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PROGRAMMABLE HASH-TUPLL.
GENERATION WITH PARALLEL RULLE
IMPLEMENTATION INDEPENDENCE

BACKGROUND

1. Field

This disclosure relates generally to data processing sys-
tems, and more specifically, to computationally efficient
mechanisms for calculating a hash over information that 1s
evaluated, at least partially, 1n a piecewise manner.

2. Related Art

Modern packet-routed communications involve the use of
numerous specialized hardware and software techniques to
parse packet header information and to direct flows of related
packet information based on the header information parsed.
In some cases, 1t can be desirable to calculate a hash over at
least a portion of the mformation parsed from individual
packet headers so as to deterministically distribute computa-
tions or flows 1n a way that maintains locality with respect to
some aspect of the hashed over information. For example,
hashes are commonly used 1n packet routing implementations
that seek to achieve load balance by distributing packets over
a range of processing queues, targets or other resources.

Processing speed can be an important figure of merit for
many packet routing techniques and implementations. While
processing techniques that seek to decompose packet header
processing 1nto steps that can be executed concurrently can
enhance throughput and/or reduce latency, such decomposi-
tions may not mesh particularly well with a design require-
ment to deterministically calculate a hash over information
coded 1n the packet header fields so processed. These chal-
lenges may be particularly acute when the processing 1is
defined using a flexible, programmatically defined chain of
filtering rules for which 1t 1s desirable to maintain determin-
ism 1rrespective ol evaluation order and/or allocation of
decomposed computational steps to functional blocks.

Computationally eflicient techniques are desired to facili-
tate deterministic hash generation and concurrent evaluation
ol packet header field filtering rules.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and 1its
numerous objects, features, and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings.

FIG. 1 1s a block diagram 1llustrating a communications
controller configuration 1n which a core-aifinity preserving
distribution of packet traific 1s achieved using techniques 1n
accordance with some embodiments of the present invention.

FIG. 2 1s a block diagram of a multi-stage, filtered hash
chain configured for multi-cycle evaluation of a hash rule set
in accordance with some embodiments of the present mnven-
tion.

FIG. 3 depicts flows 1n accordance with a first of four (4)
cycles through an illustrative 4-stage filtered hash chain 1n
accordance with some embodiments of the present invention.

FI1G. 4 1llustrates flows 1n accordance with a second of four
(4) cycles through an illustrative 4-stage filtered hash chainin
accordance with some embodiments of the present invention.

FI1G. 5 illustrates flows 1n accordance with a final one of
tour (4) cycles and through an 1llustrative 4-stage filtered hash
chain together with a final hash through 1n accordance with
some embodiments of the present invention.

FIGS. 6A and 6B 1illustrate, in accordance with some
embodiments of the present nvention, corresponding
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2

in-memory footprints for rule sequences that produce a con-
sistent hash despite dissimilar allocations of individual hash
rules to memory banks.

The use of the same reference symbols in different draw-
ings idicates similar or identical items.

DESCRIPTION OF THE PREFERRED
EMBODIMENT(S)

Techniques have been developed to facilitate concurrent
evaluation of hash rule entries 1n ways that allow an 1mple-
mentation to maintain a deterministic resultant hash irrespec-
tive of variations 1n the allocation of particular rules to par-
ticular storage banks or evaluation logic, such as may occur
with rule set revisions. Similarly, uniform deterministic hash
results can be assured even across a range of implementations
that support greater or lesser levels of concurrent rule evalu-
ations.

Systems Realizations, Generally

FIG. 1 1s a block diagram illustrating a computational
system 100 1n which a communications controller 110 facili-
tates a core-aifinity preserving distribution of packet traffic
using hash generation techniques in accordance with some
embodiments of the present invention. In the illustrated con-
figuration, communications controller 110 1s coupled
between a physical layer (PHY ) block 120 of a communica-
tions architecture and the processor(s) 101 and memory 102
of computational system 100.

FIG. 1 illustrates a simple illustrative configuration 1in
which a bus-type interconnect 104 couples processors 101,
communications controller 110 and addressable storage pre-
sented as memory 102. Data transfers between communica-
tions controller 110 and memory 102 are facilitated using
DMA interface 112 and bus interface unit 111. Nonetheless,
persons of ordinary skill in the art will appreciate that any of
a variety of interconnect topologies, memory hierarchies and
IO interfaces may be employed 1n other embodiments. In this
regard, the illustration of FI1G. 1 1s not meant to be limiting but
to rather serve as a useful descriptive context in which certain
inventive concepts will be understood. In other embodiments,
modern front-side multi-path interconnect fabrics that sup-
port concurrent non-contlicting transactions and high data
rates may be employed together with multiple tiers of inter-
connects including specialized I/O interconnects and suitable
bridging and coherence technologies. Based on the descrip-
tion herein, persons of ordinary skill in the art will appreciate
suitable implementations in, and adaptations for, more or less
complex computational systems.

In general, embodiments of communications controller
110 may implement any of a variety of channel access mecha-
nisms, information frames and headers. Nonetheless, for con-
creteness of description, 1llustrations herein tend to focus on
traffic and terminology typical of Ethernet-type data link
layer implementations. Accordingly, for purposes of 1llustra-
tion and 1n accord with OSI model nomenclature, the embodi-
ment of FIG. 1 includes an Ethernet media access control
(MAC) block 113 that interfaces with PHY block 120. In
general, suitable MAC and PHY implementations are well

known 1n the art and Ethernet MAC 113 and PHY 120 are of
any suitable design.

As 15 typical, Ethernet MAC 113 operates on information
frames sometimes referred to as packets, which typically
encode both header information and a body or data portion.

For example, information frames received at a block such as
Ethernet MAC 113 and typically encode source and destina-
tion MAC-level physical address fields, e.g., MAC_SA and
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MAC_DA fields, together with an EtherType field that 1den-
tifies the type (e.g., Internet protocol version 4 [IPv4], address
resolution protocol [ARP], Novell IPX, IPv6, etc.) of data
conveyed. Encapsulated within the MAC-level body of a
received mnformation frame (or packet) are further headers
and associated data portions. For example, internet protocol
traffic includes 1ts own headers which encode, amongst other
fields, IP-level source and destination addresses, €.g., as IPSA
and IPDA fields and a protocol, e.g., as a PROT field, that
identifies the associated IP-level data portion as Internet mes-
sage control protocol [ICMP] data, transmission control pro-
tocol [TCP] data, user datagram protocol [UDP] data, etc.).
Encapsulated data portions can be characterized by further
headers and data portions. For example, further encapsulated
within TCP protocol data (sometimes referred to as a TCP
segment) are additional headers and associated data. Such
TCP segments conventionally encode (amongst other things)
source and destination ports, e.g., as SP and DP fields,
together with an associated data portion.

Persons of ordinary skill in the art will appreciate that, in
general, received information frames include, typically at
successive levels of encapsulation, numerous header field
values that may be parsed from respective headers and
thereby inform packet routing, decisioning and processing at
data link and further layers 1n a information processing archi-
tecture. In particular, for purposes of illustrating some
embodiments, 1t will be apparent that, for an IPv4 packet that
conveys TCP traffic, an 1illustrative subset of such fields
includes MAC_SA, MAC_DA, Etherlype, IPSA, IPDA,
PROT, SP and DP fields parsable from respective MAC-, IP-
and TCP-level headers. Field lengths, offsets and type indi-
cations for successively encapsulated header and data are
typically the subject of agreed or de facto standards and, in
any case, techniques for reliably parsing field values from
such headers and associated data are well understood 1n the
art. Thus, for clarity of description, header fields and opera-
tions thereon (such as match rule evaluations and hash com-
putations) are discussed in the material that follows without
particular regard to the levels in successively encapsulated
information codings at which any given header field appears.

In some embodiments, a substantial portion of a computa-
tional system such as that illustrated 1n FI1G. 1 1s implemented
as a system on a chip (SoC) and embodied as a single inte-
grated circuit chip 199. In such configurations, some storage
of a memory hierarchy (e.g., a portion of a hierarchy 1llus-
trated collectively as memory 102) and/or a subset of blocks
such as PHY 120 may be implemented off-chip, while the
substantial entirety of otherwise illustrated blocks may be
packaged as an SoC. In such configurations, interface 114
may implement a SerDes-type interface with an off-chip PHY
120 and memory controllers (not specifically shown) may
provide an interface between off chip portions of memory 102
and one or more levels of on-chip cache. In other embodi-
ments and more generally, portions of computational system
100 may be implemented 1n or as separate integrated circuits
in accord with design, packaging or other requirements.

Focusing now on logical link control (LLC) block 115,
various protocol multiplexing and flow mechanisms typical
of an OSI model logical link sub-layer implementation are
provided. LLC block 115 parses packet headers to extract
certain fields (e.g., source addresses, destination addresses,
protocols, ports, checksums, etc.) coded therein to facilitate
multiplexing of protocols (e.g., IP, IPX, etc.), flow control, as
well as detection and control of certain dropped packet errors
(e.g., through retransmission). Suitable LLC sub-layer imple-
mentations are well known 1n the art and LLC block 115
includes any of a variety of such implementations. However,
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in addition, 1n some embodiments of the present invention,
specialized hardware acceleration logic 1s provided to com-
pute hashes over selected ones of the parsed packet header
fields.

Although neither necessary or essential, 1n some embodi-
ments 1n accordance with the present invention, selection of a
particular subset of fields over which to compute a hash may
be accomplished using programmably-defined match rules
that evaluate header information 1n accordance with a deci-
sion tree and where certain ones of the match rules further
direct a hash generator to include the corresponding field
value 1n a hash computation. More generally, decision logic
need not be programmable (or reprogrammable) and the
specification of packet header field evaluations and the subset
of field values to be included 1n a hash need not be accom-
plished using a unified rule framework.

In view of the above, and without limitation, in the 1llus-
tration of FIG. 1, acceleration logic 130 includes a plurality of
logic blocks 131 that seek to apply respective hash-indicating
match rules to packet header fields and thereby compute a
composite hash over selected field values so identified. In
general, the subset of fields over which a hash 1s to be com-
puted may vary depending on protocol and/or service. For
example, for transmission control protocol (TCP) tratfic with
a destination port for hypertext transier protocol (HT'TP), a
desirable hash may be:

hash (IPSA, IPDA, PROT, SP, DP)

where IPSA and IPDA are the IP source and destination
address field values, PROT 1s the protocol field value, and SP
and DP are the source and destination port field values, all
parsed from the packet header. In contrast, for internet control
message protocol (ICMP) traffic, a hash over a ditferent set of

field values, e.g.,
hash (IPSA, IPDA)

may be desirable. For other types of protocol traific, hashes

over still different sets of field values, e.g.,
hash (MAC_DA, MAC_SA)

may be desirable.

In the illustration of FIG. 1, acceleration logic 130 and
associated rule codings in rule store 132 mmplement field
value match criteria, predicate testing and hash computations.
To achieve hardware acceleration, multiple mstances of logic
blocks 131 are provided and individual rule elements that
code appropriate matches, masks, predicates and hashes are
distributed over logic blocks 131 for evaluation (1n parallel)
against respective parsed field values. To support high data
rates, 1n some embodiments, a plurality of independently
accessible sub-portions of rule store 132 are provided, e.g., as
static memory (SRAM) banks individually associated with
corresponding ones of the logic blocks 131 and coding
therein a respective fractional portion of the overall rule set.
Contributions from individual ones of the logic blocks 131
are combined (133) as a hash value for use 1n connection with
the associated packet.

Thus, building on the hash examples above, acceleration
logic 130 can be used (given appropriate rules coded 1n rule
store 132) to calculate hashes 1n a way that allows LLC block
115 to distribute (139) packets amongst a plurality of 1n-
memory queues 105A, 1058 . . . 105C 1n accord with proto-
col-specific core-affinity workload distributions. For
example, 1n the case of HT'TP packet traflic, it can be desir-
able to distribute processing load across multiple processors
101A, 101B . . . 101C while still ensuring that all packets
bearing the same source and destination addresses and ports
be routed to a same one of processors (e.g., to processor 101B
via queue 105B).
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In the 1llustration of FIG. 1, DMA transtiers 197 of at least
some packet data target an appropriate one of the in-memory
queues 105A, 103B . . . 105C which 1s selected based on a
hash computed over a rule-specified portion of the associated
packet header fields. Individual processors access (198)
information in a respective one of the m-memory queues
(e.g., processor 101B from queue 105B). Thus, core-aflinity
workload distributions are achieved using hash computations
performed by acceleration logic 130 and the evaluation of
hash rule elements (in parallel) using the multiplicity logic
blocks 131 facilitates high packet rates necessary or desirable
to feed higher-layer protocol computations (e.g., network-,
transport-, session-, presentation- and/or application-layer
protocol computations) performed at processors 101 or else-
where.

In some embodiments, I/O virtualization techniques may
be supported, and fractioning of packet traflic (e.g., based on
a multiplicity of virtual communications controllers and asso-
ciated IP addresses) may also occur. In such cases, additional
mappings, €.g., between I/O and host domains and other
virtualization-oriented techniques may be supported within
communications controller 110 or elsewhere. Based on the
description herein, persons of ordinary skill in the art will
appreciate suitable virtualization-oriented extensions to com-
munications controller 110; nonetheless, for clarity of
descriptive context though without limitation, illustrations

and examples herein tend to omit further reference to 1/0
virtualization.

Finally, in some embodiments, communications controller
110 may include support for a different set of layers (and/or
sub-layers) of an implemented protocol stack (or stacks). In
this regard, 1llustrations and examples of allocations of net-
work-, transport-, session-, presentation- and/or application-
layer protocol computations to any particular component
(e.g., to processors 101) are design-and/or implementation-
dependent choices. Based on the description herein persons
of ordinary skill in the art will appreciate other design and/or
implementations suitable for other allocations of protocol
layer/sub-layer computations (including allocations that sup-
port additional layers/sub-layers of the protocol computa-
tions within communications controller 110 1tself, or using,
some other component(s)). Again, for clarity of descriptive
context though without limitation, 1llustrations and examples
herein tend to omit alternative allocations of protocol layer/
sub-layer computations.

Match/Hash Rule Set Examples

Much of the description herein will be understood in the
context of an evaluation (by communications controller 110)
ol header fields parsed from a recerved information frame
where the evaluation 1s consistent with the decision tree and
selections of header fields for inclusion 1n a hash as specified
in the following pseudo-code.

If IP
If PROT = ICMP
HASH{IPSA,IPDA}
Elseif IP & TCP
[f TCP_ dest port =80
HASH{IPSA,IPDA,PROT,SP,DP}
Elseif TCP_ dest  port =21
HASH{IPSA,IPDA,PROT}
Else
HASH {MAC_ DA MAC_SA}
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In accord with the forgoing, desired operation of commu-
nications controller 110 and any acceleration logic 130
thereof, provides that different hashes are to be computed for:

a. an ICMP packet;

b. a packet conveying a TCP segment that codes HI'TP
traffic;

c. a packet conveying a TCP segment that codes FTP trai-
fic; or

d. some non-IP packet.

For at least some encodings of the illustrated pseudo-code
as a programmably-defined rule set suitable for evaluation of
packet headers (e.g., as match rule entries coded 1n rule store
132 for concurrent evaluation against parsed header fields
using logic blocks 131 of acceleration logic 130), individual
rule entries encode masking operations, predicate tests based

on specific header field values, and optional selection of
selected corresponding field values for inclusion in hash.

Thus, 1n some rule encodings, a set of non-hashed and hashed
rule entries such as follows:

If MASK&MATCH {EtherType} = IP)
If (MASK&MATCH {PROT} = ICMP)
MASK MATCH&HASH {IPSA}
MASK MATCH&HASH {IPDA}
Elseif  MASK&MATCH {PROT} = TCP)
If MASK&MATCH {DP} = 80)
MASK MATCH&HASH {IPSA}
MASK MATCH&HASH {IPDA}
MASK MATCH&HASH {PROT}
MASK MATCH&HASH {SP}
MASK MATCH&HASH {DP}
Elseif (MASK&MATCH {DP} =21)
MASK MATCH&HASH {IPSA}
MASK MATCH&HASH {IPDA}
MASK MATCH&HASH {PROT}
Else
MASK MATCH&HASH {MAC DA}
MASK MATCH&HASH {MAC SA}

1s used to define behavior of a hash generator. Note that by
decoupling the order and subset of field value over which a
hash 1s computed from the order in which match rules evalu-
ate header ficlds to implement an appropriate decision tree,
the illustrated set of non-hashed and hashed rule entries
allows both an eificient evaluation and coding of decision
logic and arbitrary orders (and independently defined) field
orders for the selected hash computation.

Filtered Hash Chain Implementation

FIG. 2 1s a block diagram 1illustrating a hash generator 250
that includes a multi-stage, filtered hash chain 251 configured
for use 1n accordance with some embodiments of the present
invention as part of acceleration logic 130. In the 1llustrated
configuration, match rules (including hashed and non-hashed
entries) are distributed across a plurality of N SRAM banks
232A, 2328 ... 232C for a multiple (M) cycle evaluation of
a rule set coded therein. For simplicity and 1n accord with the
described rule coding, match rules that are indicated as con-
tributing to a hash are sometimes referred to (herein) as hash
rules, whereas those not so indicated are sometimes referred
to as non-hash rules. As before, individual rule entries code
appropriate matches, masks, predicates and/or hashes and are
distributed over the memory banks to allow evaluation (in
parallel) against fields (e.g., header parse results 291) parsed
from a packet header against which the hash rule set 1s to be
applied. In this way, N sub-portions (233A, 233B . . . 233C)
of evaluation logic 233 operate to individually (and 1n paral-
lel) apply a respective indexed rule entry retrieved from a
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corresponding SRAM bank to header parse results 291. For
example, 1n a first cycle, a first set of indexed rule entries are
applied from the respective banks. In a second cycle, a second
set of indexed rule entries are applied. In general, successive
cycles apply successive sets of indexed rule entries until a
total of up to M*N rule entries are applied in M cycles.

In the 1llustrated configuration, logic that computes the
hash 1s partitioned into two major portions: a filtered hash
chain 251 portion and a hash final (HF) portion 252. The
filtered hash chain 251 portion selectively introduces hash
intermediate (HI) contributions computed in stages 281,
282 . . . 283 based on respective header parse results. In
particular, potential hash contributions computed at a given
stage (e.g., at HI blocks 241, 242 . . . 244) are selectively
introduced into an accumulated hash based on hash rule entry
evaluations performed at each stage. In the illustrated con-
figuration, during each cycle, the accumulated hash propa-
gates laterally (downstream) through filtered hash chain 251,
accumulating HI contributions (if any) based on then-indexed
hash rule entries applied to parsed header fields of a current
packet. In anticipation of possible inclusion, each stage
XORs (e.g., at logic 271, 272 . . . 274) the applicable parsed
header field value (1.¢., for the field identified by the currently
indexed hash rule entry) with the net accumulated hash value
propagated from its upstream neighbor and applies the HI
computation to that combined value. Multiple cycles through
filtered hash chain 251 are used to selectively itroduce HI
contributions based on subsequently-indexed hash rule
entries applied to parsed header fields of a current packet.
Finally, the hash calculation concludes with a calculation (at
hash final (HF) portion 252) over accumulated HI contribu-
tions 1ntroduced 1n preceding stages and cycles.

Selective itroductions of HI contributions depend on the
results of a rule entry application at a given stage (e.g., initial
stage 281, next stage 282 . . . final stage 283). In general, such
results control respective MUX selections (e.g., signals 211,
212) that, for a given stage of filtered hash chain 251:

(1) reset the propagating hash value (using hash reset value

292 supplied from evaluation logic 233),

(11) introduce a current stage hash contribution into the
accumulated hash value and propagate same down-
stream, Or

(1) bypass the current stage HI contribution and instead
couple through the prior-stage accumulated hash value.

Hash contributions for possible introduction into the
propagating hash value are computed at any given stage based
on pertinent field values parsed from the current packet
header. For example, in the illustrated embodiment, focusing,
illustratively on stage 282, a hash value propagating from
upstream filtration multiplexer (MUX) 261 1s XORed (at 272)
with a parsed header field result 291 value corresponding to
the hash rule entry applied (1n the current cycle) at evaluation
logic sub-portion 233B. Hash intermediate (HI) logic 242
computes a hash contribution over the XORed value and
supplies the resulting accumulation of prior stage/cycle HI
contributions as mput 293 to filtration MUX 262.

Depending on the results of the rule entry evaluation (at
233B), MUX select s1ignal 212 directs filtration MUX 262 to
select an appropriate one of inputs 293, 294 and 295. For
example, 11 the rule entry applied at evaluation logic 233B 1s
a hash-type rule entry with a matched field value, then select
signal 212 directs filtration MUX 262 to propagate the output
of HI logic 242 (1.e., the accumulated hash with current stage
HI contribution presented at input 294) downstream. It the
rule entry applied at evaluation logic 233B i1s an unmatched
(or failed) compound rule entry (e.g., a rule entry that codes
an AND conjunction of matches tested by one or more prior
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stage rule entries), then select signal 212 directs filtration
MUX 262 to propagate downstream the hash reset value 292
presented at imnput 293. I1 the rule entry applied at evaluation
logic 233B 1s a non-hash type rule entry (e.g., a rule entry that
codes a mask setup, predicate evaluation, etc.), then select
signal 212 directs filtration MUX 262 to bypass the current
stage contribution and simply pass the prior-stage accumu-
lated hash value (e.g., that conveyed via bypass path 277 and
presented at input 295) downstream.

After a final stage 283 of filtered hash chain 251, a second-
level filtration MUX 263 selects (using select signal 214) a
furthest downstream output (e.g., one of filtered hash chain
251 outputs presented at 296, 297 . . . 298) for which a
hash-type rule evaluation matched. As before, 11 evaluation
logic (here, evaluation logic 233C) indicates an unmatched
(or failed) compound rule entry then select signal 214 directs
second-level filtration MUX 263 to propagate hash reset
value 292 presented at input 299.

Assuming that a second-level filtration MUX 263 mput 1s
selected, 1t 1s propagated to latch 256 where, 11 an additional
cycle through filtered hash chain 251 remains, 1t 1s available
as the prior cycle output 258 for propagation downstream as
the prior stage/cycle accumulated hash. In general, successive
cycles through filtered hash chain 251 incorporate the accu-
mulated hash value output 1n the prior cycle. In those cases,
where matching hash rules result i a prior cycle contribution
to the accumulated hash, the value from the next prior cycle
(or seed 259, if applicable) may be recycled using an addi-
tional input (not specifically shown) to second-level filtration
MUX 263 or simply by retaining the prior cycle output value
in latch 256. Note that seed 259 may be introduced for use 1n
a first cycle via second-level filtration MUX 263.

If the accumulated hash value stored in latch 256 1s the
output of a final cycle through filtered hash chain 251, then the
hash calculation concludes with a calculation (at hash final
(HF) portion 252) over accumulated HI contributions intro-
duced in preceding stages and cycles. Hash result 203 1is
latched (at 257) and supplied for use 1n any appropriate way,
including e.g., for use 1n the previously 1llustrated core-atlin-
ity routing technmique.

Partitioned Hash Function Example

In the illustration of F1G. 2, logic that computes a hash over
a hash-rule-specified set (and ordering) of packet header field
values 1s partitioned into hash-intermediate and hash-final
portions. In general, any of a variety of hash functions may be
suitably partitioned into similar portions and used 1in embodi-
ments such as described herein. Accordingly, the exemplary
partition of hash-intermediate and hash-final portions that
follow are for purposes of illustration and should not be
interpreted as limiting the range of suitable hash functions
and partitions thereof that may be employed in embodiments
of the present invention. Rather, based on the described par-
tition of hash-intermediate and hash-final portions, persons of
ordinary skill in the art will appreciate other suitable overall
hash functions and partitions that may be appropriate or desir-
able 1in other embodiments or situations.

In view of the foregoing and without limitation, one suit-
able hash function i1s a concrete implementation (e.g., 1n
logic) of a mathematical function ORD(, 7). The function
ORD(, 1) takes two parameters (1 and j) that specily shait
amounts. The function ORID(1, 1) operates on the implied
operand that represents internal state of the hash s. An evalu-
ation of the function ORD(1, 1) implemented in silicon oper-
ates as a logic cascade and sets the new internal state as
follows:

g ':SA(S"“: {I')n((S{ {j|5{{(f+j)))
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where negative values for 1 and 1 designate a right-shift rather
than the otherwise apparent left-shitt. In general, the ORD
function has been selected after noting that add functions can
provide good avalanche/diffusion properties, but may be too
slow for some silicon implementations (such as of filtered
hash chain 251 described herein) since around four or more
cascaded adds could be required each cycle. Persons of ordi-
nary skill in the art may recognize that the ORD( ) function 1s
reminiscent of certain half-adder equations, but with a few
changes to increase diffusion. Other hash functions will be
apparent to persons of ordinary skill in the art based on the
description herein and any applicable design factors.

In any case, a 32-bit ORD( ) based hash function 1s used in
some embodiments of the present invention, €.g., to hash IPv6
source and destination address values parsed from packet
headers and thereby maintain core-affinity 1n a communica-
tions controller design such as previously illustrated. For
purposes ol illustration, hash-intermediate (HI) and hash-
final (HF) portions of the 32-bit ORD( ) based hash function
will be understood as follows. HI logic instances, e.g., HI
logic 241, 242 . . . 244, are silicon logic implementations of
the following;:

hash-intermediate( ) {
s = ORD(1,6);
s = ORD(-14,-3);
s = rotate(s,11);

h

Correspondingly (and again relative to FIG. 2 and 1n accord
with some embodiments of the present invention), HF logic
252 1s a silicon logic implementation of the following:

hash-final( ) {

hash-intermediate( );
hash-intermediate( );
hash-intermediate( );

Notwithstanding the foregoing detail, particular hash func-
tions and particular partitions thereof into hash-intermediate
and hash-final portions are purely illustrative and should not
be interpreted as limiting the range of suitable hash functions
and/or partitions thereof that may be employed 1n embodi-
ments of the present invention.

Filtered Hash Chain, Multi-Cycle Example

Building on the forgoing description, FIG. 3 depicts flows
through an 1llustrative 4-stage filtered hash chain in accor-
dance with some embodiments of the present invention. In
particular, FIG. 3 provides a working example for a first of
tour (4) cycles through a 4-stage filtered hash chain imple-
mentation patterned on that described above with reference to
FIG. 2. An illustrative set of hash rule entries are distributed
across four SRAM banks that together constitute a rule set
and which cause evaluation logic 333 to perform packet
header field match and hash operations. Those rule entries
include two hash rule entries HR0 and HR1 that appear 1n a
first indexed position 332 within respective banks and six
additional hash rule entries (HR2, HR3, HR4, HRS, HR6, and
HR'7) that appear 1n respective subsequent indexed positions
within respective banks. Non-hash rules NR are also illus-
trated and appear in respective indexed positions within
respective banks.
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More particularly, FIG. 3 illustrates first cycle 301 tlows
through a 4-stage embodiment of the previously described
filtered hash chain based on an 1llustrated rule subsequence
{NR, HRO, HR1, NR} distributed across the first indexed
position 332A of the respective banks. Because the first
indexed position of the bank associated with the initial stage
of the 1llustrated hash chain (recall stage 281, FI1G. 2) codes a
non-hash rule, hash-intermediate computations (if any) by HI
logic 341 are not propagated downstream. Rather, an 1mput
sourced from a bypass path (here coding the 1nitial hash seed)
1s selected by filtration MUX 361 and supplied for down-
stream use 1n the next stage.

The first indexed position of the bank associated with the
second stage of the illustrated hash chain codes a hash rule
(1.e., hash rule HRO0) that, for purposes of illustration, we
assume matches the corresponding field value parsed from
the packet header. Accordingly, that matched field value 1s
combined with the output of the prior stage using XOR 372
and supplied to HI logic 342 for use 1n a hash-intermediate
computation, the results of which are passed through filtration
MUX 362 based on a select signal appropriate the matched
hash rule. Contents of the first indexed position of the bank
associated with the third stage also code a hash rule (i.e., hash
rule HR1) that, again for purposes of i1llustration, we assume
matches the corresponding field value parsed from the packet
header. Accordingly, that matched field value 1s combined
with the output of the prior stage using XOR 373 and supplied
to HI logic 343 for use 1n a hash-intermediate computation,
the results of which are passed through filtration MUX 363
based on a select signal appropriate to the matched hash rule.

Because the first indexed position of the bank associated
with the fourth stage codes a non-hash rule, the last hash rule
match (during this cycle) 1s 1n the third stage and accordingly
a select signal directs second-level filtration MUX 364 to
couple through the corresponding input and supply the accu-
mulated hash value as output 338 for using 1n a next cycle 302
through the filtered hash chain. That next cycle 302 1s illus-
trated 1n greater detail in FIG. 4.

Building on the foregoing, FI1G. 4 1llustrates second cycle
302 flows through the 4-stage embodiment of the previously
described filtered hash chain based on an illustrated rule
subsequence {HR2, NR, NR, HR3} distributed across the
second 1ndexed position 432 of the respective banks. The
second 1ndexed position of the bank associated with the 1nitial
stage of the illustrated hash chain codes a hash rule (1.¢., hash
rule HR2) that, for purposes of illustration, we assume
matches the corresponding field value parsed from the packet
header. Accordingly, that matched field value 1s combined
with output 358 of prior cycle 301 using XOR 371 and 1s
supplied to HI logic 341 for use in a hash-intermediate com-
putation, the results of which are passed through filtration
MUX 361 based on a select signal appropriate to the matched
hash rule. Because the second indexed position of the bank
associated with the second stage of the 1llustrated hash chain
codes a non-hash rule, hash-intermediate computations (1f
any) by HI logic 342 are not propagated downstream. Rather,
an 1nput sourced from bypass path 377 (here coding the hash
accumulated through the prior stage) 1s selected by filtration
MUX 362 and supplied for downstream use in the next stage.

Again 1n the third stage of the 1llustrated hash chain, the
corresponding second indexed position in the associated bank
codes a non-hash rule and, accordingly, hash-intermediate
computations (if any) by HI logic 343 are not propagated
downstream. Rather, an input sourced from bypass path 378 1s
selected by filtration MUX 363 and 1s supplied for possible
downstream use in the fourth stage. Since the second indexed
position of the bank associated with the fourth stage of the
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illustrated hash chain codes a hash rule (i.e., hash rule HR3)
and since, for purposes of illustration, we again assume that
the hash rule matches the corresponding field value parsed
from the packet header, the matched field value 1s combined
with the output of prior stage filtration MUX 363 using XOR
374 and supplied to HI logic 344 for use 1n a hash-interme-
diate computation, the results of which are passed through
second-level filtration MUX 364 based on a signal selective
for the accumulated hash output of the stage (here the fourth
stage) containing the last hash rule match during this second
cycle 302. Second-level filtration MUX 364 couples through
the corresponding input and supplies it as output 458 for using,
in a next cycle 303 through the filtered hash chain.

Skipping ahead, FIG. 5 1llustrates tlows during a fourth and
final cycle 304 through the 4-stage embodiment of the previ-
ously described filtered hash chain based on an illustrated rule
subsequence {HR6, NR, HR7, NR} distributed across the
fourth mdexed position 332 of the respective banks. The
tourth indexed position of the bank associated with the naitial
stage of the 1llustrated hash chain codes a hash rule (1.e., hash
rule HR6) that, for purposes of illustration, we assume
matches the corresponding field value parsed from the packet
header. Accordingly, that matched field value 1s combined
with output 358 of prior cycle 303 using XOR 371 and sup-
plied to HI logic 341 for use 1n a hash-intermediate compu-
tation, the results of which are passed through filtration MUX
361 based on a select signal appropnate to the matched hash
rule. Because the fourth indexed position of the bank associ-
ated with the second stage of the illustrated hash chain codes
a non-hash rule, hash-intermediate computations (if any) by
HI logic 342 are not propagated downstream. Rather, an input
sourced from bypass path 377 (here coding the hash accumu-
lated through the prior stage) 1s selected by filtration MUX
362 and supplied for downstream use 1n the next stage.

= -

Contents of the fourth indexed position of the bank asso-
ciated with the third stage also code a hash rule (1.¢., hash rule
HR7) that, for purposes of illustration, we again assume
matches the corresponding field value parsed from the packet
header. Accordingly, that matched field value 1s combined
with the output of the prior stage using XOR 373 and supplied
to HI logic 343 for use in a hash-intermediate computation,
the results of which are passed through filtration MUX 363
based on a select signal appropriate for the matched hash rule.

Because the fourth indexed position of the bank associated
with the fourth stage codes a non-hash rule, the last hash rule
match (during this fourth and final cycle through the filtered
hash chain) 1s in the third stage and accordingly select signal
514 directs second-level filtration MUX 364 to couple
through the corresponding input and supply 1t as output 559.
Output 559 1s passed to hash final (HF) logic 252, which 1n
turn supplies hash result 503 encoding the hash contributions
accumulated based on four cycles through filtered hash chain
and evaluation (by evaluation logic 333) of hash rules {HRO,

HR1, HR2, HR3, HR4, HR5, HR6, HR7} against respective
field values parsed from a current packet header.

FIGS. 6A and 6B 1illustrate, in accordance with some
embodiments of the present invention, corresponding
in-memory footprints for rule sequences that produce a con-
sistent hash despite dissimilar allocations of individual hash
rule entries to memory banks. Successive cycles through a
4-stage filtered hash chain with an in-memory allocation of
rule entries to banks consistent with FIG. 6 A was 1llustrated
and described above with reference to FIGS. 3-5. Based on
the description herein, persons of ordinary skill in the art waill
appreciate that, despite the different allocation of rule entries
to banks 1n FIG. 6B, propagation of hash intermediate con-
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tributions 1n successive cycles through the 4-stage filtered
hash chain described above results 1n an 1dentical hash.

Other Embodiments

Although the invention 1s described herein with reference
to specific embodiments, various modifications and changes
can be made without departing from the scope of the present
ivention as set forth 1n the claims below. For example, while
techniques have been described in the context of particular
communication controller configurations and hashes of
packet header field values, the described techniques have
broad applicability to other rule evaluation and hash genera-
tion designs 1n which nsensitivity to allocation of hash rules
to particular storage and/or evaluation units 1s desirable.
Similarly, although the techniques have been described 1n the
context of multi-cycle evaluations through a comparatively
short (4-stage) filtered hash chain, 1n some embodiments gate
delays associated with a longer filtered hash chain may be
tolerable and fewer cycles, perhaps even a single cycle,
through such a filtered hash chain may be consistent with
design objectives.

Embodiments of the present invention may be imple-
mented using any of a variety of different hash functions,
processing architectures and logic families and may employ
hash generation for any of a variety of different purposes,
including core-aifimity packet traific routing, load balance,
etc. Accordingly, while FI1G. 1 together with 1ts accompany-
ing description relates to an exemplary multiprocessor-or
multicore-type iformation processing architecture in which
core-affinity 1s a design goal, the exemplary architecture 1s
merely 1llustrative. Of course, architectural descriptions
herein have been simplified for purposes of discussion and
those skilled 1n the art will recognize that 1llustrated bound-
aries between logic blocks or components are merely 1llus-
trative and that alternative embodiments may merge logic
blocks or circuit elements and/or impose an alternate decom-
position of functionality upon various logic blocks or circuit
clements.

Articles, systems and apparati that implement the present
invention are, for the most part, composed of electronic com-
ponents, circuits, rule entries and/or code (e.g., software,
firmware and/or microcode) known to those skilled 1n the art
and functionally described herein. Accordingly, component,
circuit and code details are explained at a level of detail
necessary for clarity, for concreteness and to facilitate an
understanding and appreciation of the underlying concepts of
the present invention. In some cases, a generalized descrip-
tion of features, structures, components or implementation
techniques known 1n the art 1s used so as to avoid obfuscation
or distraction from the teachings of the present invention.

Finally, the specification and figures are to be regarded 1n
an 1llustrative rather than a restrictive sense, and consistent
with the description herein, a broad range of variations, modi-
fications and extensions are envisioned. Any benefits, advan-
tages, or solutions to problems that are described herein with
regard to specific embodiments are not intended to be con-
strued as a critical, required, or essential feature or element of
any or all the claims.

What 1s claimed 1s:
1. An apparatus comprising:

matching logic configured to concurrently evaluate packet
header information against respective entries of a rule
set coded 1n storage; and
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a hash generator for calculating a hash result relative to the
evaluated packet information, the hash generator includ-
ing itermediate and final portions and a filtration stage
coupled therebetween,

wherein the intermediate portion 1s configured as a chain of 5

hash-intermediate stages each coupled to calculate arule
entry evaluation-specific contribution for possible inclu-
sion 1n the hash and, for lower-order ones of the hash-
intermediate stages, for possible propagation down
chain and inclusion 1n a next higher-order hash-interme-
diate stage contribution, and

wherein the filtration stage 1s selective for a rule entry-
specific contribution from a particular one of the hash-
intermediate stages for supply to the final portion for use
in completing calculation of the hash result.

2. The apparatus of claim 1, further comprising;:

the storage, wherein the storage 1s implemented as plural
banks of memory and wherein each of the concurrently
evaluated against rule entries 1s accessed from a different
one of the plural banks.

3. The apparatus of claim 1, further comprising:

first-level filtration stages coupled between the hash-inter-
mediate stages of the chain, the first-level filtration
stages selectively coupling respective values down chain
for possible inclusion 1n the hash.

4. The apparatus of claim 3,

wherein, for a particular one of the first-level filtration
stages, the value coupled down chain 1s selected, based
on a corresponding evaluation by the matching logic,
from a set of values that includes:
a rule entry-specific contribution from an immediately

preceding hash-intermediate stage; and

an intermediate output from a previous cycle.

5. The apparatus of claim 3,

wherein the matching logic 1s coupled to supply selection
control signals to respective ones of the first-level filtra-
tion stages.

6. The apparatus of claim 3,

wherein for individual ones the first-level filtration stages,
selection of a contribution from the immediately preced-
ing hash-intermediate stage for coupling down chain 1s
based on a match-type evaluation of the match logic 1n
accord with a corresponding hash-enabled one of the
rule entries.

7. The apparatus of claim 3,

wherein the selected-from set of values further includes a
hash reset value, and

wherein for individual ones the first-level filtration stages,
selection of the hash reset value for coupling down chain
1s based on a fail-type evaluation of the match logic 1n
accord with a compound set of the rule entries.

8. The apparatus of claim 7, wherein the compound set

includes one or more of:

an AND chain of rule entries; and

a cluster of rule entries.

9. The apparatus of claim 1,

configured for multi-cycle operation whereby the packet
header information 1s evaluated, 1n one or more succes-
stve cycles, against additional rule entries from the rule
base; and

further comprising a recycle path coupled from output the
filtration stage back to the hash-intermediate stage for
possible selection 1n a next cycle.

10. The apparatus of claim 9,

wherein upon completion and accumulation of an interme-
diate output that includes contribution from plural suc-
cessive cycles and hash-intermediate stages thereot, the
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intermediate output 1s supplied to the final portion for
use 1 the completing of the hash result calculating.

11. The apparatus of claim 1,

wherein the filtration stage 1s further selective amongst
outputs of the hash-intermediate stages, a hash reset
value, and a prior cycle intermediate output.

12. The apparatus of claim 1,

wherein the hash generator 1s implemented as multi-level
logic and partitioned such that one or more initial levels
thereol are replicated at each of the plural hash-interme-
diate stages of the intermediate portion and remaining
levels thereof implement the final portion.

13. The apparatus of claim 1, further comprising;:

plural processing resources,

wherein the hash generator 1s coupled to supply a load
balancer with the hash result and thereby distribute
packets to the plural processing resources.

14. The apparatus of claim 1,

configured as a communications controller in which the
hash result 1s employed to maintain a core affinity rout-
ing of packet traflic.

15. A method of generating a hash 1n correspondence with

evaluation of packet header information against constituent
rule entries of a rule base, the method comprising:

concurrently performing plural evaluations of the packet
header information against respective ones of the rule
entries retrieved from storage;

calculating the hash relative to the evaluated packet infor-
mation using logic partitioned into intermediate and
final portions, wherein the intermediate portion of the
hash calculating 1s performed using a chain of stages
cach coupled to supply a rule entry evaluation-specific
contribution for possible inclusion in the hash and, for
lower-order ones of the stages, to selectively propagate
down chain a rule entry evaluation-specific contribution
for possible inclusion in a next higher-order stage con-
tribution, and

filtering the rule entry evaluation-specific contributions to
select a particular one for supply to the final portion of
the hash calculating.

16. The method of claim 15,

wherein the storage includes plural banks of memory, and

further comprising accessing each of the concurrently
evaluated against rule entries from a different one of the

plural banks.

17. The method of claim 15,

performing first-level filtering between the stages of the
chain, the first-level filtering selectively coupling
respective values down chain for possible inclusion in

the hash.

18. The method of claim 15, wherein, for particular ones of

the first-level filterings, the value coupled down chain 1s:

for a match-type evaluation of a hash-enabled rule, a rule
entry-specific contribution from an immediately preced-
ing stage; and

for a fail-type evaluation of a hash-enabled rule, a hash
reset value.

19. The method of claim 15, further comprising;:

repeating, relative first to an 1nitial subset of the rule entries
and thereafter for subsequent subsets thereof, both the
concurrent evaluations ol packet header information and
the intermediate portion of the hash calculating, and

performing for each repetition of the intermediate portion
of the hash calculating, second-level filtering to select a
particular one of the rule entry evaluation-specific con-
tributions for possible inclusion in the hash, wherein for
an 1nitial and successive non-final performances of the
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second-level filtering, the selected rule entry evaluation-
specific contributions are fed back for inclusion 1n a next
repeat of the intermediate portion of the hash calculat-
ing, and wherein a final performance of the second-level
filtering constitutes the filtering to select a particular rule

entry evaluation-specific contribution for supply to the
final portion of the hash calculating.

20. An apparatus comprising;:
means for concurrently performing plural evaluations of

. . . . 1
the packet header information against respective ones of

the rule entries retrieved from storage;

means for calculating the hash relative to the evaluated
packet information using logic partitioned into interme-
diate and final portions, wherein the intermediate por-
tion of the hash calculating 1s performed using a chain of

16

stages each coupled to supply a rule entry evaluation-
specific contribution for possible inclusion in the hash
and, for lower-order ones of the stages, to selectively
propagate down chain a rule entry evaluation-specific
contribution for possible inclusion 1n a next higher-order
stage contribution;

means for filtering the rule entry evaluation-specific con-
tributions to select a particular one for supply to the final
portion of the hash calculating; and

means for repeating, relative first to an 1nitial subset of the
rule entries and thereafter for subsequent subsets
thereof, both the concurrent evaluations of packet

header information and the intermediate portion of the

hash calculating.
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