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TIME MODULATED GENERATIVE
PROBABILISTIC MODELS FOR
AUTOMATED CAUSAL DISCOVERY THAT
MONITORS TIMES OF PACKETS
5
BACKGROUND

In an enterprise network, dependencies between hosts, pro-
tocols, and network services are complex, typically undocu-
mented, and rarely static. Even though network management 10
and troubleshooting rely on this information, automated dis-
covery and monitoring of these dependencies 1s difficult.

Shared network services enable functional richness and
flexibility for distributed applications. As a result, apparently
simple facilities, such as remote file sharing and email, rely on
multiple network services ranging from directory functions to
authentication. In a large-scale deployment, the modularity
and component reuse of shared network services lead to a
complex system that 1s difficult for a network operator or a
user to fully understand. As well as rendering eflective man-
agement problematic, the size and sophistication of net-
worked systems often lead to security vulnerabilities, mnetfi-
cient troubleshooting and anomaly detection, and user
frustration.

Current debugging capabilities for deployed networked
systems are unsatisfactory. Individual applications may pro-
vide the ability to understand their own behavior. Analysis
tools use operating system logging mechanisms or intrusive
istrumentation to explicitly track the causal paths of indi-
vidual requests.
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SUMMARY

Dependencies between ditferent channels or difierent ser-
vices 1n a client or server may be determined from the obser-
vation of the times of the mcoming and outgoing of the
packets constituting those channels or services. A probabilis-
tic model may be used to formally characterize these depen-
dencies. The probabilistic model may be used to list the
dependencies between input packets and output packets of
various channels or services, and may be used to establish the
expected strength of the causal relationship between the dii-
ferent events surrounding those channels or services. Param-
eters of the probabilistic model may be either based on prior
knowledge, or may be fit using statistical techniques based on
observations about the times of the events of interest.
Expected times of occurrence between events may be
observed, and dependencies may be determined 1n accor-
dance with the probabailistic model.
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In an implementation, the timing characteristics of the

input packets and the output packets of various channels or
services 1n computers in a network may be monitored. The
timing characteristics may be compared to those established

by the probabilistic model 1n order to detect deviations and 55
provide an indication or alert regarding possible abnormali-
ties.

In an implementation, where input channels and output
channels are typed as such, a relationship may be assumed
between 1mput/output where the output channel depends on 60
events from disjunction (logical or) of the mput channels.
Further, the uncertainties due to noisy measurements and
changes in workload 1n the machines as well as the events,
could be captured by the use of a non-homogeneous Poisson
model. Such a model, one per output channel, may be further 65
augmented with a functional representation of the expected
timing relationship (taking time as a distance) between input

2

events and output events. This model 1s referred to herein as
Continuous Time Noisy Or (CT-NOR).

This summary 1s provided to introduce a selection of con-
cepts 1n a simplified form that are further described below 1n
the detailed description. This summary 1s not intended to
identily key features or essential features of the claimed sub-
ject matter, nor 1s 1t mtended to be used to limait the scope of
the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed
description of illustrative embodiments, 1s better understood
when read 1n conjunction with the appended drawings. For
the purpose of 1llustrating the embodiments, there are shown
in the drawings example constructions of the embodiments;
however, the embodiments are not limited to the specific
methods and instrumentalities disclosed. In the drawings:

FIG. 1 1s a block diagram of a computer network;

FIG. 2 1s an operational flow of an implementation of a
method of determinming dependencies between events 1n a
networked computing environment;

FIG. 3 1s an operational flow of an implementation of a
method of determining dependencies between events that are
produced by channels or services;

FIG. 4 1s an operational tlow of an implementation of a
method of using a probabilistic model;

FIG. 5 1s an operational tlow of an implementation of a
method of using a probabilistic model 1n determining depen-
dencies between channels; and

FIG. 6 shows an exemplary computing environment.

DETAILED DESCRIPTION

In many applications and situations, a general mechanism
may be useful for discovering dependencies between events
from information gathered through passive observation
mechanisms (e.g., logs and passive monitors) such as the time
between the events, and some additional information pertain-
ing the types of the events. Such an event may be a malicious
attack on a networked enterprise, or the coordination between
spam, phishing and malware installation in computers, for
example. Another example of such an event 1s the automated
discovery of the dependencies between hosts, protocols, and
network services 1n an enterprise network.

FIG. 1 1s a block diagram of a computer network 100 that
can be used to determine dependencies as described herein. A
computer network 1s an interconnection of a group of com-
puters. A host 1s a node on a network that 1s a computer.
Computer networks may be classified according to the func-
tional relationships which exist between the elements of the
network, such as clients and servers.

A plurality of server computers (referred to as servers) 110,
115 are connected to each other by a communications net-
work 120, such as a local area network (LAN) or wide area
network (WAN) for example. A server 1s an application or
device that performs services for connected clients as part of
a client-server architecture. A server may be defined as a
multi-user computer that provides a service (e.g., database
access, file transfer, remote access) or resources (e.g., file
space) over a network connection.

A plurality of client computers (referred to as clients) 130,
135 may also be connected to the network 120. A client 1s an
application or system that accesses a remote service on
another computer system (e.g., a server) by way of a network.
Each instance of the client software can send data requests to
one or more connected servers. In turn, the servers can accept
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these requests, process them, and return the requested 1nfor-
mation to the client. In this manner, computers may share files
and resources.

Although only two servers 110, 115 are shown, any number
of servers may be connected to the network 120 and to each
other. Similarly, although only two clients 130, 135 are
shown, any number of clients may be connected to the net-
work 120. An example computer which may act as a server or
client 1s described with respect to FIG. 6.

The nature of dependencies 1n computer networks can vary
greatly. A host can assume the roles of both server and client
for different instances of the same service. Each service may
be provided by many servers, or a single server may provide
many services, for example. Additionally, a client might
invoke a single service variously on different servers. A com-
puter may unwittingly have a transitive dependence upon
other computers. These relationships are volatile, and may
change as applications adapt to runtime conditions such as
machine load variations or link failure.

In an implementation, dependencies between events per-
taining to channels or services may be determined from pas-
stve observation of their timing characteristics. For example,
dependencies between different services (e.g., hypertext
transier protocol (HT'TP), lightweight directory access pro-
tocol (LDAP), server message block protocol (SMB), etc.) in
a client or server may be determined from the observation of
the times of the incoming and outgoing of the packets con-
stituting those services. The network may also be monitored,
and abnormalities may be diagnosed.

The techniques described herein can be used to discover
causality 1n any setting having typed events 1n which timing
information may be obtained. For example, the techniques
described herein may be used to reconstruct attack sequences
and dependencies.

FIG. 2 1s an operational flow of an implementation of a
method 200 of determining dependencies between events 1n a
networked computing environment. At operation 210, timing,
characteristics of typed events are monitored 1n computers
within the computer network. Thus, communication packets
between computers are passively observed. The dependen-
cies between the computers may be inferred, along with what
protocols are being used and what the protocols depend on.
Timing may be used to infer what computer depends on
which computer and protocol. A determination may be made
of which mput event causes which output event, based on
timing.

The timing characteristics are {it to a model at operation
220. The model may be a probabilistic model. Additionally,
the model may use a non-homogeneous Poisson process.
Parameters of the model may be fit automatically based on
passive observation of data such as the timing data. Known
techniques may be used to fit the parameters of a probabilistic
model from observations about the times of the events of
interest. Thus, prior knowledge about the inter-time behavior
between the events may be incorporated into the model using,
time functional specifications. Inter-time may be defined as
the time between two events. In this manner, assumptions
about the functional form of the time structure may be
encoded 1nto the probabilistic model.

In an implementation, a probabilistic model 1s provided
using a non-homogeneous Poisson process that underlies the
causal relationships between events 1n a networked computer
system. A Poisson process 1s a well known stochastic process
which may be used for modeling random events in time that
occur to a large extent independently of one another.
Examples of such events include telephone calls arriving at a
switchboard or webpage requests on a server. Modeling trai-
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fic with Poisson processes 1s well known. A non-homoge-
neous Poisson process 1s a Poisson process with a rate param-
eter that 1s a function of time. As described herein, the non-
homogeneous Poisson process may be modified to
incorporate an inter-time process. The inter-time behavior
may be embedded into the non-homogeneous Poisson pro-
CEeSS.

At operation 230, the model may be used to determine one
or more dependencies between typed events. It may be deter-
mined which typed events are dependent on other typed
events. In an implementation, at least one behavior charac-
teristic may be predetermined, and the behavior characteristic
may be used to determine dependencies. At operation 240,
information pertaining to the dependencies may be stored
and/or provided to a user.

In an implementation, the model may discretize time and
may be based on a noisy-or model. In an implementation, the
noisy-or probabilistic model may be approximated to encode
the relationship about events using the non-homogeneous
Poisson model. Such a per-host probabilistic model may cap-
ture the local interactions between different channels, ser-
vices, and protocols, and 1s referred to herein as Continuous

Time Noisy-OR (CT-NOR). The CT-NOR model may con-
tain or automatically learn a list of the dependencies between
output packets and input packets of different channels or

services, and may be generated by means of a dependency
test.

In an 1implementation, the relationship between events may

depend on a function of the time between the events. An
expected structure of a timing characteristic may be predeter-
mined for use 1n determiming dependencies. The parameters
of the function may be fitted automatically.

A service associated with a channel may be 1dentified using
standard fields 1n packet headers and a correlation test may be
used to determine interdependency between channels using
packet timestamps. To determine dependent channels, a
probabilistic model such as CT-NOR may be used to repre-
sent the inherent uncertainty and statistical tests to estimate
the confidence in the inferences. CT-NOR 1s an extension of
the well known noisy-or model. CT-NOR takes into account
continuous time, the fact that activity in channels 1s relatively
rare, and 1ncorporates functions representing the expected
timing relations between 1nput and output. Thus, CT1-NOR 1s
based on the noisy-or model for representing causality under
uncertain conditions. CT-NOR models events 1n continuous
time, models the fact that there are relatively long periods of
inactivity, and incorporates explicit functions of time, mod-
cling the time delays between mputs and outputs.

In an implementation, CT-NOR considers a single output
channel on a given host, and simultaneously analyzes this
host’s input channels to determine which channel or channels
best help to explain the output packets. CT-NOR assumes
there 1s a fixed but unknown delay function 1{t), specifying the
probability distribution of the delay between an input and the
output or outputs 1t causes. For example, if 1(t) 1s the uniform
distribution U, (t) on the window [0,W], then the delay
between an mput packet and the resulting output(s) 1s equally
likely to be any quantity in [0, W]. This 1s how a co-occurrence
test models the delay between input and output. CT-NOR
further assumes that the mputs from channel j produce, on
average, some fixed but unknown number p’ of output pack-
ets. The resulting model 1s a non-homogeneous Poisson pro-
cess: 1 the kth mput packet in channel j occurs at time

t
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the density of output packets generated by this input 1s given
by
pR(O)=p'St-1)

Two example models for the delay function fare (1) f51s a
mixture of the uniform “spike™ distribution U, and a Gaus-
sian distribution G, ; with mean p and standard deviation o;
and (2) 1. 1s a mixture of the uniform and the exponential
distribution E, with parameter A. The Gaussian delay distri-
bution extends the intuitions of co-occurrence within a win-
dow to also capture dependencies that can be relatively far
away 1n time (such as with a printer where the length of time
between the mitial print job being spooled to the server and
from the server to the physical printer may be several sec-
onds). The exponential distribution captures the intuition that

the possibility of dependence decays as the packets are further
away 1n time. Example equations for these functions are:

JlmaUp{)+(1-a)G,, (1)

JE()=aUp{t)+{(1-)E, (1)

The CT-NOR model simultaneously estimates p/ and the
delay function parameters (o, W, 1, o or ., W, A) 1n the above
equations. This may be performed by the standard statistical
technique of maximum likelthood estimation, and results in
estimated parameters and the corresponding likelthood val-
ues. The likelihood value 1s the probability that a given model
(complete with instantiated parameter values) will generate
the specific data (1input/output packets) observed. Similarly,
by comparing likelihood values, the delay function which
best fits the data may be chosen.

Note that in C'I-NOR 1f the delay function parameters are
known, the probability that each mput caused each output
could be determined, and hence the p/ values above; whereas
if the p’ were known, the delay function parameters may be
estimated. CT-NOR may solve this problem by employing an
iterative algorithm similar to expectation maximization, an
algorithm well known 1n statistics and machine learning.

In an implementation, dependencies may be determined
using hypothesis testing on the model. To transform the CT-
NOR probabilistic model mto a test, a decision procedure
may be used for determining whether an output channel 1s
dependent on an 1input channel. A hypothesis testing approach
from classical statistics may be used. To decide whether out-
put channel B 1s dependent on input channel A, the likelihood
of a CT-NOR model of output channel B 1s compared to one
in which the input channel A 1s removed. The null hypothesis,
H,, 1s that the two have the same power 1n explaining the
output packets. If H, may be rejected, then the channels are
labeled as dependent, since the absence of the input channel A
renders the second model less powerful in explaining the
output packets observed in output channel B. Twice the dii-
terence 1n the log-likelihood 1n these two models behaves as
a y* distribution with one degree of freedom (the missing,
channel). From the resulting y*-value, as in any standard
statistical test, one may obtain a p-value which gives the
probability that a more extreme result would have occurred 1f
the null hypothesis were true. To determine whether two
channels are dependent, this p-value may be compared to a
threshold that may be based on the confidence desired for the
particular task.

A channel at a given host 1s a unidirectional flow of net-
work packets sent or received by that host, 1dentified by a
direction (in or out), the remote peer, and a service. In an
implementation, a service could be a protocol, application, or
network service, which may be determined from the well
known TCP/UDP port number or other information in the
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packet header. It should be noted that 1n the TCP and UDP
protocols used 1n computer networking, a port 1s a special
number present in the header of a data packet. Ports are

typically used to map data to a particular process running on
a computer. Table 1 shows examples of services, along with
their directions, peers, and descriptions.

TABLE 1
Direction Service Peer Description
Out HTTP Web Server 1 HTTP requests
Out DNS DNS Server DNS requests
In SMB Laptop Desktop file browsing
In HITP Web Server 1 HTTP responses

In an implementation, dependency between channels,
events, or services may be defined as tied to a period of time
T of observation. For example, assume channel A 1s an input
channel to a host, and channel B 1s an output channel from the
host. In an implementation, channel B may be considered to
be dependent on channel A 1n period T 11 packets in channel A
caused packets 1n channel B during the period T.

A co-occurrence test for whether channels are dependent
can be performed by counting the number of times a packet of
the mput channel 1s observed within a small time window
prior to a packet on the output channel. The number of times
such a co-occurrence might be expected to happen may be
estimated using many known techniques. This number may
be set as a threshold to determine whether channels are depen-
dent or not.

FIG. 3 1s an operational flow of an implementation of a
method 300 of determining dependencies between events that
are produced by channels or services. A set of predetermined
characteristics and/or thresholds may be determined and
stored 1n storage at operation 310. The characteristics and/or
thresholds may be selected to be indicative of dependency
behavior and/or abnormal system behavior.

At operation 320, the timing characteristics of the mnput
packets and the output packets of various channels or services
in computers 1n a network may be monitored. The timing
characteristics may be compared to the predetermined char-
acteristics and/or thresholds at operation 330, to determine
dependencies and/or abnormal system behavior. For
example, a threshold may indicate that two events are unre-
lated or not dependent on one another 1f the timing 1s greater
than the threshold. The characteristics and/or thresholds may
also be selected to be indicative of abnormal behavior, e.g., 1f
the output packet 1s different than what was expected, 11 the
times are slower than what was expected, etc. At operation
340, the determined dependencies or abnormal system behav-
ior may be logged 1n storage and provided to a user, 1n an
implementation.

A probabilistic model may be used in the determination of
dependencies. FIG. 4 1s an operational tlow of an implemen-
tation of a method 400 of using a probabilistic model. At
operation 410, a probabilistic model may be used to list
possible dependencies between input packets and output
packets of various channels or services. The probabilistic
model may be used to establish the expected strength of the
causal relationship between the different events at operation
420. At operation 430, times ol occurrence between events
may be observed, and dependencies may be determined at
operation 440 1n accordance with the probabilistic model, as
described further herein.

As described further herein, causal interactions between
channels, services, and protocols in computers 1n a computer
network may be determined by passive observation of their
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times of occurrence. This may allow users, operators, and
developers to understand the interactions between the sys-
tems they come into direct contact with and those not within
theirr immediate view that are part of the computer network.

Parameters 1n the model may be determined and adapted in
real-time to fit the model used. The parameterization may be
used to characterize the time relationship between mput/out-
put events. The parameters may be used for monitoring and
diagnosing possible problems.

In an implementation, assume a set of “typed” input chan-
nels and a set of “typed” output channels. The term “typed”
refers to the fact that there are distinguishable features that
enable the separation of the channels into different sets. In the
case of networked components, the type may be given by the
service, €.g. HI'TP, domain name system (DNS), etc., and the
internet protocol (IP) address of the computer sending and/or
receiving the packets. Each channel produces a sequence of
events which 1s timestamped.

Given a set of “typed” input channels, a set of “typed”
output channels, and a specified period of time T, a pairwise
list may be obtained where channel B 1s said to be dependent
on channel A, 11 and only 11 there 1s an event 1n channel A that
caused an event in channel B during period of time T. For
example, given as mput data containing the mput channels,
their types, and the timestamped events, a pairwise list of
dependent channels may be returned with a score on the
confidence of that decision.

A probabilistic model of the relationship between the
events 1n the channels 1s provided. CTI-NOR may be consid-
ered to be a generative probabilistic model for each output
channel B, denoted C'T-NOR(B). As noted above, CI-NOR
(B) may be a non-homogeneous Poisson process, and accepts
a parameterized specification of the relationship dependent
on time, between events 1n the mput channels and the output
channels. F(t /,t;/) may be used to denote this function.

In an implementation, dependencies may be determined
using maximuim a posteriori on an expected number of depen-
dent events. The parameters of C'I-NOR may be {it to the
tfunction F. This fitting can be based on maximum likelihood
or on Bayesian-based procedures that compute maximum a
posterion distributions on the parameters.

A decision procedure may be implemented that outputs a
decision on whether channel B 1s dependent on channel A for
the channels of interest. The decision procedure may also
include a score on the confidence of this decision. This deci-
s1on procedure may be based on standard frequentist notions
of hypothesis testing 1n which case the measure of confidence
will be the p-value corresponding to the rejection of the null
hypothesis, as 1s standard in statistics. It can also be based on
Bayesian considerations, 1n which case a log-odds compari-
son or a posteriori distribution on the appropriate question
may constitute the score on the decision.

CT-NOR(B) 1s a non-homogeneous Poisson process that
comprises (1) P, which 1s the probability that an arbitrary
event 1n mput channel A generates an event 1n the output
channel B; and (2) a time modulated function Fq(t,,ty)
which takes the timestamp t ,* of event 1 in input channel A,
and t,/, the timestamp of event j in output channel B, and is
parameterized by 0. Examples of this function include a uni-
form distribution within a window t , of each output event, an
exponential distribution, and linear mixtures of the previous
two (also combined). Other instantiations are contemplated
depending on the domain knowledge available. The structure
and parameterization of Fy may have consequences on the
fitting procedures.

The probability that event 1 1n channel B 1s dependent on
event 1 1n channel A may be given by:
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Py X Fy(tly 1)
> Pex Fylte, 1h)
{,C

P, (1h) =

Let {B} denote the events on the output channels and, as
given below, they are distributed according to the non-homo-
geneous Poisson process defined by the total sum of the
probabilities of the packets in the mput channels.

(B}~ PP(p¢)) = PP(Z p??]
1, C

1, L

The fitting can be done using a using a maximum likeli-
hood approach or a maximum a posteriori. Included here 1s
the derivation of the likelihood function for a maximum like-
lihood approach. Let n be the number of outputs and n”” be the
number of 1nputs on channel j.

A = Z fp@(;)ﬁf; — Z P,
i,C i,C

P(B}) = P(n outputy)| | P(z})
{

> Pex Fyliy. 1¢)
- e A" i,C
T (n)! U A

logP({B}) = —A +log(n!) + » log )" pc X Falip. t¢)
{ i,

After the fitting of the model, a decision procedure may
determine for each pair of typed channels B and A whether
according to the model, events 1n B are dependent on events 1n
A. One way of making this decision 1s to compare the model
CT-NOR(B) to amodel CT-NOR(B)' where the input channel
A 1s absent. The comparison can be made in terms of the
difference in log-likelihood function in which case the ?
distribution can be used to reject the null hypothesis that the
models are equal. If the hypothesis 1s rejected, 1t may be
asserted that the models are not equal and that B 1s dependent
on A as expressed above. The specific p-value for making the
decision may be used as a score for confidence.

FIG. 5 1s an operational flow of an implementation of a
method 500 of using a probabilistic model in determiming
dependencies between channels. At operation 510, typed
input and output channels are selected or otherwise deter-
mined. Output channels of interest may be selected by a user
or network operator, for example, at operation 520.

For each output channel, denoted here as output channel B,
CT-NOR(B) 1s fit to a time modulated function, at operation
530. For each input channel, denoted here as input channel A,
CT-NOR(B)'1s fit to a time modulated function without input
channel A, at operation 540.

CT-NOR(B) may be compared to with CI-NOR(B)' to
determine 1f they are different. If CI-NOR(B) 1s different
from CT-NOR(B)' as determined at operation 550, 1t may be
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concluded at operation 560 that output channel B depends on
input channel A. If CT-NOR(B) 1s not different from CT-NOR
(B) however, it may be concluded at operation 570 that output
channel B does not depend on input channel A.

Processing may continue at operation 5380 by returning to
operation 540 for each input channel. After each input chan-
nel has been processed, processing may continue at operation
590 by returning to operation 330 for each output channel.

Thus, FIG. 5 depicts an implementation of a decision pro-
cedure that uses a probabilistic model to determine whether
channels, and thus the events pertaining to them, are depen-
dent on each other. It should be noted that this 1s not the only
decision procedure that may be used, as other decision pro-
cedures may be based on the log-odds ratio of the specific
model fitted and a more general model where parameters are
marginalized, or on Bayesian considerations of computing,
the posterior probability of a model with the dependence in
question, for example.

FIG. 6 shows an exemplary computing environment in
which example implementations and aspects may be 1mple-
mented. The computing system environment 1s only one
example of a suitable computing environment and 1s not
intended to suggest any limitation as to the scope of use or
functionality.

Numerous other general purpose or special purpose com-
puting system environments or configurations may be used.
Examples of well known computing systems, environments,
and/or configurations that may be suitable for use include, but
are not limited to, personal computers (PCs), server comput-
ers, handheld or laptop devices, multiprocessor systems,
microprocessor-based systems, network PCs, minicomput-
ers, mainirame computers, embedded systems, distributed
computing environments that include any of the above sys-
tems or devices, and the like.

Computer-executable instructions, such as program mod-
ules, being executed by a computer may be used. Generally,
program modules include routines, programs, objects, com-
ponents, data structures, etc. that perform particular tasks or
implement particular abstract data types. Distributed comput-
ing environments may be used where tasks are performed by
remote processing devices that are linked through a commu-
nications network or other data transmission medium. In a
distributed computing environment, program modules and
other data may be located 1n both local and remote computer
storage media including memory storage devices.

With reference to FIG. 6, an exemplary system for imple-
menting aspects described herein includes a computing
device, such as computing device 600. In its most basic con-
figuration, computing device 600 typically includes at least
one processing unit 602 and memory 604. Depending on the
exact configuration and type of computing device, memory
604 may be volatile (such as RAM), non-volatile (such as
read-only memory (ROM), flash memory, etc.), or some com-
bination of the two. This most basic configuration 1s 1llus-

trated in FIG. 6 by dashed line 606.

Computing device 600 may have additional features/func-
tionality. For example, computing device 600 may include
additional storage (removable and/or non-removable) includ-
ing, but not limited to, magnetic or optical disks or tape. Such
additional storage 1s illustrated in FIG. 6 by removable stor-
age 608 and non-removable storage 610.

Computing device 600 typically includes a variety of com-
puter readable media. Computer readable media can be any
available media that can be accessed by device 600 and
include both volatile and non-volatile media, and removable
and non-removable media.
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Computer storage media include volatile and non-volatile,
and removable and non-removable media implemented 1n any
method or technology for storage of information such as
computer readable instructions, data structures, program
modules or other data. Memory 604, removable storage 608,
and non-removable storage 610 are all examples of computer
storage media. Computer storage media include, but are not
limited to, RAM, ROM, electrically erasable program read-
only memory (EEPROM), flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by computing device 600. Any

such computer storage media may be part of computing
device 600.

Computing device 600 may contain communications con-
nection(s) 612 that allow the device to communicate with
other devices. Computing device 600 may also have mput
device(s) 614 such as a keyboard, mouse, pen, voice mput
device, touch mput device, etc. Output device(s) 616 such as
a display, speakers, printer, etc. may also be included. All
these devices are well known 1n the art and need not be
discussed at length here.

It should be understood that the wvarious techmiques
described herein may be implemented 1n connection with
hardware or software or, where appropriate, with a combina-
tion ol both. Thus, the processes and apparatus of the pres-
ently disclosed subject matter, or certain aspects or portions
thereof, may take the form of program code (i.e., instructions)
embodied 1n tangible media, such as tloppy diskettes, CD-
ROMs, hard drives, or any other machine-readable storage
medium where, when the program code 1s loaded 1nto and
executed by a machine, such as a computer, the machine
becomes an apparatus for practicing the presently disclosed
subject matter.

Although exemplary implementations may refer to utiliz-
ing aspects of the presently disclosed subject matter 1n the
context of one or more stand-alone computer systems, the
subject matter 1s not so limited, but rather may be 1imple-
mented 1n connection with any computing environment, such
as a network or distributed computing environment. Still fur-
ther, aspects of the presently disclosed subject matter may be
implemented 1n or across a plurality of processing chips or
devices, and storage may similarly be affected across a plu-
rality of devices. Such devices might include PCs, network
servers, and handheld devices, for example.

Although the subject matter has been described 1n lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What 1s claimed 1s:

1. A method for determining dependencies between a plu-
rality of typed events pertaining to channels or services in a
networked computing environment comprising a plurality of
computers comprising:

monitoring a plurality of timing characteristics comprising

times of incoming and outgoing packets constituting a
channel or a service for the plurality of typed events 1n
the computers 1n the computer network;

fitting the timing characteristics of the plurality of timed
events to a model:;
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using the model to determine which of the typed events are
dependent on which other of the typed events based on
the timing characteristics; and

storing information pertaining to which of the typed events

are dependent on which other of the typed events based
on the timing characteristics.

2. The method of claim 1, wherein using the model to
determine which of the typed events are dependent on which
other of the typed events comprises predetermining at least
one behavior characteristic based on at least one timing char-
acteristic, and using the behavior characteristic to determine
which of the typed events are dependent on which other of the
typed events based on the timing characteristics.

3. The method of claim 1, wherein the model comprises a
probabilistic model.

4. The method of claim 1, further comprising automatically
fitting parameters of the model.

5. The method of claim 1, wherein the model uses a non-
homogeneous Poisson process.
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6. The method of claim 1, wherein the model discretizes
time and 1s based on a C'I-NOR model.

7. The method of claim 1, wherein the model comprises a
function of time, and further comprising predetermining an
expected structure of a timing characteristic for use in deter-
mining which of the typed events are dependent on which
other of the typed events based on the timing characteristics.

8. The method of claim 7, further comprising fitting the
parameters of the function automatically.

9. The method of claim 1, further comprising determining,
which of the typed events are dependent on which other of the
typed events based on the timing characteristics using
hypothesis testing on the model.

10. The method of claim 1, further comprising determining
which of the typed events are dependent on which other of the
typed events based on the timing characteristics using maxi-
mum a posterior1 on an expected number of dependent events.
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