 B1 3/2001	_	2005/0220201 A1 10/2005 Michinin 2006/0202817 A1 9/2006 Mackenzie et al.
	Lietsalmi et al.	2006/0270382 A1 11/2006 Lappetelainen et al.
6,256,303 B1 7/2001 6,313,745 B1 11/2001		2009/0103462 A1 4/2009 Twitchell, Jr.
6,354,493 B1 3/2002		FOREIGN PATENT DOCUMENTS
	Dudaney	
6,381,467 B1 4/2002		EP 0748083 12/1996 EP 0748085 12/1996
6,404,082 B1 6/2002		EP 0748083 12/1990 EP 0829995 3/1998
6,405,102 B1 6/2002 6,409,082 B1 6/2002		EP 1317733 A2 6/2003
6,418,299 B1 7/2002		EP 1692599 A2 8/2006
6,424,260 B2 7/2002	Maloney	EP 1692668 A2 8/2006
6,424,264 B1 7/2002		WO WO0068907 11/2000 WO WO0069186 11/2000
6,427,913 B1 8/2002 6,473,607 B1 10/2002		
6,512,478 B1 1/2003		OTHER PUBLICATIONS
,	Yeh et al.	"Cluster Based Routing Protocol", Internet-Draft Mingliang, Jiang et
	Eagleson et al.	al., National University of Singapore, Jul. 1999.
	Begelfer et al.	Gary Morgan, Miniature Tags Provide Visibility & Cohesion for an
, , ,	Zhou et al. Francis et al.	LIA Battalion Level 'Proof of Principle', Pacific NW National Labo-
	Koener et al.	ratory, Apr. 2001, Gary.morgan@pnl.gov.
	Proctor et al.	Ben Sommer et al., Group 4, Passive RF Tags.
6,665,585 B2 12/2003		Kevin Sharp, Physical Reality: A Second Look, Supply Chain Systems, and bette://www.idevetoms.com/roader/1000, 03/phys0300, pt2/
	Werb et al.	tems, http://www.idsystems.com/reader/1999_03/phys0399_pt2/index.htm, Mar. 1999, Helmers Publishing, Inc.
, , , , , , , , , , , , , , , , , , , ,	Eagleson et al.	U.S. Appl. No. 60/444,029, of Nageli, filed Jan. 31, 2003.
6,735,630 B1 * 5/2004 6,737,974 B2 5/2004		Ram Ramanathan et al., Hierarchically-Organized, Multihop Mobile
, , ,	Twitchell, Jr.	Wireless Networks for Quality-of-Service Support, pp. 1-35, 1998.
	Giraldin et al.	Guangyu Pei et al., Mobility Management in Hierarchical Multi-hop
6,753,775 B2 6/2004	Auerbach et al.	Mobile Wireless Networks, 6 pages, 1999.

http://www/iprg/nokia.com/charliep/txt/manet/term.txt, Mobile Ad Hoc Networking Terminology, C. Perkins, Nov. 17, 1998, visited Nov. 13, 2000.

Daniel Lihui Gu et al., C-ICAMA, A Centralized Intelligent Channel Assigned Multiple Access for Multi-Layer Ad-Hoc Wireless Networks with UAVs, 6 pages, 2000.

Atsushi Iwata, et al., Scalable Routing Strategies for Ad Hoc Wireless Networks, IEEE Journal on Selected Areas in Communications, vol. 17, No. 8, Aug. 1999, pp. 1369-1379.

http://www.cs.ucla.edu/NRL/wireless/PAPER/draft-ietf-manet-admrp-02.txt, Sung-Ju Lee et al., On-Demand Multicast Routing Protocol (ODMRP) for Ad Hoc Networks, Jan. 2000, visited Nov. 13, 2000.

Guangyu Pei, et al., A Wireless Hierarchical Routing Protocol with Group Mobility, 1998 IEEE, 5 pages.

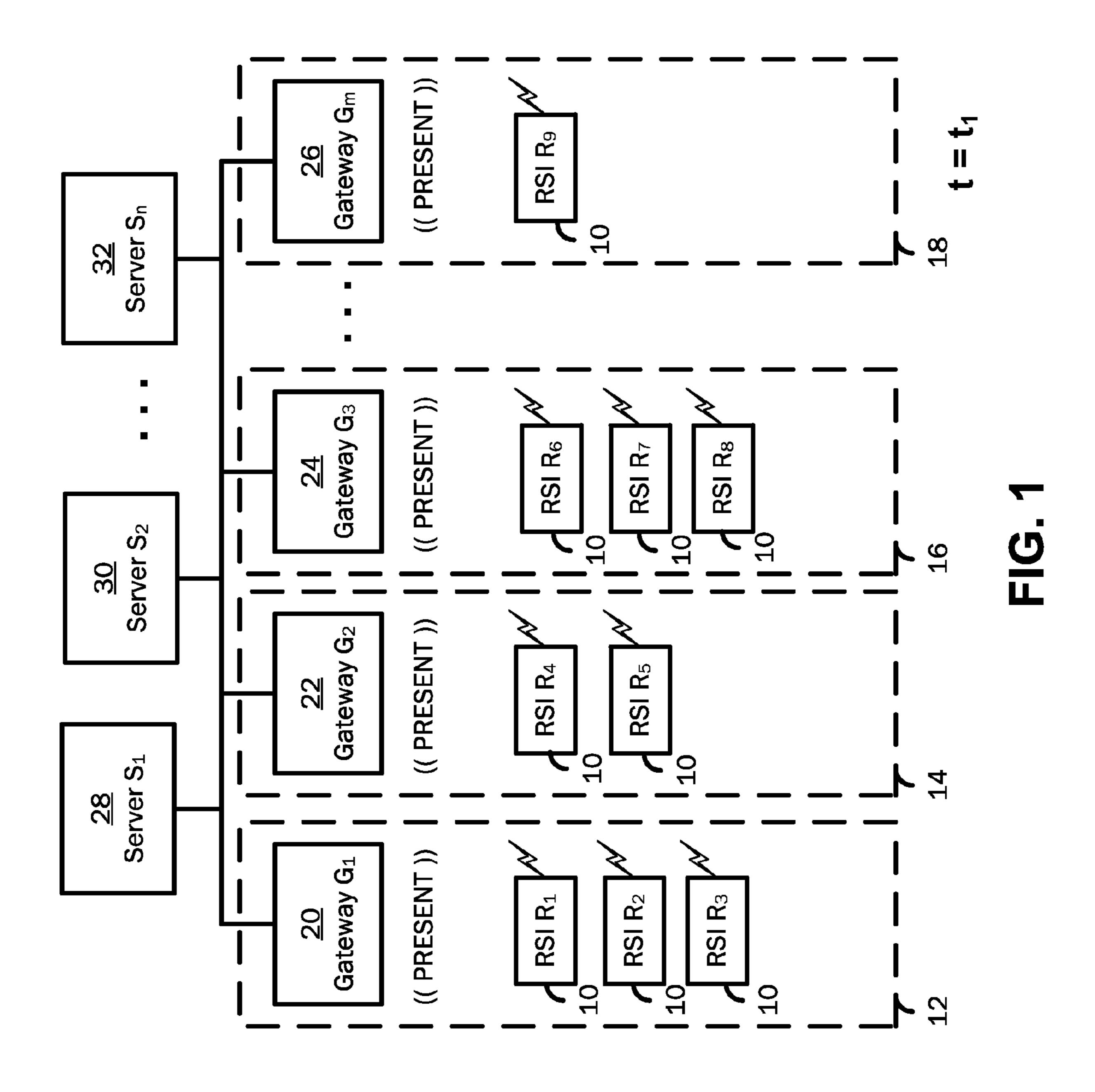
Charles E. Perkins, AD HOC Networks, Jan. 2001, table of contents, chapters 1, 4, and 11.

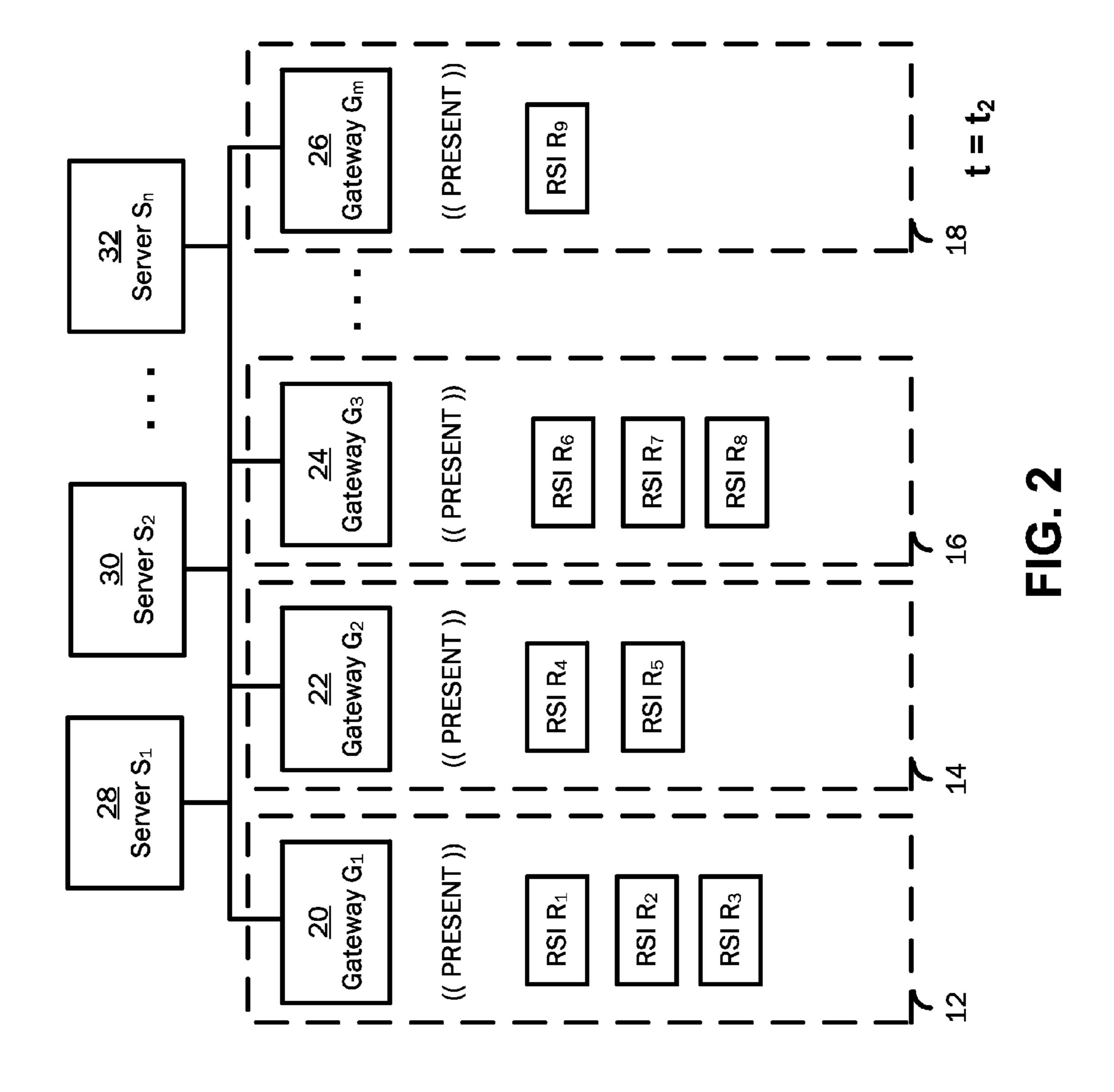
J.J. Gardia-Luna-Aceves et al., Source-Tree Routing in Wireless Networks, 1999, 10 pages.

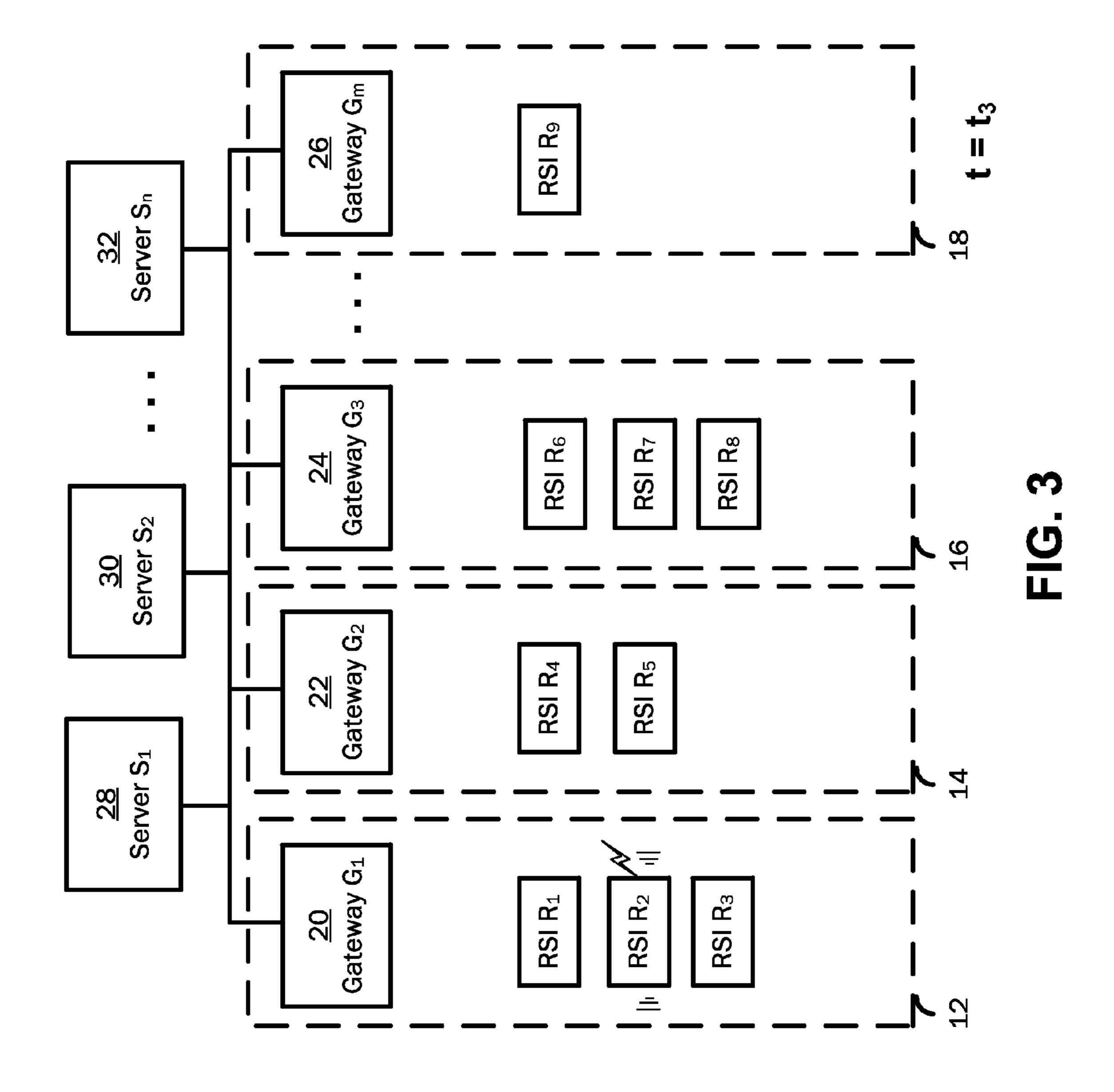
Jean-Pierre Hubaux et al., Toward Self-Organized Mobile Ad Hoc Networks: The Terminodes Project, IEEE Communications Magazine, Jan. 2001, pp. 118-124.

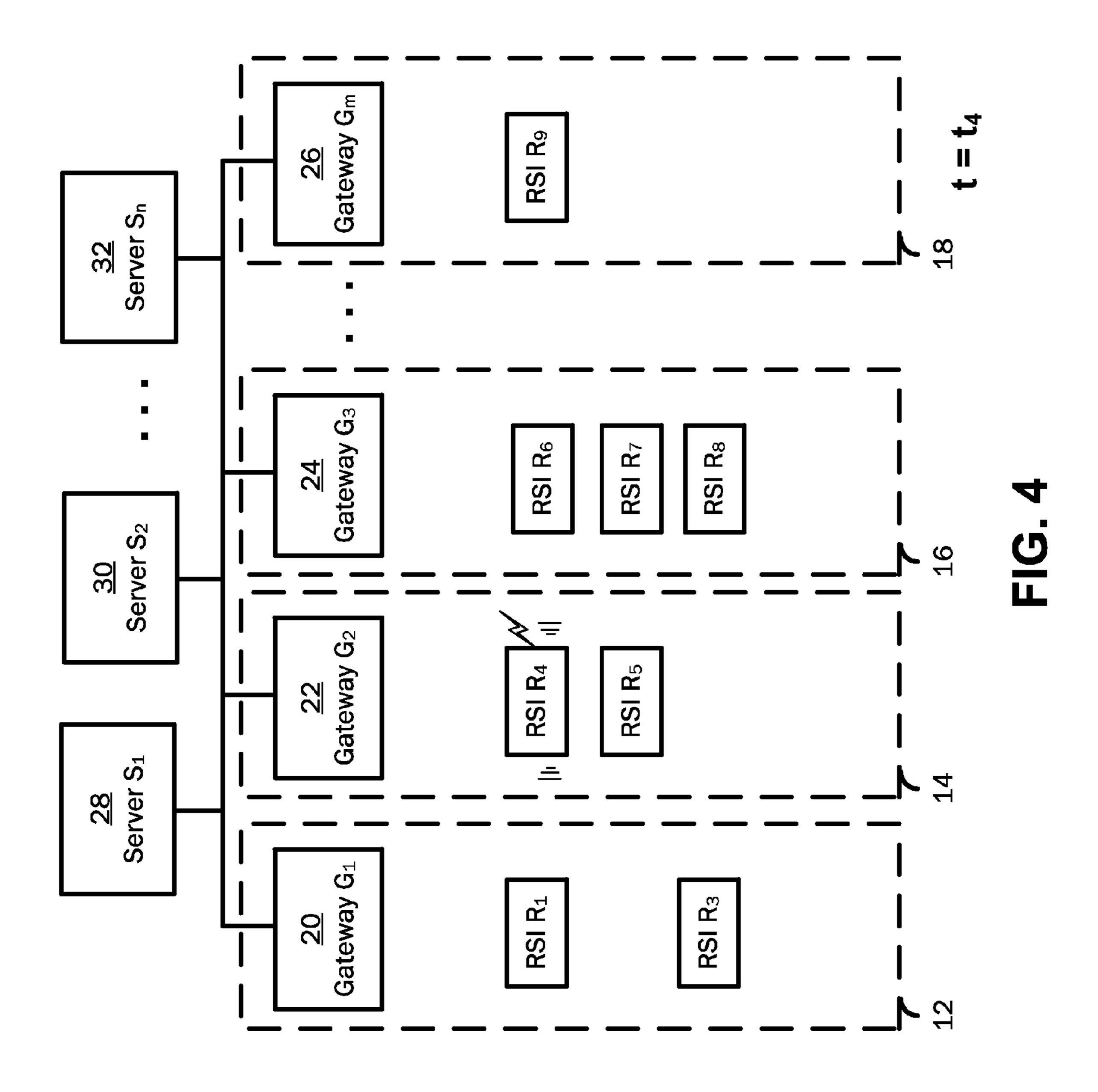
Jaap Haartsen et al., Bluetooth: Vision, Goals, and Architecture, Mobile Computing & Communications Review, vol. 1, No. 2, 1998, 8 pages.

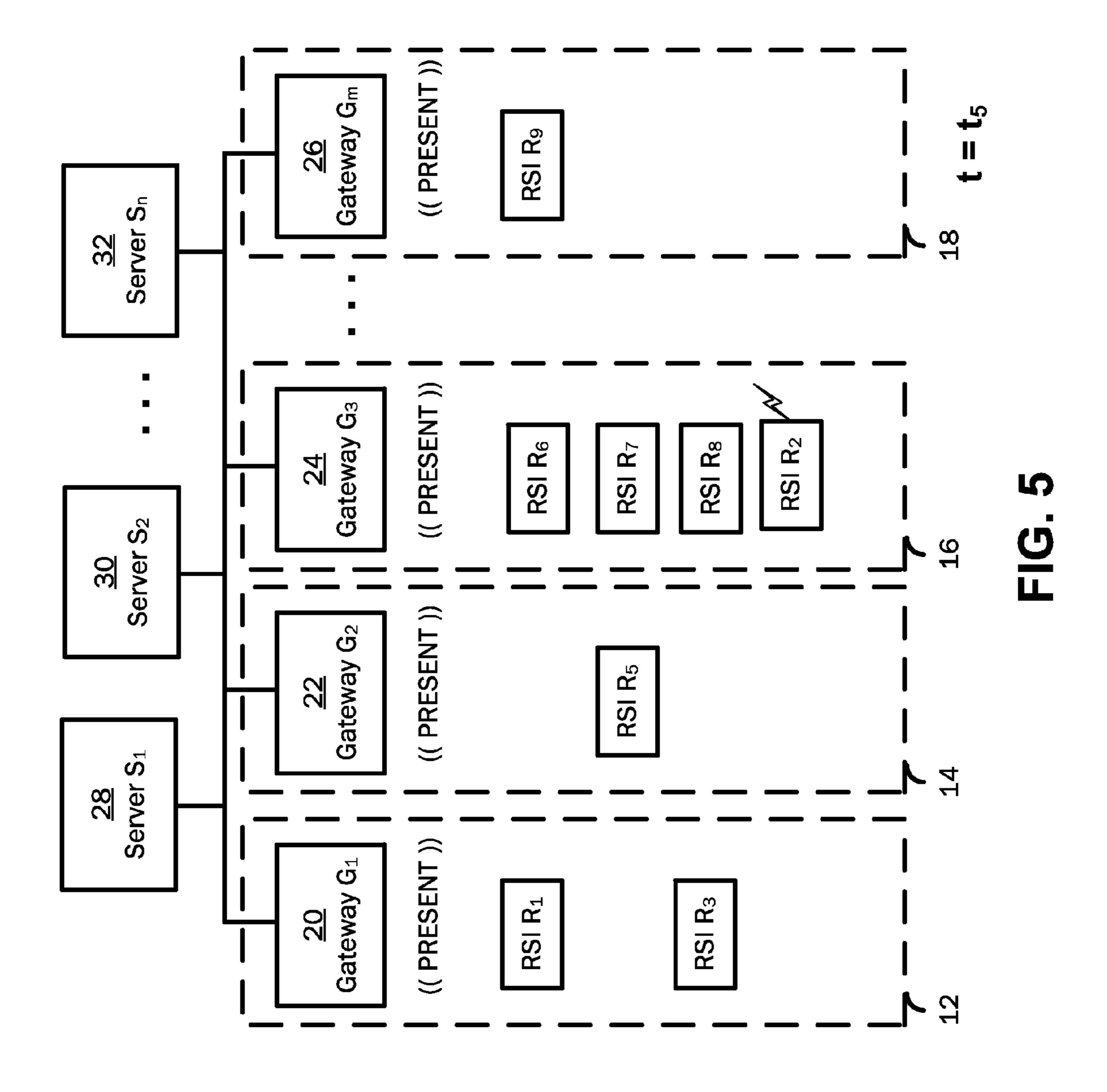
Jaap Haartsen, Bluetooth-The Universal Radio Interface for Ad Hoc, Wireless Connectivity, Ericsson Review No. 3, pp. 110-117, 1998. Daniel Lihui Gu et al., Hierarchical Routing for Multi-Layer Ad-Hoc Wireless Networks with UAV's, 5 pages, 2000.

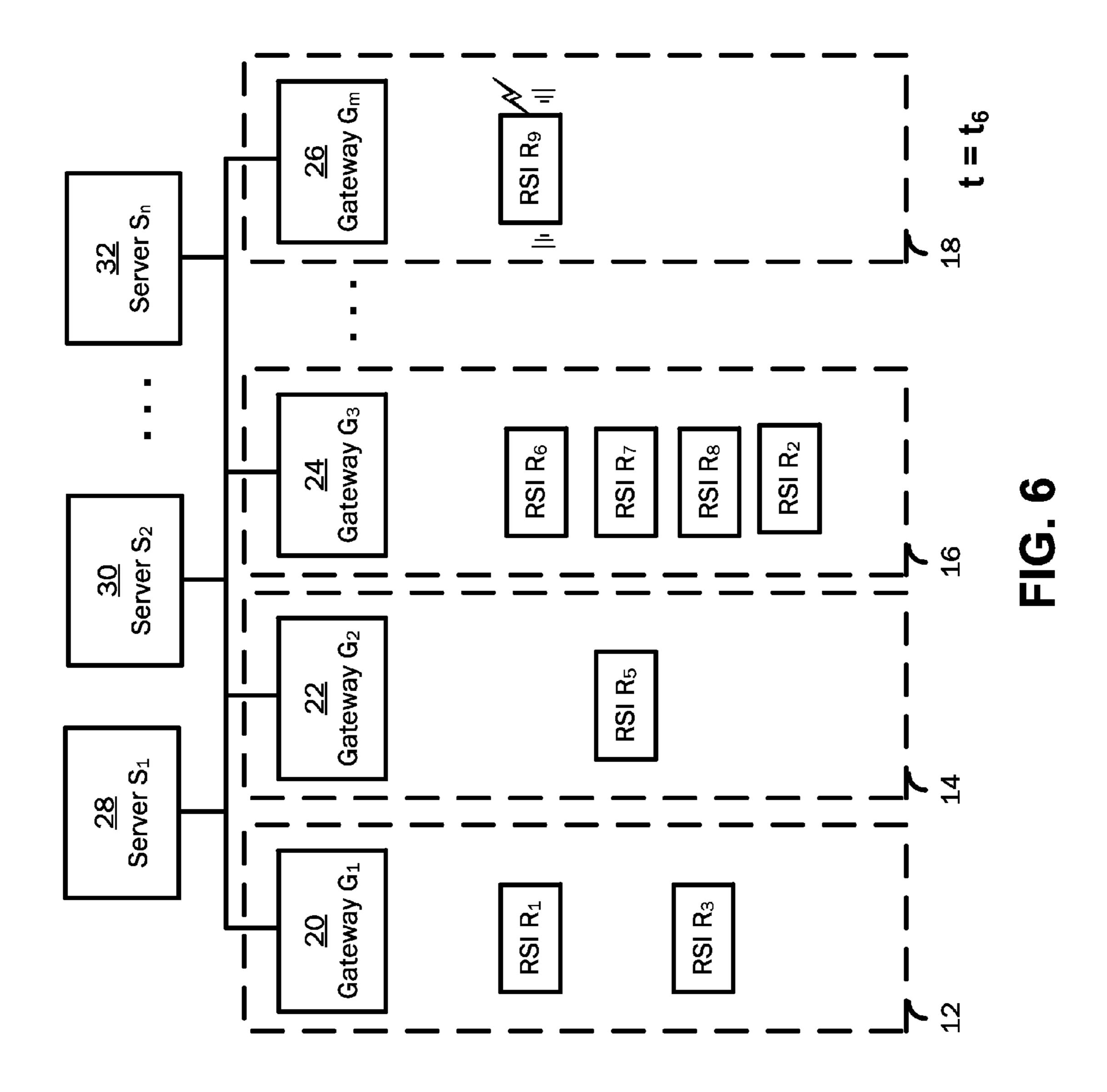

U.S. Appl. No. 60/499,338, of Easley et al., filed Sep. 3, 2003. Keshavarzian et al., Energy-Efficient Link Assessment in Wireless Sensor Networks, INFOCOM 2004. 23rd Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, 2004,

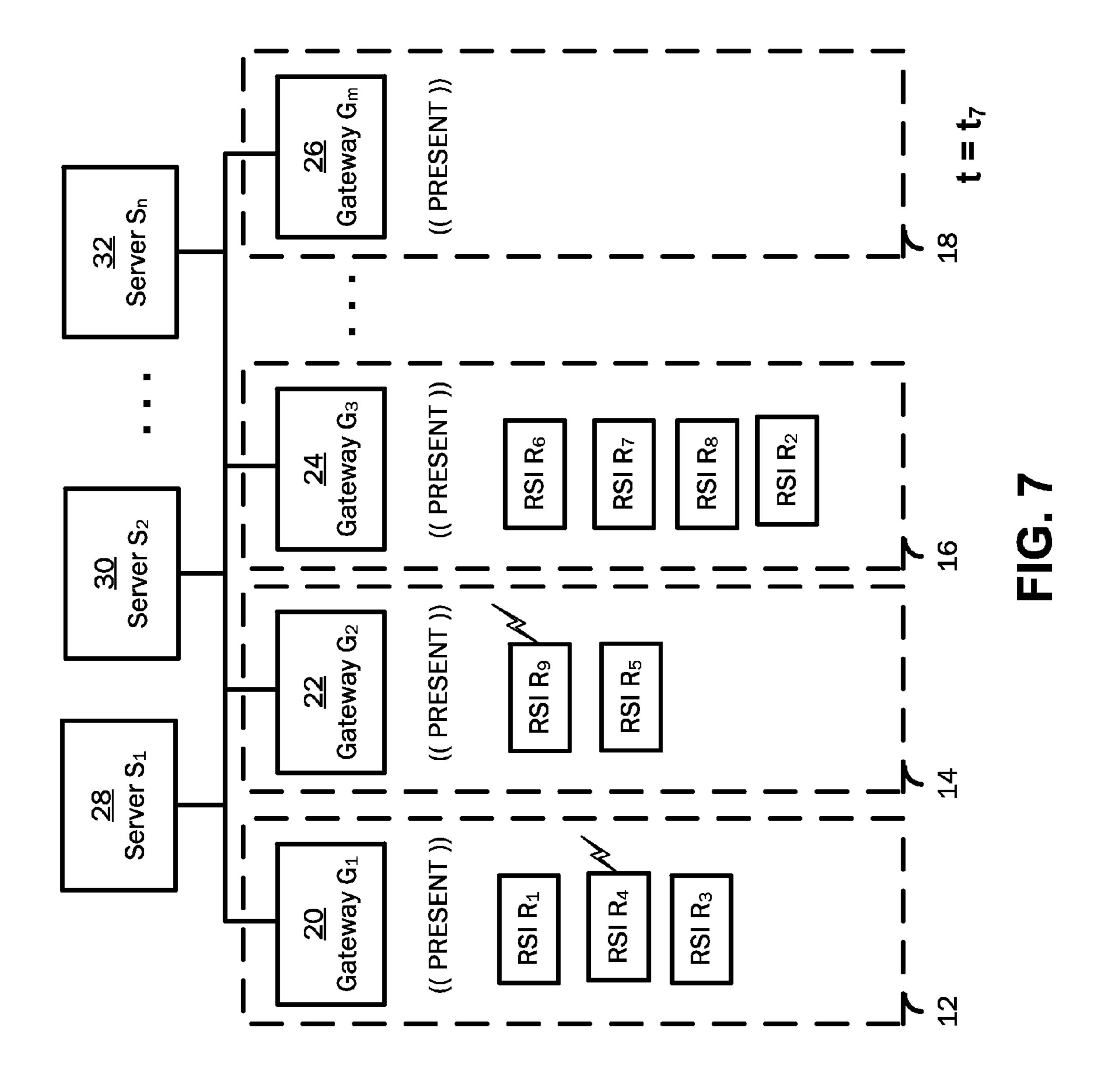

Stojmenovic et al., Design Giudelines for Routing Protocols in Ad Hoc and Sensor Networks with a Realistic Physical Layer, Communications Magazine, IEEE, vol. 43, Issue 3, Mar. 2005, pp. 101-106. Melodia et al., On the Interdependence of Distributed Topology Control and Geographical Routing in Ad Hoc and Sensor Networks, Selected Areas in Communications, IEEE Journal, vol. 23, Issue 3, Mar. 2005, pp. 520-532.

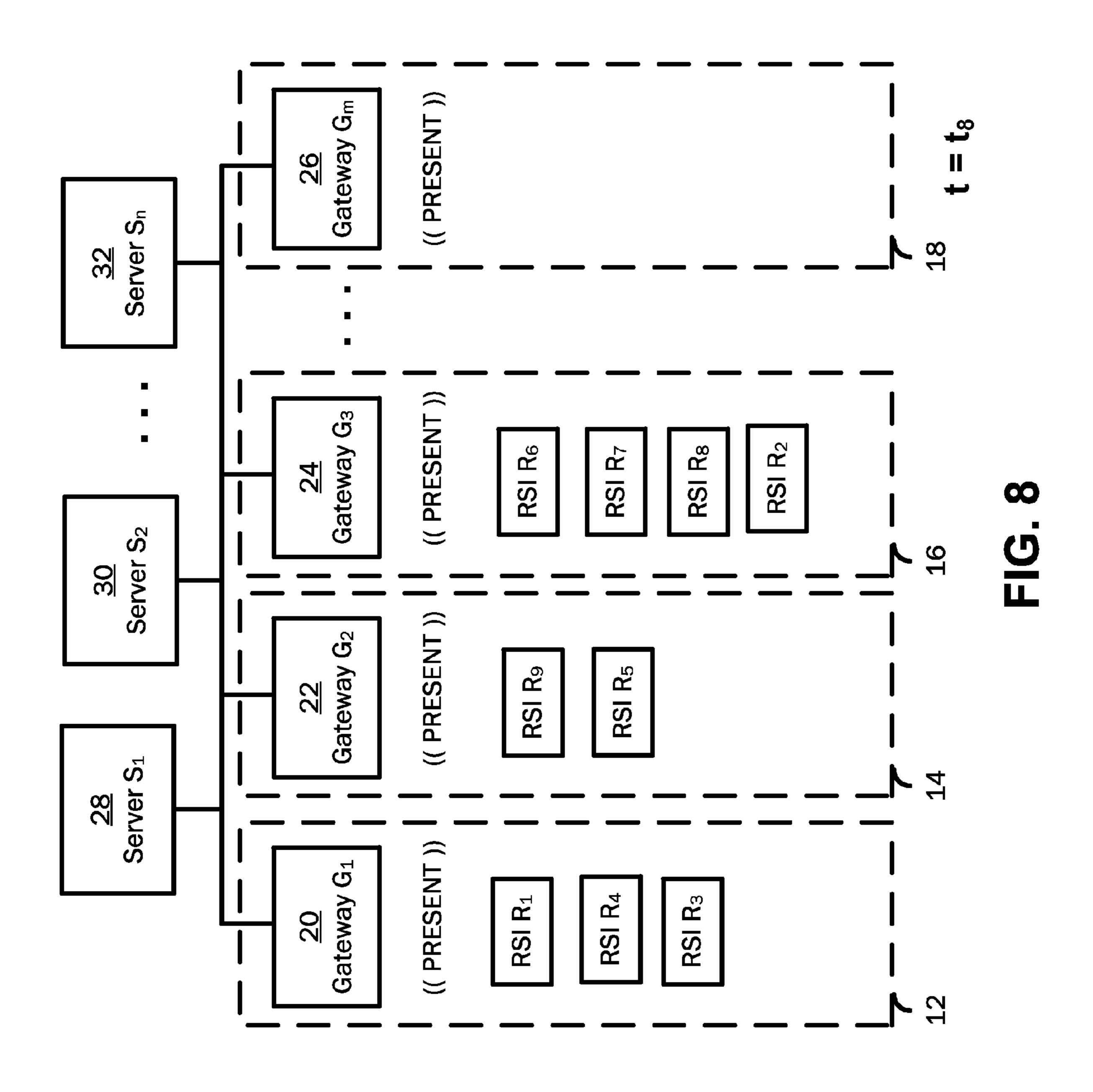

Information Disclosure Statement (IDS) Letter Regarding Common Patent Application(s), dated Oct. 6, 2010.


pp. 1751-1761.


^{*} cited by examiner







DETERMINING PRESENCE OF RADIO FREQUENCY COMMUNICATION DEVICE

I. CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

The present patent application claim priority under the Paris Convention to U.S. patent application Ser. No. 60/766, 223, filed Jan. 1, 2006, which patent application is hereby incorporated herein by reference. For purposes of the United 10 States, the present patent application further is a U.S. nonprovisional patent application of, and claims priority under 35 U.S.C. §119(e) to, U.S. patent application Ser. No. 60/766, 223, filed Jan. 1, 2006, which patent application is hereby incorporated herein by reference. Furthermore, the present 15 application hereby incorporates by reference each of the following patent application publications and patents, each of which is owned by the assignee of the present application: U.S. Pat. No. 7,155,264; U.S. Pat. No. 7,133,704; U.S. Pat. No. 6,934,540; U.S. Pat. No. 6,745,027; U.S. Patent Appli- ²⁰ cation Publication No. US 2006/0018274; U.S. Patent Application Publication No. US 2005/0215280; U.S. Patent Application Publication No. US 2006/0023679; U.S. Patent Application Publication No. US 2006/0023678; U.S. Patent Application Publication No. US 2006/0023678; U.S. Patent ²⁵ Application Publication No. US 2006/0023679; U.S. Patent Application Publication No. US 2006/0237490; U.S. Patent Application Publication No. US 2006/0276963; U.S. Patent Application Publication No. US 2006/0282217; U.S. Patent Application Publication No. US 2006/0276161; U.S. Patent ³⁰ Application Publication No. US 2006/0289204; U.S. Patent Application Publication No. US 2006/0274698; U.S. Patent Application Publication No. US 2006/0287822; and U.S. Patent Application Publication No. US 2006/0287008.

II. COPYRIGHT STATEMENT

All of the material in this patent document is subject to copyright protection under the copyright laws of the United States and other countries. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in official governmental records but, otherwise, all other copyright rights whatsoever are reserved.

III. BACKGROUND OF THE INVENTION

Conventional systems for tracking and/or monitoring assets (herein generally referred to as "asset tracking systems") utilize wireless tags that generally respond to any 50 broadcast that is made. The wireless tags usually are passive, and the responses that the passive wireless tags make are often referred to as "chirps."

More sophisticated asset tracking systems utilize semipassive wireless tags and/or active wireless tags. A semipassive wireless tag includes an internal power source for transmitting, and an active wireless tag includes an internal power source for both receiving and transmitting. Semi-passive and active wireless tags generally have greater capabilities than passive wireless tags due to the internal power 60 sources. Of course, power consumption is always a concern when a wireless tag includes an internal power source, since the internal power supply limits the useful life of the wireless tag, after which time maintenance is required (e.g., replacement of the internal power source).

In improved asset tracking systems, such as those disclosed in the above patent applications and patents that have been

2

incorporated herein by reference, a wireless tag responds to a broadcast if the broadcast includes a common designation matching a common designation of the wireless tag. Such a common designation may comprise, for example, an "asset class" associated with the wireless tag. Ad hoc networks further may be created based on such classes, which ad hoc networks are referred to as "class based" networks.

Class based networks (and common designation networks in general) are beneficial because, in such networks, a communication device, such as a wireless tag, generally only transmits a response to a broadcast if the broadcast includes a class (or common designation) that matches a class (or common designation) of that communication device. Indeed, in a communication device employing a wakeup sequence of one or more of the patent references incorporated herein by reference, such communication device does not even process a broadcast once it is determined that the broadcast fails to include a matching class of the communication device. Consequently, the internal power supply of a semi-passive or active communication device is not drained by needless processing and/or responses to broadcasts.

In asset tracking systems, it often is important to know the physical location of an asset. This could include knowing where the asset is within a limited physical area, such as a warehouse; this also could include knowing where the asset is within several different warehouses in several different geographical locations, as well as where the asset is during transit between such locations.

In a conventional asset tracking system in which communication devices comprising semi-passive or active radios are placed on the assets, a conventional method for acquiring visibility of the assets includes broadcasting within an area at regular intervals to solicit responses from all of the radios within the area. The responses from the radios reveal the radios, and thus the assets, that are in the area.

This method is not advantageous because the regular, repetitive broadcasts result in an unnecessary power drain of the responding radios. Interference also can occur if a large number of radios respond at the same time, thereby making it difficult to accurately identify all of the radios within the area that respond to the broadcast.

In an alternative conventional method, a timer is included with each radio and the radio is configured to transmit at periodic intervals as a function of the timer. The radio thereby alerts the tracking system as to the whereabouts of the radio and, thus, the asset with which it is associated. By including timers with each radio, the radios may transmit at differing times in order to avoid unnecessary interference. A radio also can be set to sleep between intervals and to be awoken by the timer for making its regular transmissions. This increases the useful life of the radios because the radios do not consume power by actively listening for broadcasts while sleeping.

This alternative method permits determinations as to the delivery and continued presence of an asset at a particular area. Nevertheless, this alternative method does include drawbacks. For instance, by using timers, the radios are inaccessible by the asset tracking system during the sleep periods. Another drawback is that the radios automatically awake and transmit without regard for their location and without regard for whether the transmission is actually warranted or even desired. In this respect, during transportation on a plane, a radio may awaken and transmit, which may cause unwanted interference with the operation of the airplane. Preprogrammed transmission at regular intervals also may reveal the presence of the asset to unauthorized persons snooping for such radio transmissions.

Accordingly, better asset tracking systems and methods are desired that minimize unnecessary power consumption and that reduce unnecessary transmissions by communication devices associated with assets.

IV. SUMMARY OF THE INVENTION

The present invention includes many aspects and features. Moreover, while many aspects and features relate to, and are described in, the context of asset tracking systems, the present 10 invention is not limited to use only in asset tracking systems, as will become apparent from the following summaries and detailed descriptions of aspects, features, and one or more embodiments of the present invention. For instance, one or more aspects of the present invention may be utilized to 15 determine the presence or arrival of a communication device within an area independent of any asset and/or independent of any asset tracking system. The present invention also is not limited to use in common designation or class-based networks, although in preferred embodiments common designa- 20 tion or class-based networks are used. Indeed, the present application may beneficially be used in asset tracking as well as sensor monitoring, hazmat monitoring, first responder scenarios, military activities and situations, mobile phone applications, and automobile dealer key tracking systems.

Accordingly, an aspect of the present invention relates to a radio frequency communication device that includes a receiver configured to receive radio frequency transmissions; a transmitter configured to make radio frequency transmissions; an interface for receiving a signal from a sensor (hereinafter "sensor signal"); and electronic components. In accordance with this aspect of the invention, the electronic components are arranged and configured such that the radio frequency communication device operates in at least two states.

In the first state, the radio frequency communication device responds to a radio frequency transmission that is received by the receiver and that includes data representative of an inquiry as to the presence of radio frequency communication devices within an area. The "data representative of an inquiry as to the 40 presence of radio frequency communication devices within an area" simply may be a predefined value in a particular format within the broadcast in accordance with a predefined protocol. A radio frequency transmission that includes such data is sometimes referred to herein as a "Present Broadcast." The response to the Present Broadcast is made by the radio frequency communication device by making a radio frequency transmission with the transmitter that includes an identification of the radio frequency communication device. A radio frequency transmission that includes an identification 50 of the radio frequency communication device making the transmission, and that is made in response to a Present Broadcast, is sometimes referred to herein as a "Present Response."

In the second state, the radio frequency communication device does not respond to a Present Broadcast with a Present 55 Response; specifically, no response to a Present Broadcast comprising a radio frequency transmission is made with the transmitter that includes an identification of the radio frequency communication device, and preferably, no response to a Present Broadcast comprising a radio frequency transmis- 60 sion is made at all, whether including an identification of the radio frequency communication device or otherwise.

In further accordance with this aspect of the invention, the electronic components are arranged and configured such that the radio frequency communication device enters the second 65 state from the first state upon responding to a Present Broadcast with a Present Response. The electronic components

4

further are arranged and configured such that the radio frequency communication device enters the first state from the second state upon receiving, through the interface, a sensor signal based on sensor-acquired data that is indicative of a predetermined condition. The sensor signal itself may include the sensor-acquired data or may be representative of the sensor-acquired data and may indicate, for example, a state of the sensor. In any event, such sensor signal is deemed to provide "sensor-acquired information" through the interface.

In a feature of this aspect, the first and second states relate only to whether the communication device responds to a Present Broadcast. Thus, the communication device otherwise remains responsive to other broadcasts in general and/or remains responsive to transmissions directed to the device. For example, in class-based networks, the communication device preferably remains responsive to any transmission including a class to which it is a member, whether the communication device is in the first state or the second state. Such transmission to the communication device may relate to a change in sensor states; maintenance of the communication device (e.g., checking the status of the internal power supply); or enabling or disabling of certain features or capabilities of the communication device (including the practicing of the present invention). In an alternative—and less preferred— 25 feature, the first and second states relate not only to whether the communication device responds to a Present Broadcast, but whether the communication device responds to any broadcast at all. In this respect, when the communication device is in the second state, the communication device may not respond to any broadcasts at all.

In yet another feature of this aspect, the electronic components are further configured such that the radio frequency communication device makes a radio frequency transmission upon receiving, through the interface, sensor-acquired information that indicates a predetermined condition.

In another feature of this aspect, the radio frequency communication device further includes a computer processor that processes received radio frequency transmissions and received sensor-acquired information. The computer processor preferably effects state changes of the radio frequency communication device as a function of received radio frequency transmissions and received sensor-acquired information.

In still yet another feature, the communication device enters the first state from the second state after a predetermined period of time has transpired according to a timer of the communication device. This feature is beneficial, for example, if a sensor associated with an radio frequency communication device fails and if the radio frequency communication device would not otherwise enter the first state from the second state. In this regard, the time period before the radio frequency communication device enters, by default, the first state from the second state may be a significant period of time.

In still yet another feature, the communication device enters the first state from the second state after a predetermined number of failed attempts to communicate with a server have occurred. This feature is beneficial, for example, in identifying radio frequency communication devices in a certain area that are having technical difficulties in their communications.

In still another feature, the radio frequency communication device enters the first state from the second state upon receipt, via the receiver of radio frequency communication device, of an instruction to enter the first state. The instruction may be specific to a particular radio frequency communication device or generic to a plurality of radio frequency communication devices. Furthermore, a special common designation, such as

a special class, may be utilized whereby a broadcast to such common designation would instruct radio frequency communication device having that common designation to enter the first state. This feature is beneficial, for example, if a sensor associated with an radio frequency communication device fails and if the radio frequency communication device would not otherwise enter the first state from the second state. This enables, for example, a sever to look for a radio frequency communication device within a particular area.

Another aspect of the invention relates to a method performed by a radio frequency communication device. The method includes: the first steps of responding to a Present Broadcast with a Present Response and then not responding to any further Present Broadcasts; and, repeating the first steps upon receiving, through an interface of the radio frequency communication device, sensor-acquired information that is indicative of a predetermined condition. Thus, after receiving such sensor-acquired information, the radio frequency communication device does, in fact, respond to the next Present Broadcast.

In a feature of this aspect of the invention, the method further includes the step of making a radio frequency transmission with the transmitter of the radio frequency communication device upon receiving, through an interface of the radio frequency communication device, the sensor-acquired 25 information indicative of the predetermined condition.

In accordance with this and other aspects of the invention, the predetermined condition may comprise movement of the radio frequency communication device; a change, exceeding a threshold, with respect to the location of the radio frequency 30 communication device as determined based on GPS data; an/or a temperature associated with the radio frequency communication device exceeding a predetermined threshold. With further respect to location, for example, the data from the GPS receiver may be compared against a range of x-y 35 coordinates for "geo fencing" of the communication device (e.g., 89.2412<x, 89.4522 and 145.2332<y<145.8772), with a predetermined condition being triggered by the GPS data that indicates the communication device being outside of a predefined geographical area. An examples of this is 40 described below with regard to FIGS. 1-8.

In further accordance with the invention, the predetermine condition may comprise a change in state of a sensor associated with a radio frequency communication device and the sensor may or may not indicate movement from an area. Such 45 a state change could indicate, for example, the breaking of a magnetic seal or other seal of a container wherein the sensor monitors the seal of the container. The container could be, for example, a hazardous waste container or an international shipping container. In such case, the Present Broadcast could 50 be used to reveal those containers for which the seals have been broken.

In another feature of the invention, the radio frequency communication device may comprises a node in one or more common designation networks. In this respect, the data representative of a general inquiry as to the presence of radio frequency communication devices may be a predefined common designation. Indeed, the data representative of a general inquiry as to the presence of radio frequency communication devices may be a common designation of "present."

In a related feature, the radio frequency communication device is associated with an asset being tracked in an asset tracking system. The asset tracking system may be a class based asset tracking system, and the data representative of a general inquiry as to the presence of radio frequency communication devices may be a predefined class designation. Indeed, the data representative of a general inquiry as to the

6

presence of radio frequency communication devices may be a class designation of "present."

In addition to the aforementioned aspects and features of the present invention, the present invention further includes the various possible combinations of such aspects and features.

It will be appreciated that, in accordance with one or more aspects, determinations can be made as to when an asset has arrived in an area and when an asset has left the area. Furthermore, this can be achieved without significantly reducing battery life, and this can be achieved without unnecessary radio frequency transmissions.

V. BRIEF DESCRIPTION OF THE DRAWINGS

One or more preferred embodiments of the present invention now will be described in detail with reference to the accompanying drawings, wherein:

FIG. 1 is a first illustration representative of locations, states, and state transitions of radio frequency communication devices, at a first time, in accordance with one or more preferred embodiments of the present invention.

FIG. 2 is a second illustration representative of locations, states, and state transitions of radio frequency communication devices, at a second time subsequent to the first time, in accordance with one or more preferred embodiments of the present invention.

FIG. 3 is a third illustration representative of locations, states, and state transitions of radio frequency communication devices, at a third time subsequent to the second time, in accordance with one or more preferred embodiments of the present invention.

FIG. 4 is a fourth illustration representative of locations, states, and state transitions of radio frequency communication devices, at a fourth time subsequent to the third time, in accordance with one or more preferred embodiments of the present invention.

FIG. 5 is a fifth illustration representative of locations, states, and state transitions of radio frequency communication devices, at a fifth time subsequent to the fourth time, in accordance with one or more preferred embodiments of the present invention.

FIG. **6** is a sixth illustration representative of locations, states, and state transitions of radio frequency communication devices, at a sixth time subsequent to the fifth time, in accordance with one or more preferred embodiments of the present invention.

FIG. 7 is a seventh illustration representative of locations, states, and state transitions of radio frequency communication devices, at a seventh time subsequent to the sixth time, in accordance with one or more preferred embodiments of the present invention.

FIG. 8 is an eighth illustration representative of locations, states, and state transitions of radio frequency communication devices, at an eighth time subsequent to the seventh time, in accordance with one or more preferred embodiments of the present invention.

VI. DETAILED DESCRIPTION

As a preliminary matter, it will readily be understood by one having ordinary skill in the relevant art ("Ordinary Artisan") that the present invention has broad utility and application. Furthermore, any embodiment discussed and identified as being "preferred" is considered to be part of a best mode contemplated for carrying out the present invention. Other embodiments also may be discussed for additional illustrative

purposes in providing a full and enabling disclosure of the present invention. Moreover, many embodiments, such as adaptations, variations, modifications, and equivalent arrangements, will be implicitly disclosed by the embodiments described herein and fall within the scope of the present invention.

Accordingly, while the present invention is described herein in detail in relation to one or more embodiments, it is to be understood that this disclosure is illustrative and exemplary of the present invention, and is made merely for the purposes of providing a full and enabling disclosure of the present invention. The detailed disclosure herein of one or more embodiments is not intended, nor is to be construed, to invention, which scope is to be defined by the claims and the equivalents thereof. It is not intended that the scope of patent protection afforded the present invention be defined by reading into any claim a limitation found herein that does not explicitly appear in the claim itself.

Thus, for example, any sequence(s) and/or temporal order of steps of various processes or methods that are described herein are illustrative and not restrictive. Accordingly, it should be understood that, although steps of various processes or methods may be shown and described as being in a 25 sequence or temporal order, the steps of any such processes or methods are not limited to being carried out in any particular sequence or order, absent an indication otherwise. Indeed, the steps in such processes or methods generally may be carried out in various different sequences and orders while still falling within the scope of the present invention. Accordingly, it is intended that the scope of patent protection afforded the present invention is to be defined by the appended claims rather than the description set forth herein.

herein refers to that which the Ordinary Artisan would understand such term to mean based on the contextual use of such term herein. To the extent that the meaning of a term used herein—as understood by the Ordinary Artisan based on the contextual use of such term—differs in any way from any 40 particular dictionary definition of such term, it is intended that the meaning of the term as understood by the Ordinary Artisan should prevail.

Furthermore, it is important to note that, as used herein, "a" and "an" each generally denotes "at least one," but does not 45 exclude a plurality unless the contextual use dictates otherwise. Thus, reference to "a picnic basket having an apple" describes "a picnic basket having at least one apple" as well as "a picnic basket having apples." In contrast, reference to "a picnic basket having a single apple" describes "a picnic bas- 50 ket having only one apple."

When used herein to join a list of items, "or" denotes "at least one of the items," but does not exclude a plurality of items of the list. Thus, reference to "a picnic basket having cheese or crackers" describes "a picnic basket having cheese 55 without crackers", "a picnic basket having crackers without cheese", and "a picnic basket having both cheese and crackers." Finally, when used herein to join a list of items, "and" denotes "all of the items of the list." Thus, reference to "a picnic basket having cheese and crackers' describes "a picnic 60 basket having cheese, wherein the picnic basket further has crackers," as well as describes "a picnic basket having crackers, wherein the picnic basket further has cheese."

Turning now to the drawings, FIG. 1 is representative of locations, states, and state transitions of radio frequency com- 65 munication devices shown at a first time in accordance with one or more preferred embodiments of the present invention.

In this regard, nine radio frequency communication devices 10 labeled "RSI R₁" through "RSI R₉" are shown in FIG. 1. Each radio frequency communication device 10 preferably comprises a movable remote sensor interface or "RSI" that includes its own internal power source, such as a battery. Each RSI preferably is active or at least semi-active, and each RSI preferably is disposed in electronic communication with one or more sensors through one or more interfaces of the RSI for receiving sensor signals including, for example, sensoracquired data. Such sensors may comprise, for example, temperature sensors, motion sensors, accelerometer sensors, and GPS receivers.

The nine communication devices 10 are distributed among m different physical areas (m being some integer greater than limit the scope of patent protection afforded the present 15 1). These areas are represented by areas 12,14,16,18 illustrated in FIG. 1. Each area may be at the same location as another area or at a different location as another area. For instance, area 12 may represent a boat dock (area) at a port of entry (location) and area 14 may represent a truck loading 20 dock (area) at the same port of entry (location). Alternatively, area 12 may represent a warehouse (area) in Charleston, S.C. (location) and area 14 may represent a warehouse (area) in San Diego, Calif. (location). Moreover, area 16 may represent the cargo area (area) of a transport vehicle (location) in route between area 12 in Charleston and area 14 in San Diego, and the location thus need not be stationary. In this example, the location is dynamic and changes as the transport vehicle moves between Charleston and San Diego.

> Furthermore, in accordance with one or more aspects of the present invention, at least one of the sensors associated with an RSI is utilized to indicate the likely removal of the RSI from an area, as discussed in greater detail below.

Each of the m areas includes at least one gateway and, accordingly, there are at least m gateways represented in FIG. Additionally, it is important to note that each term used 35 1. These gateways are represented by gateways 20,22,24,26. In this regard, gateway 20 is illustrated as being within area 12 and is labeled "Gateway G₁"; gateway **22** is illustrated as being within area 14 and is labeled "Gateway G2"; gateway 24 is illustrated as being within area 16 and is labeled "Gateway G₃"; and gateway **26** is illustrated as being within area **18** and is labeled "Gateway G_m ".

> Each gateway 20,22,24,26 preferably is disposed in electronic communication with one or more servers labeled, respectively, "Server S_1 ", "Server S_2 ", and "Server S_n ", wherein n is some integer greater than 1. The servers are represented by server 28,30,32 and may be remotely located to each other. The servers 28,30,32 also may be remotely located to the gateways 20,22,24,26. The electronic communication between the servers and the gateways may be accomplished, for example, by way of cellular communications, satellite communications, and/or Internet communications.

> Preferably, the communication devices 10 are associated with assets, and the servers 28,30,32 collectively include the programs and databases of one or more asset tracking systems for tracking and/or monitoring of the assets with which the communication devices 10 are associated. The gateways and the communication devices further preferably form common designation networks and, more preferably, class based networks.

> With further reference to FIG. 1, each gateway 20,22,24,26 is shown at a first time t₁ in FIG. 1 as making a respective radio frequency transmission that preferably awakens each communication device 10 from a sleep or standby mode, as appropriate. In this regard, this radio frequency transmission preferably comprises a wakeup broadcast that includes a common designation comprising a class designation. If the class designation matches a class designation maintained in a table of

class designations of a respective communication device 10, then that communication device 10 awakens and makes a radio frequency transmission in response. For brevity, a radio frequency transmission that is a wakeup broadcast and that includes a class designation is sometimes referred to herein as 5 a "Class-Present Wakeup Broadcast" and is simply labeled "Present" in the drawings. As will be appreciated, the Class-Present Wakeup Broadcasts represent a particular type of—and if a subset of—Present Broadcasts.

Additionally, the transmission in response to the Class- 10 Present Wakeup Broadcast by the respective communication device 10 preferably includes an identification of the respective communication device 10. Such an identification may uniquely identify the respective communication device 10 or radio of the communication device 10. Alternatively, the 15 identification may uniquely identify one or more assets with which the communication device 10 is associated in an asset tracking system, especially when the communication device is a wireless reader tag (WRT) or similar device. Alternatively, the identification may serve to distinguish the respec- 20 tive communication device 10 from one or more other communication devices 10 without uniquely identifying the respective communication device 10 from all other communication devices 10.

The Class-Present Wakeup Broadcast made by each gateway 20,22,24,26 is received by each communication device within the respective area of the gateway, and each communication device 10 is shown as responding to the Class-Present Wakeup Broadcast, wherein each response is represented by a lightning bolt.

As will be appreciated, an RSI further can retransmit the Class-Present Wakeup Broadcast to other RSIs that fall outside of the gateway range, thereby expanding the effective range of communications with the gateway. Communications gateway's range, via one or more RSIs within range, is disclosed in one or more of the incorporated references but, for clarity, is not shown in the present drawings. Communications between an RSI and a gateway further may be through other RSIs even when all RSIs are within range of the gate- 40 way, as disclosed, for example, in many of the incorporated references such as U.S. Pat. Nos. 6,745,027 and 6,934,540.

As will be appreciated from the following detailed description, and in accordance with preferred embodiments of the invention, the fact that each of the nine communication 45 devices 10 responds to the Class-Present Wakeup Broadcast indicates that none of the nine communication devices 10 likely were present in the areas 12,14,16,18 as shown in FIG. 1 at the time of a Class-Present Wakeup Broadcast first preceding that at time t₁. Furthermore, each communication 50 device 10 responds to a Class-Present Wakeup Broadcast, as appropriate, regardless of the number of times that the communication device 10 has previously responded. Whether a communication device 10 responds preferably is not a function of the number of times that communication device 10 has 55 responded in the past.

The Class-Present Wakeup Broadcast may be performed by each respective gateway "on demand" upon receipt of an instruction to such effect from one of the servers 28,30,32. Alternatively, each gateway may be configured to make the 60 Class-Present Wakeup Broadcast in accordance with a predetermined schedule, such as at regular intervals of time. If timers are utilized, then the timers of the gateways determine the resolution within which a communication device is identified as having arrived at a particular area. Still yet, a particu- 65 lar gateway may be triggered to make a Class-Present Wakeup Broadcast by one or more sensors, such as motion,

optical, or infrared sensors. Indeed, while gateways are concurrently shown in the drawings as making Class-Present Wakeup Broadcasts, a gateway nevertheless may make a Class-Present Wakeup Broadcast independent of one or more other gateways.

The transmissions made in response to the Class-Present Wakeup Broadcast and, in particular, the identification included in each response, is communicated through each gateway to an appropriate one or more of the servers 28,30,32 that is tasked with keeping track of the location of each communication device 10. Based upon the particular gateway from which a respective identification is received, the server may then determine that the respective communication device 10 corresponding to that identification is within the area of that particular gateway.

Accordingly, from the responses to the Class-Present Wakeup Broadcasts shown in FIG. 1, the appropriate server determines that: RSIs R_1 , R_2 , and R_3 are within the area of Gateway G_1 ; RSIs R_4 and R_5 are within the area of Gateway G_2 ; RSIs R_6 , R_7 , and R_8 are within the area of Gateway G_3 ; and RSI R_9 is within the area of Gateway G_m . Preferably, the server records and maintains such location information for each of the communication devices 10.

Thereafter, each gateway 20,22,24,26 is shown at a second time subsequent to the first time in FIG. 2 as making a respective subsequent Class-Present Wakeup Broadcast. Again, the Class-Present Wakeup Broadcast made by each gateway 20,22,24,26 is received by each communication device within the respective area of the gateway; however, none of the communication devices 10 is shown as responding to the Class-Present Wakeup Broadcast. In accordance with preferred embodiments of the invention, none of the communication devices 10 respond to the Class-Present Wakeup Broadcast because each has already responded to a Classbetween a gateway and one or more RSIs outside of the 35 Present Wakeup Broadcast at time t₁, and each has yet to move from the respective area in which it was located since that time.

> As will be appreciated, the server tasked with keeping track of the location of each communication device 10 receives no identification from any communication device 10 via the gateways 20,22,24,26 and, based thereon, does not update any location information for any of the communication devices 10. Having received no identifications in response to the Class-Present Wakeup Broadcasts, the server assumes that none of the communication devices 10 have been moved from their respective areas as recorded by the server.

> At a third time subsequent to the second time, as shown in FIG. 3, communication device 10 labeled as RSI R₂ is moved from the area 12 of the gateway 20 (Gateway G_1). The RSI R_2 preferably is disposed in electrical communication with a motion sensor through an interface thereof and, upon being moved, the RSI R₂ preferably receives sensor-acquired information from the motion sensor that indicates the movement of the RSI R₂. Such electrical communication may be wired or wireless, and the sensor may be internal or external to a housing of the communication device. The RSI R₂ preferably is configured, upon receipt of such sensor-acquired information through the interface, to make a radio frequency transmission including an identification thereof to an appropriate server via the gateway 20. The server preferably is the server that records and maintains the location information for each of the communication devices 10 and, upon receipt of the communication from RSI R₂, the server preferably records information pertaining to such communication. In particular, the server preferably records information indicating movement of RSI R₂ and the time t₃ of such movement. The movement is presumed to indicate the likely removal of the RSI R₂

from the area. Other sensors, or a combination of sensors, further can be used to indicate such likely removal. For example, the combined readings from both a motion sensor and a temperature sensor could be used to indicate likely removal of the communication device from a particular area. Alternatively, temperature rather than motion could be used as an indicator that the communication device likely has moved from a controlled environment of a particular area.

At a fourth time subsequent to the third time, as shown in FIG. 4, communication device 10 labeled as RSI R₄ is moved 10 from the area 14 of the gateway 22 (Gateway G_2). The RSI R_4 preferably is disposed in electrical communication with a motion sensor through an interface thereof and, upon being moved, the RSI R₄ preferably receives sensor-acquired information from the motion sensor that indicates the movement of 15 the RSI R₄. Such electrical communication may be wired or wireless, and the sensor may be internal or external to the RSI. The RSI R₄ preferably is configured, upon receipt of such sensor-acquired information through the interface, to make a radio frequency transmission including an identification 20 thereof to an appropriate server via the gateway 22. The server preferably is the server that records and maintains the location information for each of the communication devices 10 and, upon receipt of the communication from RSI R₄, the server preferably records information pertaining to such communi- 25 cation. In particular, the server preferably records information indicating movement of RSI R₂ and the time t₄ of such movement.

At a fifth time subsequent to the fourth time, as shown in FIG. 5, the gateways 20,22,24,26 again make Class-Present 30 Wakeup Broadcasts. As will be appreciated, none of the communication devices 10 respond to the Class-Present Wakeup Broadcast that have not moved since the first time t₁; such communications generally would be unnecessary and would thus needlessly drain power sources of the communication 35 devices 10. On the other hand, RSI R₂ which was moved at time t₃ has since moved into the area of gateway **24** (Gateway G₃) by time t₅ and, in response to the Class-Present Wakeup Broadcast received from gateway 24, the RSI R₂ does make a responsive transmission that includes an identification 40 thereof As a result of this responsive transmission, the server tracking the location information of RSI R₂ updates the location information to indicate that RSIR₂ now is in area 16 as of time t₅. RSI R₄, on the other hand, did not respond to the Class-Present Wakeup Broadcasts and, as such, its absence 45 from areas 12,14,16,18 is identified. It further deemed that it was moved from area 14 at time t_{4} .

At a sixth time subsequent to the fifth time, as shown in FIG. 6, communication device 10 labeled as RSI R₉ is moved from the area 18 of the gateway 26 (Gateway G_m). The RSI R_9 50 preferably is disposed in electrical communication with a motion sensor through an interface thereof and, upon being moved, the RSI R_o preferably receives sensor-acquired information from the motion sensor that indicates the movement of the RSI R₉. Such electrical communication may be wired or 55 wireless, and the sensor may be internal or external to the RSI. The RSI R₉ preferably is configured, upon receipt of such sensor-acquired information through the interface, to make a radio frequency transmission including an identification thereof to an appropriate server via the gateway 26. The server 60 preferably is the server that records and maintains the location information for each of the communication devices 10 and, upon receipt of the communication from RSI R₉, the server preferably records information pertaining to such communication. In particular, the server preferably records informa- 65 tion indicating movement of RSI R₉ and the time t₆ of such movement.

12

At a seventh time subsequent to the sixth time, as shown in FIG. 7, the gateways 20,22,24,26 again make Class-Present Wakeup Broadcasts. As will be appreciated, none of the communication devices 10 respond to the Class-Present Wakeup Broadcast that have not moved since the preceding Class-Present Wakeup Broadcast at time t₅; such communications generally would be unnecessary and would thus needlessly drain power sources of the communication devices 10. On the other hand, RSI R₉ which was moved at time t₆ has since moved into the area 14 of gateway 22 (Gateway G₂) by time t₇ and, in response to the Class-Present Wakeup Broadcast received from gateway 22, the RSI R₉ does make a responsive transmission that includes an identification thereof. As a result of this responsive transmission, the server tracking the location information of RSI R₉ updates the location information to indicate that RSI R_0 now is in area 14 as of time t_7 .

Additionally, RSI R_4 which was moved at time t_4 has moved into the area 1 of gateway 20 (Gateway G_1) by time t_7 and, in response to the Class-Present Wakeup Broadcast received from gateway 20, the RSI R_4 does make a responsive transmission that includes an identification thereof. As a result of this responsive transmission, the server tracking the location information of RSI R_4 updates the location information to indicate that RSI R_4 now is in area 10 as of time t_7 .

Thereafter, each gateway 20,22,24,26 is shown in FIG. 8 making a respective subsequent Class-Present Wakeup Broadcast at an eighth time subsequent to the seventh. Again, the Class-Present Wakeup Broadcast made by each gateway 20,22,24,26 is received by each communication device within the respective area of the gateway; however, none of the communication devices 10 is shown as responding to the Class-Present Wakeup Broadcast. In accordance with preferred embodiments of the invention, none of the communication devices 10 responds to the Class-Present Wakeup Broadcast because each communication device 10 has already responded as late as time t₇ to a previous Class-Present Wakeup Broadcast and has yet to be moved since such time of response. Accordingly, no responsive transmissions are needlessly made by any of the communication devices 10.

Each of the communication devices 10 shown in FIGS. 1-8 preferably operates in at least two states. In a first state, a communication device 10 responds to receipt of a Class-Present Wakeup Broadcast from a gateway 20,22,24,26 by making a transmission that includes an identification thereof. After this responsive transmission, the communication device 10 preferably enters a second state in which it does not respond to Class-Present Wakeup Broadcasts. The communication device 10 preferably remains in this second state until sensor-acquired information received through an interface thereof indicates that a predefined condition has occurred, such as movement of the communication device 10. Upon the occurrence of the predefined condition, the communication device 10 preferably makes a transmission that includes an indication of the occurrence of the predefined condition as well as an identification of the communication device 10. Upon making the transmission, the communication device 10 preferably enters the first state.

During each of the two states, the communication device 10 still wakes up and/or responds to any transmission that includes a common designation (such as a class designation) that matches a common designation of the communication device 10. Preferably, each communication device 10 keeps a table of applicable common designations to which it belongs. In this respect, a common designation preferably is used to represent the Class-Present Wakeup Broadcast and this common designation is either enabled or disabled in the table as maintained by the communication device 10 depending upon

whether the communication device 10 should respond to a Class-Present Wakeup Broadcast that is next received.

Specifically, after the communication device 10 has made a responsive transmission to a Class-Present Wakeup Broadcast, the communication device 10 preferably enables a 5 motion sensor, disables the "present" common designation in its table, and waits to be awoken upon an indication of movement from the motion sensor. Furthermore, the enablement of the motion sensor and the disablement of the "present" common designation in its table may be automatically performed by the communication device itself following its response to the Class-Based Wakeup Broadcast, or may be performed by the communication device in direct response to instructions received from a server following the identification of the presence of the RSI to the server.

Thereafter, once the communication device 10 moves, the communication device 10 is awoken by the motion sensor and communicates, via a respective gateway, an indication of such movement to the appropriate server. The communication device 10 also then disable the motion sensor and enables the 'present' common designation for waking up of the communication device 10 for response to the next Class-Present Wakeup Broadcast.

This algorithm for entering the two different states enables the communication device 10: to "check in" when it arrives 25 within an area of a gateway; to remain off or in standby after it has "checked in" in order to conserve internal power and avoid spurious transmissions; and to alert an appropriate server if the communication device 10 is moved.

A benefit of at least one embodiment of the invention is the avoidance of unnecessary and/or undesired radio frequency transmissions during air shipments in a cargo area of an airplane. Specifically, when communication devices 10, preferably associated with assets being tracked and/or monitored, are loaded into the cargo area of an airplane, a Class-Present 35 Wakeup Broadcast is made in order to identify the communication devices present for taking inventory of the cargo. An instruction then is broadcast causing the communication devices to enter the second state, in which the motion sensors then are disabled. A Class-Present Wakeup Broadcast is not 40 made until after the airplane has arrived at its intended location.

Since the motion sensor is turned off when the "present" common designation is enabled, the communication device 10 will not continuously try to report back to the server while 45 it is in motion in the airplane. During movement, such as that associated with air transportation, the communication device 10 thus remains in a power conservation mode until it comes within range of the next gateway and receives a Class-Present Wakeup Broadcast.

As will be appreciated from the foregoing description, the movement of a communication device 10 is tightly monitored by one or more servers, since any communication device 10 within range of a gateway 20,22,24,26 reports when a predefined condition, e.g., movement, has occurred that indicates that it has been likely moved out of the respective area in which it was residing. Moreover, unnecessary transmissions in response to Class-Present Wakeup Broadcasts are avoided when a communication device 10 has not moved out of the respective area in which it resides.

In alternatives to the arrangements represented in FIGS. 1-8, the n servers can be consolidated into a single server; and/or one or more servers can be combined with one or more gateways. Such changes may reduce networking costs, delays, and overhead associated with asset tracking systems, 65 but the flexibility, capabilities, and/or robustness of the systems likewise may be reduced.

14

One or more aspects of the invention further may be utilized with a single area for maintaining visibility of assets within the single area without regard to visibility of the assets in other areas, if desired.

Another benefit of at least one embodiment of the invention is the ability to synchronize reporting from a plurality of radio frequency communication devices to a server. In this respect, radio frequency communication devices preferably communicate data that otherwise is being stored to a server concurrently when responding to a Present Broadcast. The concurrent communication of the data with a Present Response obviates the need for the communications device to wakeup at a later time for the specific purposes of communicating the stored data. As such, a group of communication devices can be manipulated, for example, into the first state such that each responds to a Present Broadcast by communicating not only a Present Response, but the stored data at each respective communication device. Such manipulation into the first state can occur, for example, by creating a predetermined condition (e.g., change in temperature, change in location, or movement), resulting in sensor signals causing the communication devices to enter the first state from the second state; and/or by broadcasting an instruction to the communication devices to enter the first state.

In view of the foregoing, one or more benefits of one or more aspects of the present invention include: an increased battery life; the ability to transport assets by land, sea, or air without unnecessary or unwanted transmissions from the radios associated with the assets; the ability to still communicate "on demand" with a particular asset based on a common designation or class; the ability to determine assets newly arrived within an area "on demand" independent of any broadcasts at regular time intervals; the ability of an asset to "hide" from unauthorized persons by not needlessly identifying its presence in response to a general radio frequency broadcast; and the ability to determine when an asset is moved from an area once the asset has been identified as having arrived within the area.

What is claimed is:

- 1. A radio frequency communication device, comprising:
- (a) a receiver configured to receive radio frequency transmissions;
- (b) a transmitter configured to make radio frequency transmissions;
- (c) an interface for receiving one or more signals from a sensor; and
- (d) electronic components arranged and configured such that,
 - (i) the radio frequency communication device operates in at least two states comprising,
 - (A) a first state of operation, in which the radio frequency communication device responds to a radio frequency transmission that is received by the receiver, and that includes data representative of an inquiry as to the presence of radio frequency communication devices within a service area of a gateway configured for providing network communications to radio frequency communication devices, by making a radio frequency transmission with the transmitter that includes an identification of the radio frequency communication device, and
 - (B) a second state of operation, in which the radio frequency communication device does not respond to a radio frequency transmission that is received by the receiver, and that includes data representative of an inquiry as to the presence of radio frequency communication devices within a service

area of a gateway configured for providing network communications to radio frequency communication devices, by making a radio frequency transmission with the transmitter that includes an identification of the radio frequency communication of device, and

- (ii) the radio frequency communication device enters the second state of operation from the first state of operation upon,
 - (A) receiving by the receiver a radio frequency transmission that includes data representative of an inquiry as to the presence of radio frequency communication devices within a service area of a gateway configured for providing network communications to radio frequency communication devices, and
 - (B) making a radio frequency transmission with the transmitter that includes an identification of the radio frequency communication device, and
- (iii) the radio frequency communication device enters the first state of operation from the second state of operation upon,
 - (A) receiving, through the interface, one or more sensor signals based on sensor-acquired data that is 25 indicative of a predetermined condition,
 - (B) wherein the predetermined condition is movement of the radio frequency communication device;
- (e) wherein the radio frequency communication device is physically associated with an asset that is tracked in an asset tracking system, whereby the presence of the asset is determinable within a service area of a gateway configured for providing network communications to radio frequency communication devices.
- 2. The radio frequency communication device of 1, wherein the electronic components are further configured such that the radio frequency communication device makes a radio frequency transmission upon receiving, through the interface, one or more sensor signals based on sensor-ac- 40 quired data that is indicative of the predetermined condition.
- 3. The radio frequency communication device of 1, further comprising a computer processor that processes received radio frequency transmissions and received sensor signals.
- 4. The radio frequency communication device of claim 1, 45 wherein the one or more sensor signals includes the sensor acquired data.
- 5. The radio frequency communication device of claim 1, wherein the one or more sensor signals is representative of the sensor-acquired data.
- 6. The radio frequency communication device of claim 1, wherein the one or more sensor signals is representative of a state of a sensor.
- 7. The radio frequency communication device of claim 1, wherein the computer processor effects state changes of the 55 radio frequency communication device as a function of received radio frequency transmissions and one or more received sensor signals.
- 8. The radio frequency communication device of claim 1, wherein the electronic components are further arranged and 60 configured such that the radio frequency communication device enters the first state upon receiving, through the receiver, a radio frequency transmission including an instruction to enter the first state.
- 9. The radio frequency communication device of claim 1, 65 wherein the electronic components are further arranged and configured such that the radio frequency communication

16

device enters the first state upon expiration of predetermined period of time as indicated by a timer of the radio frequency communication device.

- 10. The radio frequency communication device of claim 1, wherein the electronic components are further arranged and configured such that the radio frequency communication device enters the first state after a predetermined number of failed attempts to communicate by the radio frequency communication device have occurred.
- 11. The radio frequency communication device of claim 1, wherein the electronic components are further arranged and configured such that the radio frequency communication device enters the second state upon receiving, through the receiver, a radio frequency transmission including an instruction to enter the second state.
- 12. The radio frequency communication device of claim 1, wherein the radio frequency communication device further comprises a component configured to detect movement of the radio frequency communication device, and wherein the one or more sensor signals are received through the interface from said component.
 - 13. The radio frequency communication device of claim 1, wherein the radio frequency communication device further comprises a GPS receiver component for detecting the geographical location of the radio frequency communication device, and wherein the one or more sensor signals are received through the interface from said GPS receiver component.
- 14. A method performed by a radio frequency communication device in an asset tracking system, the radio frequency communication device being physically associated with an asset to be tracked for determining the presence of the asset within a service area of a gateway configured for providing network communications to radio frequency communication devices, the method comprising the steps of:
 - (a) first, responding to a radio frequency transmission that is received by a receiver of the radio frequency communication device, and that includes data representative of a general inquiry as to the presence of radio frequency communication devices within a service area of a gateway configured for providing network communications to radio frequency communication devices, by making a radio frequency transmission with a transmitter of the radio frequency communication device that includes an identification of the radio frequency communication device, and then, not responding to subsequent radio frequency transmissions that are received by the receiver of the radio frequency communication device, and that include data representative of a general inquiry as to the presence of radio frequency communication devices within a service area of a gateway configured for providing network communications to radio frequency communication devices, by making a radio frequency transmission with the transmitter of the radio frequency communication device that includes an identification of the radio frequency communication device; and
 - (b) repeating said step (a) upon receiving, through an interface of the radio frequency communication device, one or more sensor signals based on sensor-acquired data that is indicative of a predetermined condition, wherein the predetermined condition is movement of the radio frequency communication device.
 - 15. The method of claim 14, further comprising the step of making a radio frequency transmission with the transmitter of the radio frequency communication device upon receiving, through an interface of the radio frequency communication

device, one or more sensor signals based on sensor-acquired data that is indicative of the predetermined condition.

- 16. The method of 15, wherein the predetermined condition comprises movement of the radio frequency communication device.
- 17. The method of 15, wherein the predetermined condition comprises a change, exceeding a threshold amount, in the location of the radio frequency communication device as determined based on GPS data.
- 18. The method of 15, wherein the predetermined condition comprises a temperature associated with the radio frequency communication device exceeding a predetermined threshold.
- 19. The method of claim 14, wherein the radio frequency communication device is associated with an asset being tracked in an asset tracking system.
- 20. The method of claim 14, further comprising repeating said step (a) after a predetermined number of failed attempts to communicate by the radio frequency communication device have occurred.
- 21. The method of claim 14, further comprising repeating said step (a) in response to an instruction received by the radio frequency communication device in a radio frequency transmission.
- 22. The method of claim 14, wherein the one or more sensor signals are received through the interface from a GPS receiver.
- 23. The method of claim 14, wherein the one or more sensor signals are received through the interface from a motion or accelerometer sensor.
- 24. An asset tracking system comprising a plurality of radio frequency communication devices, each being physically associated with an asset to be tracked and each configured to,
 - (a) first, respond to a radio frequency transmission that is received by a receiver of the radio frequency communication device, and that includes data representative of a general inquiry as to the presence of radio frequency communication devices within a service area of a gateway configured for providing network communications to radio frequency communication devices, by making a radio frequency transmission with a transmitter of the radio frequency communication device that includes an identification of the radio frequency communication device and, thereafter, not respond to subsequent radio

18

frequency transmissions that are received by the receiver of the radio frequency communication device, and that include data representative of a general inquiry as to the presence of radio frequency communication devices within a service area of a gateway configured for providing network communications to radio frequency communication devices, by making a radio frequency transmission with the transmitter of the radio frequency communication device that includes an identification of the radio frequency communication device, and

- (b) repeat step (a) upon receiving, through an interface of the radio frequency communication device, one or more sensor signals based on sensor-acquired data that is indicative of a predetermined condition, wherein the predetermined condition is movement of the radio frequency communication device,
- (c) whereby the presence of the asset is determinable within a service area of a gateway configured for providing network communications to radio frequency communication devices.
- 25. The asset-tracking system of claim 24, wherein the one or more sensor signals based on sensor-acquired data that is indicative of a predetermined condition comprises sensor-acquired data that is indicative of a predetermined condition.
- 26. The system of claim 24, wherein each radio frequency communication device is further configured to repeat said step (a) after a predetermined number of failed attempts to communicate by the radio frequency communication device have occurred.
- 27. The system of claim 24, wherein each radio frequency communication device is further configured to repeat said step (a) in response to an instruction received by the radio frequency communication device in a radio frequency transmission.
- 28. The asset-tracking system of claim 24, wherein the predetermined condition comprises the opening of a container.
- 29. The system of claim 24, wherein the one or more sensor signals are received through the interface from a GPS receiver.
 - 30. The system of claim 24, wherein the one or more sensor signals are received through the interface from a motion or accelerometer sensor.

* * * *