12 United States Patent

Lambert et al.

(10) Patent No.:

45) Date of Patent:

US007904706B2

US 7,904,706 B2
Mar. 8, 2011

(54) SYSTEM AND METHOD FOR PROCESSING 6,408,226 Bl 6/2002 Byrne et al.
ENCRYPTED SOURCE CODE UPDATES e o gf;}g"gsﬂ—;f ctal
| 6,674,259 Bl 1/2004 Norman et al
(75) Inventors: Mark J. Lambert, Greenville, TX (US); 6,983,364 B2* 1/2006 GOUZEON ...vovrevrereererenn. 713/2
David Anthony Norman, Greenville, 2002/0100035 Al 7/2002 Kenyon et al.
TX (US) 2004/0073846 Al* 4/2004 Nakanishietal. 714/42
2004/0107237 Al 6/2004 Kashiwada
: : 2006/0048221 Al 3/2006 Morais et al.
(73) Assignee: Innovation First, Inc., Greenville, TX o et
(US) OTHER PUBLICATIONS
N _ _ _ _ _ Microsoft WindowsXP: “Using Windows Professional With Service
(*) Notice: Subject‘ to any dlSClalmer,; the term of this Pack 2 in a Managed Environment: Controlling Communication
patent 1s extended or adjusted under 35 With The Internet,” Microsoft Corp. Publisher, Jul. 2004., pp. 161-
U.S.C. 154(b) by 1414 days. 160 *
International Preliminary Report on Patentability, PCT/US2005/
(21) Appl. No.: 11/290,158 043287, mailed Jun. 14, 2007, 8 pages.
Notification of Transmittal of the International Search Report and the
(22) Filed: Nov. 30, 2005 Written Opinion of the International Searching Authority, the Inter-
national Search Report, and the Written Opinion, Forms PCT/ISA/
(65) Prior Publication Data 220, PCT/ISA/210, and PCT/ISA/237, mailed Apr. 24, 2006, 11
pages.
US 2006/0129846 Al Jun. 15, 2006 _ _
* cited by examiner
Related U.S. Application Data _
- o Primary Examiner — Matthew B Smithers
(60) Provisional application No. 60/632,188, filed on Dec. Assistant Examiner — Paul Callahan
L, 2004. (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
(51 Int. C1. 57 ABSTRACT
GO6F 21/00 (2006.01) (57)
(52) US.Cl oo 713/1; 713/2; 713/100; 713/189; This disclosure provides a system and method for updating a
713/191; 713/194 control system using an encrypted source code update. The
(58) Field of Classification Search 717/121 example control system often includes a processor for man-
717/173: 713/1. 2. 100. 194. 180 101 3R0/2K- aging at least a portion of the control system and flash
j T j j j 7"00 /1.2 45 memory communicably coupled with the processor, with the
See application file for complete search history processor operable to load an encrypted update into the tlash
| memory. In one example, a method for updating the control
(56) References Cited system would include identifying an update for a control
system with the update comprising encrypted object code and
U.S PATENT DOCUMENTS the control system comprising at least a first processor. At
5530801 A 71996 Childers ef al least the first processor 1s then updated based on or using the
5.572,.809 A 11/1996 Steenwvyk et al. identified update.
5,664,195 A 9/1997 Chatteri
5,933,498 A 8/1999 Schneck et al. 22 Claims, 5 Drawing Sheets
100
\
" “ y o
BLACK + = « * + » # + ¢+ + v v v v s GND = 2 + -
L - A RN MM

+ 7.2V BATT

— WM QUTPUTS TEAM COLOR
D&
o+ - -
15 -,

e
PO LD s LD

RED
BLINK (SOLID)
VERY LOW (DEAD)
{RC FAIL)
DISABLED
12¥/GND

—t
-t

ANALOG INPUTS

—t
—t PN LD B LTV OB =] O O

PROGRAM

YELLOW
BLINK (SOLID)

LOW (ON BACKUF)
LOADING (READY TO LOAD) GODE VIOLATION

-+ 8Y OUTPUT LOW
AUTCROMOUS

BLACK -
RED - - - = = =« « =« & =« & & « &
WHTAEL LR -
PACKET L35S (SEARCH) WO RX (NO RACHO)

- GML
- +5¥
+ + Sl

TETHER

NORMAL
RUNNMING
VALID RX
NO FAULT
NORMAL

GREEN

5
D o L
11 A E | g w
... 2 < =
B - S :—EDE'-” 2
T D = EEE El o
6 o > Egggz
5 S |Z82¢2¢%
3 .
1 '

RELAY QUTPUTS RESET—PROG~

o

i -+ -+ AESET/PROG

T RED « + o v v v v WD + B ol 1©

O BLAGK « « - « « & - . GMD - + - = TIL SERIAL |2 .y
12345678 FORT RESET PROG O

US 7,904,706 B2

Sheet 1 of S
100

Mar. 8, 2011

U.S. Patent

O

—+- -
QO
+ 7.2V BATI

A4 -

N <r

AlY -

1
2 R TR

e + 7.2V

- GND
- SIG

O — O M <1 WD WO
—— = = = oy p—

NSO MMNSOOM

BLACK - + + + » + -
RED + ¢« + « » -«

WHT/YEL + + = « = « = « « « « « « « .

O

Mrn
BB o) L
AN9/ACEt—NVHI0YHd

TEAM COLOR

0318vSId SNONONOLNY

(V4 J4) MOT1AdLN0 AG+

ddH131l

=
O
<C
oC
FiESET—PFlOG~J

RESET

TYIWHON JAQON 4
11Nv4 ON JHVYMAEVH 34

(01IOYH ON) X4 ON (H2YV3S) SSO1 13Movd XH QYA NIAOW 01avY

NOILYTOIA 3200 (QV017 01 Adv3Y) ONIQVOT ININNNG 11V1S WVHdY0dd

(Qv3Q) MOT AY3A (dNMIVE NO) MO

(Q1710S) MNING (Q110S) MNINY

(34 MOTIIA

9.
b—
-
al
-
-
-
=
=
F

S1NANI D0 VNV

DS + + ¢ = e v e e e e e e e e e 1IALHM
AC—H « = & o v v e e e e e e e e e 3y
AND * « = « o o o« v e 0 e e e e NV AL

O TrMNMOAN— QO NOMNR: QW STMOA] v~
R

T T L b | T T

TVINEON d3MOd A43LLVE

SdO1VOIANI

- RESET/PROG
TTL SERIAL

B

REV
. - FWD +
GND

PROG

PORT

2R
- * P~
= e
- « D
- . <t
z T
- = s e N\
LLJ
~ v v -
—-—d (O X2
LEd Wy O
=
= 2
=
1NO/NI TV LI9IA
OIS » ¢ ¢ ¢ o o s o v e 0 e e e e e TBALHM
AGH = =« o e s e e e e e e e e e e 034
ONE » » + o o o ¢ s s o o s o o o s o = YIV18
DL TONZONDON O TON - O

FIG. 1

U.S. Patent Mar. 8, 2011 Sheet 2 of 5 US 7,904,706 B2

ROBOT DIGITAL INPUTS
100

ROBOT
OUTPUTS

CONTROLLER

MASTER USER I
OPERATOR INPUT I PROCESSOR H PROCESSOR
ROBOT ANALOG INPUTS
FIG. 2A

100

CONTROLLER
MASTER PROCESSOR

1. RECEIVE DATA FROM RADIO
~ 1+ —2. SEND DATA TO USER PROCESSOR I. ADIG
~-+-}-4-» 3. RECEIVE DATA FROM USER PROCESSOR
; : 4. SEND DATA TO RADIO B
B 5. QUTPUT PWM SIGNALS
| 6. OUTPUT TEAM COLOR SIGNAL
B 7. REPEAT
' B 135 137
POTS, GYROS, [! 1
B USER PROCESSOR MOTOR SPEED
L |-} 1. RECEIVE DATA FROM MASTER CONTROLLERS,
- : > 2. READ ANALOG INPUTS SERVOS
SWITCHES : 3. READ DIGITAL INPUTS
i 4. PROCESS DATA USING USER PROGRAM ST
; 5. OUTPUT PWM SIGNALS - VOTORS
i 6. QUTPUT DIGITAL AND RELAY SIGNALS SOLENOIS
E 7. COMMUNICATE TO SERIAL PORTS rinted
L---1-4---8. SEND DATA TO MASTER PROCESSOR
9. REPEAT

FIG. 2B

U.S. Patent Mar. 8, 2011 Sheet 3 of 5 US 7,904,706 B2

FIG. 34 Mea

P~ -
{+), Loader X
PortSettings Options About Help

Current Hex File

C:\HexFiles\EduCode DDT.hex |_n_| BROWSE...
DOWNLOAD

Using last working HEX file ... Version f§ Unknown COM1 115200
116b
FIG. 3B
S — —
‘=) Loader X
PortSettings Options About Help

l Current Hex File

| C:\HexFiles\RsUSerFirmware.hex " i || || BROWSE... |

Open Hex File K E3
Look in: | HexFiles] - C T Bl
rod ArenaCode.hex Frc_Master.hex
|[@ Edu_Code.hex FRC MASTER BOOT.HEX
|l Edu Default Code.hex FRC RS232 USER TEST.hex
| [EDU MASTER.hex FRC_USER_BOOT.HEX
|[@ EDU_MASTER BOOT.hex FrcCode DDT.hex
[[@ Edu_Test Code.hex FrcCodeDelay.hex
[[@ Edu_Test_Code NF.hex Ol _Master.hex
|[@ EDU_USER_BOOT.HEX (@) RS_MASTER.hex
| [EduCode DDT hex &) RS _MASTER_BOOT MERGE.hex
| (=) EduCode DDT_Pwmtrain.hex (@) RS MASTER JAPAN.hex
| (= EduCodelLoop hex &) RS MASTER_MERGE hex I
| [Frc_Code.hex [_!"1 RS USER BOOT.hex
|[= Frc_Code_ Voit.hex @ RS USER MERGE.hex
|[@ Frc_Default_Code.hex ®E RsCode DOT.hex
|[@ FRC ManualTest.hex & RsUserFirmware.hex J
File name:

Files of Type: |

U.S. Patent

FIG. 54

USER FLASH
MEMORY

BOOT LOADER

ENCRYPTED

MASTER
FIRMWARE

145

Mar.

400

7

38,2011 Sheet 4 of 5

FIG. 4

UNENCRYPTED

402~ |DENTIFY SOURCE CODE UPDATE
404 COMPILE SOURCE CODE
INTO OBJECT CODE
406 GENERATE S-RECORD
FORMAT OF OBJECT CODE
408 ENCRYPT S-RECORD CODE
GENERATE BIN FILE BASED ON
410 ENCRYPTED S-RECORD CODE
COMMUNICATE BIN
412 FILE TO CLIENT
ENCRYPTED
DATA MASTER

PROCESSOR

130

DATA

US 7,904,706 B2

MASTER FLASH
MEMORY

BOOT LOADER

NEW MASTER

FIRMWARE

140

U.S. Patent Mar. 8, 2011 Sheet 5 of 5 US 7,904,706 B2

FIG. 5B 500

502 DOWNLOAD BIN FILE TO rel

CONTROL SYSTEM

503 504
YES FRASE CODE PORTION OF
USER FLASH MEMORY
NO

505 LOAD BIN FILE INTO USER

FLASH MEMORY

206 RESET THE USER PROCESSOR

003

USER

CODE IN USER

FLASH MEMORY
?

LOADING SEQUENCE
?

YES

510 COMMUNICATE CONFIGURATION
DATA TO MASTER PROCESSOR

WRITE RESET
1o ERASE AT LEAST A PORTION VALUE TO MEMORY 024
OF FLASH MEMORY BASED
ON CONFIGURATION DATA INVOKE HARDWARE RESET |_ 0
RETRIEVE FIRST BLOCK OF BIN
514~ FILE FROM USER FLASH MEMORY VALIDATE RESET
VALUE IN MEMORY 528

516 UNBEFOCCR,Z ETF F;,EJRF'IELEED EXECUTE NEW CODE IN
FLASH MEMORY 53(0
c1g -] STORE BLOCK IN FLASH MEMORY

MORE
BLOCKS BASED ON
CONFIGURATION
DATA?

02 YES

NO USER CODE

AVAILABLE?

NQ

LOAD USER FLASH MEMQRY
WITH USER HEX FILE 034

RETRIEVE NEXT BLOCK FROM
522 USER FLASH MEMQORY m

US 7,904,706 B2

1

SYSTEM AND METHOD FOR PROCESSING
ENCRYPTED SOURCE CODE UPDATES

RELATED APPLICATION

This application claims the priority under 35 U.S.C. §119

of provisional application Ser. No. 60/632,188 filed Dec. 1,
2004,

TECHNICAL FIELD

This 1invention relates to programming devices and, more
specifically, to a system and method for processing encrypted
source code updates for a control system.

BACKGROUND

Conventional control systems generally include a circuit
board and processor and are operable to control or otherwise
manage a mechanically (or communicably) coupled device.
For example, the controlled device may be a robot. In this
example, the robot control system collects signals from both
the user and on-board sensors and then processes them
through code executed by the processor. In other words, this
pProcessor may execute one or more programs operable to
collect the data, determine how to make the robot behave as
desired based on the outputs, and sets PWM, digital, and
solenoid outputs to the approprate states. The control system

may come with a default or master program that can manage
at least a portion of the control system functionality. This
program may occasionally be replaced, patched, or otherwise
updated using source code updates.

SUMMARY

At a high level, this disclosure provides a system and
method for updating a control system using an encrypted
source code update. The example control system often
includes a processor for managing at least a portion of the
control system and flash memory communicably coupled
with the processor, with the processor operable to load an
encrypted update into the flash memory. In one example, a
method for updating the control system would include 1den-
tifying an update for a control system with the update com-
prising encrypted object code and the control system com-
prising at least a {irst processor. At least the first processor 1s
then updated based on or using the identified update.

The encryption of the source code update allows for the
customer or user of the control system to obtain the source
code update using public or semi-public techniques, 1.e.
downloads from websites and such, without the underlying
source code becoming public. Put another way, the encryp-
tion of the source code from the control system may allow the
source code developer to maintain proprietary source code,
while still easily providing updates to or patches of the source
code to control system users. Another advantage of this inven-
tion may be that the developer may no longer require that the
control system be shipped to him for reflashing, thereby
reducing shipping fees, manpower, and other costs and time
involving the update. The details of one or more embodiments
of the mvention are set forth in the accompanying drawings
and the description below. Other features, objects, and advan-
tages of the mvention will be apparent from the description
and drawings, and from the example claims. Moreover,
example embodiments of the invention are included in the
attachments.

10

15

20

25

30

35

40

45

50

55

60

65

2
DESCRIPTION OF DRAWINGS

FIG. 1 1s a diagram of an example control system in accor-
dance with one embodiment of the present disclosure;

FIGS. 2A-B illustrate an example configuration and opera-
tion of a two-processor control system for a robot;

FIGS. 3A-B are diagrams including example graphical
user interfaces for 1dentifying a software update for the con-
trol system of FIG. 2;

FIG. 4 1s a flow diagram 1llustrating an example method for
generating a software code update for the control system; and

FIGS. 5A-B illustrate example diagrams for loading the
soltware code update to the control system of FIG. 2.

DETAILED DESCRIPTION

FIG. 1 1s a diagram of an example control system 100 1n
accordance with one embodiment of the present disclosure.
At a high level, control system 100 comprises any hardware
and firmware and/or software operable to control a mechani-
cal and/or electrical device. For example, in certain embodi-
ments control system 100 may be used to control a robot. In
this example, there may be two microcontrollers: a first pro-
cessor that handles radio and tether communications, gener-
ates most of the PWM output signals, and oversees the gen-
eral operations; and a second processor that 1s programmable
by a user to take input data, determine what to do with outputs
to make the robot behave as desired, and set PWM and Relay
outputs to the appropriate states. In such an example, control-
ler 100 may 1nclude a default program that will handle many
robot control matters and, if more sophisticated control of the
robot 1s desired, then the default program can be modified to
provide the required functions of the robot. Of course, while
generally described 1n terms of comprising a robot control
system, control system 100 may be used with any mechanical,
clectrical, or other similar device operable to be communica-
bly or mechanically coupled with control system 100 and
controlled using various electronic commands, parameters,
and such.

Returning to the example robot, control system 100 1s
generally operable to receive, retrieve, or otherwise collect
user commands and other information, gather additional data
and information from sensors on-board the robot, dynami-
cally determine how the robot should function based on pre-
defined parameters and algorithms, and 1nstruct the robot to
perform these functions. The 1llustrated robotic control sys-
tem 100 1includes four fast R/C PWM (radio controlled, pulse
width modulated) outputs capable of being refreshed every 2
mSec, sixteen fast digital inputs/outputs, sixteen fast analog,
inputs (with perhaps 10-bit resolution), one or more fast TTL
(transistor transistor level), RS232, RS485, or other compat-
ible serial ports, two processors 130 and 135 (often C-pro-
grammable), and 1800 bytes of memory with 32 kilobytes of
program space. In this example, the PWM outputs may be
used to drive speed controllers and servos and/or to control a
variable speed motor from a joystick axis. Moreover, each of
the PWM outputs may generate a PWM signal corresponding
to a specific output of a user’s program or other customized
code. The relay outputs are often used to drive bi-directional
relay modules, to drive small motors 1n Full Forward, Full
Reverse, or Off, and/or to turn On or O1ff solenoids, pumps,
and lights from a joystick button. Each of the eight ports may
generate two binary signals corresponding to a specific output
of the user’s program. The analog mputs can be used to
measure various conditions on the robot and trigger automatic
responses by the control program. Typically, any sensor (such
as potentiometers and gyro (yaw rate) sensors) that outputs a

US 7,904,706 B2

3

variable 0-5V signal may be read with 10-bit resolution on
these inputs. The digital I/O pins may be configured individu-
ally as either mputs or outputs 1n the user’s program. Nor-
mally, when configured as inputs these pins accept signals of
either O Volts or 5 Volts from sources such as switches or other
external circuitry, where a OV signal will be read as a logic O
in the software and a 5V signal on the pin will be read as a
logic 1. The most common use for digital mputs 1s for the
connection of switches, which may be wired individually, 1n
parallel, or in series. Further, some or all digital I/O pins can
be configured as hardware interrupts.

In certain embodiments, control system 100 may also
include a program button that 1s used to put control system
100 into a state waiting for download of a new or updated
program. When this example button 1s pressed, the program
that 1s currently executing will be stopped. Illustrated con-
troller 100 may include a +12V and GND connectors that
accept power from a +12V battery. The current draw 1s typi-
cally between 0.75 A to 1.5 A. In certain cases, the maximum
voltage 1s +15.0V, while the minimum required voltage to
maintain radio link 1s +7.0V. Illustrated controller 100 further
includes a’7.2V battery to help ensure that if the power supply
coming in from the main power input drops out or temporarily
dips, controller 100 will not lose power and reset, thereby
causing the program currently running to restart. For
example, this can occur 1 the robot controller 100 and the rest
ol the robot share the same power supply and a high current
draw (from stalled motors, for example) causes that power
supply voltage to droop. In this case, the small battery con-
nected to the battery backup receptacle typically keeps con-
troller 100 running without resetting when the main power
comes back up. The Battery Backup circuit may also supply
power to the center pins of the PWM outputs which helps
operate servos. Illustrated controller 100 also includes a pro-
gram port, a tether port, and a radio port. In certain embodi-
ments, 1) the program port 1s used to change the program and
port 1s intended to connect to a PC’s sernal port using a DB9
Male-Female Pin-to-Pin cable; 1) the TETHER port 1is
intended to connect to an operator iterface using a “hard”
wire connection—such as a DB9 Female-Female Pin-to-Pin
cable—instead of using a wireless radio link; and 111) the radio
port may connect to a radio modem only using RS-422, to
minimize noise interference in the communication link, or
RS-232.

As mentioned above, the 1llustrated and described control-
ler 100 1s for example purposes only. For example, a smaller
hobby controller 100 may be used with fewer iput and out-
puts. In another example, a faster or more powerftul controller
100 may be used to control more advanced robots or other
devices.

As 1illustrated 1n FIGS. 2A-B, control system 100 may
comprise two processors: master processor 130 and user or
slave processor 135. Processors 130 and 135 execute instruc-
tions and manipulate data to perform the operations of control
system 100 and each comprise, for example, a central pro-
cessing unit (CPU), a blade, an application specific integrated
circuit (ASIC), a microcontroller (such as PIC18F8520), or a
field-programmable gate array (FPGA). Although 1llustrated
control system 100 includes two processors, 130 and 135
respectively, in control system 100, any number of processors
(including one) may be used according to particular needs
and reference to processor 130 and/or 135 1s meant to include
one or more processors where applicable. In the 1llustrated
embodiment, master processor 130 1s generally operable to
send data to and recerve data from a radio or other data
communication device, communicate data with user proces-
sor 135 often via an SPI (Serial Peripheral Interface) or other

5

10

15

20

25

30

35

40

45

50

55

60

65

4

bidirectional bus or hyper-transport link 137, output PWM
signals, output color or LED signals, and execute other algo-
rithms or functions using master code. Illustrated user pro-
cessor 135 1s generally operable to communicate data with
master processor 135, read the various inputs, output PWM
signals, output digital and relay signals, communicate with
signal ports, and execute custom algorithms implemented or
defined by user code.

The memory may include any type of memory and may
take the form of volatile or non-volatile memory including,
without limitation, magnetic media, optical media, random
access memory (RAM), read-only memory (ROM), remov-
able media, flash media or electrically erasable program-
mable read-only memory (EEPROM), or any other suitable
local or remote memory component operable to store object
code or other executable software 1n program space. Beyond
the program space, the memory may also include configura-
tion and ID space. Moreover, the memory typically includes
a bootloader program that 1s operable to load a hex or BIN file
into flash memory. In other words, the bootloader may be
used to quickly download a new program, such as the source
code update, into the appropriate processor. This load is typi-
cally performed 1n-circuit without modification to the respec-
tive circuit board. Certain bootloaders are compatible with
any number of operating systems including Unix, Windows,
DOS, Linux, and others, as well as non-conventional operat-
ing systems. In operation, the bootloader may receive the
soltware update from a client computer using an RS232 serial
adapter (or other similar interface), which generally converts
the RS232 to TTL levels, =13V to +5V and +13V to OV.
Certain soitware code updates may include an extra line that
reserves the top 255 bytes in memory for the bootloader. In
certain embodiments, each processor 1n control system 100
may be communicably or electronically coupled with a subset
of the memory. For example, master processor 130 may be
associated with master flash memory 140 and user processor
135 may be associated with user flash memory 145. In this
example, each respective memory component will typically
include the respective master or user software sub-module.

Control system 100 may be coupled with any other suitable
component such as, for example, a battery backup ensuring
“Always On” radio communication. Control system 100 may
also be communicably coupled with an operator interface.
For example, the operator interface may collect data from
joysticks, buttons, and other input devices controlled by
human operators. This data may then be communicated via
radio frequency, Bluetooth or other similar technology, or
tether/serial cable to control system 100. The example opera-
tor 1nterface may also receive and display data transmitted
from control system 100, as well as transmit the data to a
dashboard port. In other embodiments, control system 100
may be configured to operate 1n an autonomous mode without
an operator interface. In this embodiment, no user input 1s
processed and control system 100 performs according to resi-
dent sotftware such as the control module application.

The control module application comprises any combina-
tion of firmware or software operable to manage at least a
portion of control system 100 and/or the coupled device, such
as the robot. For example, the control module application may
comprise two sub-modules, a master module and a user-
defined module, as appropriate. Each module or sub-module
may be partially or completely written or described in any
appropriate computer language including C, C++, Java,
Visual Basic, assembler, Perl, any suitable version of 4GL,
and others or any combination thereof. It will be understood
that while described 1n terms of two sub-modules, the features
and functionality performed by this application may be con-

US 7,904,706 B2

S

solidated within a single module as well. Indeed, the control
module application may comprise one of a plurality of sub-
modules of a parent application or module (not 1llustrated).
Further, the sub-modules may be collectively stored 1n one
file or flash memory or distributed across a plurality of files or
memories without departing from the scope of the disclosure.
As described 1n more detail below, the control module appli-
cation may be replaced, patched, modified, or otherwise
updated using an encrypted source code update, which 1s
often downloaded using a client as 1llustrated in FIGS. 3A-B.

A client 1s any local or remote computing device operable
to receive requests from the user via a user interface 116, such
as a GUI, a CLI (Command Line Interface), or any of numer-
ous other user interfaces. Thus, where reference 1s made to a
particular interface, 1t should be understood that any other
user 1nterface may be substituted 1n 1ts place. In various
embodiments, each client includes at least GUI 116 and com-
prises an electronic computing device operable to receive,
transmit, process and store any appropriate data. It will be
understood that “client,” “customer,” “user,” and “operator”
may be used interchangeably as appropriate without depart-
ing irom the scope of this disclosure. Moreover, for ease of
illustration, each client 1s described 1n terms of being used by
one user. But this disclosure contemplates that many users
may use one computer or that one user may use multiple
computers to submit commands or download software
updates via GUI 116. As used 1n this disclosure, the client 1s
intended to encompass a personal computer, touch screen
terminal, workstation, network computer, kiosk, wireless
data port, wireless or wireline phone, personal data assistant
(PDA), one or more processors within these or other devices,
or any other suitable processing device. For example, the
client may comprise a computer that includes an mput device,
such as a keypad, touch screen, mouse, or other device that
can accept information, and an output device that conveys
information associated with the operation of the robot,
including digital data, visual information, or GUI 116. Both
the mput device and output device may include fixed or
removable storage media such as a magnetic computer disk,
CD-ROM, or other suitable media to both receive input from
and provide output to the user through the display, namely
GUI 116.

GUI 116 comprises a graphical user interface operable to
allow the user of the client to download software updates or
perform any other data-sharing or viewing for any suitable
purpose. Generally, GUI 116 provides the user of the client
with an eflicient and user-friendly presentation of data pro-
vided by a distributor of control system software, software
updates, and such. Moreover, 1t should be understood that the
term graphical user interface may be used 1n the singular or in
the plural to describe one or more graphical user interfaces
and each of the displays of a particular graphical user inter-
tace. Therefore, GUI 116 contemplates any graphical user
interface, such as a generic web browser or touch screen, that
processes mformation and efficiently presents the results to
the user. Generally, GUI 116 may be described 1n terms of a
web browser (e.g., Microsoit Internet Explorer or Netscape
Navigator) operable to receive and communicate the appro-
priate HIML or XML responses using any suitable network.
GUI 116 may comprise a plurality of customizable frames or
views having interactive fields, pull-down lists, and buttons
operated by the user. In one embodiment, GUI 116 receives
commands from the user of the client via one of the mput
devices.

FI1G. 4 15 a flow diagram 1llustrating an example method
400 for generating a software code update for one or more
control systems. Such a method may be implemented by a

b Y 1

10

15

20

25

30

35

40

45

50

55

60

65

6

controller provider, a third party software or service provider,
a support group, or other entity In this example computer-
implementable method 400, a source code update 1s gener-
ated and encrypted for use by one or more control systems
100. While method 400 describes generating particular for-
mats of the update, 1t will be understood that the update may
be 1n any format or formats as appropriate. Example method
400 begins at step 402, where a source code update 1s 1dent-
fied. As described above, source code update may be a new
application, a replacement release or version, an upgrade, a
cyclical release or a patch, or any other software that 1s oper-
able to be used by at least part of control system 100. As
described more fully above, this source code update may be
written or described 1n any suitable computer language such
as C. Next, at step 404, the source code 1s compiled 1nto object
code. This object code 1s then used to generate an S-record
format, or Intel hex 32 standard format, at step 406. The
S-record code 1s then encrypted using, for example, a multi-
keyed encryption algorithm at step 408. In this example, the
update may be encrypted by applying a logical AND or XOR
to various memory addresses and the particular component
blocks of the update. But, of course, any particular encryption
algorithm, method, or technique may be used without depart-
ing from the scope of the disclosure. This encryption process
at least partially generates a BIN file, for example, at step 410.
Once the BIN file 1s suitably created, 1t 1s communicated to
one or more clients using any appropriate technique at step
412. For example, the BIN may be published to a website that
allows numerous clients or customers to request, download,
and 1nstall the update to their respective one or more control
systems 100. In another example, the encrypted update may
be emailed or otherwise distributed to clients using a distri-
bution list or other similar automatic distribution technique.
In yet another example, the source code update may be burned
to CD, DVD, or other media and shipped to particular cus-
tomers. Such distribution may occur using these examples or
via any other technique. Indeed, the encrypted update may be
communicated directly to the control system 100 using any
channel or medium.

FIGS. 5A-B illustrate example flow diagrams for loading
the software code update to the control system of FIG. 2. In
the 1llustrated embodiments, FIG. SA illustrates a high-level
C
C

ata flow diagram and FIG. 5B illustrates a method 500 for
1stributing and processing an encrypted source code update
for control system 100. In this example, computer-imple-
mentable method 500 generally describes loading the
encrypted source code update into user memory, decrypting
the source code update mto the master memory, and flashing
at least a portion of the master memory with the updated
source code. For purposes of this example, control system
100 1s described as including two processors, master process
130 and user processor 133, that each have tlash memory
operable to load and execute code including numerous
blocks. However, 1t should be understood that these are only
examples of the number and types of processors and code that
might be executed by the processors.

Method 500 begins at step 502 when the encrypted BIN file
1s downloaded or otherwise communicated to control system
100, typically via the client and an RS232 or other similar
connection. Master processor 130 determines 11 the program
space 1n user flash memory 1435 includes user code at deci-
sional step 503. If 1t does, then the program space 1n user flash
memory 145 may be erased at step 504. Next, the downloaded
BIN file 1s loaded into user flash memory 145 at step 505,
typically using a bootloader preloaded 1n user tlash memory
145. At step 506, user processor 1335 1s reset. Next, 1t 1s
determined at decisional step 508 whether to begin the load-

US 7,904,706 B2

7

ing sequence. Once 1t 1s determined that the loading sequence
should begin, the configuration data 1s communicated from
user processor 133 to master processor 130 at step 310. At
step 512, master processor 130 erases at least a portion of
master flash memory 140 associated with the source code
update based on the configuration data.

Once the appropriate portions of master flash memory 140
have been erased, master processor 130 retrieves the first
block of the updated BIN f{ile from user tlash memory 145 at
step 514. This retrieved block of the BIN file 1s then decrypted
at step 516 using any appropriate encryption algorithm. For
example, master processor 130 may use a multikeyed encryp-
tion algorithm, typically the same algorithm used to 1nitially
encrypt the BIN file. At step 318, 1s unencrypted block 1s 1n
stored 1n master flash memory 140 at step 518. Based on the
configuration data, master processor 130 determines 11 there
are more blocks 1n the updated BIN file at decisional step 520.
I1 there are more blocks, then master processor 130 retrieves
the next block from user flash memory 145 at step 522 and
processing returns to step 516.

Once an appropriate portion of the updated BIN file has
been recerved 1into master flash memory 140, master proces-
sor 130 writes areset value to master tlash memory 140 at step
524. Next, a hardware reset 1s invoked at step 526. After the
hardware 1s rebooted, the reset value 1n master tflash memory
140 1s validated at step 528. If it 1s validated, the master
processor 130 executes the new code in master flash memory
140 at step 530. Next, at decisional step 532, 1t 1s determined
if there 1s user code available for loading into user flash
memory 145. If 1t 1s available, then this user code, typically in
a BIN or hex format, 1s loaded 1nto user flash memory 143 at
step 534.

The preceding flowcharts and accompanying descriptions
illustrate example methods 400 and 500, but numerous other
similar or distinct methods could be employed or imple-
mented as well. In short, control system 100 contemplates
using or executing any suitable technique or process for per-
forming these and other tasks. In particular, any method of
operation suitable for use with any of the embodiments of
control system 100 described herein 1s contemplated within
this disclosure. Accordingly, many of the steps 1n this flow-
chart may take place simultaneously and/or 1n different orders
than as shown. Moreover, control system 100 may use meth-
ods or algorithms with additional steps, fewer steps, and/or
different steps, so long as the methods are consistent with any
of the techniques for defining and implementing a manage-
ment component described or suggested by this disclosure.

A number of embodiments of the invention have been
described. Nevertheless, 1t will be understood that various
modifications may be made without departing from the spirit
and scope of the imnvention. For example, control system 100
may include one master processor 130 that performs the
retrieval, decryption, and loading of the encrypted source
code update. Accordingly, other embodiments are within the
scope of the following claims.

What 1s claimed 1s:

1. A method for updating a control system comprising:

identifying an update for a robot control system, the update

comprising encrypted object code and the control sys-
tem comprising at least a {irst processor;

loading the encrypted update mto second memory associ-

ated with a second processor;

decrypting the update into master memory from the second

memory, wherein decrypting the update into master

memory from the second memory includes:

communicating a first portion of the encrypted update to
the master memory from the second memory; and

5

10

15

20

25

30

35

40

45

50

55

60

65

8

decrypting the first portion of the encrypted update;
communicating configuration data from the second pro-
cessor to the first processor;

erasing at least a portion of the master memory, the portion

associated with the update based on the configuration
data;

flashing the portion of the master memory with the updated

code; and

updating the first processor based at least 1n part on the

flashed portion of the master memory.

2. The method of claim 1, wherein identifying the update
comprises receiving an automatically generated notification
that the update 1s available.

3. The method of claim 2, further comprising receiving the
identified update from a client, the client capable of down-
loading the encrypted update from a third party.

4. The method of claim 1, further comprising erasing the
second memory prior to loading the encrypted update.

5. The method of claim 1, further comprising resetting the
second processor aiter loading the encrypted update into the
second memory.

6. The method of claim 1, further comprising;

communicating a second portion of the encrypted update to

the master memory from the second memory; and
decrypting the second portion of the encrypted update.

7. The method of claim 6, each portion of the encrypted
update comprising one block of memory.

8. The method of claim 6, further comprising;

writing a reset value to the master memory; and

invoking a reset of the first processor using the master

memory.

9. The method of claim 1, further comprising loading sec-
ond memory with customized code after decrypting the
update into master memory from the second memory.

10. The method of claim 1, wherein decrypting the update
into the master memory comprises decrypting the update
using a multi-key algorithm.

11. A control system comprising:

a first processor for managing at least a portion of a robot

control system:;

flash master memory communicably coupled with the first

Processor;

a second processor;

a second memory communicably coupled with the second

processor; and

wherein the control system loads an encrypted update into

the second memory, decrypts the update into the master
memory from the second memory using the second pro-
cessor by communicating a first portion of the encrypted
update to the master memory from the second memory
and decrypting the first portion of the encrypted update,
communicates configuration data from the second pro-
cessor to the first processor, erases at least a portion of
the master flash memory, with the portion associated
with the update based on the configuration data, and
flashes at least a portion of the master memory with the
updated code for use by the first processor.

12. The control system of claim 11, the control system
communicably coupled to a client and the update recerved
from the client, with the client capable of downloading the
encrypted update from a third party.

13. The control system of claim 11, further operable to
erase the second memory prior to loading the encrypted
update.

14. The control system of claim 11, further operable to
reset the second processor after loading the encrypted update
into the second memory.

US 7,904,706 B2

9

15. The control system of claim 11, further operable to:
communicate a second portion of the encrypted update to
the master memory from the second memory; and

decrypt the second portion of the encrypted update.

16. The control system of claim 15, each portion of the
encrypted update comprising one block of memory.

17. The control system of claim 16, further operable to:

write reset value to the master memory; and

invoke a reset of the first processor using the master

memory.

18. The control system of claim 17, further operable to load
the second memory with customized code.

19. The control system of claim 17, wherein the one control
system operable to decrypt the update into master memory
comprises the control system operable to decrypt the update
using a multi-key algorithm.

20. A control system loader comprising computer readable
instructions, embodied 1n a non-transitory computer-readable
storage medium, operable when executed to:

identify an update for a robot control system, the update

comprising encrypted object code and the control sys-
tem comprising at least a first processor;

load the encrypted update into second memory associated

with a second processor;

decrypt the update into master memory from the second

memory;

load the second memory with customized code after

decrypting the update into master memory from the
second memory;

communicate configuration data from the second proces-

sor to the first processor;

crase at least a portion of the master memory prior to the

decryption, the portion associated with the update based
on the configuration data;

flash at least the portion of the master memory with the

updated code;

update the first processor based at least in part on the

flashed portion of the master memory;

write a reset value to the master memory; and

invoke a reset of the first processor using the master

memory.

10

15

20

25

30

35

40

10

21. A method for updating a control system comprising:

1dentifying an update for a robot control system, the update
comprising encrypted object code and the control sys-
tem comprising at least a first processor;

loading the encrypted update into second memory associ-
ated with a second processor;

decrypting the update into master memory from the second
memory;

loading the second memory with customized code after
decrypting the update 1into the master memory from the
second memory;

communicating configuration data from the second pro-
cessor to the first processor;

crasing at least a portion of the master memory, the portion
associated with the update based on the configuration
data;

flashing the portion of the master memory with the updated
code; and

updating the first processor based at least 1n part on the
flashed portion of the master memory.

22. A control system comprising:

a {irst processor for managing a least a portion of a robot
control system;

flash master memory communicably coupled with the first
Processor;

a second processor;

a second memory communicably coupled with the second
processor; and

wherein the control system loads an encrypted update into
the second memory, decrypts the update into the master
memory from the second memory using the second pro-
cessor, loads the second memory with customized code
after decrypting the update into the master memory from
the second memory, communicates configuration data
from the second processor to the first processor, erases at
least a portion of the master flash memory, with the
portion associated with the update based on the configu-
ration data, and flashes at least a portion of the master
memory with the updated code for use by the first pro-
CESSOT.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,904,706 B2 Page 1 of 1
APPLICATION NO. : 11/290158

DATED : March 8, 2011

INVENTORC(S) : Mark J. Lambert

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Col. 8, Line 22,
Claim 22, delete “a least” and insert --at least-- therefor.

Signed and Sealed this

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

