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similarity transformation. For solving the linking problem, a
variable-bandwidth mean shiit method 1s adapted for estimat-
ing the maximum likelihood solution of the GCC.
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ROBUST CLICK-POINT LINKING WITH
GEOMETRIC CONFIGURATION CONTEXT:
INTERACTIVE LOCALIZED REGISTRATION
APPROACH

CROSS-REFERENCE TO RELAT
APPLICATIONS

gs
w

This 1s a U.S. non-provisional application of U.S. provi-
sional patent application Ser. No. 60/792,507, filed Apr. 17,
2006, by Okada et al., the entirety of which application is

incorporated herein by reference.

FIELD OF THE INVENTION

This invention relates to a system and method for facilitat-
ing registration of 1mages, and more particularly to a system
and method for aligning a pair of medical image data to
achieves a high degree of spatial correspondence between
1mages.

BACKGROUND OF THE INVENTION

Registration 1s one of the key problems 1n medical image
analysis. For mono-modal registration, 1t aims to recover a
geometric transformation to align a pair of image data, which
are different in some parts, so that the pair achieves the
highest spatial correspondence. Many clinically important
tasks, such as change analysis and data fusion, demand pre-
cise spatial alignment of such a data pair.

Traditional solutions for the mono-modal registration
problem aim to find a domain mapping of specific type which
mimmizes overall mismatching errors. For rigid registration,
such overall errors are of global nature, averaged over the
entire domain. For non-rigid registration, the errors can be
treated locally but some global regularization constraints are
often exploited for making the problem tractable. These glo-
bal factors enable to establish correspondences of the dissimi-
lar data parts. At the same time, however, the global factors
allow the dissimilar parts to influence overall registration
accuracy even at similar parts. Moreover, 1n these solutions,
specific choice of data and cost function dictate where the
registration 1s accurate or iaccurate, disregarding any avail-
able clinical semantics and demands.

SUMMARY OF THE INVENTION

The present application discloses a techmque for robust
click-point linking, which 1s a novel localized registration
framework that allows users to interactively prescribe a loca-
tion where the accuracy has to be high. The inventors assume
that a user (or an autonomous agent) specifies a point location
which 1s placed near a region of interest 1n one of the data parr.
Such a user-provided point location 1s called a Point of Inter-
est or “POI.” The task of the interactive localized registration
1s then to find the point 1n the other data which corresponds to
the given POI 1n the original data. In this application, the
inventors consider an application scenario of the longitudinal
3D data studies where a set of follow-up studies of the same
patient are subjected for analysis. It 1s assumed that the POIs
are given by mouse-clicks of users. Then the click-point
linking problem 1s solved by automatically linking a mouse-
click location 1n one data to the corresponding point 1n the
other. This framework advocates to interpret the aforemen-
tioned general registration problem as: (1) establishing a
point-wise correspondence at a specific point and (2) doing,
this sequentially for different points.
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One of the main advantages of this interactive localized
registration approach 1s that it 1s faithful to how the registra-
tion results are used 1n practice. In many clinical settings,
medical images are only assessed locally. When evaluating a
specific lesion or anatomy, the registration accuracy at the
target location must be high. However, practitioners are not
often concerned 1f other non-target regions are also correctly
registered nor if the data pair 1s aligned with the minimum
average error. Such a local focus of interest also facilitates
better accuracy and elliciency by 1gnoring influences from,
and avoiding computations of, the non-target regions away
from a POI, respectively.

On the other hand, the main challenge of this framework 1s
how to link corresponding regions that are changing or intrin-
sically different. Suppose a follow-up data pair 1s to be stud-
1ied, containing liver tumors imaged before and atter a therapy.
To quantily the therapy’s effectiveness, a registration of the
data pair would be required, followed by a change analysis.
This 1s a classical circular problem, since the registration 1s
required for analyzing interesting temporal changes but the
very changes make the registration difficult. The localized
registration makes the problem even worse because i1t
demands a harder task of finding a correspondence between
visually very dissimilar local regions.

To address the above challenge, the inventors have devel-
oped a local registration solution using geometric configura-
tion context. Point-wise correspondence 1s established by
exploiting geometrical configuration of a given POI relative
to other stable data points. More importantly this 1s done
without using local appearance/intensity information that are
potentially unreliable. This solution exploits a set of scale-
invariant saliency feature points (see, e.g., T. Kadir and M.
Brady, “Saliency, scale and image description,” International
Journal of Computer Vision, vol. 45, no. 2, pp. 83-103, 2001;
X. Huang, Y. Sun, D. Metaxas, F. Sauer; C. Xu, “Hybnd
image registration based on configural matching of scale-
invariant salient region features,” in Second IEEE Workshop
on Image and Video Registration, in conjunction with CVPR
'04,2004; and D. Hahn, Y. Sun, J. Homegger, C. Xu, G. Wolz,
and T. Kuwert, “A practical salient region feature based 3D
multimodality registration method for medical images,” in
SPIE Med. Imag., 2006), detected first for each data. Then, an
arbitrary POI can be geometrically represented with respect
to a set of the saliency feature locations. The geometric con-
figuration context (GCC) 1s defined to be a Gaussian mixture
that models a spatial likelithood of the POI given the set of the
teatures. A GCC, defined in one data domain given a POI, can
be transierred to the other data domain when rough corre-
spondences of the feature point set are available. The maxi-
mum likelihood estimate of the transterred GCC 1n the new
domain provides the desired corresponding point and can be
elficiently solved by using the variable bandwidth mean shift

method (see, e.g., D. Comaniciu, “An algorithm for data-
driven bandwidth selection,” /[EEE Trans. Pat. Anal. Mach.

Intell, vol. 25, no. 2, pp. 281-288, 2003).

The disclosed registration framework 1s inspired by a
recent development in the part-based object recognition
research (see, e.g., R. Fergus, P. Perona, and A. Zisserman,
“Object class recognition by unsupervised scale-invariant
learning,” 1n IEEE Conf. on Computer Vision and Pattern
Recognition, vol. 2, 2003, pp. 264-271; and B. Epshtein and
S. Ullman, “Identifying semantically equivalent object frag-
ments,” in IEEE Conf. on Computer Vision and Pattern Rec-
ognition.vol. 1,2005, pp. 2-9). Epshtein and Ullman recently
proposed an automatic algorithm for detecting semantically
equivalent but visually dissimilar object parts, exploiting
likelihood models similar to ours. Our work can be inter-
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preted as a flexible online learning version of their framework
where the bootstrapped likelihood is estimated from the test
data instance rather than a disjoint training data set. Land-
mark-based registration (see, e.g., X. Pennec, N. Ayache, and
J. Thirion, “Landmark-based registration using features iden-
tified through differential geometry,” 1n Handbook of Medical
Imaging, Academic Press, 2000, pp. 499-513), 1s also related
to the proposed framework in the sense that both assume
user-provided point locations where the registration must be
accurate. They, however, aim at diflerent technical and appli-
cation goals. While the robust click-point linking seeks to
establish a correspondence between a volume pair given a
POI, the landmark-based registration aims to estimate
domain transformation given a set of user-provided corre-
spondences. The click-point linking 1s localized while the
landmark-based registration aims to achieve entire smooth
domain mapping that intersects given correspondences. The
disclosed technique also aims to improve the previous
saliency feature-based registration solutions (see, e.g., X.
Huang, Y. Sun, D. Metaxas, F. Sauer, and C. Xu, “Hybnd
image registration based on configural matching of scale-
invariant salient region features,” in Second IEEE Workshop
on Image and Video Registration, in conjunction with CVPR
‘04, 2004; and D. Hahn, Y. Sun, J. Homegger, C. Xu, G. Wolz,
and T. Kuwert, “A practical salient region feature based 3D
multimodality registration method for medical 1images,” in
SPIE Med. Imag., 2006), by using the mean shift algorithm
(see, e.g., D. Comaniciu, “An algorithm for data-driven band-
width selection,” IEEE Trans. Pat. Anal. Mach. Intell, vol. 23,
no. 2, pp. 281-288, 2003.) Mean shiit 1s a popular computer
vision solution for tracking and segmentation. Although the
mean shift algorithm has successiully been applied to the
medical image segmentation problem (see, e.g., K. Okada, D.
Cornaniciu, and A. Krishnan, “Robust anisotropic Gaussian
fitting for volumetric characterization of pulmonary nodules
in multislice C'1,” IEEE Trans. Med. Imag., vol. 24, no. 3, pp.
409-423, 2005), the inventors believe that the present disclo-
sure 1s the first application to the medical image registration
problem.

This application presents three instances of the above
GCC-based framework considering: (1) pure translation, (2)
scaling and translation, and (3) similarity transform (scaling,
translation and rotation). Performance of this system has been
evaluated by using sixteen whole body CT follow-up data that
are manually annotated. The concept of this click-point link-
ing has been previously proposed 1n the context of lung nod-
ule detection (see, e.g., C. Novak, H. Shen, B. Odry, J. Ko, and
D. Naidich, “System for automatic detection of lung nodules
exhibiting growth,” in SPIE Med. Imag., 2004). However the
present disclosure aims to solve this problem in a general
setting, beyond their lung nodule context, with an emphasis of
handling visually dissimilar regions.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings 1llustrate preferred embodi-
ments of the invention so far devised for the practical appli-
cation of the principles thereof, and 1n which:

FIG. 1 shows graphical representations ol experimental
results of registering medical 1image volume pairs using the
inventive technique.

FIG. 2 shows an example flowchart for linking visually
dissimilar local regions foa pair of 1images;

FIG. 3 shows an example flowchart of a 3D landmark
detection method; and
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FIG. 4 shows an example tlowchart of a saliency region
detection method of the 3D landmark detection.

DETAILED DESCRIPTION

-

This application 1s organized as follows. The following
section describes GCC and the solution using the GCC to the
problem of robust click-point linking 1n 3D under pure trans-
lation. Sec. 1I-A formally defines the robust click-point link-
ing problem and overviews 1ts solution using the GCC. Some
terminologies and symbols used throughout this application
are also defined 1n this section. Sec. I1I-B and II-C describe the
algorithms used for extracting saliency features and for esti-
mating feature correspondences between a volume pair using
an exhaustive search-based strategy. Sec. II-D proposes a
GCC that represents a spatial likelihood function of the point
corresponding to a given POI. Sec. II-E itroduces the opti-
mization solutions used for solving the maximum likelihood
estimation of the GCC. The following two sections consider
extending the above approach to more general class of
implicit domain transformation. Sec. III describes such a
generalized framework, and Sec. IV elaborates further on
how such a solution can be dertved under transformations up
to stmilarity without explicitly estimating the domain trans-
formation. Sec. V describes an alternative to the saliency
features used as geometrical anchors. Sec. VI evaluates the
teasibility of the proposed methods.

II. Robust Click-Point Linking

A. Definition and Overview

Suppose we are given a pair ol 1image functions to be
registered. Without loss of generality, one 1s called Reference
Image denoted by 1. (x,) and the other Floating Image denoted
by 1.(X,), wherex,. eR” and xjeR3 denote coordinate variables
in their respective continuous domains. The pair of the
domains are assumed to be implicitly related by an unknown
transformation T, parameterized by 0,

Iy
X, —» X/

(1)

The task of click-point linking 1s defined as the estimation
ofthe point ¢ 1nthe tloating image I (x ) which corresponds to
a given click point or POI ¢, 1n the reference image I (x ). The
true solution ¢, can be defined it we know the true domain

transiformation T,

(2)

Next we introduce salient features whose 3D coordinate 1s
denoted by P. Suppose now that we compute a set C_of N
teatures for the reference, and a set C.otf N teatures for the
floating 1mage, respectively,

c/~1glc,)

C,~{P,1,...,PN,} (3)

C~{PA,..., PN} (4)

We let Q denote a set of M corresponding feature pairs Q
constructed from C, and C,

0=q,1,94), ..., (@26900} (5)

where q,,€C,, qz€C,; and M<min(N,, N ).
The standard registration solutions aim to estimate the
domain transformation T4 by solving an energy minimization
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problem é:argmineE(El,IﬂIf). For example, the feature-based
registration can be solved by using the iterative closest point
(ICP) algorithm which estimates 6 and Q simultaneously so
that q,=14(q,,) (see, e.g., P. J. Besl and N. D. McKay, “A
method for registration of 3-d shapes,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 14, no. 2, pp. 239-256, 1992). Once
the domain transformation 1s estimated correctly, the click-
point linking becomes trivial as ¢~Tg(c,). However, estimat-
ing the transformation from noisy data 1s far from trivial. The
estimation accuracy 1s very sensitive to the errors in corre-
spondences. The iterative solutions, such as ICP, also tend to
be computationally expensive.

In the inventive approach, the linking problem 1s solved by
directly optimizing a spatial likelihood function over the loca-
tion variable x. without explicitly estimating the domain
transformation,

(6)

where L(xdc,, Q) denotes a spatial likelihood function 1n the
domain of the floating image that 1s conditional to the POI ¢,
in the reference 1image and a set of corresponding features Q.
This generic maximum likelithood formulation allows us to
exploit the mean shift algorithm which allows computational
eificiency and desired robustness against false correspon-
dences. The following describes details of the solution 1n
steps.

¢~arg max, L(xAc,, Q)

B. Scale-Invariant Saliency Feature Extraction

The line of research on feature-based matching methods
has long been restrained by the question: what features to use?
An mteresting feature selection criterion was proposed for
tracking objects under occlusion and dis-occlusion situations
in J. Sill and C. Tomasi, “Good features to track,” in /EEE
Conf. On Computer Vision and Pattern Recognition, 1994,
pp. 593-600. The criterion states that the right features for
tracking are exactly those that make the tracker work best.
The 1intuition there 1s that goals of an application decide the
choice of methodology. Applying similar reasonming, the good
features to use 1n the context of producing reliable correspon-
dences should be those that are “‘unique”™ or “rare”. That 1s,
given a feature from the reference image, we consider 1t
“000d” 11 the likelihood of 1t having multiple corresponding
features on the matching image 1s low. Features that satisty
this criterion are increasingly being studied and used for
image registration and object tracking purposes. Most nota-
bly, a scale-invariant salient “region” feature detector 1s pro-
posed 1 T. Kadir and M. Brady, “Saliency, scale and image
description,” International Journal of Computer Vision, vol.
45,n0. 2, pp. 83-103, 2001. The salient regions are selected as
those local image regions with highest saliency 1n both spatial
and scale spaces. The saliency and best scale of alocal region
are determined based on entropy-based criteria. The applica-
tion of the salient region features to 1mage registration has
been studied 1n both 2D (see, e.g., X. Huang, Y. Sun, D.
Metaxas, F. Sauver, and C. Xu, “Hybrid image registration
based on configural matching of scale-invariant salient region
teatures,” 1n Second IEEE Workshop on Image and Video
Registration, in conjunction with CVPR 04, 2004) and 3D
(see, e.g., D. Hahn, Y. Sun, J. Homegger, C. Xu, G. Wolz, and
T. Kuwert, “A practical salient region feature based 3D mul-
timodality registration method for medical images,” 1n SPIE
Med. Imag., 2006), and one of the main advantages of the
region features has been shown to be their invariant to rota-
tion, translation and scale (see, e.g., X. Huang, Y. Sun, D.
Metaxas, F. Sauer, and C. Xu, “Hybrid image registration
based on configural matching of scale-invariant salient region
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teatures,” 1 Second IEEE Workshop on Image and Video
Registration, in conjunction with CVPR 04, 2004.) In the
present disclosure, the inventors use the salient region feature
detector 1n 3D to extract features from CT volumes.

First, for each voxel x 1n a CT volume I, a probability
density function (p.d.1) p(\R, ) 1s computed from the inten-
sity values 1 in a spherical region R, of certain scale
described by a radius s and centered at x,

(7)

—(i—I(y)*
& 202

dy

| 1
p(ll R(s,x)) — ff
V(R(x) Risx) V 270

where 1 takes on values 1n the set of all possible intensity
values, V(R , ,,) denotes the volume ot the local region R ,,,
y represents voxels in the region R, ., and o 1s a constant
speciiying width of the Gaussian kernel 1n the nonparametric
kernel-based p.d.1. estimation above. (o can be set to a con-
stant value, for instance, 10, for all CT volumes.)

(Given the intensity p.d.1. of the region, the differential
entropy of its intensity distribution 1s defined by,

H (R(s?x)):—f i(s0 00 (Z |R(s;))l'~3 g (p(i |R(5T}:)))di (3)

where 1(s,x) denotes the range of intensity values inside the
region R, ..

Thenthe bestscale S, forthe region centered at x 1s selected
as the one that maximizes the local entropy: S,=argmax
H(R ). Consequently the saliency value A(R ) for the
region with the best scale 1s defined by the extremum entropy
value weighted by the best scale S, and a differential seli-
similarity measure 1n the scale space,

J . (9)
ﬁﬁ'(l | Risx)) di

A(R(sx,x)) — H(R(H,x)) 'SX f

1(5.X)

Sx

Since the above saliency metric 1s applicable over both
spatial and scale spaces, the saliency values of region features
at different locations and scales are comparable.

Next 1n order to pick a low number N (N<100) of globally
most-salient region features (each defined by its center and
the best scale), the following steps ol processing are intro-
duced.

Feature Extraction:

A1l For each voxel location x, compute the best scale S_ of
the region centered at it, and 1ts saliency value AR, )

A2 Identity the voxels with local maxima 1n saliency val-
ues. Then the salient regions of interest are those that are
centered at these voxels and have the best scales.

A3 Among the local maxima salient regions, pick the N
most salient ones {pi (with highest saliency values) as region
teatures for the CT volume.

It takes about 2.5 minutes to compute the salient region
teatures on one CT volume. This performance 1s acceptable in
our application since the features are computed ofif-line
before clicking points.

In clinical practice, the 12-bit positive-valued CT volume
data 1s typically converted to the Hounsfield unit (HU) that 1s
the standard physical unit of the CT numbers. The data used
in this study ranges from 0 to 4095 and is related to HU with
the offset of —1024 and the slope of 1. For visualizing specific
types of tissues 1n the standard 8-bit grayscale, windowing 1s
commonly applied to the HU values. In this study, we use a
specific windowing between 30 and 285 HU for suppressing
certain types of flexible tissues such as fat (-100 to —50 HU)
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and water (0 HU). Removing such flexible tissues helps to
stabilize the feature extraction process, focusing on more
rigid structures that allow to establish correspondences
between different time-points.

C. Feature Correspondence Matching

Both reference and floating images 1(X,) and I(x,) are
independently subjected to the procedure described in the
previous section II-B for extracting the scale-invariant fea-
tures. This results 1n a pair of sets, denoted by C, and C, of N,
and N features for the I, and I -as defined in Equations (3) and
(4), respectively.

Given a POI ¢, 1n the reference domain xr, we find a set )
of M corresponding features, as defined in Equation (5), by
using the following exhaustive search strategy.

Feature Matching By Exhaustive Search:

B1 Select M<N features {q.,, ..., q,.,} from C_which are
closest to ¢, 1n terms of Fuclidean distance.

B2 For each reference feature q,,

B2a Exhaustively compute appearance-based similarities

against the N, floating domain features {p,} from C,
The appearance similarity is measured by x* distance
between a pair of intensity histograms derived from
circular regions R(sq,,.,q,,) and R(sp,,p,) centered at q,,
and p, respectively.

B2b Select the most similar p, and set it as g

Notice that this 1s a very simple matching algorithm, which
1s meant to provide only rough results. The above exhaustive
search can be less accurate 1n comparison to more complex
approaches such as ICP. It 1s thus likely that QQ contains a
non-negligible amount of false correspondences. However its
computational complexity 1s expected to be significantly
lower than other complex approaches, allowing us to realize
more efficient solution.

D. Spatial Likelihood Modeling

This subsection describes how to model the spatial likeli-
hood function L(x/c,,Q). The way such a model can be con-
structed depends on the class of transformation we consider
in T. For illustrative purpose, we first demonstrate the model
construction for the simplistic translation only transforma-
tion. Extension to more generic class of transformations will
be discussed 1 Section III.

For both reference and floating domains, we first introduce
a local frame whose origin 1n set at each saliency feature
location,

‘xr:‘xrf_l_prz' (1 0)

(11)

where x,, and X, denote coordinate values 1n the local frame
centered at feature p,, in the reference domain and p, in the
floating domain, respectively.

We define the geometric configuration context or GCC in
the reference domain x ,as a M-component Gaussian mixture.
This mixture model represents a spatial likelihood of POI
location ¢, with respect to a set of M saliency features {q .}

from Q,

X XatPg

M (12)
L(x, | €y C) = L, | Crn Gts v 2 gn) = ) PGy | i 1)
=1

P(-xr | 4 ris Cr) — N(-xr; My, G-Ej!) (13)
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-continued
My = Cp = Cp + G

(14)

Oy = ﬁ(sqrj) (15)

where 1 1s the 3D identity matrix, m,, and o,, denote the
respective mean and width of the 1-th Gaussian component,
C,.1s 3D coordinates of the POI 1n alocal frame centered atq,,.,
Sq,, 15 the 1sotropic scale associated with saliency feature q, .,
and 1, 1s a function that relates the feature’s scale to the
Gaussian width. Note that a GCC 1n the reference domain
forms a mixture of M concentric Gaussian components
because we know exactly where the POI 1s 1n the domain.
Therefore, the resulting likelihood 1s convex with a unique
maximum at the POI location. On the other hand, the 3D
vector ¢, 1n the 1-th local frame defines a geometrical relation
of the POI with respect to the saliency feature location p,.,.

Finally, we define the desired GCC representing a spatial
likelihood of the point in the floating domain xwhich corre-
sponds to the POI given in x

L(-xf | Cyy Q) :L(-xf |Cr-,- (QFI-,- R Qfl):- SN (QFMa Q’W)) (16)

M
= Z plxslas, g, cp)
i—1

ps 1 gps Gris cr) = N(xpymg, g 1) (17)

Mg = gr(fra Q)=c, — 4y +4qps (18)

SG,; + 59 4 (19)

2

Up = ﬁ‘(cra Q) =

where g. denotes a function that relates ¢, and Q to the mean
of the 1-th Gaussian component with respect to feature q,, and
t, denotes a function that relates Sq,, and Sq to the width of
the 1-th Gaussian component.

Recall that underlying transformation T,, relating local
frames centered at q,, and g as defined 1n Equations (10) and
(11), 1s assumed here to consist only of linear rigid transla-
tion. Then x, must be equivalent to x,, since a vector 1s invari-
ant under pure translation. As a consequence, the dertvation
of Equation (18) could be interpreted as transferring the
Gaussian component as defined 1n Equation (13) 1n the ret-
erence domain X, to the floating domain x,using the corre-
spondence between q,; and g, under the above pure transla-
tion assumption. First we employ Equation (10) for
speciiying the POI 1n the 1-th reference local frame

Cr:Crf-l-":Lﬂf (20)

Then the mean m, 1s defined to be equivalent to ¢,
expressed in the 1-th floating local frame as 1n Equation (11).
Subsequently, we apply the translation invariance ¢;~c,, and
substitute Equation (20), resulting in the form shown 1n Equa-

tion (18)

Mg =Cy (21)
=Cf; H 45
=Cp; Y45

=Cr— 4y 45

For modeling the Gaussian width, we interpret each fea-
ture’s scale, derived by the aforementioned maximum
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entropy algorithm, as statistical uncertainty of the point local-
ization. Since the mean estimator (21) 1s balanced between
the features q,, and g, in both domains, we model the Gaus-
sian width to be the unbiased mean of the pair of estimated
scales as shown 1n (19).

The mixture model (16) of the spatial likelihood L(x I¢,,Q)
consists of Gaussian components with varying mean and
width unlike the case in (12). This 1s due to the measurement
errors causing variance in the extracted feature locations
across different time-points. Moreover the failed feature cor-
respondences 1n QQ can make the mean estimate largely devi-
ated from the true mean. The Gaussian width 1s also variant
because the scale estimates Sq,, and Sq are spatially variant.

E. Mean Shift-Based Robust Maximum [ikelihood
Estimation

This section describes our robust and eflicient solution for
the maximum likelihood estimation problem 1n (6) with the
likelihood model defined 1n (16) to (19). Due to the feature
matching errors discussed in Sec. II-C and II-D, the likeli-
hood function becomes multi-modal with the false correspon-
dences creating outlier modes. The task to be solved then
becomes estimating the mixture mode due only to the cor-
rectly found correspondences. In other words, the right mode
must be selected among outliers within an arbitrary distribu-
tion. This task 1s solved by using the variable-bandwidth
mean shitt (VBMS) method proposed in D. Comaniciu, “An
algorithm for data-driven bandwidth selection,” IEEE Trans.
Pat. Anal. Mach. Intell, vol. 25, no. 2, pp. 281-288, 2003. The
mean shift 1s an efficient and provably-convergent gradient-
ascent algorithm with adaptive iteration step size. The origi-
nal algorithm was designed to analyze mode structures of
kernel density estimate given a data point set. In this setting,
the kernel bandwidth 1s often considered to be spatially con-
stant. The VBMS extends the above mean shift framework to
the case with spatially vaniable bandwidth where different
data points have different significance. This extension allows
its application to analyze the mode structures of generic
Gaussian mixture models as well as to solve the general
information fusion problem where the task is to estimate the
most plausible solution given a set of hypotheses. The fol-
lowing briefly summarizes the VBMS framework.

LetxeR>,i=1, ..., Mdenote aset of 3D data points, and H,
1s a 3D matrix indicating uncertainty or significance associ-

ated with the point x.. The point density estimator with 3D
normal kernel at the point x 1s given by:

h M (22)
fo =) N xi, Hy)
i=1
Co) & 1 )
= [Hi| ™ 2 expl - 5 (v = x) H (= x)
g el )
The VBMS vector m (x) 1s then defined by
(23)

M
my(x) = Hy(x) ) wi(x)H;  x; - x
=1

where H, (x) denotes the data-weighted harmonic mean of the
bandwidth matrices at x
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M (24)
Hy'(x)= ) wixH; "
i=1

and the weight w (X) represents the intfluence from 1-th com-
ponent at X normalized over all the components

|Hf|_mexp(_ % (x — ;) H ' (x - x:')) =)

wi(Xx) =

Z |Hf|_UZEKP(— % (x —xi)TH Hx - X:‘))
=1

It can be shown that the VBMS vector 1s an adaptive esti-
mator of normalized gradient of the underlying density:

V £,(x)

my(X) = Hp(x) £.(%) .

The following 1terative algorithm with the VBMS vector 1s
provably convergent to a mode of the density estimate 1n the
vicinity of the initialization x,, . 1n the gradient-ascent sense
but without nuisance parameter tuning,

YotXiir

yn+l:mv0’]r1)+yn (26)

We denote the convergence of the 1terator by y*.

Two robust algorithms are used for the maximum likeli-
hood estimation of the multi-modal likelihood model (16)
using the above VBMS algorithm (26). The application of the
algorithm to the specific model 1n (16) 1s straightforward,
simply setting X,_m, and Hizoﬁzl as defined 1n (18) and (19),
respectively. The first solution, Single VBMS, mvolves a
single VBMS iteration from an imnitialization x,, .. estimated
from C, and C,under the pure translation assumption. On the
other hand, the second solution, Multiple VBMS, involves
voting among a set of convergences from multiple VBMS
iterations 1nitialized at each component mean my.

SingleVBMS:

CI Compute the means z, and z .01 saliency teature points in
C, and C, respectively.

C2 Compute the mean bias z=z~z, between C, and C.

C3 Set the mitialization of a VBMS 1terator by the mean
bias-corrected POI in the floating domain: X, . =c +7

IFILE
C4 Perform the VBMS algorithm in (26), resulting 1n the
convergence y*

C5 Results in the linking estimate ¢ ~y*.
MultipleVBMS:

D1 Initialize M VBMS 1terators with M component means
{mﬁ} n (18): x,,,;,,~my.

D2 Perform M independent VBMS 1terations (26), result-
ing in a set of convergence {y*,}.

D3 Group {y*,} according to their pairwise Euclidean
distances and select a subset {y*,} that forms a cluster con-
taining most members.

D4 Results 1n the linking estimate by the mean of the
subset:
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The former solution emphasizes on efficiency since i1t
involves only a single VBMS 1teration. However the estima-
tion accuracy 1s largely dependent upon the estimated 1nitial-
1zation. This solution 1s not effective when, between the vol-
ume pair, there exists large variation in the saliency features
as well as deformation beyond the pure translation. The latter
solution 1mproves its robustness by performing multiple
VBMS iterations. The solution 1s less efficient than the former
however 1t 1s more general since it does not assume any
specific domain transformation.

I11. Extension to General Transformation Class

As mentioned 1n Sec. 1I-D, the spatial likelihood function
(16) in the floating domain depends on what type of underly-
ing domain transformation is considered. For instance, the
tormulae for the component Gaussian mean and width 1n (18)
and (19) do not hold true under transformations beyond pure
translation. This 1s because the derivation of (18), as demon-
strated 1n (21), exploits an invariance property specific to the
transformation class. This section discusses how we can gen-
cralize the strategy used for modeling the likelihood to more
general class of transformations.

Recall that Q denotes a set of M correspondences between
saliency features in the reference and floating domains, com-
puted by using the procedure described in Sec. II-C. Each
correspondence q; 1s represented by a 2-tuple (q,,, q5). Sup-
pose that P denotes a set of all K-subsets of QQ such that

P={P;|l=1, . ,L} (27)
LZ(I:M)
Pg:{qklkzl, Ce K}

l?k:(quai?fk)EQ

where L 1s cardinality of P, and P, 1s a K-subset of Q. Without
a loss of generality, we arbitrary select a single correspon-
dence g, from P, and call 1t an anchor correspondence q,~(q, .
q,). resulting in a set of anchors for each K-subset {q;}1=1, .
L

Given the above setup, we now consider extending the
spatial likelihood function, defined in (16-19), to general
classes of linear transformation. The generalized spatial like-
lithood 1s defined as a mixture of L. Gaussian components

similar to the case with the pure translation described 1n Sec.
I1-D.

(28)

L(-xflcra P):L(Xflﬂ'r, Pla aPL)

L
= plrl Py
=1
plxs| Pp,c,)=Nxs,mg, ﬂ'%f) (29)
ma = gglcr, Pi) (30)
aa = felcr, Pp) (31)

Notice that they assume the form similar to (16-19) except
the functions g and 1, that depend on specific transtormation
classes. The likelihood function 1s also now dependent to the
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set P instead of Q. Therefore each Gaussian component
depends on the set P, consisting of K feature correspondences.

Now we presume that the underlying domain transforma-
tion T4 can be modeled by a certain generic parametric model
and that a set of K correspondences given in P, are sufficient
to determine the domain transformation uniquely. Then the
tollowing provides a general procedure for determining g,
and 1, for the class of transtformation.

Mean and Width ot 1-th Gaussian Component Given P;:

El estimate transtormation parameter 6, using P;.

E2 g,: compute the I-th component mean by mz=Tg (c,).

E3 1,: compute the I-th component width as a function of
scales of all feature points 1n P,.

The above likelihood formulation provides a generic
framework to handle different classes of domain transforma-
tion by choosing an appropriate K value. Higher K values are
required to handle more complex transformations with larger
degrees of freedom (DOF). In R°, for instance, the likelihood
function with K=3 can handle transformations up to similar-
ity. The likelihood with K=2 can determine transformations
with scaling and translation only. With K=1, we can handle
only pure translation. It 1s straightforward to show that the

spatial likelihood function 1n (16-19) 1s a specific instance of
the generalized likelihood (28-31) with K=1. In such condi-

tion, the set P, defined 1n (27), reduces to Q so that P=Q and
L.=M. The original mean and width formula in (18) and (19)
satisly the procedure 1n E1-E3, resulting 1n the equivalence
with g_—g, and 1 =1, for K=1.

The function f (c,,P;) determines the width of the I-th
(Gaussian component. As discussed 1n Sec. 1I-D, we can inter-
pretscales S and S 7 of the saliency features 1n P, as statis-
tical uncertainty for localizing the feature points. Such uncer-
tainties at the feature locations must be transierred to the
location of the estimated component mean m, by propagating
them through the transtormation Tg. It may be assumed,
however, that deformation due to the domain transformation
1s not too large, allowing the change due to the propagation to
be treated as negligible. Therefore the uncertainties at the
features can also be treated as uncertainties at the estimated
component mean. In this study, we consider uncertainty mean
as a simple 1nstance of fusing the set of uncertainties.

K (32)

ZSM + ZS%

k=1 k=1
2K

0= fg(cr‘a P.‘,') —

IV. Invariance-Based Implicit Transformation
ESTIMATION

The procedure E1-E3, described 1n the previous section,
involves the explicit estimation of the transformation param-
cters O, from each K-subset P,; of the original correspon-
dences 1n Q. For our goal of establishing the link between ¢,
and ¢, as well as m,; and mg, there exist more intuitive geo-
metric interpretation of the estimation problem which may
lead to more efficient solutions. In this section we offer such
alternative solutions that specily the mean of the 1-th Gauss-
lan component based on geometric invariances without
explicit parameter estimation as in E1 and E2.

For certain K values and their corresponding classes of
allowed transtormation, we construct an estimator of mg
using geometric invariances that are true under the specific
transformation classes. The following introduces the setting.
We consider a pair of Reference Local Frame and Floating
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Local Frame, as defined 1n (10) and (11). We set the origin of
these two local frames at anchor points q,; and q, that are
corresponding to each other. By definition, described 1n Sec.
III, a set of K correspondences given 1n P, can sufficiently
determine the underlying domain transtormation T Assume
that the transformation Tg 1s 1mplicitly estimated given P,
The mean m4ot l-th Gaussian component is then defined by a
function g, which provides ¢, given the POI ¢, under the

—

constraints given in the implicit estimate: m;~C~g (c,)=Tg
(c,).

There are two 1mportant 1ssues. The first 1s that the trans-
formation TGE considered here 1s defined 1n the local frames so
that each transformation nstance for each subset P, 1s ditfer-
ent from one another unlike the case 1n the procedure E1-E3.
This does not, however, add any extra computational burden
because the procedure E1-E3 also recomputes the transior-
mation in the global frame x.for each P;. This combinatoric
computation 1s also necessary for handling errors in the esti-
mated correspondences 1n Q. The second 1s that translations
in the global tframes between X, and X, are absorbed 1n the
local frame pair by setting the corresponding points in g, as
origins of the frames. Thus the DOF ot Tq 1n the local frames
must be adjusted accordingly.

The present disclosure provides solutions for K=1,2,3
which cover domain transformations up to similarity trans-
formation. The case with K=4 will cover alline transforma-
tion in R> however we leave its solution as our future work.
For K=1, a solution has already been provided in our deriva-
tion 1 Sec. II-D. The condition K=1 only allows pure trans-
lation in R%. Moreover vectors are invariant under this trans-
lation class of transformation in R?. It is straightforward to
see that the pair of local frames must be equivalent, resulting
in ¢,=¢,;. The following examines the cases for K=1,2.

A. Scaling and Translation Transformation

In R”, a K-subset P, with K=2 yields two correspondences,
providing 6 constraints. These constraints are sullicient to
determine the transformation with scaling and translation (4
Degrees of Freedom (DOF)) and pure translation (3 DOF).

First we employ Equations (10) and (11) for specitying the
given POI and its corresponding point in the 1-th reference
and floating local frames centered at the anchors q,; and g,
respectively.

Cp— Crl_l_ q,i (3 3 )

Cr—Catdg (34)
where ¢ ;1s the unknown that must be determined as a function
of the knowns ¢, q; and P,.

Using the same argument for the K=1 case, scaling remains
the only varying factor in the coordinate mapping between the
local frames ¢,; and ¢, after canceling the translation factor.
Since P, contains only two correspondences, there 1s only one
remainder correspondence after choosing the anchor. Letq, =
(4,70094,) denote the remainder. Also let a,, and a, denote
relative vectors a,;=q,,,—q,; and az;=q4,—q4 1n the respective
local frames.

The pair of correspondences in P, and of ¢,; and ¢4 can then
be interpreted as a pair of similar triangles (0,a,,.c,;,) and
(0,a4,c4), where they are similar triangles of different size

without rotation. This interpretation thus provides the follow-
ing two mvariances under scaling: normalized vector

C Crt (33)

leall — lleall
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and ratio of vector norms.

leall— lexdl (36)

lagll — lla.ll

where ||'|| denotes a vector norm. Combining (35), (36) and
(33) vields the desired function estimating the 1-th Gaussian
component mean with K=2.

lagall (37)

laxl

mag =8g> K=2c,, P)= (¢r —gu)

B. Similarity and Fuclidean Transformation

In R°, a K-subset P, with K=3 yields three correspon-
dences, providing 9 constraints. These constraints are suili-
cient to determine projective transformation up to similarity
(7 DOF) and Euclidean (6 DOF). S1x constraints given in a
2-subset are not sullicient to uniquely determine the Fuclid-
can transformation of 6 DOF because of ambiguity for 3D
rotation about the vector connecting the two points 1n the
subset 1n the local frame.

Let 9;,=(9y200 95.) and qQ;=(q2, ) denote the two
remainder after choosing the anchor g, from P,. Also leta_, and
ay denote relative vectors a,~q,,,—q,; and a;=q,,—q, 1n the
respective local frames. Similarly letb ; and b ;denote relative
vectors b,;=q,,,—q,; and b,=q4,—q 4, respectively.

Three correspondences in P, and ot ¢,; and ¢, can then be
interpreted as a pair of similar tetrahedra (0,a b, ,.c ) and
(0,a4,b4c,). By definition, the geometric similarity assures
that each corresponding angle 1s equivalent and each edge 1s
scaled by the same factor. In the following, we derive a
closed-form tormula of the unknown ¢, as a function ot the
other knows by exploiting the geometric similarity of the
tetrahedra.

Considera 3D plane L, that contains a face of the reference
tetrahedron which includes two vectors a_, and b, 1n the ref-
erence local frame. Similarly let L, denote a 3D plane 1n the
floating local frame, containing the tace (0,a;b,). We next
orthogonally project vectors ¢,; and ¢4 to the planes L, and L,
respectively. Let u,;, and u, denote such orthogonal projec-
tions. Consequently the vectors c¢,; and ¢, can be linearly
decomposed to vector sums of the orthogonal projections and
vectors that are normal to the planes.

Cpp— UtV (3 8)
Ca—tgtVg (39)
Vi :krnrf krER (40)

ViKkagkeR (41)

where n,; and n; denote unit-normals of L, and L4, respec-
tively. The orthogonal projections assure that the vectors v,
and vz are orthogonalto (a,;,b,;) and (a,b,), and thatu, ;and u,
are contained 1 L, and L, respectively.

Now u,,can be written as a linear combinationofa_;and b,
since 1t lies within L ,. The weights can be solved explicitly by
using the above orthogonal constraints.

(42)

Upp = Waly + Wpby
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-continued
- (@b ren) = ball*(anen) . (43)
(alby)” = a2 116,12
W (ﬂzjbﬂ)(ﬂzjcﬂ)_”ﬂrﬂ z(b:,{cr.‘f) c R (44)
b p—
(alby)” = a2 116,12

Since ¢, 1s known, v, 1s determined from (38) when u, 1s
gIven.

vrf - ri Hrz': ri waarf_wbbrf (45 )

For the floating tetrahedron, u, can also be written as a
linear combinationotazand byas foru,,in (42). Furthermore,
because of the geometrical similarity, the same weights in
(43) and (44) defines u, in the floating local frame as well.

Ug=W,dgtWibg (46)

Now the unit-normal of Lﬁ can also be derived trom a4 and

(47)

[ﬂﬂgbﬂg — ﬂﬂg‘bﬂg, ﬂﬂgf’?ﬂl -\ (48)
Wﬂ —

ambm, ambar —ambm

where a;~(a, ,;aﬁz,aﬁ?)T and b,=(bg, ,bﬁ?,l:::ﬁE;)T It is obvious
that the following ratio of vector norms 1s invariant under the
similarity transformation.

vall  lval (49)

lagll  lla.ll

Combining (41) and (49) vields an explicit form of the size
factor k.

_ vadillagl (50)

k
TP

Finally plugging (46) and (41) 1nto (39) yields the desired
function estimating the I-th Gaussian component mean with
K=3.

(531)

where w_,w, and k-are given 1n (43), (44) and (50), respec-
tively. And ng 1s given in (47) and (43).

Me=8 o K=3(C,. )= W atwipb kg

V. Learning-Based Anatomical Landmark Detection

In the Geometric Configuration Context (GCC) approach
for robust fusion, the corresponding point of a click point 1s
reasoned based on the correspondences of its N nearest
salient region features. We can think of these nearest salient
region features as the click point’s context features. Hence, in
order to derive a good correspondence for the click point, 1t 1s
important for a dominant portion of 1ts N context feature
correspondences to be accurate. The salient-region based fea-
tures have been proven theoretically (see, e.g., T. Kadir and
M. Brady, “Saliency, scale and image description,” Interna-
tional Journal of Computer Vision, vol. 45, no. 2, pp. 83-1053,
2001) to be imvariant to translation, rotation and scaling,
however, 1n the presence of structure appearance/disappear-
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ance, the detected features near the changed structures can
change dramatically. For example, if a patient with large
tumors 1s 1maged at three different time points, the image
appearance changes due to changes in the tumor, and the
salient-region features detected near the tumor are not stable
in the three images. Considering that a user often clicks points
ol interest near diseased areas, which tend to change and
develop rapidly over time, the unstableness ol detected
salient-region features near diseased areas could be trouble-
some to even the robust fusion algorithm.

An alternative to the salient-region features can be ana-
tomical landmarks that are detected using pre-learned dis-
criminative classifiers. The learning framework 1s based on
the real-time detection algorithm by P. Viola and M. Jones,
“Rapid object detection using a boosted cascade of simple
teatures,” 1n Proc. of IEEE Int’l Cont on Computer Vision and

Pattern Recognition, 2001, pp. 511-518; and B. Georgescu,
X. S. Zhou, D., Comaniciu, and A. Gupta, “Database-guided
segmentation of anatomical structures with complex appear-

ance,” 1n Proc. of IEEE Int’l Cont on Computer Vision and
Pattern Recognition, 2005, pp. 429-436. The basic 1dea 1s to
utilize a database of images, from which a learning-based
algorithm can extract representations of the variations in par-
ticular anatomical structures as well as 1n the global anatomi-
cal relationship between structures. The method starts with
collecting whole-body volumes into the database as training
data. Then for each training volume, the interested landmarks
are manually labeled. In order to learn a discriminative clas-
sifier for a particular landmark, the training volumes are first
aligned using a weighted-alignment algorithm, which gives
the landmark of interest higher weights than other landmarks.
Having the aligned volumes, data centered around the land-
mark of interest are cropped to generate positive examples
that contain the landmark, and data are cropped randomly
clsewhere 1n the training volumes to generate negative
examples. Then a discriminative classifier using a Cascaded
AdaBoosting technique 1s learned using the database of posi-
tive and negative training examples. At runtime, a novel
whole-body volume 1s scanned and the windows that are
classified as positive by the classifier are returned as potential
detection results. The detected windows are also ranked based
on their responses, and the window with the highest response
value has the highest likelihood of being the detected land-
mark in the novel whole-body volume.

Landmarks detected using the learning-based method are
more stable than salient-region features, especially in the
presence of structure appearance or disappearance, because
these landmarks are pre-defined, and the training process
accommodates to some extent the structural variations near
these landmarks. The robustness of the detected landmarks
can also be guaranteed, and false-positive detections can be
climinated by implementing coarse-to-fine detection, and by
exploiting the geometric constraints between the landmarks.
In our current study, we manually labeled landmarks 1n 46
whole-body CT volumes as training data. The volumes are
then aligned using weighted alignment, and positive and
negative examples are collected and given as input to the
Cascaded AdaBoosting learner. At run-time, we achieve an
average detection rate of 87% for the 14 landmarks. The
detected landmarks can then be used as context features for

GG CC robust fusion.

V1. Experimental Studies
A. Methods

FIG. 2 shows an example tlowchart 200 for linking visually
dissimilar local regions for a pair of 1images. A method for
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linking visually dissimilar local regions of a pair of images 1s
described. A first and second digitized image of an object 1s
obtained (210). A portion of the first digitized image includes
a point of interest selected by a user as a user-defined click
point (220). The portion of the first digitized image being a
location within the first digitized 1mage where a registration
accuracy must be higher than registration accuracy in other
portions of the first digitized image. A 3D landmark detection
method 1s used to determine a correspondence between a
portion of the first digitized image and a portion of the second
digitized 1mage (220). The correspondence may be deter-
mined using geometrical relations between the user-defined
click point 1n the first digitized image and a predetermined
point in the second digitized 1mage.

FIG. 3 shows an example tlowchart 300 for a 3D landmark

detection method. In one embodiment, the 3D landmark
detection method 1s a learming based detection method. The
method 1includes collecting whole-body volumes nto a data-

base as training volume (305). Each training volume 1s manu-
ally labeled with landmarks of interest (310). The training
volumes are aligned using a weighted-alignment algorithm
that gives the landmark of interest for a given training volume
higher weights than other landmarks (315). Data centered
around the landmark of interest for a given training volume 1s
cropped to generate positive examples that contain the land-
mark (320). Data randomly elsewhere 1n the training volumes
1s cropped to generate negative examples (325). A discrimi-
native classifier 1s developed using the database of positive
and negative training examples (330). A novel whole-body
volume scan of the object 1s performed to detect a landmark
(335). Windows are returning that are classified as positive by
the classifier as potential detection results (340). The detected
windows are ranked based on their responses (345), and the
window with the highest response value has the highest like-
lihood of being the detected landmark 1n the novel whole-
body volume

FIG. 4 shows an example flowchart 400 for a saliency
region detection method for the 3D landmark detection
method. The saliency region detection includes computing a
set of scale-invariant saliency features for the first digitized
image (410) and computing a set of scale-invariant saliency
teatures for the second digitized image (420). A geometric
configuration context (GCC) 1s modeled comprising a Gaus-
sian mixture having component mean and width as a function
of a correspondences between the saliency features of the first
and second digitized images (420). The GCC represents the
spatial likelihood of a point in the second digitized image
corresponding to a user-defined click-point 1n the first image.

The feasibility of the proposed framework was evaluated
by testing the 3D implementation of the above algorithm with
a setof 16 whole-body CT volume pairs. Two volumes in each
pair were scans taken at different time-points for the same
patient. The same scanner protocols were used between each
pair. The original volume with a stack of 512-by-512 axaal
slices were down-sampled to 128-by-128 slices. One of each
pair was arbitrary picked to be a reference volume, leaving the
other be a floating volume.

The following specific configurations of the proposed
algorithms were implemented and tested. For each volume, a
number of 50 saliency {eatures were pre-computed:
N =N =50. The feature matching algorithm described 1n Sec.
I1-C was performed to each pair with 10 nearest reference
teatures to each click-point ¢,. M=10. Two similarity func-
tions were considered: geometric Euclidean distances and the
X* distance of intensity histograms. Two GCC solutions were
tested for: (1) pure translation with K=1 1n Sec. II-D, and (2)
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scaling and translation with K=2 in Sec. IV-A. The Single
VBMS method was used to optimize both GCCs as described

in Sec. II-E.

For testing, manually-labeled distinctive landmarks, as
described in Sec. V, were used. There were 14 landmarks for
cach person distributed at significant anatomical landmarks,
including pelvis, lung, kidneys, and collar bones. For each
pair, these 14 points 1n the reference volume were used as
click-points and Fuclidean errors were computed between the
estimated link ¢.and the ground-truth landmarks 1n the float-
ing domain. This resulted 1n a total of 224 test cases (16
patients over 14 landmarks). After performing the click-point
linking with a GCC, we also considered refining the estimated
click-point 1n the floating domain by using a template match-
ing-based refinement. The size of spherical template was
automatically estimated by using maximum entropy criterion
(see, e.g., X. Huang, Y. Sun, D. Metaxas, F. Sauer, and C. Xu,
“Hybrid image registration based on configural matching of
scale-invariant salient region features,” in Second IEEE
Workshop on Image and Video Registration, in conjunction
with CVPR 04, 2004.)

A. Results and Discussion

FIG. 1 shows the result of the inventors’ experiments.
Errors were calculated as Euclidean distances between cor-
responding ground-truth and estimate in R>. Plots on the left
column show the errors as a function of 16 patients averaged
over different landmarks. On the other hand, plots on the right
show those as a function of 14 landmarks averaged over
different patients. For feature correspondence matching, we
consider two versions of similarity function. One was the
geometric Buclidean distance with the mean bias adjustment
and the other was a linear combination of the geometric
distance and an appearance-based distance using X~ distance
of intensity histograms. The top row show the results for the
geometric distance. The total average and median errors were
4.23 and 3.50 voxels, respectively. Next the post-refinement
using a template matching with automatic scale selection was
performed. The results were shown 1n the middle row. The
average and median errors were 4.39 and 3.24, respectively.
Finally, the results with the appearance-based similarity as
well as the post-refinement are shown 1n the bottom row. The
average and median errors were 4.68 and 3.10, respectively. ]

Overall, the average errors were in the range of 3 to 3
voxels, demonstrating the feasibility of the proposed meth-
ods. The results also show that the accuracy depends strongly
on patients but not as strong on landmarks. Visual inspection
revealed that higher errors (e.g, patient 7 and 14) were caused
mainly by the outlier failures due to large amount of mis-
matching features. The usage of the appearance-based simi-
larity and post-refinement slightly improved the accuracy.
However the improvement was small and made outlier errors
actually worse so that the mean errors actually became worse.
For the 1nliers, the average errors were smaller than 3 voxels
with the post-refinement.

VI1I. Conclusion

This application discloses a novel framework for robust
click-point linking. The click-point linking can be interpreted
as a localized registration for estimating a point that corre-
sponds to a given point-oi-interest. In order to derive a robust
solution for linking visually dissimilar local regions, such as
changing tumors, we proposed the Gaussian mixture-based
Geometric Configuration Context representing a spatial like-
lihood of the linking points under classes of domain mapping
up to similarity transformation. A variable-bandwidth mean
shift-based optimization solution 1s disclosed for robustly and
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eificiently find the linking point at a mode of the multi-modal
mixture distribution. Our experimental study demonstrated

the promise of the proposed approach using hand-labeled
whole-body CT data set.

A realization of the disclosed robust click-point linking
framework will provide a computer aided diagnostic tool for
medical 1mage browsing and analysis with an intuitive
graphical visualization, which 1s faithiul to the previously-
described typical worktlow of radiologists 1n the longitudinal
3D data studies for cancer therapy monitoring.

A typical medical image/volume browsing system waill
visualize at least a pair of medical images side-by-side. Such
a visualization scheme allows an arbitrary 3D location of the
image to be specified by a position indicator (e.g., marker,
crosshair) independently across various images. Finally users
may be Iree to explore and browse arbitrary locations of an
arbitrary chosen image at any time by using a position locator
(e.g., cursor) controlled by a user-controlled device (e.g.,
mouse and keypad).

The robust click-point linking would provide an automatic
way to connect the positioning marker/crosshair across
images that are shown on a monitor. When a user activates a
specific 1mage and finds a region of interest after browsing,
the user can click the location using the mouse-controlled
cursor. This will mitiate the disclosed linking algorithm
which will provide automatic localization of markers in the
other 1images at the corresponding locations, realizing what
may be referred to as “sticky markers”. With this, users can
directly attend and analyze the correspond lesions specified
by the linked markers without manual browsing. This
improves the worktlow of user/radiologists by eliminating the
necessity to manually re-browse the other follow-up 1mages
to find corresponding regions. These sticky markers facilitate
an 1nteractive worktflow with a sequence of single mouse-
clicks at different locations of interest (i.e., Click-And-Look).

The invention described herein may be automated by, for
example, tangibly embodying a program of instructions upon
a computer readable storage media, capable of being read by
machine capable of executing the instructions. A general
purpose computer 1s one example of such a machine.
Examples of appropriate storage media are well known in the
art and would include such devices as a readable or writeable
CD, flash memory chips (e.g., thumb drive), various magnetic
storage media, and the like.

The features of the invention have been disclosed, and
turther variations will be apparent to persons skilled 1n the art.
All such vanations are considered to be within the scope of
the appended claims. Reference should be made to the
appended claims, rather than the foregoing specification, as
indicating the true scope of the subject invention.

What 1s claimed 1s:
1. A method for linking visually dissimilar local regions of
a pair of 1mages, comprising:

obtaining at least first and second digitized 1mages of an
object;

using a 3D landmark detection method to determine a
correspondence between a portion of the first digitized
image and a portion of the second digitized image, the
portion of the first digitized image comprises a point of
interest selected by a user as a user-defined click point,
the portion of the first digitized 1image being a location
within the first digitized image where a registration
accuracy must be higher than registration accuracy 1n
other portions of the first digitized image and the corre-
spondence 1s determined using geometrical relations
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between the user-defined click point 1n the first digitized
image and a predetermined point 1n the second digitized
image; and

the 3D landmark detection method 1s a learning based

detection method comprising:

collecting whole-body volumes into a database as training,

volumes:

manually labeling landmarks of interest for each training

volume:

aligning the training volumes using a weighted-alignment

algorithm that gives a particular landmark of interest for
a given training volume higher weights than other land-
marks:

cropping data centered around the particular landmark of

interest for a given training volume to generate positive
training examples that contain the particular landmark
of interest;

cropping data randomly elsewhere 1n the training volumes

to generate negative training examples;
developing a discriminative classifier using the database of
positive and negative training examples; and

performing a novel whole-body volume scan of the object
to obtain a novel whole-body volume and detect a land-
mark in the novel whole-body volume;

wherein windows that are classified as positive by the

classifier are returned as potential detection results, and
detected windows are ranked based on their responses,
and the detected window with the highest response value
has the highest likelithood of being the detected land-
mark 1n the novel whole-body volume.

2. The method of claim 1, wherein the first and second
digitized 1mages are obtained using one of the following
techniques: (a) computed tomography (CT) volumes, (b)
magnetic resonance imaging (MRI), or (¢) positron emission
tomography (PET).

3. A method for linking visually dissimilar local regions of
a pair of 1mages, comprising;:

obtaining at least first and second digitized images of an

object;

using a 3D landmark detection method to determine a

correspondence between a portion of the first digitized
image and a portion of the second digitized 1image, the
portion of the first digitized image comprises a point of
interest selected by a user as a user-defined click point,
the portion of the first digitized 1image being a location
within the first digitized image where a registration
accuracy must be higher than registration accuracy 1n
other portions of the first digitized image and the corre-
spondence 1s determined using geometrical relations
between the user-defined click point 1n the first digitized
image and a predetermined point 1n the second digitized
image; and

the 3D landmark detection method comprises a saliency

region detection method comprising:

computing a set of scale-invariant saliency features for the

first digitized 1image;

computing a set of scale-invariant saliency features for the

second digitized image; and

modeling a geometric configuration context (GCC) com-

prising a Gaussian mixture having component mean and
width as a function of a correspondences between the
saliency {features of the first and second digitized
images, wherein the GCC represents the spatial likel:-
hood of a point 1n the second digitized 1image corre-
sponding to a user-defined click-point 1n the first image.
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4. The method of claim 3, wherein GCC models are derived
for at least one of three transformation classes comprising
pure translation, scaling and translation, and similarity trans-
formation.

5. The method of claim 3, wherein said correspondence 5
between at least a portion of the first and second digitized
images comprises establishing a point-wise correspondence
between first and second points within said first and second
digitized 1mages, respectively.

6. The method of claim 5, wherein establishing a point- 10
wise correspondence between first and second points within
said first and second digitized 1mages 1s performed sequen-
tially for different points within the images.

7. A machine readable storage device tangibly embodying
a series of mstructions executable by the machine to perform 15
a series of steps, the steps comprising:

obtaining at least first and second digitized images of an

object;

using a 3D landmark detection method to determine a

correspondence between a portion of the first digitized 20
image and a portion of the second digitized image, the
wherein the portion of the first digitized 1image com-
prises a point of interest selected by a user as a user-
defined click point, the portion of the first digitized
image being a location within the first digitized image 25
where a registration accuracy must be higher than reg-
1stration accuracy 1n other portions of the first digitized
image and the correspondence 1s determined using geo-
metrical relations between the user-defined click point

in the first digitized image and a predetermined point 1n 30
the second digitized 1image; and

the 3D landmark detection method 1s a learning based

detection method comprising:

collecting whole-body volumes 1nto a database as training,

volumes; 35
manually labeling landmarks of interest for each training
volume:

aligning the training volumes using a weighted-alignment

algorithm that gives a particular landmark of interest for
a given training volume higher weights than other land- 40
marks;

cropping data centered around the particular landmark of

interest for a given training volume to generate positive

training examples that contain the particular landmark

of interest; 45
cropping data randomly elsewhere in the training volumes

to generate negative training examples;

developing a discriminative classifier using the database of

positive and negative training examples; and

performing a novel whole-body volume scan of the object 50

to obtain a novel whole-body volume and detect a land-
mark in the novel whole-body volume;

wherein windows that are classified as positive by the

classifier are returned as potential detection results, and
detected windows are ranked based on their responses, 55
and the detected window with the highest response value
has the highest likelthood of being the detected land-
mark 1n the novel whole-body volume.

8. A machine readable storage device tangibly embodying
a series ol instructions executable by the machine to perform 60
a series of steps, the steps comprising:

obtaining at least first and second digitized images of an

object;

using a 3D landmark detection method to determine a

correspondence between a portion of the first digitized 65
image and a portion of the second digitized image, the
wherein the portion of the first digitized 1image com-

22

prises a point ol interest selected by a user as a user-
defined click point, the portion of the first digitized
image being a location within the first digitized image
where a registration accuracy must be higher than reg-
1stration accuracy in other portions of the first digitized
image and the correspondence 1s determined using geo-
metrical relations between the user-defined click point
in the first digitized image and a predetermined point 1n
the second digitized image; and

the 3D landmark detection method comprises a saliency
region detection method comprising:

computing a set of scale-invariant saliency features for the
first digitized 1image;

computing a set of scale-invariant saliency features for the
second digitized 1mage; and

modeling a geometric configuration context (GCC) com-
prising a Gaussian mixture having component mean and
width as a function of a correspondences between the
saliency {features of the first and second digitized
images, wherein the GCC represents the spatial likel:-
hood of a point 1n the second digitized 1image corre-
sponding to a user-defined click-point 1n the first image.

9. The machine readable storage device of claim 8, wherein
GCC models are derived for at least one of three transforma-
tion classes comprising pure translation, scaling and transla-
tion, and similarity transformation.

10. The machine readable storage device of claim 8,
wherein said correspondence between at least a portion of the
first and second digitized 1mages comprises establishing a
point-wise correspondence between first and second points
within said first and second digitized 1mages, respectively.

11. The machine readable storage device of claim 10,
wherein establishing a point-wise correspondence between
first and second points within said first and second digitized
images 1s performed sequentially for different points within
the 1mages.

12. The machine readable storage device of claim 8,
wherein the first and second digitized images are obtained
using one of the following techniques: (a) computed tomog-
raphy (CT) volumes, (b) magnetic resonance imaging (MRI),
or (¢) positron emission tomography (PET).

13. A system for registering a pair of medical image data
for achieving a high degree of spatial correspondence ther-
cbetween, the system comprising:

a scanner configured to obtain at least first and second

digitized 1mages of an object;

a memory configured to store data representative of first
and second medical images;

a computer configured to employ a 3D landmark detection
method to determine a correspondence between a por-
tion of the first digitized image and a portion of the
second digitized 1image, the portion of the first digitized
image comprises a point of interest selected by a user as
a user-defined click point, the portion of the first digi-
tized 1mage being a location within the first digitized
image where a registration accuracy must be higher than
registration accuracy in other portions of the first digi-
tized 1mage, and the correspondence 1s determined using
geometrical relations between the user-defined click
point in the first digitized image and a predetermined
point 1n the second digitized image; and

the computer 1s further configured to employ a learning
based detection method comprising:

collecting whole-body volumes of the object into a data-
base as training data;

manually labeling landmarks of interest for each training
volume:
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aligning the training volumes using a weighted-alignment
algorithm that gives a particular landmark of interest for
a given training volume higher weights than other land-
marks;

cropping data centered around the particular landmark of >
interest for a given training volume to generate positive
training examples that contain the particular landmark
of interest;

cropping data randomly elsewhere in the training volumes
to generate negative training examples;

developing a discriminative classifier using the database of
positive and negative training examples; and

performing a novel whole-body volume scan of the object
to obtain a novel whole-body volume and detect a land-
mark 1n the novel whole-body volume;

wherein windows that are classified as positive by the
classifier are returned as potential detection results,
detected windows are ranked based on their responses,
and the detected window with the highest response value »g
has the highest likelthood of being the detected land-

mark in the novel whole-body volume.

14. The system of claim 13, wherein said correspondence
between at least a portion of the first and second digitized
images comprises establishing a point-wise correspondence 25
between first and second points within said first and second
digitized 1mages, respectively.

15. The system of claim 13, wherein the first and second
digitized 1mages are obtained using one of the following
techniques: (a) computed tomography (CT) volumes, (b) 30
magnetic resonance imaging (MRI), or (¢) positron emission
tomography (PET).

16. A system for registering a pair of medical 1image data
for achueving a high degree of spatial correspondence ther-
cbetween, the system comprising:
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a scanner configured to obtain at least first and second
digitized 1images of an object;

a memory configured to store data representative of first
and second medical 1images;

a computer configured to employ a 3D landmark detection
method to determine a correspondence between a por-
tion of the first digitized image and a portion of the
second digitized 1mage, the portion of the first digitized
image comprises a point of interest selected by a user as
a user-defined click point, the portion of the first digi-
tized 1mage being a location within the first digitized
image where a registration accuracy must be higher than
registration accuracy in other portions of the first digi-
tized 1image, and the correspondence 1s determined using
geometrical relations between the user-defined click
point in the first digitized image and a predetermined
point in the second digitized image; and

the computer 1s further configured to use a saliency region
detection method comprising:

computing a set of scale-invariant saliency features for the
first digitized 1image;

computing a set of scale-invariant saliency features for the
second digitized image; and

modeling a geometric configuration context (GCC) com-
prising a Gaussian mixture having component mean and
width as a function of a correspondences between the
saliency {features of the first and second digitized
images, wherein the GCC represents the spatial likel:-
hood of a point 1n the second digitized 1image corre-
sponding to a user-defined click-point 1n the first image.

17. The system of claim 16, wherein GCC models are

derived for at least one of three transformation classes com-
prising pure translation, scaling and translation, and similar-
ity transformation.
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