12 United States Patent

De Pauw et al.

US007904457B2

US 7.904.457 B2
Mar. 8, 2011

(10) Patent No.:
45) Date of Patent:

(54) SEMANTIC CORRELATION FOR FLOW
ANALYSIS IN MESSAGING SYSTEMS

(75) Inventors: Wim De Pauw, Scarborough, NY (US);
Robert L. Hoch, Wilton, CT (US); Yi
Huang, Bloomington, IN (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 808 days.

(21) Appl. No.: 11/755,243

(22) Filed: May 30, 2007

(65) Prior Publication Data
US 2008/0301136 Al Dec. 4, 2008

(51) Int.CL.
GOGF 7/00
GOGF 17/30 (2006.01)
GOGF 15/16 (2006.01)

(52) US.CLooooeiiiin. 707/739; 707/804; 709/224

(58) Field of Classification Search 707/739,
7077/804; 709/224

See application file for complete search history.

(2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

6,463,470 B1* 10/2002 Mohaban etal. 709/223
2001/0052087 Al 12/2001 Garg et al.
2003/0084148 Al 5/2003 Cousins et al.
2004/0034795 Al* 2/2004 Andersonetal. 709/224
2004/0181523 Al* 9/2004 Jardincccoooveviiiinnnnnnnn, 707/3
2005/0021745 Al 1/2005 Bookman et al.
2006/0168207 Al* 7/2006 Choongetal. 709/224

8/2006 Robinson et al.

2006/0277288 Al 12/2006 Kelly et al.
2007/0189159 Al* 82007 Gerdesetal. 370/230

OTHER PUBLICATIONS

2006/0173957 Al

Paul Lane and Viv Schupmann. Oracle 91 Data Warehousing Guide,
Release 2 (9.2). Part A96520-01, Oracle Corporation, Title Pages,
Chapter 6 and the Glossary, pp. 1, 11, 6-1-6-10 and Glossary-1-Glos-

sary-14. Mar. 2002 .*

Wim De Pauw, Robert Hoch, Y1 Huang. Discovering Conversations
in Web Services Using Semantic Correlation Analysis. Proceedings
of the 2007 IEEE International Conference on Web Services (ICWS
2007), IEEE Computer Society 2007, Jul. 9-13, 2007, Salt Lake City,
Utah, USA. pp. 639-646.*

E. Rahm et al., “A Survey of Approaches to Automatic Schema
Matching,” VLDB Journal, DOI, 2001, pp. 334-350, vol. 10.

P. Brown et al., “Toward Automated Large-Scale Information Inte-
gration and Discovery,” Data Management in a Connected World,

2003, pp. 161-180, Berlin.

P.A. Bernstein et al., “Industrial-Strength Schema Matching,” ACM
SIGMOD Record, Dec. 2004, pp. 38-43, vol. 33, No. 4.

P. Barham et al., “Using Magpie for Request Extraction and
Workload Modelling,” 6th Symposium on Operating Systems Design

and Implementation (OSDI), 2004, pp. 259-272.
(Continued)

Primary Examiner — Greta L Robinson
Assistant Examiner — Brian E Weinrich

(74) Attorney, Agent, or Firm — Anne V. Dougherty, Esq.;
Ryan, Mason & Lewis, LLP

(57) ABSTRACT

Improved techniques for tlow analysis in messaging systems
are disclosed. For example, a method for finding correlations
between messages of a system based on content includes the
following steps. For one or more executions of the system,
obtaining the messages of the system, wherein each message
has a schema associated therewith. The messages are catego-
rized into groups, wherein each group has a common schema.
Pairs of messages from disparate groups are found wherein,
for the messages of a patr, there 1s a feature 1n common in their
contents.

20 Claims, 7 Drawing Sheets

400

4021 Trace the messages and their content

Y

404———1|Catalog the message content

Y

06— Derive the schemas based on the message contents

!

408~ ——1Create the value tables

v

410" Find candidate correlation identifiers

Y

419~——1Find correlations between candidate correlation identifiers

!

414-——"1 Find correlations between schemas

v

416———Remove transitive semantic correlations between schemas

Y

418———1Identify schema translations

Y

420" Visualize semantic correlations and conversations

US 7,904,457 B2
Page 2

OTHER PUBLICATIONS

M.Y. Chen et al., “Path-Based Failure and Evolution Management,”

Proceedings of NSDI, 2004, 14 pages.
M.K. Aguilera et al., “Performance Debugging for Distributed Sys-

tems of Black Boxes,” Procs. of the 19th ACM Symposium on Oper-
ating Systems Principles (SOSP), Oct. 2003, 16 pages, New York.

W.M.P. Van Der Aalst et al., “Workilow Mining: A Survey of Issues
and Approaches,” Data and Knowledge Engineering, 2003, pp. 237-
267, vol. 47.

J.E. Cook et al., “Discovering Models of Software Processes from
Event-Based Data,” ACM Transactions of Software Engineering and
Methodology (TOSEM), Jul. 1998, pp. 215-249, vol. 7, No. 3.

R. Agrawal et al., “Mining Process Models from Workilow Logs,”

Proc. of the Intl. Conf. on Extending Database Technology (EDBT),
1998, 15 pages.

C. Bernardeschi et al., “Using Process Algebras for the Semantic
Analysis of Data Flow Networks,” IEICE Transactions on Informa-
tion and Systems, 1995, pp. 1-9.

W. Scheirer et al., “Network Intrusion Detection with Semantics-
Aware Capability,” 20th International Parallel and Distributed Pro-
cessing Symposium (IPDPS), Apr. 2006, 7 pages.

S. Bhonsle et al., “Database-Centered Architecture for Traffic Inci-
dent Detection, Management and Analysis,” IEEE Intelligent Trans-
portation Systems Conference Proceedings, Oct. 2000, pp. 149-154,
Michigan.

A. Munnich, “PRED-DF-A Data Flow Based Semantic Concurrency
Control Protocol for Real-Time Main-Memory Database Systems,”
Real-Time Computing Systems and Applications, Proc. 7th Interna-
tional Conterence, Dec. 2000, pp. 468-472.

Q.G. Zhao et al., “Data Streaming Algorithms for Accurate and
Efficient Measurement of Traffic and Flow Matrices,” Proc. of the
ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, Jun. 2005, pp. 350-361, vol. 33,
Issue 1, Canada.

A. Lakhina et al., “Structural Analysis of Network Traffic Flows,”
Proc. of the ACM SIGMETRICS Joint International Conference on

Measurement and Modeling of Computer Systems, Jun. 2004, pp.
61-72, vol. 32, Issue 1, New York.
S. Sarvotham et al., “Connection-Level Analysis and Modeling of

Network Traffic,” Proc. of the 1st ACM SIGCOMM Workshop on
Internet Measurement (IMW), Nov. 2001, pp. 99-103, California.
F. Curbera et al., ““The Next Step 1n Web Services,” Communications
of the ACM, Oct. 2003, pp. 29-34, vol. 46, No. 10.

M. Gudgin et al., “Web Services Addressing 1.0—Core,” W3C Rec-
ommendation 9, May 2006, http://www.w3.org/TR/ws-addr-core/,
19 pages.

“Application Response Measurement (ARM),” Technical Standard,
Issue 4.0, Version 2—Java Binding, http://www.opengroup.org/tech/
management/arm/, 96 pages.

“Application Response Measurement (ARM),” Technical Standard,
Issue 4.0, Version 2—C Binding, http://www.opengroup.org/tech/
management/arm/, 130 pages.

W. De Pauw et al., “Web Services Navigator: Visualizing the Execu-

tion of Web Services,” IBM Systems Journal, 2005, pp. 821-846, vol.
44, No. 4.

“Eclipse Test and Performance Tools Platform [TPTP] Project,”
http://www.eclipse.org/tptp/home/project__info/general/tptp__
datasheet.pdf, 2 pages.

A. Brown et al., “Using Service-Oriented Architecture and Compo-
nent-Based Development to Build Web Service Applications,” http://
www-128.1bm.com/developerworks/rational/library/510 . html, 16
pages.

“RosettaNet Standards,” http://portal rosettanet.org/cms/sites/
RosettaNet/Standards/RStandards/pip/index.html, 1 page.

M. Chapman et al., “Supply Chain Management Sample Application
Architecture,” Web Services Interoperability Organization, Dec.
2003, Version 1.01, 37 pages.

P. Reynolds et al., “WAPS: Black-Box Performance Debugging for
Wide-Area Systems,” Proceedings of the 15th International Confer-
ence on World Wide Web, May 2006, pp. 347-356.

W. De Pauw et al., “Execution Patterns for Visualizing Web Ser-

vices,” Proceedings of the 2006 ACM Symposium on Software Visu-
alization, 2006, pp. 37-45.

* cited by examiner

US 7,904,457 B2

Sheet 1 of 7

Mar. 8, 2011

U.S. Patent

¢ Ol

.2/002/20/20. = 81eq AaAljeQ

__FoomNNN: - O&
Mned aQ WIM, = SWeN
2106 829G ¥€Z), = Joqunn

.0102/20/10. = 9leq ax3
BSIA, = 8dA] pie)

DIE
mmfuu J00GLLL, = ISQUINNISPIO
m@ — =>Z= - wu.mu.m
b = <2901, = dlZ
9G = OAUQ BUIIAYS 6, = SS3IPPY
0/ = LJUewpall4 1 Sewloy], = Joyiny
._M — >H__MC_U1_MO _Lm_n_ w_ U_._O>> ®—\:|= - ®_”__|_|

8000, = Alobaien

US 7,904,457 B2

Sheet 2 of 7

Mar. 8, 2011

U.S. Patent

Q101aIYyS

= =
o l b -

m__BEo“m:o

JaqUINNJapIO
mm .)

U.S. Patent Mar. 8, 2011 Sheet 3 of 7 US 7,904,457 B2

402 Trace the messages and their content

404 Catalog the message content

Derive the schemas based on the message contents

408 Create the value tables

406

Find candidate correlation identifiers

410

419 Find correlations between candidate correlation identifiers

414 Find correlations between schemas
416 Remove transitive semantic correlations between schemas
418 |dentify schema translations

420 Visualize semantic correlations and conversations

FIG. 4

2 n
. 9 "9l
<
h:
= 7 BWAYIS
I~
% 2’0 «—Ag
') «— X'y g eWaYoS
Ag <Xy
- Y BWayos
:
2 G 'Ol
E MY VYV 9GEP9S VD EELY6 TSBUOL 4G SIBPUSM WIA “"8qn [oWWIH

J99EHPS AN 29601 NS ulepy gz desqiuern | ainyng AN
e €ZLZYS AN ZEG0L “sulAyS 6} |olled moug uadQ s8A3
‘Y ‘YWY 200S.. AN 2E€S0lL “eulANs 6} "7 Ssewoyl I PUOM 8yl

junoasigq N JeplQ ®lEls dl SSOIPPY 104Ny 9} L

¥00gJapJo 10} 8|qe] anjeA ‘| 8|qel

U.S. Patent

US 7,904,457 B2

Sheet S of 7

Mar. 8, 2011

U.S. Patent

JL Ol

Mg A9

g =Xy

d. 9Old

2’0 <—A'g A'g <Xy

U.S. Patent Mar. 8, 2011 Sheet 6 of 7 US 7,904,457 B2

BUYER SELLER

| FC98-765-1989-RFQ#1| |~~~

purchaseQOrader

N\
| FC98-765-1989-RFQ#1
|| JPMB 3A4REQ 0

S

purchaseOrader

N\
LFC98-765-1989-RFQ#| ~] |
JPMB_3A4REQ_1 |

|
purchaseOrder

N
< i | FC98-765-1989-RF Q#1 h A

———d

U.S. Patent Mar. 8, 2011 Sheet 7 of 7 US 7,904,457 B2

902 9006

/0
y Network
emory Interface

910

FIG. 9

US 7,904,457 B2

1

SEMANTIC CORRELATION FOR FLOW
ANALYSIS IN MESSAGING SYSTEMS

FIELD OF THE INVENTION

The present application relates to messaging systems and,
more particularly, to semantic correlation techniques for tlow
analysis 1n such messaging systems.

BACKGROUND OF THE INVENTION

A simple user-facing application, such as a stock-quote
application or a bank-balance inquiry application, invokes a
service and waits on the response. The network or the middle-
ware layer ensures that the response returns to the invoking
client. Multiple requests from a client usually happen 1n a
synchronous fashion. As a result, the behavior of these appli-
cations can be observed by following the sequence of mes-
sages that make up the control flow. This model can be
extended to cover business logic executing 1n a middleware
environment as long as 1t holds to the limitation of executing
a session 1n a single thread. As used herein, application-based
systems that exchange messages between modules or com-
ponents are generally referred to as “messaging systems.”

However, more complex business functions are often con-
structed 1n a more loosely coupled fashion. This may mean
that requests are submitted to modules of the application
without waiting on an immediate response. Responsibility for
a process may be handed off from one module of the appli-
cation to another, or to an entirely different application. We
refer to applications of this type as composite business appli-
cations. Further, we use the term “‘conversation” to refer to a
sequence of messages that is related to a particular goal, for
example, a business goal.

Where a simple application waits for the completion of a
request before continuing, a request 1n a composite business
application may be executed asynchronously, relying on a
call-back mechanism or polling in order to determine 1ts
eventual outcome. This more complex pattern of interaction
places a greater burden on the application modules to keep
track of the state of multiple conversations and to route a
message to 1ts correct destination. It 1s common practice to
include application specific data in the messages that are
exchanged so that they can carry necessary context from one
module to another. The context data may include a data ele-
ment that serves as a conversation 1dentifier for the applica-
tion modules that are involved. Recent standards such as
WS-addressing (M. Gudgin et al., “Web Services Addressing
1.0—Core” available from: http://www.w3.org/ TR/ws-addr-
core/) proposes to let business application developers del-
egate this task to the middleware level rather than crafting
application-specific solutions. Yet, for most existing applica-
tions and for composite business applications that span mul-
tiple domains of control, the current practice of using appli-
cation-specific conversation identifiers continues to be 1n
elfect.

The increasing complexity of business applications poses
new challenges for understanding application behavior and
requires new tools for problem determination. In the absence
of standards-based approaches such as WS-addressing, 1t
may be difficult to discover conversation identifiers from
trace information, especially without the help of the original
developer or documentation.

Traditional correlation mechanisms such as ARM (“Appli-
cation Response Measurement” available from: http://ww-
w.open group.org/tech/management/arm/) provide an API
(Application Programming Interface) that the application can

10

15

20

25

30

35

40

45

50

55

60

65

2

call to record control flow 1n a distributed environment. Tools
such as the Web Services Navigator (W. De Pauw et al., “Web

Services Navigator: Visualizing the Execution of Web Ser-
vices,” IBM Systems Journal, Vol. 44, pp. 821-846, 2005) or
the Eclipse Test & Performance Tools Platform (TPTP) (“The
Eclipse Test & Performance Tools Platform,” Available from:
http://www.eclipse.org/tptp/) visualize the control flow of
messages 1n composite applications. However, such tools can
only combine messages that appear mn a direct calling
sequence and fail to combine groups of messages that consti-
tute business process conversations. For example, one appli-
cation may put the result of a transaction 1n a database, so that
it can be picked up by another application. In traditional tools,
this would show up as an interruption in the control flow
where the mformation 1s temporarily stored 1n the database.

Accordingly, what 1s needed 1s an improved technique for
flow analysis 1n messaging systems.

SUMMARY OF THE INVENTION

Principles of the mvention provide improved techniques
for flow analysis in messaging systems.

For example, in one aspect of the invention, a method for
finding correlations between messages of a system based on
content includes the following steps. For one or more execu-
tions of the system, obtaining the messages of the system,
wherein each message has a schema associated therewith.
The messages are categorized into groups, wherein each
group has a common schema. Pairs of messages from dispar-
ate groups are found wherein, for the messages of a pair, there
1s a feature 1n common 1n their contents.

The schema may be the message structure dertved from the
messages. The system may be a distributed system. The
method may further include discarding duplicates of the
obtained messages. Pairs of the pairs of messages may also be
discarded when the messages of a pair are separated from
cach other 1n time by an unacceptable amount of time.

The common feature may be found 1n a path in a schema for
which an mndexability value 1s higher than a given ratio (e.g.,
0.9). The indexability value may be the cardinality of a set of
values of the path divided by the number of data elements of
the path.

The common feature may be found 1n a path 1n a schema for
which an indexability value 1s approximately equal to one.

When two schemas share a common feature found 1n a path
which has an indexability value approximately equal to one,
they may be labeled as having a one-to-one relationship.
The common feature of a first schema may be found 1n a
path with an indexability value that 1s approximately equal to
one, and the common feature of a second schema may be an
indexability value that 1s higher than a given ratio (e.g., a
relatively low ratio, say 20%).

The common feature of a first schema may be found 1n a
path with an indexability value that 1s approximately equal to
one, and the common feature of a second schema may be
found 1n a path for which no value occurs more than a fixed
number of times (e.g., 10). Further, the common feature may
be found 1n a combination of multiple paths.

The method may farther include determining a causal
direction between a first schema and a second schema having
a common feature, wherein the causal direction flows from
the schema having messages with earlier timestamps as com-
pared with timestamps of the corresponding messages of the
other schema.

The common feature of the second schema may be found 1n
a path with an indexability value that 1s between a given range
(e.g., 20% to 80%) and which 1s labeled as a one-to-many

US 7,904,457 B2

3

relationship when the causal direction goes from the first
schema to the second schema, or which 1s labeled as a many-
to-one relationship when the causal direction goes from the
second schema to the first schema.

The common feature of the second schema may be foundin >
a path with an indexability value that 1s below a certain range
(e.g., a range below 80% to some mimmum percentage) and
which 1s labeled as one-to-many relationship when the causal
direction goes from the first schema to the schema, or which
1s labeled as a many-to-one relationship when the causal
direction goes from the second schema to the first schema.

The pair finding step of the method may further include
matching feature pairs such that there 1s a lexical similarity in
a name of types of the respective paths.

The categorizing step of the method may further include
categorizing a path as a simple type, with one occurrence of a
feature 1n a message, or as an aggregate type, with multiple
occurrences of a feature in a message. A population of an
aggregate type may be counted as a total number of elements 2
of this type across all messages 1n the schema.

The method may also include establishing a signature for
schema pairs 1dentitying them as one-to-one, one-to-many,
many-to-one based on the feature pairs. The signature for
schema pairs may be based on a prioritization over multiple 25
feature pairs where one-to-one has precedence over one-to-
many or many-to-one. Further, the signature for schema pairs
may be based on a prioritization over multiple feature pairs
based on a strength of lexical match between feature labels. A
sample of messages may be used to establish signatures for 30
analysis of a full set of messages. Further, a sample of mes-
sages may be used to establish signatures for analysis of a
tuture set of messages. Still further, an established signature
may be used to detect exceptions in a future set of messages.

A sequence of three or more of messages can be related based 35
on schema signatures, resulting 1n message patterns. A mes-
sage pattern can be 1dentified such that an intermediate pat-
tern provides translation between one feature path, shared
with a preceding message, and a second feature path shared
with a subsequent message. 40

Messages obtained by the method may be produced by
machines to exchange information that 1s part of a workilow
process. Messages may be email messages or other types of
messages.

These and other objects, features and advantages of the 45
present invention will become apparent from the following
detailed description of illustrative embodiments thereof,
which 1s to be read in connection with the accompanying,
drawings.

10

15

50
BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1llustrates a first set of messages for use in 1llustrat-
ing flow analysis according to an embodiment of the mven-
tion. 55

FIG. 2 illustrates a second set of messages for use 1n 1llus-
trating flow analysis according to an embodiment of the
invention.

FIG. 3 illustrates a multiple service point configuration
wherein two semantic correlations are identified according to 60
an embodiment of the invention.

FI1G. 4 1llustrates a methodology for discovering conversa-
tion identifiers and semantic correlations according to an
embodiment of the invention.

FIG. § illustrates a value table for each schema and its 65
associated messages according to an embodiment of the
ivention.

4

FIG. 6 1llustrates transitive semantic correlations accord-
ing to an embodiment of the invention.

FIGS. 7A through 7C 1llustrate schema translation accord-
ing to an embodiment of the invention.

FIG. 8 illustrates part of a visualization of a purchasing
application according to an embodiment of the invention.

FIG. 9 1llustrates a computer system wherein tlow analysis
techniques may be implemented according to an embodiment
of the mvention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

While illustrative embodiments of the mvention will be
described herein from the perspective of composite business
applications and a corresponding messaging system, 1t 1s to be
understood that principles of the invention are not limited to
use with any particular application or messaging system.
Rather, principles of the invention are more generally appli-
cable to any application and messaging system in which 1t
would be desirable to provide improved flow analysis.

As will be illustratively described in the embodiments
below, principles of the invention provide a mechanism for
understanding the overall behavior and information flow of a
composite application by identifying the conversation 1den-
tifiers in the content of the messages. We use the phrase
“semantic correlation” to describe how these content-based
identifiers correlate messages across different threads of
execution. Moreover, the inventive approach treats the mod-
ules of a composite application as black boxes, relying only
on capturing the content of messages passed between the
modules. Thus, the problem of expensive instrumentation
inside internal components 1s avoided.

More particularly, principles of the mvention provide an
automated analysis methodology for discovering the conver-
sation 1dentifiers 1n a set of traced messages. The methodol-
ogy allows us to reassemble sessions and conversations 1n a
composite application. The results from this analysis provide
the basis for an interactive visualization of the run-time
behavior of a composite application.

In the illustrative embodiments to be described below, we
assume a composite business applications domain integrated
through the use of Service Oriented Architecture (SOA) tech-
nologies, 1n particular those using Web Services to commu-
nicate among application modules (A. Brown et al., “Using
Service-Oriented Architecture and Component-Based Devel-
opment to Build Web Service Applications,” available from
http:// www-128.1bm.com/developerworks/rational/library/
510.html). As such, we assume that application messages
have a structure that can be determined from the content of the
messages.

The 1nventive methodology relies on the content of the
messages 1n order to find conversation identifiers. It 1s general
enough to find the standard conversation i1dentifiers used 1n
WS-addressing headers, as well as ad-hoc approaches where
a conversation 1dentifier 1s passed 1nside the message. Since
the methodology uses some simple statistics based on the
content of the messages, we assume that we have trace infor-
mation for a significant number of interactions. In our experi-
ments, we processed traces ranging 1n size between 20 and
3300 messages.

Let us 1llustrate a key 1dea behind the inventive methodol-
ogy with a simple example. FIG. 1 shows a set of 100 traced
messages ol the orderbook operation. The figure shows the
structure and content for the first message of the set. We
assume that the same structure applies to all these messages.
We also show the number of unique values or the cardinality

US 7,904,457 B2

S

tor each data field for this example. We first find the fields that
can be unique 1dentifiers. These are the fields in the messages
that have a unique value for each message. Given a large
enough number of messages, we can expect Title or ZIP notto
be unique. OrderNumber (denoted by an asterisk), on the
other hand, has as many different values as there are mes-
sages. Therefore, OrderNumber can serve as a unique i1den-
tifier for this set of traced orderBook messages.

Letus now consider a second set of messages, shipBook, as
depicted in FIG. 2. Suppose we find a unique 1dentifier PO
(denoted by an asterisk) for this set. If, 1n addition, there 1s a
significant match between the values of OrderNumber from
the first set and the values of PO 1n the second set, we have
identified a semantic correlation between OrderNumber and
PO.

When we look at these messages 1n the context of a larger
application, we can see how the semantic correlations can
link together multiple control flows. The example in FIG. 3
shows a configuration with multiple service points (four of
them are depicted as boxes A, B, C, and D). The straight
(dashed) arrows indicate the control flow between the service
points, gathered with traditional correlation techniques. As
suggested 1n this figure, they only tell us part of the story.

Imagine that we found four data fields with unique values,
which are therefore candidate correlation identifiers: Order-
Number, PO, CustomerID and ShiptoID. Similar to Order-
Number and PO, we might also see a match between the
values of CustomerID and ShiptolD. Both matches corre-
spond to two distinct semantic correlations, shown 1n FIG. 3
by the curved (solid) arrows between their respective 1denti-
flers.

In the case of the semantic correlation between the order-
Book and shipBook messages, their respective data fields,
OrderNumber and PO, may now serve as correlation identi-
fiers for conversations that include orderbook and shipBook
messages. We can learn more about the causal order between
these messages 11 we look at their respective timestamps. IT
the timestamp of every orderBook message was earlier than
the matching shipBook message, we can infer that in this
conversation, orderBook was the cause and shipBook the
elfect. This causality 1s shown in FIG. 3 by the direction of the
curved (solid) arrows.

In this example, there 1s a one-to-one relationship between
the values 1n OrderNumber and the values in PO. We have
extended the methodology to also find interesting one-to-
many and many-to-one semantic correlations between mes-
sages. Imagine 1n our previous example that the ordering of a
book, depending on 1ts availability, 1s followed by one or
more of shippingStatus messages (not shown 1n FI1G. 3). As a
result, there may be one or more shippingStatus messages
with Orderld=7775001, the equivalent of OrderNumber in
orderBook. This implies that Orderld in shippingStatus 1s not
a unique i1dentifier anymore and that there 1s no longer a
perfect one-to-one match. Nevertheless, cases like this, where
only one of the two message schemas has a path with unique
values (like OrderNumber), may still reveal interesting pat-
terns. The analysis in this case can discover that an orderBook
message results 1n one or more shippingStatus messages.
Conversely, 1f the same OrderNumber was used for multiple
books in the same shipping order, we could show a many-to-
one relationship.

Accordingly, a methodology for finding correlations
between messages of a system based on content may be
generally understood to include recording system messages,
categorizing the messages 1n groups with a common schema,
wherein a schema 1s a message structure derived from mul-
tiple messages. Then, pairs of messages are 1dentified from

10

15

20

25

30

35

40

45

50

55

60

65

6

disparate groups for which, in the messages, there 1s a com-
mon feature 1n their contents. A feature 1s a pattern of simi-
larity between data fields of messages, examples of which are
described below.

We now describe an illustrative embodiment of such a
methodology for discovering conversation identifiers and
semantic correlations. F1G. 4 1llustrates the steps of the meth-
odology. It 1s to be understood that while methodology 400 of
FIG. 4 depicts steps 402 through 420 1n a sequential order, one
or more of the steps can be performed 1n an order other than
that depicted.

A. Tracing the Messages and Their Content (Step 402)

The methodology first collects (records) all the messages
that are sent between the services under study, including their
contents and timestamps. This can be realized with existing
technology such as the Web Services Navigator (W. DePauw
ctal., “Web Services Navigator: Visualizing the Execution of
Web Services,” IBM Systems Journal, Vol. 44, pp. 821-846,
2003, the disclosure of which 1s incorporated by reference
herein). However, 1t 1s to be understood that other suitable
tools may be employed.

B. Cataloging the Message Content (Step 404)

Starting from a set of traces of all messages, the method-
ology then builds a catalog of these messages partitioned by
message type. In the case of a distributed system using Web
Services, the messages are encoded in XML (Extensible
Markup Language) and can be grouped by their full message
name. In other cases, such as messaging systems, additional
metadata like the message channel may be used to partition
the messages by message type.

C. Deriving the Schemas Based on the Message Contents
(Step 406)

For each group of messages with the same message name
in the partition, the methodology derives a schema based on
the content of the messages. Inthe case of XML, aschema can
be derived from the XML paths present 1in the messages. We
will use the term “path” to refer to the location of an element
or attribute starting from the root of the XML document. We
are only concerned with elements and attributes that have
content.

D. Creating the Value Tables (Step 408)

The methodology then creates a value table for each
schema and 1ts associated messages. FIG. 5 illustrates such a
value table (table 1). In a value table, each row represents a
message and each column represents a path of the schema.
The methodology now populates each entry 1n the table with
one, multiple or zero data elements for the corresponding
message and path, corresponding to the following cases:

one data element there 1s a single data element for the path

in the message; for example most cells 1n table 1 contain
one value.
multiple data elements: there are multiple or composite
clements for the path 1n the message; this may corre-
spond to multiple line items 1n a document, each having,
the same path, or to an array 1n a Java data structure; for
example, 1n table 1, message 1 has multiple elements
(AAA, R4, .. .)1n the Discount path.

zero data elements: no data element for the path exists 1n
the message; for example, message 3 does not contain
any element 1n the Discount path.

In our experiments using reference applications, we
noticed that a message was sometimes resent with the same
content. For example, mquiry functions in the system can
generate mndistinguishable messages. In cases where we col-
lected multiple messages with 1dentical content, we used the
first occurrence and discarded the rest. Since analysis 1s based
on content, this 1s a reasonable approach.

US 7,904,457 B2

7

E. Finding Candidate Correlation Identifiers (Step 410)

In this step, the methodology determines which paths in the
value tables are good candidates for correlation identifiers. As
mentioned above, we are iterested 1n pairs of paths that may
result 1n an interesting match. At least one path should have
unique values and the second path should have either a set of
unique values, or a large enough number of different values.
For example, a path with just Boolean values 1s unlikely to
have a meaningtul mapping with another path.

For each path p 1n a schema value table, we take into
account two statistics. The first 1s the total number of data
elements or the population for p, Pop,. Notice that Pop, can
be higher than the number of messages, 11 this path has entries
in 1ts value table with multiple data elements. For example,
the path Discount in table 1 1s likely to have a Pop, that is
larger than the number of messages or rows 1n 1ts table. The
second statistic 1s the total number of different values 1n p or
the cardinality of its value set, Card,,. Here again, multiple
data elements for this path 1n its value table may produce a
cardinality that 1s higher than the number of messages con-
taining this path. We only consider paths with a large enough
number of values, e.g., Card >2, screening out frequently
occurring, but meaningless, mappings. We now define the
indexability o, of a path p as:

Card,
Pop ,

For example, a path 1s 100% indexable 11 each of 1ts data
clements has a unique value.

We then define and 1dentify:

1. Highly indexable paths: These are paths with an index-
ability equal or close to 1.0, e.g. . >0.95. Allowing a small
deviation from 1.0 can identily correlations in cases where
there 1s some noise 1n the data, such as near duplicate mes-
sages.

2. Mappable paths: Our goal 1s to find paths that may have
an interesting value match with another, highly indexable
path. There are multiple ways to achieve this, and we realized
this condition by allowing paths for which none of its values
occurs more than v_ __ times in all of 1ts data elements. For
example, a threshold v =10 will prevent that more than 10
data elements in this path with the same value will be matched
to a single data element 1n another highly indexable path. By
this definition, a highly indexable path 1s normally also a
mappable path.

This step significantly narrows down the number of paths
that are candidate correlation identifiers and restricts the
number ol comparisons between value sets of paths later on.
F. Finding Correlations Between Candidate Correlation Iden-
tifiers (Step 412)

Now that the methodology has 1dentified the highly index-
able and mappable paths 1n the schemas which will be can-
didate correlation identifiers, the methodology tries to find
pairs of these paths that produce a significant match between
their value sets. The following steps will 1dentify path pairs
with 1nteresting semantic correlations.

1. First find all the pairs of paths between any two schemas
tor which: the first path 1s highly indexable, and the second
path 1s mappable, and a significant overlap exists between the
value sets of the first path and the second path.

2. For each such pair of paths found 1n (1), match up the
individual data elements of the first and the second path. Then
assign a causal direction between the two paths based on the
timestamps of their respective messages so that we have an

5

10

15

20

25

30

35

40

45

50

55

60

65

8

origin path and a destination path. We expect to find the
timestamps of the messages from the origin path to be all
uniformly earlier then the corresponding timestamps 1n the
destination path. If we find contlicting directions beyond the
margin of clock accuracy, the path pair may be discarded.
Optionally, the pair of paths may be discarded (automatically
or after user input) 11 the number of values found 1n the origin
path 1s smaller than the number of values 1n the destination
path. Such an observation would violate the concept of cau-
sality since we do not expect any new values to appear 1n the
destination path that were not already 1n the origin path.

3. Each pair of paths found 1n step (2) can now be catego-
rized as a semantic correlation of the following type:

one-to-one: if both the origin and destination paths are

highly indexable;

one-to-many: 1 the origin path 1s highly indexable and the

destination path 1s mappable;

many-to-one: 1f the origin path 1s mappable and the desti-

nation path 1s highly indexable.

In the context of a business process, this mnformation can
reveal: i a given cause has exactly one effect, like the
orderBook.OrderNumber—shipBook . PO example above; 1f
one cause has many effects; or if many causes have one effect.
We consider a one-to-one semantic correlation stronger than
a one-to-many or many-to-one because the value match con-
ditions are more stringent. Notice that this classification of
semantic path correlations 1s orthogonal to the presence of
multiple data elements in any of the paths.

After these steps, the methodology has discovered the
semantic correlations between paths. It tells us which corre-
lation 1dentifiers may be used by the composite application as
a common context between different, possibly asynchronous
SEsS101S.

G. Finding Correlations Between Schemas (Step 414)

After finding correlations between paths from different
schemas, the methodology can now define a correlation
between two schemas 11 at least one path correlation exists
between the schemas. It 1s possible that more than one path
correlation exists between two schemas. Therefore, we define
the semantic correlation type between schemas to be the
strongest semantic correlation type of its path correlations.
This means that 1f there 1s at least one one-to-one path corre-
lation, the schema correlation type will also be one-to-one.
The causal direction of a schema correlation 1s determined by
the causal direction from 1ts path correlations.

H. Removing Transitive Semantic Correlations Between
Schemas (Step 416)

Transitive semantic correlations may appear among three
or more schemas, as shown 1n FIG. 6, ordered by causality. In
the example shown, schema A (and its messages) 1s seman-
tically correlated with schema B (and its messages) by a
semantic path correlation A.x—B.y. Similarly, schemas B
and C are semantically correlated by a semantic path corre-
lation B.y—C.z, and schemas A and C are semantically cor-
related by a semantic path correlation A.x—C.z. For visual-
1zation purposes, we can assume that the latest correlation 1s
redundant information. Theretfore, we do not consider 1t for
visualization and the methodology removes such transitive
semantic correlations.

I. Identifying Schema Translations (Step 418)
FIGS. 7A, 7B, and 7C illustrate this step. If so desired, this

step of the methodology serves to identify points 1n a data
flow where a schema translates from one data element to
another, e.g., as 1n a data flow such as 1s depicted 1n FIG. 7A.
The step requires (as depicted 1n FIG. 7B) that:
Schema B contains two highly indexable paths, x and z;
and

US 7,904,457 B2

9

Each path participates 1n at least one semantic link.

We describe this as Schema B allows a translation from the
value set 1n path x to the value set 1n path z. The fact that these
paths are highly indexable means that for each x, there 1s at
most one z..

In cases where there 1s typical correlation information
available, e.g., using identifiers that tie together matching
request and response messages, and/or messages that are part
of a transaction, we can generalize the translation of indexing
data elements within one schema to:

An 1nvocation type, consisting of a request message type

and 1ts corresponding response message type. If we find
a highly indexable path for the schema in the request
type and one 1n the response type, and both have the
same number of values, we have a pair of translated
keys.

A transaction pattern, where a schema consistently occurs
as a part of a recurring sequence of messages. Here, if' y
and v occur 1n separate messages within the same trans-
action patterns, we have a pair of translated paths.

Such a generalization of the schema translation step is
depicted 1n FIG. 7C.

I. Visualizing Semantic Correlations and Conversations in a
Business Process (Step 420)

If so desired, the methodology may then provide one or
more visualizations of the semantic correlations and conver-
sations of the subject process being evaluated. In an illustra-
tive embodiment, we used the Web Services Navigator (re-
terred to above 1n step 402) as a visualization environment to
add new views showing semantic correlations, correlation
identifiers and conversations 1n business processes. However,
it 1s to be understood that other suitable tools may be
employed. While the existing views 1n this tool used to show
the execution of complex Web Services applications by
focusing primarily on control flow, the new views generated
in accordance with the techniques of the invention offer addi-
tional understanding into the data flow and the business con-
versations executed in composite applications.

We 1llustrate this visualization with an example of a pur-
chasing application based on the supply chain business inter-
actions defined by the RosettaNet consortium (“RosettaNet
standards,” available from: http://portal.rosettanet.org/cms/
sites/RosettaNet/Standards/R Standards/p1p/index.html).
These interactions define the major steps required to move
through the process of requesting quotes, placing purchase
orders and fulfilling orders, notifying shipment delays and
canceling orders.

FIG. 8 shows an excerpt of the execution of this application
in a sequence diagram. The two columns represent the differ-
ent business roles (parties), i this example BUYER and
SELLER. Time proceeds 1n the vertical direction. Control
flow 1s shown, as 1n most existing tools, as request/response
invocations (drawn as horizontal dashed arrows) between the
parties. In this example, we have one getQuote, three pur-
chaseOrder and two shipmentNotification invocations. The
getQuote and purchaseOrder invocations originate from the
buyer, the shipmentNotification from the seller.

This mformation alone 1s 1nsufficient to fully understand
the conversation flow 1n this business application. Therelore,
we add the results of our semantic correlation analysis. We
draw the message contents for the requests and responses of
the mvocations as the lighter rectangles. The conversation
identifiers are drawn 1nside as labels 1n darker rectangles. We
also draw the semantic correlations as curved lines, connect-
ing the conversation identifiers. This new visualization {first
reveals that the quote for merchandise items obtained 1n get-
Quote was used 1n a three subsequent purchaseOrders. This

10

15

20

25

30

35

40

45

50

55

60

65

10

one-to-many semantic correlation 1s shown as the three
curved arrows on the left, connecting the correlation 1denti-
fiers 1n each instance. Then, 1t shows that two of the three
purchaseOrders were followed by a shipmentNotification.
These one-to-one semantic correlations are drawn as the two
curved arrows on the right.

Now that we learned how these correlation 1dentifiers put
the previously disjoint invocations in context, we can better
understand the conversations that occurred 1n this example.
The buyer asks a quote from the seller, probably for several
items. The seller responds and gives the buyer a quoteNum-
ber, (LEC98 . ..). The buyer then purchases, in three different
transactions, three items from the quote list. For each of these
transactions, the buyer mentions the quoteNumber for the
item, to which the seller responds with an OrderNumber
(JPMB . . .). Whenever an order 1s ready, the seller sends a
shipmentNotification to the buyer, mentioning the correct
OrderNumber (JPMB . . .).

More complex examples might include additional steps 1n
the purchasing process as well as multiple mstances of each
role. For example a buyer may send out a request for quote to
multiple sellers, and then place the order with the lowest-
priced seller.

FIG. 9 1llustrates a computer system wherein flow analysis
techniques may be implemented according to an embodiment
of the invention. That 1s, FIG. 9 illustrates a computer system
in accordance with which one or more components/steps of
the tlow analysis techniques (e.g., components and method-
ologies described above 1n the context of FIGS. 1 through 8)
may be implemented, according to an embodiment of the
invention. It 1s to be understood that the individual compo-
nents/steps may be implemented on one such computer sys-
tem or on more than one such computer system. In the case of
an 1mplementation on a distributed computing system, the
individual computer systems and/or devices may be con-
nected via a suitable network, e.g., the Internet or World Wide
Web. However, the system may be realized via private or local
networks. In any case, the mvention i1s not limited to any
particular network.

Thus, the computer system shown 1n FIG. 9 may represent
One or more servers or one or more other processing devices
capable of providing all or portions of the functions described
herein.

As shown, computer system 900 includes processor 902,
memory 904, mput/output (I/0) devices 906, and network
interface 908, coupled via a computer bus 910 or alternate
connection arrangement.

It 1s to be appreciated that the term “processor” as used
herein 1s intended to include any processing device, such as,
for example, one that includes a CPU and/or other processing
circuitry. It 1s also to be understood that the term “processor”
may refer to more than one processing device and that various
clements associated with a processing device may be shared
by other processing devices.

The term “memory” as used herein 1s intended to include
memory associated with a processor or CPU, such as, for
example, RAM, ROM, a fixed memory device (e.g., hard
drive), a removable memory device (e.g., diskette), flash
memory, €1c.

In addition, the phrase “input/output devices” or “I/O
devices” as used herein 1s intended to 1include, for example,
one or more input devices (e.g., keyboard, mouse, etc.) for
entering data to the processing unit, and/or one or more output
devices (e.g., display, etc.) for presenting results associated
with the processing unit.

Still farther, the phrase “network 1nterface™ as used herein
1s intended to 1nclude, for example, one or more transcervers

US 7,904,457 B2

11

to permit the computer system to communicate with another
computer system via an appropriate communications proto-
col.

Accordingly, software components including instructions
or code for performing the methodologies described herein
may be stored in one or more of the associated memory
devices (e.g., ROM, fixed or removable memory) and, when
ready to be utilized, loaded in part or in whole (e.g., mto
RAM) and executed by a CPU.

In any case, 1t 1s to be appreciated that the techniques of the
invention, described herein and shown in the appended fig-
ures, may be implemented 1n various forms of hardware,
soltware, or combinations thereof e.g., one or more opera-
tively programmed general purpose digital computers with
associated memory, implementation-specific integrated cir-
cuit(s), functional circuitry, etc. Given the techniques of the
invention provided herein, one of ordinary skill 1n the art will
be able to contemplate other implementations of the tech-
niques of the mvention.

It 1s to be understood that while we have described tech-
niques of the imvention above 1n terms of Web Services, the
same techniques can be applied to composite applications
using other messaging systems where the messages have
structured content. Advantageously, this permits the use of
the mmventive techniques for broader application 1n under-
standing legacy systems integrated through asynchronous
messaging.

Various modifications and alterations to the above-de-
scribed illustrative embodiments may be made 1n a straight-
forward manner. By way of example only, we can use a
sliding time window for the comparison of sets of messages.
The methodology could also benefit from interactive user
input to resolve possible ambiguities or to let the user drill
down to a particular piece of the execution. Using a combi-
nation ol multiple data fields 1n one message as a correlation
identifier (similar to compound keys in database design)
would allow the user to discover a wider range of relation-
ships.

If performance and scale become critical, we can split the
methodology 1n a training phase and an execution phase: first,
the training phase would extract the correlation i1dentifiers
from a limited, but representative training set; then, the execus-
tion phase can efficiently parse and correlate these 1dentifiers
across different messages. This could result in a substantial
reduction 1n the amount of data collected from the messages
and better performance at analysis time.

While the illustrative embodiments described above have
shown only one type of visualization, different types of inter-
active visualizations may be used to reveal the correlations
between 1nstances of messages as well as patterns of correla-
tions, analogous to execution patterns 1n Web Services. These
visualizations include, but are not limited to, topology views
as well as sequence diagrams.

Advantageously, techniques of the invention reveal conver-
sations 1n worktlow of composite applications, such as busi-
ness processes. The techniques help developers and business
owners to better understand how complex applications with
multiple, concurrent, and possibly long lasting sessions,
execute. Our semantic correlation complements, rather than
replaces, traditional trace correlation methods. However, it
provides a deeper understanding of the execution at a higher
level of abstraction. The mventive techmques provide many
advantages, by way of example only unique because:

The techniques can show data flow where control flow

tracing leaves gaps.

The techniques do not require any design information of

the system under study.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

The techniques analyze the content of the messages
exchanged between the service nodes and does not
require expensive internal tracing.

The techniques of the invention can be applied to any kind
ol messaging system, as long as the content of 1ts messages 1s
structured and can be parsed. In fact, migrating legacy mes-
saging systems to newer platforms may benefit from the
insights gained with the imventive techniques.

Other advantages include, but are not limited to, the ability
to: infer correlations of data 1n message flow of distributed
applications; find hidden control/data tlow between nodes 1n
a messaging system; understand data flow 1n terms of fan-1n/
fan-out, composition, decomposition, etc.; find reply for a
request 1n a callback structure; data flow analysis between
black boxes; and detect the following patterns: routers, aggre-
gators, €lc.

Although illustrative embodiments o the present invention
have been described herein with reference to the accompany-
ing drawings, 1t 1s to be understood that the invention 1s not
limited to those precise embodiments, and that various other
changes and modifications may be made by one skilled in the
art without departing from the scope or spirit of the invention.

What 1s claimed 1s:

1. A method for finding correlations between messages of
a system based on content, the method comprising the steps
of:

obtaining for one or more executions of the system, the
messages ol the system, wherein each message has a
schema associated therewith;

categorizing the messages into groups, wherein each group
has a common schema; and

finding pairs of messages from disparate groups wherein,
for the messages of a pair, there 1s a feature in common
in their contents:

wherein the common feature 1s found between different
paths of different schemas of disparate message groups
based at least 1mn part on an indexability value of the
different paths, wherein the indexability value 1s the
cardinally of a set of values of a path divided by the
number of data elements of the path,

wherein a path 1s a location of an element or attribute 1n a
schema.

2. The method of claim 1, where the common schema for
cach group of messages 1s the message structure derived from
the messages of the group.

3. The method of claim 1, wherein the system 1s a distrib-
uted system.

4. The method of claim 1, further comprising the step of
discarding duplicates of the obtained messages.

5. The method of claim 1, further comprising the step of
discarding pairs of the pairs of messages when the messages
of a patr are separated from each other 1n time by an unac-
ceptable amount of time.

6. The method of claim 1, wherein the common feature 1s
found 1n a path for which the indexability value of the path 1s
higher than a given ratio.

7. The method of claim 1, wherein the common feature 1s in
a path for which the indexability value of the path 1s approxi-
mately equal to one.

8. The method of claim 1, wherein a common feature of a
first schema 1s found 1n a path with an indexability value that
1s approximately equal to one, and a common feature of a
second schema has an indexability value that 1s higher than a
given ratio.

9. The method of claim 1, wherein a common feature of a
first schema 1s found 1n a path with an indexability value that
1s approximately equal to one, and a common feature of a

US 7,904,457 B2

13

second schema 1s found 1n a path for which no value occurs
more than a fixed number of times.
10. The method of claim 1, wherein the common feature 1s

found 1n a combination of multiple paths.
11. The method of claim 1, wherein the finding step further

comprises matching feature pairs such that there 1s a lexical

similarity 1n a name of types of the respective paths.
12. The method of claim 1, wherein the categorizing step

turther comprises categorizing a path as a simple type, with

one occurrence of a feature in a message, or as an aggregate

type, with multiple occurrences of a feature 1n a message.
13. A method for finding correlations between messages of

a system based on content, the method comprising the steps
of:

obtaining for one or more executions of the system, the
messages of the system, wherein each message has a
schema associated therewith:

categorizing the messages into groups, wherein each group
has a common schema; and

finding pairs of messages from disparate groups wherein,
for the messages of a pair, there 1s a feature in common
in their contents:

wherein when two schemas share a common feature found
in a path having an indexability value approximately
equal to one, the two schemas are labeled as having a
one-to-one relationship, wherein the indexabaility value
1s the cardinality of a set of values of the path divided by
the number of data elements of the path, and wherein a
path 1s a location of an element or attribute 1n the

schema.

14. A method for finding correlations between messages of
a system based on content, the method comprising the steps
of:

obtaining for one or more executions of the system, the

messages ol the system, wherein each message has a
schema associated therewith;

categorizing the messages into groups, wherein each group

has a common schema;

finding pairs of messages from disparate groups wherein,

for the messages of a pair, there 1s a feature in common
in their contents; and

determining a causal direction between a first schema and

a second schema having a common feature, wherein the
causal direction flows from the schema having messages
with earlier timestamps as compared with timestamps of
the corresponding messages of the other schema.

15. The method of claim 14, wherein the common feature
ol the second schema 1s found 1n a path with an indexability
value that 1s between a given range and which 1s labeled as a
one-to-many relationship when the causal direction goes
from the first schema to the second schema, or which 1s
labeled as a many-to-one relationship when the causal direc-
tion goes from the second schema to the first schema, wherein
a path 1s a location of an element or attribute 1n the schema.

16. A method for finding correlations between messages of
a system based on content, the method comprising the steps

of:

5

10

15

20

25

30

35

40

45

50

55

14

obtaining for one or more executions of the system, the
messages of the system, wherein each message has a
schema associated therewith:

categorizing the messages into groups, wherein each group
has a common schema;

finding pairs of messages from disparate groups wherein,
for the messages of a patir, there 1s a feature in common
in their contents; and

establishing a signature for schema pairs 1dentifying them
as one-to-one, one-to-many, or many-to-one based on

the feature pairs.

17. The method of claim 16, wherein the signature for
schema pairs 1s based on a prioritization over multiple feature
pairs: (1) where one-to-one has precedence over one-to-many
or many-to-one; or (11) based on a strength of lexical match
between feature labels.

18. The method of claim 16, wherein a sample of messages
1s used to establish signatures for analysis of: (1) a full set of

messages; or (11) a future set ol messages.
19. An apparatus for finding correlations between mes-

sages ol a system based on content, comprising:

a memory; and

at least one processor coupled to the memory and config-
ured to: (1) obtain for one or more executions of the
system, the messages of the system, wherein each mes-
sage has a schema associated therewith; (11) categorize
the messages into groups, wherein each group has a
common schema; and (111) find pairs of messages from
disparate groups wherein, for the messages of a pair,
there 1s a feature 1n common 1n their contents;

wherein the common feature 1s found between different

paths of different schemas of disparate message groups
based at least 1mn part on an indexability value of the
different paths, wherein the indexability value 1s the
cardinality of a set of values of a path divided by the
number of data elements of the path,

wherein a path 1s a location of an element or attribute in a

schema.

20. A computer readable storage medium for finding cor-
relations between messages of a system based on content,
comprising one or more programs which when executed by a
computer implement the steps of:

obtaining for one or more executions of the system, the

messages ol the system, wherein each message has a
schema associated therewith;

categorizing the messages into groups, wherein each group

has a common schema; and

finding pairs ol messages from disparate groups wherein,

for the messages of a pair, there 1s a feature in common
in their contents;

wherein the common feature 1s found between different

paths of different schemas of disparate message groups
based at least 1mn part on an indexability value of the
different paths, wherein the indexability value 1s the
cardinality of a set of values of a path divided by the
number of data elements of the path,

wherein a path 1s a location of an element or attribute 1n a

schema.

	Front Page
	Drawings
	Specification
	Claims

