12 United States Patent

Uehara et al.

US007890669B2

(10) Patent No.: US 7,890,669 B2
45) Date of Patent: Feb. 15, 2011

(54) COMPUTER SYSTEM FOR SHARING 1/O

DEVICE

(75) Inventors:

(73) Assignee:

(*) Notice:

(21) Appl. No.:
(22) Filed:

(65)

Keitaro Uehara, Kokubunji1 (IP); Yuji
Tsushima, Hachioji (JP); Toshiomi
Moriki, Kokubunji (JP); Yoshiko
Yasuda, Tokorozawa (JP)

Hitachi, Ltd., Tokyo (JP)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 994 days.
11/561,557

Novw. 20, 2006

Prior Publication Data

US 2007/01433935 Al Jun. 21, 2007

(30) Foreign Application Priority Data

NOV. 25,2005 (JP) oo, 2005-340088
Tul. 14,2006 (JP) oo, 2006-194534
(51) Int.CL
GOGF 13/28 (2006.01)

(52) US.CL ..

.. 710/22; 710/26

(58) Field of Classification Search 710/22,

710/26

See application file for complete search history.

(56)

References Cited

U.S. PATENT DOCUMENTS

0,496,847 Bl
2002/0129212 Al
2003/0172149 Al

2004/0098544 Al

12/2002 Bugnion et al.

2004/0153853 Al 8/2004 Moriki et al.
2005/0097384 Al 5/2005 Uehara et al.
2005/0235068 Al 10/2005 Moriki et al.
2005/0235083 Al 10/2005 Tsushima et al.
2006/0064523 Al 3/2006 Moriki et al.

2006/0253619 Al* 11/2006 Torudbakken et al. 710/31
FOREIGN PATENT DOCUMENTS
JP 2004-220218 8/2004
OTHER PUBLICATIONS

U.S. Appl. No. 11/490,141, filed Jul. 2006, Tarui, et al.
“Intel® Virtualization Technology for Directed I/O Architecture

Specification”, Feb. 2006. Order No. D51397-001, http://www.intel.
com/technology/computing/vptech/.

* cited by examiner

Primary Examiner—Alford W Kindred
Assistant Examiner—David E Martinez
(74) Attorney, Agent, or Firm—Brundidge & Stanger, P.C.

(57) ABSTRACT

Provided 1s a computer system 1n which an I/O card 1s shared
among physical servers and logical servers. Servers are set 1n
advance such that one I/O card 1s used exclusively by one
physical or logical server, or shared among a plurality of
servers. An I/O hub allocates a virtual MM I/O address unique
to each physical or logical server to a physical MM [/O
address associated with each 1/O card. The I/O hub keeps
allocation information indicating the relation between the
allocated virtual MM 1/O address, the physical MM /O
address, and a server i1dentifier unique to each physical or
logical server. When a request to access an 1/0 card 1s sent
from a physical or logical server, the allocation information 1s
referred to and a server 1dentifier 1s extracted from the access
request. The extracted server identifier 1s used to identify the

* 09/2002 Teeetal T11/152 physical or logical server that has made the access request.
*9/2003 Edsall etal. 709/224
*5/2004 GQGaitheretal. 711/154 6 Claims, 33 Drawing Sheets
LOGICAL SERVER LOGICAL SERVER
4D0A 310C1 E_ E_ 310C2
0 400C1 Y T
0S8 “Yos]| DSf!\ngzz
004 bD—m— J I==—==15
N i PR
oon i NooE T Thooe] 1 RERER
T cPu || cpu |18 | i NDOE |, 200C
TEE N " I
|] 2008, T |
110A 1| | NORTH 1204 ‘ | 3
A BRIDGE I MEMORY (.5 i I 3
! ! :
— . R s o | o,
600 SWITCH SERVICE
PROCESSOR
700A /0 HUB 7008 | yo Hug |
~ 710 ™)
750 /G CARD #O PROCESSOR ¢ <
~T1 MODULE | |[CPU | [MEMGRY || ++e==+

NORTH
BRIDGE

4)_&

90
850A._~ 850% ﬂESDA
R Tooao 810
/0 BRIDGE [

8014~ ADRREG

802~ cMD REG

88~ omert || & 0§ 9

800B 800C 800D

U.S. Patent Feb. 15, 2011 Sheet 1 of 33 US 7.890.669 B2

LOGICAL SERVER LOGICAL SERVER
400A 310C1 a

< Vi
40001\/\-

N SHYSICALSERVER _E
Z200A |
:
I

| |
! NODE | SE VER
100A | {00 1 SERVE '
: g o
: >00R e
110A | 120A :
:
i |
600 SWITCH SERVICE
__ PROCESSOR
700A | /0 HUB
oSN
/O CARD
70 1| SHARING '
| MODULE I\
910
8504 850A 850A
B00A - a1
/O CARD /0 BRIDGE i/\/
801 |

802 *
803~ pmacTL T

800B 800C 800D

FIG. 1

U.S. Patent Feb. 15, 2011 Sheet 2 of 33 US 7.890.669 B2

/O PROCESSOR 710

11 /OPCPU | | /OP MEMORY 712

713
/O P NORTH BRIDGE

FIG. 2

U.S. Patent

Feb. 15, 2011

Sheet 3 of 33

US 7,890,669 B2

600
~ 1 SWITCH |

: A : A
: IOCOUNTUP+ 3
MM /O WRITE & DMA REQUEST: = REQUEST &+ ° K%SCI%JNNSTEUP
SYSTEM Tx E SYSTEM Tx & 1140 E - 1143
1100 = 1130 A A fa0
Y T = 0

: : * = |/OCARD SHARING I
: : = MODULE

5. - /52 - - = /60

/O
PROCESSOR

710

MM 1/O WRITE = DMA REQUEST

MM /O WRITE

DECODER

PCl Tx

2.

—3,
—
—
-

..

|

DMA REQUEST
DECODER

MM I/O
INITIALIZER

4 ; A /O CARD
: — SETTINGS
*|/OCOUNTUP® = [/JO COUNT UP
ol & REQUEST * = RESPONSE
120 M~ 1142
/j/ ———a_____ | SERVICE
PROCESSOR
/0 BUS 850 900

FIG. 3

U.S. Patent Feb. 15, 2011 Sheet 4 of 33 US 7.890.669 B2

/O CARD SHARING ATTRIBUTES 743

__M_
- N

741 742 743B 743B “ 743N

PHYSICAL
10 CARD D | VOCARDTYPE | SERVER1 | SERVER?2 - SERVER 1
SHARED SHARED
SHARED SHARED
(INUSE) | PROHIBITED - (NOT IN USE)
EXCLUSIVE
3 SCSl (INUSE) | PROHIBITED - PROHIBITED

/O CARD SHARING SETTINGS /740

FIG. 4

U.S. Patent Feb. 15, 2011 Sheet 5 of 33 US 7.890.,669 B2

MM /0 WRITE SYSTEM Tx 1100

ACCESS | [DESTINATION | [ISSUER | [+, o] | VIRTUALMM IO | I WRITE "
TYPE NODE NODE ADDRESS | i DATA |

1106 1101 1102 1103 1104 1105

FIG. 5

MM I/0 WRITE PCI Tx 1110

ACCESS | |+, p| | PHYSICALMMIO | 1 WRITE
TYPE ADDRESS . DATA |

1111 1112 1113 1114

FIG. 6

DMA REQUEST PCI Tx 1120

ACCESS | |1, 10| | GUEST QUALIFIED | !
TYPE DMAADDRESS | ' DATA |
1121 1122 1123 1124

FIG. 7

U.S. Patent Feb. 15, 2011 Sheet 6 of 33 US 7.890.669 B2

1115

GUEST DMA ADDRESS

7 1116 1117

\

----------------------------------- GUEST QUALIFIED
' DMA ADDRESS
GUEST IDENTIFIER USED ADDRESS SECTION | "\ 1123

1125

FIG. 8

DMA REQUEST SYSTEM Tx 1130

ACCESS | [DESTINATION | | ISSUER | | 1,;n || HOSTDMA | i WRITE
TYPE NODE NODE ADDRESS | | DATA |

s Sy s . - s s ol

1136 1131 1132 1133 1134 1135

FIG. 9

U.S. Patent

751

DECODER

MM /O WRITE

720

MM 1/O ADDRESS

CONVERSION

TABLE

Feb. 15, 2011 Sheet 7 of 33 US 7.890.,669 B2

/0 COUNT UP = = 1/0 COUNT UP
REQUEST = - RESPONSE
760 1140 ~ A~ P~ 1143
MM I/O INITIALIZER A=
¢ 1230
l MM /O AREA
ALLOCATION TABLE
: A
/0 COUNT UP : 1/0 COUNT UP
REQUEST : : RESPONSE
1141 A~ i~ 1142
/O CARD SHARING . :
SETTINGS : :
/0 BUS 850

FIG. 10

U.S. Patent Feb. 15, 2011 Sheet 8 of 33 US 7.890.669 B2

1232 1233 1234 1235

PHYSICAL STARTING ADDRESS | MAXIMUM SHARING | USE
/O CARD ID MM 1/0 ADDRESS RANGE GUEST COUNT STATE

R B ARl L]

MM 1/0 AREA ALLOCATION TABLE 1230

FIG. 11

1104 1113 1125 1200
VIRTUAL PHYSICAL GUEST /0 P MEMORY
MM 1/O ADDRESS MM /O ADDRESS IDENTIFIER ADDRESS

MM 1/O ADDRESS CONVERSION TABLE 720

FIG. 12

U.S. Patent Feb. 15, 2011 Sheet 9 of 33 US 7.890.669 B2

START

\. —

RECEIVE /0 COUNT UP
51500 REQUEST

51510

IS PHYSICAL
INITIALIZATION

Yes NECESSARY ?
S1610
PHYSICAL No
INITIALIZATION

51920 S TARGET

/O CARD ACCESSIBLE TO

REQUESTER GUEST 7 No

S1530 SEND /O COUNT UP
RESPONSE INFORMING OF

Yes FAILURE TO LOCATE

TARGET CARD

51540

IS TARGET /O CARD
SHAREABLE ?

No

SEND 1/O COUNT UP
Yes S1990| RESPONSE CONTAINING
STARTING MM 1/0
ADDRESS AND

ADDRESS RANGE

VIRTUAL MM 1/O
51560 ADDRESS ALLOCATION

PROCESSING

FIG. 13

U.S. Patent Feb. 15, 2011 Sheet 10 of 33 US 7.890.669 B2

START OF VIRTUAL MM 1/Q ADDRESS
ALLOCATION PROCESSING

SEARCH MM 1/O AREA ALLOCATION

51970 | TABLE FOR FREE AREA. AND CHANGE
THE AREA'S STATE TO “IN USE’

51560 SET VIRTUAL MM 1/O ADDRESS
q1590 | REGISTER CORRESPONDING ENTRY IN
MM 1/O ADDRESS CONVERSION TABLE

SEND /O COUNT UP RESPONGSE

S1600 | CONTAINING VIRTUAL MM /O ADDRESS
AND ADDRESS RANGE

END OF VIRTUAL MM |/O ADDRESS
ALLOCATION PROCESSING

FIG. 14

U.S. Patent Feb. 15, 2011 Sheet 11 of 33 US 7.890.669 B2

START OF PHYSICAL
INITIALIZATION PROCESSING

51620 ISSUE 1/O COUNT UP

REQUEST TO I/0 BUS

g1630| RECEIVE /O COUNT UP
RESPONSE FROM 1/0 BUS

51640

IS THERE
TARGET /O CARD 7

No
Yes S1650 SEND I/O COUNT UP
RESPONSE INFORMING OF
CALCULATE MAXIMUM FAILURE TO LOCATE
51660 SHARING GUEST COUNT OF TARGET CARD
THIS 1/0 CARD FROM /O CARD
SHARING SETTINGS
S1670 l
MAXIMUM SHARING
31680| SEND I/O COUNT UP
NG RESPONSE CONTAINING
STARTING MM 1/O
ADDRESS AND
g1g90| REGISTER CORRESPONDING ADDRESS RANGE
ENTRY IN MM I/O AREA

ALLOCATION TABLE

INITIALIZE USE STATE TO ‘NOT
IN USE" IN EVERY ENTRY

S1700 SEND /O COUNT UP
RESPONSE CONTAINING

| STARTING MM |/O ADDRESS
| AND ADDRESS RANGE

END OF PHYSICAL

INITIALIZATION
PROCESSING

FIG. 15

U.S. Patent Feb. 15, 2011 Sheet 12 of 33 US 7.890.669 B2

RESERVED VIRTUAL
MM 1/O AREA

VIRTUAL MM 1/O ADDRESS
1104-C

VIRTUAL MM 1/O ADDRESS
1104-B :

PHYSICAL MM I/O ADDRESS
1113-A

HOST MM I/O AREA\ GUEST MM /O AREA GUEST MM /0O AREA
1210 1220a 1220b

PHYSICAL MM 1/O AREA
OF 1/0 CARD

FIG. 16

U.S. Patent Feb. 15, 2011 Sheet 13 of 33 US 7.890.669 B2

/O P MEMORY 712

/O P MEMORY ADDRESS 1200-P

/0 P MEMORY ADDRESS 1200-0——» NI

U.S. Patent Feb. 15, 2011 Sheet 14 of 33 US 7.890.669 B2

—
SWITCH 600

MM 1/O WRITE
SYSTEM Tx

1100 791 710

—
VIRTUAL MM 1/O ADDRESS :

MM 1/O <«
ADDRESS | /O P MEMORY
CONVERSION

TABLE 720 — | ADIRESS

—————

— MEMORY :
GUEST IDENTIFIER| | WRITE :
PHYSICAL MM 1/0 743

ADDRESS :
GUEST DMA ADDRESS
GUEST QUALIFIED ;
DMA ADDRESS :

. MEMORY

| 712 ' WRITE TO

' 1/0 CARD

MM 1/0 MM 1/O WRITE
INITIALIZER PCI Tx
760 1110
A\
/0 BUS 850

FIG. 18

U.S. Patent Feb. 15, 2011 Sheet 15 of 33 US 7.890.,669 B2

SWITCH 600

: 752
; PDMA REQUEST SYSTEM Tx 1130 '
DESTINATION NODE
ADDRESS
DECODER
753
HOST DMA ADDRESS
DMA ADDRESS
CONVERSION
r__——;t TABLE 730
GUEST IDENTIFIER
GUEST DMA ADDRESS

F ________________________

5 DMA REQUEST PCl TX 1120

/O CARD
SHARING

SETTINGS
740

/0 BUS 850

FIG. 19

U.S. Patent Feb. 15, 2011 Sheet 16 of 33 US 7.890.669 B2

1125 /31

GUEST
DENTIFIER | POINTER

1115 1134
GUEST DMA HOST DMA
ADDRESS ADDRESS
I

730 ——I
T
]
CONVERSION TABLE
7302

DMA ADDRESS CONVERSION TABLE 730

SERVER 1

FIG. 20

U.S. Patent Feb. 15, 2011 Sheet 17 of 33 US 7.890.,669 B2

GUEST MEMORY AREA
GUEST MM I/O AREA 1300

1220

COMMAND CHAIN
HEAD POINTER
1920 COMMAND CHAIN
COMMAND CHAIN ol 1310
TAIL POINTER
1330
DRIVER MEMORY AREA

13056

U.S. Patent Feb. 15, 2011 Sheet 18 of 33 US 7.890.669 B2

LOGICAL LOGICAL

SERVER SERVER
310G1 310C2

400A e _____ 2

) @
300A —-----—-------—--—----=: = o ——1 .. 900C
VA PHYSICAL SERVER : [AYPERVISOR i~
! | PHYSICAL 11 300C
: NODE 210A [NODE | ¥ SERVER e
100A — | | ')
™ cpPu || crU 2108 | 3 SRR
: : ----- i : : E
| ' A .
1000A 120A ! | X
: 1104 | [| MEMORY : ! }
1 :) : i
: | | E : : i
117001 | 600 : ¥ |
! » i :
JIE=: A IR
| N : i . L
:-- ——————————————— - :I———I—‘E———‘IE 900

SERVICE
PROCESSOR
850A l

8508 850C

800A

810
/O CARD /O BRIDGE [~

801 ADR REG

302 | f\l CMD REG | l 010
SN

800B 800C 800D

FIG. 22

U.S. Patent Feb. 15, 2011 Sheet 19 of 33 US 7.890.669 B2

10-1 10-2 10-n
101 SERVER 1| 101 .. SERVER 2 101___\ SERVER n
CPU CPU
102 l 102.| 102\0”’
MEM MEM MEM
103 || 103] L 103 1
W\ CS cs | \l CS

11-1 11-2 11-h\§

PCl-ex PCI- ex PCIl-ex 260
HEADER
SWITCH 250 PROCESSING UNIT -
/OP :
301~37 401 PCl-ex
450 ? 601
/O CARD SHARING MODULE CHIP SET
311 312 I
PCl-ex PCl-ex
602 003
--—-~| ADR REGI
o1 ———— | A?_R--REG CPU MEMORY
512~t CMD REG | CMD REG
— \"511
513 \
ﬂ DMACTL' | DMACTLF\SQ
513
70 CARD 1 /O CARD 2
501~ 5027

FIG. 23

U.S. Patent Feb. 15, 2011 Sheet 20 of 33 US 7.890.669 B2

430

/0 CARD SHARING FROM SWITCH FROM I/O P FROM I/O CARD
MODULE | "
A4 I "
? 301-1~5" 401-1 Ay
411 ADDRESS |
410/ INFORMATION 440 |
HEADER
> INFORMATION|, 40
PCI Tx
“"“_—1:_____+ MAIN BODY I
INTRAIOP MM /O
ADDRESS _ BASE [z05 0 ———'—404
TxDECODER Tx DECODER 2 | | Tx DECODER 3
— MWR| | INT }& L _ |
HEADER
408 | 407 INFORMATION
| | MODIFIED
r 405 /0 CARD AODRESS |
SHARING
SELECTION SETTINGS SESLIECIZ\]'QEN
119 SIGNAL || —3 = 113
5 430
r? 401-2 E 301_2\3:
Tol/OP E To I/O Card To SWITCH
610
/0 CARD SHARING
SETTINGS TABLE

FIG. 24

U.S. Patent Feb. 15, 2011 Sheet 21 of 33 US 7.890.669 B2

PClI TRANSACTION

S 8)
i mEF%DRENTAHON 461 PCI Tx MAIN BODY
SERVER MM /0 BASE ADDRESS
452 453

DESTINATION REQUESTER .-/

UNUSED AREA USED AREA

1 | Obit

&) I

463

SERVER
IDENTIFIER

FIG. 25

U.S. Patent Feb. 15, 2011 Sheet 22 of 33 US 7.890.669 B2

MEMORY SPACE MEMORY SPACE MEMORY SPACE
OF SERVER #1 OF SERVER #2 OF SERVER #3
TOM#1 |— | TOM#2 TOM#3
OxB Ly
- OxY
Y___.

0x00...0 _I 0x00..0 ——— 1 0Ox00...0 _

2224 MM /O AREA ASSOCIATED WITH SHARED /0O CARD
TOM: ABBREVIATION OF TOP OF MEMORY

FIG. 26

U.S. Patent Feb. 15, 2011 Sheet 23 of 33 US 7.890.669 B2

MEMORY OF I/O P 603

- 6031

N

0xQ| 6032

OxR %\\\ﬁ 6033

0x000 —

FIG. 27

411 ADDRESS INFORMATION TABLE

HEADER MM 1/O ADDR /O P ADDR OFFSET
/0 1:5V2 OxB OxQ OxY
10 1:5V3 O O
4111 4112 4113 4114

FIG. 28

U.S. Patent Feb. 15, 2011 Sheet 24 of 33 US 7.890.669 B2

610 /0 CARD SHARING SETTINGS TABLE

_ . —
SERVER 1 SERVER 2 SERVERS3 |

SCSICARD | SHARE SHARE l SHARE

/O CARD 1

/O CARD 2 NIC CARD NO ASSIGNED! DEDICATE NOASSIGNED |
A
011 012 013 614 615

FIG. 29

U.S. Patent Feb. 15, 2011 Sheet 25 of 33 US 7.890.,669 B2

450 1/0 CARD SHARING MODULE

/410.
41

402~404

—» DECODER
—>

ADDREGSS
INFORMATION

430
405
/O CARD SHARING |
SETTINGS |
-—— A l
MEMORY WRITE
REFERENCE TO T
SETTINGS
650\
603 MEMORY
I
(610 603X 620 v 630 v
JOSHARING | | yoMEMORY | | INTERRUPTION | | INITIALIZATION
SETTINGS TABLE SPACE PROSEISTSING PROSEISTSWG

FIG. 30

U.S. Patent

S1

453

HEADER
INFORMATION

) INTRA-SERVER
REQUESTER | | MEMORY ADDRESS

Feb. 15, 2011 Sheet 26 of 33 US 7.890.,669 B2
S5
451 il
HEADER i PCl Tx
INFORMATION MAIN BODY
452 \
s %3)
PCi Tx DESTINATION 0x00..0
MAIN BODY |
o2 ONLY IN THE CASE OF
/O CARD SHARING MODULE

461

451

603 MEMORY

HEADER
INFORMATION

PCl Tx
MAIN BODY

S3

ONLY IN THE CASE OF WRITE

IN REGISTER INDICATING
DMA TRANSFER
DESTINATION, REQUESTER
INFORMATION IS MERGED IN
SIGNIFICANT BIT OF INTRA-
SERVER MEMORY ADDRESS,
AND WRITE IS EXECUTED BY
CPU (602) OF /O P

DMA TX, SIGNIFICANT
BIT OF ADDRESS IS SET
AS DESTINATION OF
HEADER INFORMATION

WRITES IN MEMORY
MOUNTED TO/OP

INTRA-SERVER
MEMORY ADDRESS

REQUESTER
4353

PCI Tx MAIN BODY

ol

\ 1400
110 CARD SHARING

MODULE

y 501,502 110 CARD

| DMA Tx (MEMORY RD/WT)

o4
511

! ADR REG

DMA CTL

013

U.S. Patent Feb. 15, 2011 Sheet 27 of 33 US 7.890.,669 B2

TIME
>
SERVER

S11 S13

WRITE IN OTHER | WRITE IN CMD REGISTER

REGISTERS THAN

CMD REGISTER
/0 CARD
MODULE T\ ADR
512 514 RESTORATION
RECORD DATA INTERRUPT PROCESSING
OF THISWRITE |\ I/OP: CPU TIMED 318
N I/O P: MEMORY | WITH THIS WRITE
JOP:CPU =--mmmmmdmmmmcmeee e Nl
S15
READ DATA OUT OF
OTHER REGISTERS
THAN CMD REGISTER
IOP: MEMORY —=-- === =F= s e m - S" 1'6' ----------------------
ATTACH CONVERTED DMA REQUEST
ADR IN THE CASE OF S17
ACCESS REQUEST
INVOLVING DMA

JOCARD =~==--=-=-=-==cc e e e e e -

U.S. Patent Feb. 15, 2011 Sheet 28 of 33 US 7.890.669 B2

SERVER # x /O CARD SHARING MODULE /OP

S20
POWER ON

S21

CONFIG RD ACCESS S22 523
BY BIOS CONVERT INTO ACTIVATED UPON

MEM WT AND INT INT TO CHECK 110
T CARD ALLOCATION

TO REQUESTER
SERVER #X

0 x FFFF_FFFF RESPONSE 324
(HANDLED AS MASTER ABORT)

Yes
NOT ALLOCATED

NO
SEND CONFIG SET VALUE IN RESPONSE
S25
CREATE ADDRESS
MAP. AND SET S8
BASE ADDRESS OF .
CONFIG REGISTER CONVERT INTO
MEM WT AND INT ACTIVATED UPON
INT TO MAKE SET
DATA REFLECTED |
ON ADDRESS
INFORMATION (411
THAT IS ASSOCIATED
WITH REQUESTER

SERVER #x

U.S. Patent Feb. 15, 2011 Sheet 29 of 33 US 7.890.669 B2

10-1 10-2
101 — SERVER # 1 . 101| SERVER#2
cPU CPU
102 10

MEM |-

=

103 | 103 |
AEY
11 -1 11-2 11-n
PCI- ex PC- ex PCl-ex ™) 260
250 " HEADER A
SWITCH PROCESSING UNIT
_— 650
/IOP &
401 PCl-ex ?
450 ? 601
/O CARD SHARING MODULE CHIP SET
3™ 312\f\
PCl-ex PCl-ex
| [— 603
51—~ ADRREG ADR REG
[. I— -_ MEMORY
512~ CMD REG CMD REG
513-—---| ACTL]I | | DMACTL \
014~ cMCH CMCN
CTL CTL |
| VOCARD ‘ | 10 CARD 2 | \514

1501J 1 5027—

U.S. Patent Feb. 15, 2011 Sheet 30 of 33 US 7.890.669 B2

MEMORY SPACE MEMORY SPACE MEMORY SPACE

IN SERVER #1 IN SERVER #?2 IN SERVER #3
TOM#2 | TOM#3

TOM#1

OXA
xC :
__
1021
OXE | o /1022
00— W2 oWz
CCW23
chz <
"CCW3 1020 | cow4
0x00..0 L 0x00...0 0x00...0

U.S. Patent Feb. 15, 2011 Sheet 31 of 33 US 7.890.669 B2

TIME

QERVER ——f~-==-====== === s = e oo oo oo

S31

REGISTER WRITE

FOR ACTIVATING
/0 CARD

S34
READ DATA FOR /O CARD CONTROL,

/O CARD AND STORE IN I/O P: MEMORY
SHARING-~-- ¥ - -
MODULE ADR
S32 RESTORATION
INTERRUPT PROCESSING
/10 P: CPU S39
IOP: CPU-~------- - I DR S
ATTACH
S33 CONVERTED ADR 936
RECORD IN THE CASE OF | ACTIVATE
DATA OF ACCESS REQUEST| 1O CARD
THIS WRITE INVOLVING DMA
or vy e S R
MEMORY DMA REQUEST
IO CARD ==~~~ ========mmmmmm e e ¥
S3/ S38
READ DATA START DMA
STRUCTURE

FIG. 36

U.S. Patent Feb. 15, 2011 Sheet 32 of 33 US 7.890.669 B2

MEMORY OF I/0 P 603

CCW1
Sol "\1020
OxP
\ 6031
CCW11 091
CCW12 &

X W 6032

CCW21

CCW23
R T

0x000

U.S. Patent Feb. 15, 2011 Sheet 33 of 33 US 7.890.669 B2

10-1 10-2 10-n

¢ 5 5
SERVER 1 SERVER 2 SERVER n
|— e & & O

]] —
11-1 Ej 11-2;} 11-n
PCl-ex PCl-€exX PCI- e"% 200

SWITCH 250 A . L -
! HEADER PROCESSING UNIT
- 650
401 PCl-ex i_l
!'_450 R 01
/O CARD SHARING MODULE CHIP SET
311 3;2_-
PCl-ex PC|-ex B I
501 [502 | 602 603 |
/0 CARD | /0 CARD] CPU VEMORY | |

FIG. 36

US 7,890,669 B2

1

COMPUTER SYSTEM FOR SHARING I/O
DEVICE

CLAIM OF PRIORITY

The present application claims priority from Japanese
applications JP2006-194534 filed on Jul. 14, 2006 and

JP2005-340088 filed on Nov. 25, 2005, the contents of which
are hereby incorporated by reference into this application.

BACKGROUND

This 1mvention relates to a computer system 1n which a
plurality of servers are integrated into one, and more particu-
larly, to a computer system in which an I/O card 1s shared
between a physical server and a logical server.

Recent improvement of computer performance, especially
the progress of multicore processor technology, has contrib-
uted to increased adoption of a cost reduction method in
which processing that has conventionally been distributed
among a plurality of servers 1s concentrated into one server.
An effective way to concentrate processing 1n a server 1s to
run a plurality of operating systems on one server by utilizing,
server partitioning.

Server partitioning 1s classified into physical partitioning
which allocates OSs on a node basis, “node” being a proces-
sor, a memory, or the like, and logical partitioming which
virtualizes a physical processor and a physical memory to
create an arbitrary number of logical partitions in a computer.
Physical partitioning and logical partitioning each have
advantages and disadvantages.

With physical partitioning, it 1s not possible to partition a
server into more pieces than the number of physical resources
included 1n the server, and therefore only a limited number of
servers can be itegrated into one. On the other hand, since
servers 1ntegrated by physical partitioning each have exclu-
stve use ol a hardware resource, the server performance 1s
high.

Logical partitioning 1s implemented by firmware called
hypervisor or virtualization software. In logical partitioning,
operating systems (called guest OSs) are executed on logical
processors provided by a hypervisor. With a plurality of logi-
cal processors mapped onto a physical processor by the
hypervisor, the unit of partitioning 1s finer than a node. Fur-
thermore, when 1t 1s a processor that 1s partitioned, one physi-
cal processor may be switched 1n a time-sharing manner
among a plurality of logical partitions. In this way, more
logical partitions than the number of physical processors can
be created and run concurrently with one another. However,
in the logical partitioming, the intervention of virtualization
soltware causes overhead, which makes logical partitioning
inferior to physical partitioning in terms of performance.

Thus physical partitioning and logical partitioming each
have advantages and disadvantages, and 1t 1s therefore desir-
able to combine the two flexibly to suit the purpose.

Server mtegration utilizing those physical server partition-
ing and logical server partitioning has the following prob-
lems.

First of all, the above type of server integration requires an
I/O card for each server, and the number of servers that can be
integrated 1s limited by the number of I/O cards that can be
mounted. A problem second to this is that the server integra-
tion can degrade the overall system performance 1n some
cases.

Prior art given below 1s known as solutions to the above-
mentioned problems.

10

15

20

25

30

35

40

45

50

55

60

65

2

JP 2004-220218 A discloses a technique for preventing the
I/O performance of a logically partitioned server from drop-
ping. This technique accomplishes direct memory access,
DMA, from an I/O card 1n a logical server environment by
preparing a conversion table for conversion between a guest
DMA address shown to a logical server and a host DMA
address 1n main storage.

A similar technique 1s disclosed in an online article, Intel
Corporation, “Intel Virtualization Technology for Directed
I/O Architecture Specification” retrieved Jul. 6, 2006 at an
Internet URL http://www.ntel.com/technology/computing/
vptech/. This technique 1involves extended application to I/O
devices of Translation Look-aside Buifer (TLB), which 1s a
mechanism for converting a virtual address into a physical
address when a processor accesses memory. By entering dii-
ferent conversion entries for different I/O devices, the same
guest DMA address can be converted into different host DMA
addresses.

In addition to the above-mentioned hypervisor, server vir-
tualization software disclosed 1n U.S. Pat. No. 6,496,847 1s
another known example of software that partitions one com-
puter into an arbitrary number of logical partitions. The server
virtualization software makes sure that a host OS intervenes
I/O access from a logical server (guest), thereby enabling a
plurality oflogical servers to share an I/O card. The number of
necessary 1/0O cards can thus be reduced among logical serv-
ers.

SUMMARY

The above prior art can solve one of the two problems
mentioned above, but not both of them at the same time.

JP 2004-220218 A 1s built on the premise that I/0 cards and
logical servers are on a one-on-one basis, and a logical server
1s 1dentified by an I/O card from which a DMA request 1s
made. JP 2004-220218 A 1s therefore not applicable to a
computer system in which an 1I/O card 1s shared.

In a computer where an 1/0 1s accessed via a host OS as 1n
U.S. Pat. No. 6,496,84, DMA transfer from an 1I/O requires
memory copy between the host OS and a guest OS, which
makes lowering of performance due to increased overhead
unavoidable. To elaborate, since 1/0 access between a guest
OS and an I/O card 1s always relayed by the host OS, such
cases as DMA transfer between a guest OS and an 1/0O card
require processing of transierring data from a memory area of
the host OS to a memory area of the guest OS and the host OS
processing causes overhead that lowers the I/O access perior-
mance (transier rate and response).

This invention has been made 1n view of those problems,
and 1t 1s therefore an object of this invention to share an 1/0
card among a plurality of servers while avoiding lowering of
I/0O access performance, and to provide a computer system
that accomplishes DMA transier despite sharing of an 1/O
card among a plurality of physical servers and logical servers.

According to an aspect of this invention, a computer sys-
tem includes: at least one node composed of at least one
processor and memory; an I/O hub connecting at least one I/O
card; a switch connecting the node and the I/O hub; and a
server run by one or a plurality of the at least one node, 1n
which the server 1s set 1n advance to allow one of exclusive
use and shared use of the I/O; the I/0O hub allocates a virtual
MM I/O address unique to each server to a physical MM I/O
address associated with an I/O card; the I/O hub keeps allo-
cation mformation indicating the relation between the allo-
cated virtual MM 1/0 address, the physical MM 1/0 address,
and a server identifier unique to the server; and, when one
server sends a request to access an I/O card, the I/O hub refers

US 7,890,669 B2

3

to the allocation information to 1dentily the server that has
1ssued the access request using a server identifier that is
extracted from the access request.

This invention enables a plurality of servers to share an I/O
card. This eliminates the limitation on the number of servers
integrated which has been limited by how many I/O cards can
be mounted to a computer system, and can lead to more
flexible server configuration and effective use of hardware
resources.

This invention also makes DMA transfer from an I/O card
possible 1rrespective of whether an 1/0 card 1s shared or not,
which can reduce adverse eflect on performance even when
an I/O card 1s shared among a plurality of servers.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a configuration block diagram of a computer
system according to a first embodiment of this imnvention.

FI1G. 2 1s a configuration block diagram of an I/O processor
according to the first embodiment of this invention.

FIG. 3 1s a function block diagram of an I/O card sharing,
module according to the first embodiment of this invention.

FI1G. 4 1s an explanatory diagram of an example o1 1/0 card
sharing settings according to the first embodiment of this
invention.

FIG. 5 1s an explanatory diagram of an example of an MM
I/O write system Tx according to the first embodiment of this
invention.

FIG. 6 1s an explanatory diagram of an example of an MM
I/0O write PCI Tx according to the first embodiment of this
invention.

FIG. 7 1s an explanatory diagram of an example of a DMA
request PCI Tx according to the first embodiment of this
invention.

FI1G. 8 1s an explanatory diagram of a guest qualified DMA
address according to the first embodiment of this invention.

FIG. 9 1s an explanatory diagram of an example of a DMA
request system Tx according to the first embodiment of this
invention.

FIG. 10 15 an explanatory diagram outlining 1nitialization
processing of an MM I/O mitializer according to the first
embodiment of this invention.

FIG. 11 1s an explanatory diagram of an example of an MM
I/0 area allocation table according to the first embodiment of
this invention.

FI1G. 12 1s an explanatory diagram of an example of an MM
I/0 address conversion table according to the first embodi-
ment of this invention.

FIG. 13 1s a flow chart for the mnitialization processing of
the MM I/0 initializer according to the first embodiment of
this invention.

FIG. 14 1s a flow chart for virtual MM 1/O allocation
processing according to the first embodiment of this mven-
tion.

FIG. 15 1s a flow chart for physical initialization processing,
according to the first embodiment of this invention.

FIG. 16 1s an explanatory diagram showing the relation
between a virtual MM I/O address and a physical MM 1/O
address according to the first embodiment of this invention.

FIG. 17 1s an explanatory diagram of an address map 1n an
I/O P memory according to the first embodiment of this
invention.

FIG. 18 1s an explanatory diagram showing MM 1/O write
processing according to the first embodiment of this mven-
tion.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 19 1s an explanatory diagram showing processing of a
DMA request decoder according to the first embodiment of
this invention.

FIG. 20 1s an explanatory diagram of an example ofa DMA
address conversion table according to the first embodiment of
this invention.

FIG. 21 1s an explanatory diagram showing a guest MM 1/O
area and a guest memory area 1in a command chain according
to a modified example of the first embodiment of this inven-
tion.

FIG. 22 1s a configuration block diagram of a computer
system according to a second embodiment of this invention.

FIG. 23 1s a block diagram of a blade server system accord-
ing to a third embodiment of this invention.

FIG. 24 1s a block diagram of an I/O sharing module
according to the third embodiment of this invention.

FIG. 25 1s an explanatory diagram of a PCI transaction
according to the third embodiment of this invention.

FIG. 26 1s an explanatory diagram of a memory space in a
server according to the third embodiment of this mvention.

FIG. 27 15 an explanatory diagram of a memory space in an
I/O processor blade according to the third embodiment of this
ivention.

FIG. 28 1s an explanatory diagram showing an example of
an address information table according to the third embodi-
ment of this imnvention.

FIG. 29 1s an explanatory diagram showing an example of
an I/O card sharing settings table according to the third
embodiment of this invention.

FIG. 30 1s a block diagram of the relation between the 1/0O
card sharing mechanism and the I/O processor blade accord-
ing to the third embodiment of this imnvention.

FIG. 31 1s an explanatory diagram showing the flow o1 I/O
card sharing processing according to the third embodiment of
this 1nvention.

FIG. 32 1s a time chart showing the flow of the I/O card
sharing processing according to the third embodiment of this
ivention.

FIG. 33 1s a time chart showing an example of address
information setting processing, which 1s executed when a
server blade 1s activated according to the third embodiment of
this 1nvention.

FIG. 34 1s a block diagram of a blade server system accord-
ing to a fourth embodiment of this invention.

FIG. 35 1s an explanatory diagram of a memory space in a
server according to the fourth embodiment of this invention.

FIG. 36 1s a time chart showing the tlow o1 I/O card sharing
processing according to the fourth embodiment of this inven-
tion.

FIG. 37 15 an explanatory diagram of a memory space in an
I/O processor blade according to the fourth embodiment of
this 1nvention.

FIG. 38 1s a block diagram of a blade server system accord-
ing to a fifth embodiment of this invention.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

PR.

(L]
By

ERRED

Hereinafter, embodiments of this invention will be
described with reference to the accompanying drawings.

First Embodiment

First, the outline of a first embodiment of this invention will
be described.

A computer system according to the first embodiment of
this 1vention 1s configured such that a plurality of physical

US 7,890,669 B2

S

servers and a plurality of I/O hubs are connected to each other
via a switch. It should be noted that the physical server may
include a plurality of logical servers configured by a hyper-
visor. On each of the physical servers and logical servers, an
operating system (hereinafter, referred to as “OS””) 1s run, and
an application 1s run on the OS. It should be noted that the OS
which 1s run on each of the physical servers and logical
servers, and each application which 1s run on the OS are called
“guest”.

The I/0 hub has an I/O card and an IO bridge connected
thereto. A plurality of I/O cards can be connected to the I/O
hub via the I/O bridge. The I/O hub includes an IO processor
having a function of monitoring an access to a memory
mapped I/O (MM I/O) area of the I/O card, and arbitrating the
access 1n a case where two or more guests access the same 1/0
card. The I/O processor 1s composed of a dedicated processor
and memory provided in the I/O hub. It should be noted that
the I/O processor may be realized by a part of resources of the
physical servers or the logical servers in the computer system.

The computer system 1s connected to a service processor
(heremaftter, referred to as “SVP”) so that the SVP can com-
municate with the physical servers and the 1/O cards. The
SVP sets mapping between the physical servers and the logi-
cal servers, and the I/O cards used by the physical servers and
the logical servers 1n response to an instruction from an
administrator or a user. It should be noted that the SVP
includes a setting console which accepts settings by the
administrator or the user.

Next, the outline of an operation of this invention will be
described.

First, when the computer system 1s initialized, the MM 1/O
area associated with the 1/0 card to be used by the physical
servers and the logical servers 1s secured 1n a memory space
by firmware or the hypervisor. According to this invention, by
the hypervisor or the firmware, a virtual MM 1/O area 1s
secured with respect to the I/O card which may be shared by
a plurality of guests. The virtual MM I/O area 1s shown to the
respective guests. The guests access the virtual MM 1/0 area,
thereby making 1t possible to access an allocated 1/0 card.
The virtual MM I/O area 1s partitioned into pieces according
to the number of guests sharing the 1/0 card. Different guests
are each surely allocated with a ditferent MM 1/0 address.

The I/O hub has a conversion table containing virtual MM
I/0 addresses, physical I/O addresses which are real MM 1/0
addresses of the I/O cards, and guest 1dentifiers for identify-
ing each guest.

After that, an access to the I/O card from the guests 1s
executed. In this case, each guest 1ssues an access to the
virtual MM I/O address. The 1/O hub refers to the conversion
table, and converts the virtual MM I/O address 1nto the physi-
cal MM I/O address and into the guest identifier. Thus, the I/O
hub can 1dentity each guest.

Next, in order to accomplish a direct memory access
(DMA) transfer from the I/O card shared by the guests, the
tollowing processing 1s executed by using the guest 1dentifi-
ers.

The I/O processor traps write in the MM I/O area unique to
the I/O card. The trapped write 1n the MM I/O area 1s redi-
rected to amemory area (1.e., /O P memory) exclusively used
by the I/0 processor, whereby data 1s written in the MM 1/O
area. Among the writes, with regard to an access 1n associa-
tion with a setting of a DMA address, the guest identifier 1s
buried 1n a significant bit (or higher-order bit) of a physical
address to be set, thereby making 1t possible to identify each
guest ol a requester of the subsequent DMA access.

Upon trapping the access to a command register, the 1/0
processor transiers contents of the redirected memory area to

10

15

20

25

30

35

40

45

50

55

60

65

6

a corresponding physical MM 1/O area. As a result, the actual
access to the I/O card 1s executed, and a request for DMA 1s
set.

Upon recerving the setting of the request for DMA, the 1/0
card starts the DMA transfer. In this case, the I/O hub extracts
the guest identifier from the significant bit of the address for
the DMA transier, refers to a guest conversion table, and
converts the guest physical address ito a host physical
address, thereby making it possible to accomplish DMA 1n
which the I/O card directly accesses the guest.

FIG. 1 1s a configuration block diagram of an example of a
computer system according to the first embodiment of this
ivention.

In the computer system shown in FIG. 1, one or more
physical servers 300 (300A to 300C) and one or more logical
servers 310 (310C1, 310C2) configured by the physical serv-
ers 300 are connected to each other via a switch 600.

The physical server 300 1s composed of one or more nodes
200 (200A to 200C). Each node 200 includes one or more

CPUs 100 (100A,100B), a memory 120A, and a north bridge
110A. The CPUs 100 and the memory 120A are connected to
cach other via the north bridge 110A.

It should be noted that the CPU 100 may be configured
such that the CPU 100 has a function corresponding to the
north bridge 110A and the CPU 100 and the memory 120A
are directly connected to each other. The following descrip-
tion applies to either of the cases. The following description
also holds true of a multi-core CPU which includes a plurality
of CPU cores 1n a single CPU 100.

In addition, it 1s possible to configure a single physical
server 200 by a plurality of nodes 200. In this case, the
plurality of nodes 200 are connected to one another via the
switch 600, and a symmetric multiple processor (SMP) 1s
composed of the CPUs 100 1n the plurality of nodes 200.

Further, a hypervisor S00C 1s operated on a single physical
server 300, and the resource of the physical server 300 1s
partitioned through processing of the hypervisor 500C,
thereby making 1t possible to operate a plurality of logical
servers 310 on the single physical server 300. An OS 400
(400A to 400C2) 1s operated on each of the plurality of logical
servers 310. The respective logical servers 310 exclusively
use a computer resource of the node 200 run on the physical
server 300, that 1s, a part of the CPU 100 or the memory 120A.
Alternatively, the computer resource 1s shared 1 a time-
sharing manner.

The switch 600 1s connected to one or more 1/O hubs 700
(700A,700B). Each I/O hub 700 1s connected to a plurality of
I/O cards 800 (800A to 800D) via one or more I/0 buses 850.
In addition, the I/O hub 700 may be connected to further more
I/O cards 800 via an I/O bridge 810.

The I/O card 800 includes a direct memory access (DMA)
controller (DMA CTL) 803 for directly accessing a memory

address space of the physical server 300 or the logical server
310. The I/O card 800 includes a base address register (ADR

REG) 801 for specitying a base address of the MM 1/0 of the
physical server 300 or the logical server 310 for executing
DMA by the DMA CTL 803, and a command register (CMD
REG) 802 for specitying a request for the I/O card 800. The
DMA CTL 803 executes the operation corresponding to the
command written 1n the CMD REG 802 with respect to the
address written 1n the ADR REG 801. It should be noted that
the I/O card 800 includes a register (not shown) (e.g., a
confliguration register or a latency timer register) conforming

to the PCI standard.
It should be noted that the I/O bus 850 may be a link
through which the I/O cards 800 are each connected to the I/O

bus 850 one-on-one basis similarly to a PCI-Express, or a link

US 7,890,669 B2

7

through which a plurality of I/O cards 800 are connected to a
single bus similarly to a PCI bus. In any case, the following
description applies to either of the cases.

The switch 600 provides flexibility which enables the
access from the physical server 300 or the logical server 310
to an arbitrary 1/0 card 800.

The I/O hub 700 includes an I/O card sharing module 750

and an I/O processor 710.

The switch 600 1s connected to a SVP 900 for managing the
entire configuration of the computer system. The SVP 900 1s
connected to a setting console 910 via a management network
920. An administrator of the system configuration uses the
setting console 910 to set the entire configuration of the
computer system, and more particularly, to set arrangement
or partition of the physical server 300 and the logical server
310, allocation of the I/O card with respect to the physical
server 300 or the logical server 310, and the like.

In the example shown 1n FIG. 1, two nodes 200 (1.¢., node
200A and node 200B) constitute the SMP, to thereby consti-
tute a physical server 300A. On the physical server 300A, an
OS 400A 1s run.

Further, a node 200C constitutes a physical server 300C.
On the physical server 300C, a hypervisor S00C 1s run. The
hypervisor S00C constitutes a logical server. As a result, the
physical server 300C 1s partitioned into two logical servers,
that 1s, a logical server 310C1 and a logical server 310C2. An
OS 400C1 1s run on the logical server 310C1, and an OS
400C2 1s run on the logical server 310C2.

The switch 600 connects two 1/O hubs 700 (1.¢., I/O hub
700A and I/O hub 700B) to each other. The I/0 hub 700A 1s
connected to a plurality of I/0O cards 800 via one or more 1/0
buses 850. An I/O bus 850A 1s connected to an I/O card 800 A,
and an I/O bus 850B is connected to an I/O card 800B.
Further, The I/0O bus 850C connects two I/O cards 800C and
800D wvia the I/O bridge 810.

FI1G. 2 15 a configuration block diagram of the I/0 proces-
sor 710.

The I/O processor 710 monitors the I/O access, and
executes conversion processing of the I/0 access.

The I/O processor 710 includes an I/O P CPU 711, an I/O
P memory 712, and an I/O P north bridge 713. The I/O P CPU
711 and the I/O P memory 712 are connected to each other via

the I/O P north bridge 713.

In the above-mentioned example of FI1G. 1, the I/0 proces-
sor 710 1s provided 1n the I/0 hub 700, but the I/0 processor
may be provided separately from the I/O hub 700 to be inde-
pendently connected to the computer system via the switch
600. A part of the physical server 300 or the logical server 310
may provide a function corresponding to the I/O processor
710.

FIG. 3 15 a function block diagram of the IO card sharing
module 750.

The I/0O card sharing module 750 includes an MM I/O write
decoder 751, a DMA request decoder 752, an MM I/O 1n1-
tializer 760, and 1/O card sharing settings 740.

Upon recerving an MM I/0 write system Tx 1100 trans-
ferred from the switch 600, the MM I/O write decoder 751
converts the MM I/O write system Tx 1100 into a memory

write or an interruption with respect to the I/O processor 710.
The MM 1/0 write decoder 751 also processes a field included

in the MM 1/O write system Tx 1100 to generate an MM 1/0
write PCI Tx 1100, and 1ssues the generated MM 1/0O write
PCI Tx 1100 to the IO bus 850.

Upon recerving a DMA request PCI Tx 1120 transferred
from the I/0 bus 850, the DMA request decoder 752 1dentifies

cach i1ssuer guest, converts the DMA address included 1n the

10

15

20

25

30

35

40

45

50

55

60

65

8

DMA request PCI 1x 1120 to generate a DM A request system
Tx 1130, and 1ssues the generated DMA request system Tx

1130 to the switch 600.

Upon recewving an I/O count up request 1140 which has
been 1ssued from the hypervisor or the guest and transferred
from the switch 600, the MM I/O 1nitializer 760 1ssues an 1/O
countup request 1141 to the I/O card. Then, upon recerving an
I/O count up response 1142 from the I/O card 800, the MM
I/O mitializer 760 refers to contents of the I/O count up
response 1142 and contents of the I/O card sharing settings
740 to generate an 1/O count up response 1143 with respect to
the I/O count up request 1140. Then, the MM I/O mitializer
760 1ssues the 1/0 count up response 1143 to the requester.

The I/O card sharing settings 740 hold a table in which
shared or exclusive use 1s set for each I/O card 800 connected

to the I/O hubs 850. The SVP 900 refers to or updates the table
of the I/O card sharing settings 740.

FIG. 4 15 an explanatory diagram of an example of the I/O
card sharing settings 740.

The I/0 card sharing settings 740 are composed of entries
including a physical card ID field, an 1/O card type field, and

an I/0 card sharing attribute field. The entries are set for each
I/O card 800.

The physical card 1D field stores a physical I/O card ID 741
which 1s an 1dentifier of the I/O card 800. The I/O card type
field stores an I/O card type 742 which 1s an i1dentifier 1ndi-
cating the type of the I/O card 800. The I/O card sharing
attribute field stores, 1n each of the physical servers or the
logical servers, an attribute 743 which 1s an 1dentifier indicat-
ing that the I/O card 800 1s shared, exclusively used, or pro-
hibited from being accessed by the server.

The example of FIG. 4 shows that, with regard to the I/O
card 800 whose physical I/O card ID 741 1s set to “1”, the 1/O
card type 742 1s “FC HBA”. The 1/O card 800 1s shared by a
server 1 and a server 2, but 1s prohibited from being accessed
by a server N. In addition, FIG. 4 shows that the I/O card 1s

used by the server 1, and the I/O card 1s not used by the server
2.

FIGS. 5 to 9 indicate a detailed content of each Tx sent/
received to/from the 1I/O hubs 700.

FIG. 5 15 an explanatory diagram of an example of the MM
I/O write system Tx 1100.

The MM I/O write system Tx 1100 includes an access type

field, a destination node field, an 1ssuer node field, a Tx 1D
field, a virtual MM 1/O address field, and a write data field.

The access type field stores an access type 1106 of the Tx.
The access type 1106 1s an 1dentifier indicating that a desti-
nation of the access 1s a memory or an 1/0, that the access 1s
a read or a write, and the like. The MM I/O write system Tx
1100 stores the access type 1106 indicating that the access 1s
a write 1n the MM 1/O area.

The destination node field and the 1ssuer node field store a
destination node 1101 and an 1ssuer node 1102 of the Tx. The
destination node 1101 and the issuer node 1102 are used by
the switch 600 for the routing. In the MM I/O write system Tx
1100 recerved by the I/0O hub 700, the destination node 1101
1s an 1dentifier indicating the I/O hub 700.

The Tx ID field stores a ' Tx ID 1103 that 1s an 1dentifier by
which the 1ssuer node can uniquely 1dentily each transaction.

The virtual MM 1/O address field stores a virtual MM 1/O
address 1104. The virtual MM [/O address 1104 1s a virtual
address of the 1/O card to be accessed which 1s allocated to
cach requester guest of the MM 1/O write system Tx 1100. It
should be noted that a different register 1s usually allocated

for each MM 1I/0O address.

US 7,890,669 B2

9

The write data field stores write data 1103 which 1s written
in response to an instruction of the MM I/O write system Tx

1100.

FI1G. 6 1s an explanatory diagram of an example of the MM
I/0 write PCI Tx 1100.

The MM 1/O write PCI Tx 1100 includes an access type
field, a Tx ID field, a physical MM I/O address field, and a
write data field.

The access type field stores an access type 1111 indicating
that the transaction 1s an MM [/O write PCI Tx, and that the
transaction 1s a write or a read.

The Tx ID 1112 stores a Tx ID 1112 that 1s an 1dentifier by
which the 1ssuer node (in this case, the I/O hub 700) can
uniquely 1dentily each transaction.

The physical MM I/0O address field stores a real MM 1/O

address 1113 (1.e., physical MM I/O address 1113) on the
computer system of the I/O card 800 to be accessed.

The write data field stores write data 1114 to be written 1n
response to an instruction of the MM I/O write PCI Tx 1110.

FIG. 7 1s an explanatory diagram of an example of the
DMA request PCT 1x 1120.

The DMA request PCT Tx 112 includes an access type
field, a Tx ID field, a guest qualified DM A address field, and
a write data field.

The access type field stores an access type 1121 indicating,
that the transaction 1s the DMA request PCI Tx and the
transaction 1s a write or a read.

The Tx ID field stores a 'Tx 1D 1122 that 1s an 1dentifier by

which the 1ssuer node (in this case, an 1/O card or an I/O
device) can uniquely 1dentity each transaction.

The guest qualified DM A address field stores a guest quali-
fied DMA address 1123 including a guest 1dentifier and a
DMA address. The guest qualified DMA address 1123 will be
described with reference to FIG. 8.

The write data field stores write data 1124 to be written 1n
response to an instruction of the DMA request PCI Tx only
when the DMA request PCI Tx 1s a write transaction.

FIG. 8 1s an explanatory diagram of the guest qualified
DMA address 1123.

A guest DMA address 11135 1s an address of a main
memory ol a DMA transfer destination or a DMA transier
source recognized by the guest.

An address space of the PCI transaction has a size of 64
bits, and 1s generally much larger than a space of a physical
memory to be actually mounted. Thus, the guest DMA
address 1includes an unused address section 1116 1n a signifi-
cant bit part, 1n addition to a used address section 1117 which
1s actually used.

A guestidentifier 1125 1s buried 1n a part of or the whole of
the unused address section 1116, thereby generating the guest
qualified DMA address. Upon recerving the guest qualified
DMA address, the request decoder 752 refers to the guest
identifier 11235 buried 1n the guest qualified DMA address, to
thereby 1dentify the guest to be accessed.

FIG. 9 1s an explanatory diagram of an example of the
DMA request system 1x 1130.

The DMA request system Tx 1130 includes an access type
field, a destination node field, an 1ssuer node field, a Tx 1D
field, a host DMA address field, and a write data field.

The access type field stores an access type 1136 which
indicates that the transaction 1s the DMA request system Tx
whose access target 1s a memory, and that the transaction 1s a
write or a read.

The destination node field stores a destination node 1311
which includes a memory associated with a destination of the

Tx.

10

15

20

25

30

35

40

45

50

55

60

65

10
The 1ssuer node field stores an 1ssuer node 1132 of the Tx.
It should be noted that in the DMA request system Tx 1130,
the 1ssuer node 1132 1s the I/O hub 700.

The Tx ID field stores a Tx ID 1133 that 1s an 1dentifier by
which the 1ssuer can uniquely 1dentify each transaction.

The host DMA address field stores a host DMA address
1134 which 1s a physical address of a memory for actually
executing DMA.

The write data field stores write data 1135 when the Tx 1s a
write transaction.

Next, an operation of the I/0 card sharing module 750 will
be described.

FIG. 10 1s an explanatory diagram of the outline of initial-
1zation processing of the MM I/O 1nitializer 760.

The MM I/O mitializer 760 includes an MM 1/O area
allocation table 1230. The MM 1/0 area allocation table 1230
1s 1nitialized based on the I/O card sharing settings 740.

Upon recerving the I/O count up request 1140 from the
guest, the MM I/O mitializer 760 determines whether or not
physical mitialization processing for the I/O card 800 1s
required. In a case where the physical mitialization process-
ing for the I/O card 800 1s required, the MM 1/O 1mitialize 760
issues the I/O count up request 1141 to the target I/O card.

Further, the MM I/O 1nitializer 760 refers to the MM [/O
area allocation table 1230 to determine the virtual MM I/O
address to be allocated to the requester guest. Then, the MM
I/O mitializer 760 registers the determined virtual MM 1/0
address 1n the MM I/0 address conversion table 720 which 1s
contained in the MM 1I/O write decoder 751, and returns the
virtual MM I/0O address to the requester guest as the I/O count
up response 1143.

FIG. 11 1s an explanatory diagram of an example of the
MM I/O area allocation table 1230.

The MM 1/O area allocation table 1230 1s composed of one
or more entries which include a physical card ID field, a
starting MM I/O address field, an address range field, a maxi-
mum sharing guest count field, and a use state field.

The physical card ID field stores a physical 1/O card 1D

741. The physical IO card ID 741 has the same value as that
of the physical card ID 741 of the 1/O card sharing settings
740.
The starting MM 1/0 address field stores a starting MM I/O
address 1231 which 1s an mitial address of the MM 1/O
address of the I/O address card. The address range field stores
an address range 1233 of the MM I/O area used by the I/O
card.

The maximum sharing guest count field stores a maximum
guest sharing count 1234 by which the I/O card can be shared.

The use state field stores a use state 1235 of the 1/O card.
The use state 12335 1s represented as bitmaps for each guest
which shares the I/O card. In a case of an ordinary use, the bits
are set to 1, and 1n a case of an unused state, the bits are set to
0, respectively.

FIG. 12 1s an explanatory diagram of an example of the
MM 1/O address conversion table 720.

The MM I/0 address conversion table 720 1s composed of
one or more entries which include a virtual MM I/O address
field, a physical MM I/O address field, a guest identifier field,
and an I/O P memory address field.

The virtual MM I/O address field stores the virtual MM 1/O
address 1104 allocated to the guest. The physical MM 1/O
address field stores the physical MM I/0 address 1113 asso-
ciated with the virtual MM I/O address 1104. The guest
identifier field stores the guest identifier 1125 of the guest
which uses the virtual MM 1/O address. The I/O P memory
address field stores an I/O P memory address 1200 of the I/O

P memory 712 allocated to the guest.

US 7,890,669 B2

11

The I/O card sharing module 750 refers to the MM [/O
address conversion table 720, to thereby mutually convert the
virtual MM I/0 address 1104, the physical MM 1/O address
1113, the guest identifier 1125, and the I/O P memory address
1200.

Next, an operation of 1nitialization processing of the MM
I/O matializer 760 will be described.

FIGS. 13 to 15 are flowcharts of the imitialization process-
ing of the MM I/O mitializer 760.

First, the MM I/O imtializer 760 receives the 1/0 count up
request 1140 via the switch 600 (Step S1500).

The I/0O count up request 1140 1s normally sent as a read
request from the guest to a PCI configuration space.

To be specific, the guest allocates, to the PCI configuration
space, a bus number, a device number, and a function number.
In response to this, the MM I/0 1mitializer 760 returns whether
or not the corresponding device 1s present. As described later,
in a case where the I/O card 800 corresponding to the device
number 1s present, the MM I/O mitializer 760 returns a base
address and a size (1.e., area) of the MM I/O area of the
corresponding device to the guest. In a case where the device
corresponding to the device number 1s not present, the MM
I/O mitializer 760 returns a value (1.e., master abort) with bits
all set to 1.

Next, the MM I/O in1tializer 760 determines whether or not
the physical initialization processing 1s necessary (Step
S1510). It should be noted that the physical mitialization
processing 1s executed only once for each physical I/O device,
for example, immediately after the physical I/O device 1s reset
or after the I/O configuration 1s changed. In a case where the
physical initialization processing 1s not necessary, the process
proceeds to Step S1520. In a case where the physical 1nitial-
1zation processing 1s necessary, the process proceeds to Step
S51610. It should be noted that processing of Sub-step S1610
will be described 1 detail later with reference to FIG. 15.

In Step S1520, the MM I/O inmitializer 760 determines
whether or not the requester guest 1s accessible to the target
I/0 card. The MM I/O imitializer 760 refers to the 1/O card
sharing settings 740 to obtain the I/O card sharing attribute of
the requester guest associated with the target I/O card. When
the I/O card sharing attribute 1s “prohibited”, the requester
guest 1s not permitted to access the target I/O. In a case where
the requester guest 1s prohibited from accessing the target /0O,
the process proceeds to Step S1530. In a case where the
requester guest 1s permitted to access the target 1/O, the pro-
cess proceeds to Step S1540.

In Step S13530, the MM I/O mitializer 760 sends, to the
requester guest, the I/O count up response 1143 (i.e., master
abort) indicating that the target 1/O card 1s not present.

In Step S1540, the MM I/O initializer 760 determines
whether or not the target 1/0 card can be shared. When the
MM I/O mitializer 760 indicates that the I/O card sharing
attribute of the requester guest can be shared and that the I/O
card 1s unused, the process proceeds to Sub-step S1560. In a
case where the I/0 card sharing attribute of the requester
cannot be shared, the process proceeds to Step S1550.

In Step S1550, the MM I/O 1nitializer 760 returns informa-
tion of the physical I/O card to the I/O card of the requester
which cannot be shared. The MM I/O 1nitializer 760 obtains
the starting MM 1/0O address and the address range of the I/O
card from the MM I/O area allocation table 1230, and sends
the starting MM 1/0 address and the address range to the
requester guest as the I/0O count up response 1143.

In Sub-step 1560, the virtual MM 1/O address 1s allocated
to the I/O card that can be shared. It should be noted that the
processing of the Sub-step S1560 will be described 1n detail
below with reference to FIG. 14.

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG. 14 1s a flowchart showing a virtual MM 1/O assign-
ment process of Sub-step S1560 shown 1n FIG. 13.

First, the MM I/O initializer 760 refers to the MM 1/O area
allocation table 1230 to obtain the use state 1235 of the 1/0
card 800. Then, the MM 1/0O 1nitializer 760 searches for an
unused mndex (1.e., bit) from the use state 1235. After the
unused index 1s found, the area of the use state 1s changed nto
an area being used (Step S1570).

Next, the MM /O 1nitializer 760 refers to the MM 1/0O area
allocation table 1230 to obtain a starting MM I/O address
1232 of the target 1/O card. Then, based on the starting MM
I/O address 1232 thus obtained, the MM I/O 1nitializer 760
calculates the virtual MM I/O address 1104 (Step S1580).

To be specific, the address range 1233 1s multiplied by a
value obtained by adding 1 to an offset of an unused area, and
the calculated value 1s added to the obtained starting MM 1/0O
address 1232, to thereby obtain the virtual MM I/0O address

1104. In other words, the virtual MM /O address 1104 is
calculated by the following calculating formula.

“virtual MM I/O address™=""starting MM I/O
address”+(“address range”x(“offset of unused

capacity”+1))

By using the formula, the virtual MM I/O address 1s
obtained.

Next, the MM 1I/O imitializer 760 registers the virtual MM
I/O address 1104 calculated 1n Step S1580 1n the MM 1/0
address conversion table 720. The MM I/O mitializer 760
creates a new entry 1n the MM I/O address conversion table
720. Then, the MM I/O imtializer 760 registers the obtained
virtual MM I/O address 1104 in the virtual MM I/O address
field. Further, the MM I/O mitializer 760 registers the
obtained physical MM I/O address 1113 of the I/O address 1n
the virtual MM I/0 address field. In addition, MM 1/O 1ni1tial-
1zer 760 registers the guest 1dentifier 11235 of the requester
guest in the guest identifier field. Further, MM 1/O mitializer
760 secures an area associated with the address range 1233 1n
the I/O P memory 712, and registers the address to the /O P

memory address 1200 in the I/O P memory address field (Step
S1590).

As a result, from then on, MM I/O mitializer 760 can
convert the virtual MM 1/0O address 1104 into the physical
MM I/0 address 1113 and extract the guest identifier 11235 by
referring to the MM I/O address conversion table 720 of the
MM I/O write decoder 751.

Next, the MM I/O 1nitializer 760 sends the virtual MM [/O
address 1104 obtained in Step S1580 and the address range
1233 to the requester guest as the I/O count up response 1143
(Step S1600). After that, the virtual MM 1I/0 address assign-
ment process 1s completed.

FIG. 15 1s a flowchart showing the physical initialization
processing of Sub-step S1610 shown 1n FIG. 14.

First, the MM 1I/O mitializer 760 1ssues the I/O count up
request 1141 to the I/0 bus 850 (Step S1620).

Next, the MM [/O itializer 760 receirves the I/O bus
enumeration response 1142 from the I/O bus 850 (Step
51630).

The MM I/0O mitializer 760 determines whether or not the
I/O card 1s present based on the I/O bus enumeration response
1142. In a case where the I/O card 1s not present, the process
proceeds to Step S1650. In a case where the I/O card 1s
present, the process proceeds to Step S1660.

In Step S1650, the MM 1/0 mitializer 760 sends 1/O count

up response 1143 (1.e., master abort) indicating that the I/0 1s
not present to the requester guest. Then, the physical 1nitial-
1zation processing 1s completed.

US 7,890,669 B2

13

In Step S1660, the MM I/O mitializer 760 refers to the I/O
card sharing settings 740 to obtain the maximum sharing
guest count of the I/0O card.

Next, the MM I/O in1tializer 760 determines whether or not
the maximum sharing guest countis 1 (Step S1670). Ina case
where the maximum sharing guest count 1s 1, the process
proceeds to Step S1680. In a case where the maximum shar-

ing guest count 1s 2 or larger, the process proceeds to Step
S1690.

When the maximum sharing guest count is 1, the I/O card
1s not shared. In other words, only the requester guest can
exclusively use the I/O card. Thus, 1n Step S1680, the MM 1/0
initializer 760 sends the information included 1n the I/O count
up response 1142 received 1 Step S1630 as 1t 1s to the
requester guest as the 1/0 count up response 1143. Then, the
physical mitialization processing 1s completed.

In Step S1690, the MM 1/O mitializer 760 registers a new
entry 1n the MM 1/0 area allocation table 1230. In the entry,
the starting MM I/O address 1232 and the address range 1233,
which are included 1n the and the I/O count up response 1142,
and the maximum sharing guest count 1234 obtained 1n Step
S1660 are registered. Then, the use state 1235 1s imtialized to
a bitmap 1ndicating that all the 1/O cards are unused.

Next, the MM I/O mnitializer 760 sends the 1/0 count up
response 1143 (Step S1700). The I/O count up response 1143
includes the MM 1/0 starting address 1232 and the address
arca 1233. The address area 1233 1s a value obtained by
multiplying the address range 1233 by a value obtained by
adding 1 to the maximum sharing guest count 1234. In other
words, the address ranger 1233 1s calculated by the following
calculating formula.

“address area”="address range”x(maximum sharing
guest count+1)

Then, the physical initialization processing 1s completed.

By the above-mentioned process, the virtual MM 1/O area
for the maximum sharing guest count 1s reserved immediately
aiter the physical MM I/O area.

FIG. 16 1s an explanatory diagram of a relationship
between the virtual MM 1/O address and the physical MM 1/O
address.

It should be noted that FIG. 16 shows a case where the MM
I/0 starting address 1232 1s set to “A” and the address range
1233 1s set to “R”.

In this case, the starting address of the physical MM 1/O
address 1113 1s set to “A”, so a virtual MM I/O address
1104-B allocated to a guest 1 1s set to (A+R) which 1s an
address obtained by adding R to the starting address A. In
addition, a virtual MM 1/0O address 1104-C allocated to a
guest 2 1s set to (A+2R) which 1s a value obtained by further
adding R to the value (A+R).

Thus, the virtual MM I/O address 1s allocated to each
address range, and the respective virtual MM 1/O addresses
used by the respective guests are mapped without being over-
lapped with each other. Therefore, the virtual MM 1/0
addresses are allocated to the respective guests such that the
virtual MM I/0O address becomes a unique address for each
guest.

FIG. 17 1s an explanatory diagram of an address map of the
I/O P memory 712.

It should be noted that FIG. 17 shows a case where an /O
P memory address 1200-P 1s allocated to the guest 1 and an
I/0O P memory address 1200-Q 1s allocated to the guest 2.

These addresses are secured 1n the I/O P memory 712 such
that the respective areas are not overlapped with each other.
The I/O P memory 712 1s used to temporarily hold the actual
write 1n the MM I/0 area.

10

15

20

25

30

35

40

45

50

55

60

65

14

Next, an operation at the time of the MM I/O write request
from the guest.

FIG. 18 1s an explanatory diagram of the MM I/O write
Process.

It should be noted that FIG. 18 shows an operation in a case
where, after the above-mentioned setting for mnitialization
processing shown i FIGS. 13 to 15 1s completed, an access
request with respect to the IO card 800 1s made by the guest.

A control register of the I/O card 800 1s mapped as the MM
I/O area 1n the memory space. Thus, the access request with
respect to the I/O card 800 made by the guest 1s executed as

write in the MM 1/O area.

Write 1n the MM 1/0 area 1s 1ssued as the MM 1/O write
system Tx 1100 viathe switch 600. The MM I/O write system
Tx 1100 1s trapped by the MM I/O write decoder 751 includ-
ing the target I/O card 800.

Uponrecewving the MM I/O write system Tx 1100, the MM
I/O write decoder 751 refers to contents of the MM I/O
system Tx 1100, and determines which register of the I/O card

800 to be accessed the access request from the guest 1s made
for. In this case, the MM I/O write decoder 751 refers to the

MM 1/O address conversion table 720 to obtain the physical

MM 1/O address 1113, the guest identifier 1125, and the I/O
P memory address 1200.

It should be noted that 1n a case where the access request
from the host 1s made for a command register (CMD REG),
the MM I/O write decoder 751 sends an interruption to the I/O
P CPU 711 of the I/O processor 710. In a case where the
access request 1s not a command register (CMD REG), the
MM I/O write decoder 751 writes data in an area which 1s
based on the I/O P memory address 100 receiving the MM 1/0O

write system Tx 1100 1n the I/O P memory 721.

The I/O P CPU 711 having received the interruption reads
out an area starting from the corresponding I/O P address
1200, and copies the area in the physical MM I/O address
1113 on the physical I/O card 800. In this case, 1n order to
copy the area associated with the address register, the MM 1/0
write decoder 751 buries the guest identifier 1125 1n a signifi-
cant unused address section 1116 of the guest DMA address
1115 to generate the guest qualified DMA address 1123.
Further, the MM I/O write decoder 751 generates the MM 1/0O
write PCI Tx 1110 including the generated guest qualified
DMA address 1123, and 1ssues the MM [/O write PCI Tx
1110 to the IO bus 850.

By the above-mentioned operation, even when a plurality
ol guests access the same /0O card 800 at the same time, the
actual access to the I/O card 800 1s arbitrated by the 1/0
processor 710. In addition, since the guest identifier 1125 for
identifying each guest 1s buried in the guest DMA address,
even when the DMA request reaches from the I/O bus 850
alterward, 1t becomes possible to i1dentily each requester
guest.

FIG. 19 1s an explanatory diagram of processing of the
DMA request decoder 752.

The DMA request decoder 752 mcludes a DMA address
conversion table 730 and an address decoder 753.

Upon receiving the DMA request PCI Tx 1120 from the
I/O bus 8350, the DMA request decoder 752 first extracts the
guest DMA address 1115 and the guest identifier 1125 from
the DMA request PCI Tx 1120.

Next, the DMA request decoder 752 refers to the DMA
address conversion table 730 to obtain a pointer 731 pointing
to a conversion table containing the guest DMA address 11135
and the host DMA address 1134 from the extracted guest
identifier. Then, the DMA request decoder 752 refers to a

US 7,890,669 B2

15

table indicated by the pointer 731 obtained, to thereby obtain
the host DMA address 1134 associated with the guest DMA

address 1115.

Further, the DMA request decoder 752 decodes the con-
verted host DMA address 1134 using the address decoder 753
to obtain a destination node 1131.

The DMA request decoder 752 includes the obtained des-
tination node 1131 and the host DMA address 1134 into the
DMA request system Tx 1130, and 1ssues the DMA request
system 1x 1130 to the switch 600.

It should be noted that the pointer 731 of the DMA address
conversion table 730 1s NULL, the DMA request decoder 752
provides the guest DMA address 1115 as the host DMA
address 1134 without decoding.

By the above-mentioned series of operations, in the case
where the I/O card 1s shared by a plurality of guests, the guest
of the source of the access 1s 1dentified, the 1dentified guest
identifier 1s buried in the guest DMA address, and the guest
identifier 1s extracted from the DMA request, thereby making
it possible to appropriately convert the guest DMA address
into the host DM A address, and execute the DMA transfer in
which the host DMA address 1s directly transierred to the
memory space of the guest.

FIG. 20 1s an explanatory diagram of an example of the
DMA address conversion table 730.

As shown 1n FIG. 20, the DMA address conversion table
730 1s constituted of two tables which includes a table 7301
containing the guest identifier 1125 and the pointer 731, and
a table 7302 containing the guest DMA address 11135 and the
host DMA address 1134.

The pointer 731 includes pointers indicating the guest
DMA address 1115 and the host DMA address 1134 which
correspond to the guest identifier in the table 7302.

It should be noted that the DMA address conversion table
730 15 generated by the hypervisor 500C by the use of the I/O
card sharing settings 740. It should be noted that 1n a case
where the hypervisor S00C 1s not provided and the guest 1s
directly run on the physical server 300, 1t 1s unnecessary to
convert the DMA address, so the pointer 731 1n association
with the guest 1s set to NULL.

As described above, 1n the computer system according to
the first embodiment of this invention, the virtual MM [/O
address associated with the physical MM 1/O address for each
I/0 card 1s allocated to each guest, thereby making it possible
to share an I/O card among a plurality of physical servers and
logical servers. As a result, 1t 1s possible to remove the limi-
tation in the number of servers in the server integration which
1s limited by the number o1 I/O card that can be mounted, and
achieve more tlexible server configuration and efiective use
of a hardware resource.

In particular, the I/O hub mutually converts the physical
MM I/O address, the virtual MM 1/0 address, and the guest
identifier, so the I/O hub enables the DMA transfer from the
I/O card while achieving the sharing of the I/O card. As a
result, 1n a case where the I/O card 800 1s shared among the
physical servers and the logical servers, 1t 1s possible to sup-
press performance degradation.

Further, 1n a case of the I/O card connected via the I/O
bridge, the requester guest can be 1dentified and the DMA
transier can be executed.

FIRST MODIFIED

EXAMPLE

Next, a first modified example according to the first
embodiment will be described.

As described above, according to the first embodiment, the
MM 1/0O write decoder 751 directly traps a write in the com-

10

15

20

25

30

35

40

45

50

55

60

65

16

mand register of the MM I/0 area of the I/0 card 800 and 1n
the address register. However, 1n recent years, along with an
increase 1n the speed of the I/O card, a command chain
capable activating a plurality of commands by a single MM
I/0O access has been employed 1n order to reduce the number
ol accesses to the MM 1/O area which require more time as
compared with a main storage access.

In the first modified example, operations of the MM I/O

write decoder 751 and the I/O processor 710 when the 1/O
card 800 uses a command chain.

FIG. 21 shows an explanatory diagram of a guest MM 1/O
arca 1220 and a guest memory area 1300 1n the command
chain.

In the command chain, a part of a driver memory area 1305
in the guest memory area 1300 includes a memory area for a
command chain 1310. A command from a guest with respect
to the I/O card 800 1s written 1n a memory for the command

chain 1310.

An access request from the host to the I/O card 800 1is
temporarily stored in the command chain 1310 of the guest
memory 1300. Then, the real access request to the I/O card
800 1s started with write 1n a command chain tail pointer 1330
of the MM 1/0 area. The I/0 card 800 transfers the command
chain 1310 stored between an address pointed by the com-
mand chain head pointer 1320 and an address pointed by the
command chain tail pointer 1330 to a register on the 1/0O card
800. As aresult, commands instructed by the command chain
are collectively executed.

When trapping write 1n the command chain tail pointer
1330, the MM I/O write decoder 751 i1ssues an interruption to
the I/O P CPU 711 of the I/O processor. The I/O P CPU 711
having received the interruption copies the command chain
1310 i the I/O P memory 712. At this time, the guest 1den-
tifier 1125 1s buried 1n the register associated with the DMA
address so as to 1dentily each guest when the DMA request 1s
made. Upon completion of the copying from the guest
memory area 1300 to the I/O P memory 712, the I/O P CPU
711 writes an end address of the command chain in the /O P
memory 712 with respect to the command chain tail pointer in
the real physical MM 1/0. Thus, the command of the I/O card
800 1s started.

As described above, the computer system according to the
first modified example of the first embodiment of this mven-
tion may be applied to the I/0 card 800 using the command
chain.

SECOND MODIFIED

EXAMPLE

Next, a second modified example according to the first
embodiment will be described.

In the first embodiment, the I/O processor 710 1s composed
of an independent processor (1.e., /O P CPU 711) and a
memory (1.e., /O P memory 712). In the second modified
example, a part of each of the resource of the CPU 100 and the
memory 120A with the processor and the memory included in
a node 1s used. To be more specific, a part of the resource of
the server may be allocated to the I/O processor as being
dedicated only for the I/O processing, or the CPU 100 may be
time-shared to be allocated to the 1/O processing using the
hypervisor S00C. It should be noted that a mode of using a
part of the resource logically partitioned for the I/O process-
ing 1s called 1/0O partition.

The MM I/O write decoder 751 includes, instead of a direct
routing to the IO processor 710, a register for setting an ID of
the CPU which 1ssues a base address of the memory for the
I/O processing, a node 1D, and an interruption.

US 7,890,669 B2

17

In the case where the above-mentioned issuance of the
interruption to the I/O P CPU 711 by the I/O processor, and
write in the I/O P memory 712 are required, the MM I/O write
decoder 751 generates the system Tx according to the values
of the register, and transfers the system Tx to the node, which
executes the I/0 processing, via the switch 600.

Second Embodiment

Next, a second embodiment of this invention will be

described.

A computer system according to the second embodiment
includes a node controller 1000 having a function of both the

above-mentioned I/O hub 700 and switch 600 of the first
embodiment.

FI1G. 22 1s a configuration block diagram of the computer
system according to the second embodiment.

It should be noted that components 1dentical with those
according to the first embodiment are denoted by the 1dentical
reference symbols and explanations thereof are omitted.

The node controller 1000 (node controller 1000A) includes
a switch 600, an I/0O hub 700, and a north bridge 110A which

are consolidated as a functional module.

The node controller 1000 1s provided to a node 210A.

Similarly to the above-mentioned first embodiment, an I/O
hub 700 1s connected to an I/O card 800 and an I/O bridge 810
via an I/O bus 850. As described above, the I/O hub 700
includes the I/O card sharing module 750 and shares the I/O
card 800. On the other hand, a switch 600 of one node 210 1s
connected to another switch 600 of another node 210 via a
node link 1010 to transier a transaction to an arbitrary node in
the entire computer system. The processing 1s executed 1n the
same manner as in the above-mentioned first embodiment.

It should be noted that in the second embodiment, 1t 1s more
preferable to use a part of each of the CPU 100 and the
memory 120A included in the node 210 for the I/O processing,
as 1n the first embodiment and the second modified example,
rather than to mclude the I/O processor 710 1n the I/O hub
700. In this case, the CPU 100 and the memory 120A to be
used may be provided 1n a node 210A which 1s identical with
the I/0 hub 700 or may be provided 1n a node 210A which 1s
different from the I/O hub 700.

Third Embodiment

FI1G. 23 15 a block diagram showing a blade server system
according to a third embodiment.

The blade server system includes: a plurality of server
blades 10-1 to 10-7; I/O cards 501 and 502 provided with I/O
interfaces of various types; a switch 2350 for connecting the
server blades 10-1 to 10-# to the I/O cards; an 1/O card sharing
module 450 for sharing the 1/0O cards 501 and 502 among the
plurality of the server blades 10-1 to 10-7; and an I/O proces-
sor blade 650 for managing the sharing of the I/O cards. The
server blades, the switch 250, and the I/O card sharing module
450 are stored 1n a casing (not shown).

The server blades 10-1 to 10-# each include a CPU 101 and
a memory 102 which are connected together through a chip
set (or an1/O bridge) 103. The chip set 103 1s connected to the
switch 250 through one of general buses 11-1 to 11-#. In this
embodiment, PCI-EXPRESS (referred to as PCI-ex 1n the
drawing) 1s adopted for the general buses 11-1 to 11-7, for
example.

The CPU 101 provides servers #1 to #n by executing an OS
or an application loaded on the memory 102. The CPU 101

10

15

20

25

30

35

40

45

50

55

60

65

18

obtains access to the I/O cards 501 and 502 from the chip set
103 through the switch 250 and the I/O card sharing module
450.

The switch 250 1includes a header processing unit 260 for
adding header information to packets sent and recerved
between the server blades 10-1 to 10-» and the I/0 cards 501
and 502 and for transferring the packets based on the header
information.

The header processing unit 260 adds header information to
a packet (access request signal) sent from one of the server
blades 10-1 to 10-% to one of the I/O cards 501 and 502, and
transiers the packet to a node (I/O card) associated with the
address included in the header information. The header infor-
mation defines address information (1dentifier) of each of the
server blades 10-1 to 10-z as a requester, and address infor-
mation of each of the I/O cards as a destination. The header
processing unit 260 of the switch 250 transiers a packet
(response signal), which has been sent from one of the I/O
cards to one of the server blades 10-1 to 10-#, to one of the
server blades 10-1 to 10-» associated with the address (server
identifier) included 1n the packet. Here, the packet transfer
according to this embodiment 1s based on a PCI transaction
(PCI-Tx), because PCI-EXPRESS 1s adopted as a general
bus.

The I/O card sharing module 450 1s connected between the
switch 250 and the I/O cards 501 and 502, for sharing the I/O
cards 501 and 502 among the plurality of server blades 10-1
to 10-7 through the general buses 301, 311, and 312. The I/O
card sharing module 450 1s connected to the I/O processor
blade 650 through a general bus 401. The I/O card sharing
module 450 manages an address conversion and a sharing
state relating to the sharing ofthe I/O cards, as described later.
The 1I/O processor blade 650 has a console 5 connected
thereto, through which an administrator or the like sets the
sharing state of the 1/O cards 501 and 3502.

The I/O cards 501 and 502 each are provided with an
interface such as a SCSI (or a SAS), a fibre channel (FC), or
Ethernet (registered mark). The I/O cards 501 and 502 each
are further provided with a direct memory access (DMA)
controller 513 for directly accessing each of the memories
102 1n the server blades 10-1 to 10-7. The I/O cards 501 and
502 each are turther provided with a base address register 511
for designating a base address of memory mapped I/O (MM
I/0O) of the memory 102 on any one of the server blades 10-1
to 10-» making DMA through the DMA controller 513, and
with a command register 512 for designating an instruction to
be given to the I/O cards 501 and 502. The DMA controller
513 executes operation that corresponds to the command
written by the command register 512 with respect to the
memory 102 whose address 1s written by the base address
register 511. The I/O cards 501 and 502 each include a reg-
ister (not shown) (such as a configuration register or a latency
timer register) conforming to the PCI standard.

Explained next 1s the I/O processor blade 650 including a
CPU 602 and a memory 603 which are connected together
through a chip set (or an I/O bridge) 601. The chip set 601 1s
connected to the I/O card sharing module 450 through the
general bus 401. A predetermined control program 1s
executed on the I/O processor blade 650 as described later,
which executes processing such as an address conversion in

response to an I/O access from any one of the server blades
10-1 to 10-x.

(I/0 Card Sharing Module)

Next, a detailed explanation 1s given 1n the following of the
I/O card sharing module 450 according to this invention, with
reference to the block diagram of FIG. 24.

US 7,890,669 B2

19

The I/O card sharing module 450, which 1s provided
between the server blades 10-1 to 10-7 and the I/0 cards 501
and 502, performs an address conversion on an I/O access
packet from any one of the server blades 10-1 to 10-7, to
thereby make it possible to share a single I/O card with the
plurality of server blades 10-1 to 10-7. Here, the switch 250,
the general buses, and the 1/0 cards 501 and 502 each con-
form to PCI-EXPRESS. Heremafter, the I/O access packet 1s
referred to as PCI transaction.

The 1/0 card sharing module 450 mainly has three func-
tions as follows:

1) a function of writing PCI transaction, which 1s sent from
the server blades 10-1 to 10-» to the I/O cards 501 and 502,
into the memory 603 of the I/O processor blade 650;

2) a function of 1ssuing an interrupt request for the CPU
602 of the I/O processor blade 650, based on a write request
for the command registers 512 of the I/O cards 501 and 502;
and

3) a function of converting an address of the PCI transac-

tion based on DMA from the I/O cards 501 and 502 to the
server blades 10-1 to 10-7.

In FIG. 24, the 1/O card sharing module 450 1s composed
almost exclusively of: a content addressable memory 410 for
storing an address information table 411 described later; a
header information extracting unit 406 for separating header
information from the PCI transaction sent {from any one of the
server blades 10-1 to 10-7; a first transaction decoder 402
(referred to as Tx decoder 1 1n the drawing) for analyzing a
main body of the PCI transaction excluding the header infor-
mation and sending instruction to the I/O processor blade
650; a second transaction decoder 403 (referred to as Tx
decoder 2 in the drawing) for analyzing a signal from the I/O
processor blade 650 and sending instruction to the I/O cards
501 and 502; a third transaction decoder 404 (referred to as Tx
decoder 3 1n the drawing) for analyzing the PCI transaction
from the I/0 cards 501 and 502 and correcting (converting)
the destination address 11 the transaction 1s based on the DMA
transier; an interruption generating unit 407 for 1ssuing an
interruption to the CPU 602 of the I/O processor blade 650
based on the instruction provided by the first transaction
decoder 402; a memory writing unit 408 for performing writ-
ing to the memory 603 of the I/O processor blade 650 based
on the mstruction provided by the first transaction decoder
402; a signal selecting unit 412 for selecting a signal to be
outputted to the I/O processor blade 650, based on the mstruc-
tion provided by the first transaction decoder 402; and a signal
selecting unit 413 for selecting a signal to be outputted to the
servers #1 to #n sides (switch 250) based on the 1nstruction
provided by the third transaction decoder 404.

Here, the PCI transaction 1s constituted of, as shown 1n
FIG. 25, a PCI transaction main body 461 storing data such as
a command, an order, or a server address (MM 1/O base
address) 462 and header mmformation 451 storing routing
information. The header information 451 includes a destina-
tion 452 at the head thereof, which 1s followed by a requester
453 that has 1ssued the PCI transaction. For example, as
regards the PCI transaction from the server blades 10-1 to the
I/0 card 501, routing information (such as an address) to the
I/0 card 501 1s defined as the destination 451, routing infor-
mation of the server blade 10-1 1s defined as the requester 453,
and the PCI transaction main body 461 defines address infor-
mation on the I/O register of the server blade 10-1, 1n addition
to the command and the order, as the MM 1/O base address
462.

In FIG. 24, reference numeral 301-1 denotes an outbound
PCI transaction from the switch 250 to the I/O card sharing
module 450 through the general bus 301 connecting the

10

15

20

25

30

35

40

45

50

55

60

65

20

switch 250 (server blades 10-1 to 10-# side) and the I/O card
sharing module 450. Reference numeral 301-2 denotes an
inbound transaction from the I/0O card sharing module 450 to
the switch 250 (server blades 10-1 to 10-7 side) through the
general bus 301. Similarly, reference numeral 401-2 denotes
an outbound 1instruction signal from the I/O card sharing
module 450 to the I/O processor blade 630 through the gen-
eral bus 401 connecting the 1/0 card sharing module 450 and
the I/0 processor blade 650, and reference numeral 401-1
denotes an inbound instruction signal (or the PCI transaction)
from the I/O processor blade 650 to the I/O card sharing
module 450 through the general bus 401. Further, reference
numerals 311-1 and 312-1 each denote inbound PCI transac-
tions from each of the I/O cards 501 and 502 to the 1/O card
sharing module 450 through one of the general buses 311 and
312 cach connecting the I/O card sharing module 450 and the
I/O cards 501 and 502, respectively. Also, reference numerals
311-2 and 312-2 each denote outbound PCI transactions from
the I/0O card sharing module 450 to each of the I/O cards 501
and 502 through one of the general buses 311 and 312, respec-
tively.

In the I/O card sharing module 450, upon receiving the
outbound PCI transaction 301-1 from the switch 250 (server
side), the header information extracting unit 406 separates the
PCI transaction into the header information 4351 and the PCI
transaction main body 461 as shown in FIG. 25. The header
information extracting unit 406 further extracts an offset from
the MM 1/O base address defined 1n the PCI transaction. The
header information extracting umt 406 then inputs the header
information 451 and the oflset into the contact addressable
memory 410, and also mputs the PCI transaction main body
461 to the first transaction decoder 402.

The content addressable memory 410 includes a CAM
(contents addressable memory), and holds the address infor-
mation table 411 defined by the I/O processor blade 630. The
address information table 411 stores access permission infor-
mation (allocation information) on each of the servers #1 to
#n with respect to the I/0 cards 501 and 502 connected to the
I/O card sharing module 450, as described later.

Then, the content addressable memory 410 inputs an
address to be found (header information 451) as a search key
(bit string), and outputs an address associated with the search
key thus inputted from a preset table (address information
table 411). As described later, the content addressable
memory 410 refers to the header information 4351 1nputted,
and outputs the base address of MM 1/O and an address of the
memory 603 on the I/O processor blade 650 both associated
with the header information 451.

The first transaction decoder 402 refers to the PCI transac-
tion main body 461 received from the header information
extracting unit 406 and the MM I/O base address recerved
from the content addressable memory 410 so as to analyze an
instruction of the PCI transaction main body 461, to thereby
select an outbound 1nstruction signal 401-2 to be outputted to
the I/0O processor blade 650. When the mstruction of the PCI
transaction main body 461 1s not a predetermined instruction,
the transaction decoder 402 transiers the PCI transaction
received by the 1/0 card sharing module 450 to one of the I/O
cards 501 and 502 as the outbound PCI transaction without
making any modification thereto.

Explained next 1s a memory space 1 a case where the
plurality of server blades 10-1 to 10-7 (servers #1 to #n) share
a single I/0 card. In the following embodiment, three servers
#1 to #3 share a single IO card 501.

The servers #1 to #3 each set an I/O area to the memory 102
of each of the servers for one I/O card, and the I/O area 1s
associated with the MM I/0 address space. For example, as

US 7,890,669 B2

21

shown 1n FIG. 26, for each I/O card to be used (or shared) (in
this case, the I/O card 501), the servers #1 to #3 (server blades
10-1 to 3) each have the MM I/O area with MM I/O base
address of OxA, 0xB, or OxC and an offset, which indicates a
s1ze ol the memory space, of 0xS, 0xY, or 0xZ, respectively
defined thereto. Those MM I/0 base addresses and the offsets
are determined by a BIOS or the OS activated in the server
blades 10-1 to 10-%.

In correspondence with the MM 1/O of each of the servers
#1 to #3, the memory 603 of the processor blade 650 includes
the memory spaces 6031 to 6033 set thereto, as shown 1n FIG.
277, for the I/O card 501 which 1s to be shared by the servers #1
to #3, as described later. In FI1G. 27, the memory space 6031
(0xP) 1s set to the memory 603 of the I/O processor blade 650
so as to be associated with the MM I/O base address OxA of
the server #1. It should be noted that the I/O processor blade
650 sets a memory space on the memory 603 only for the MM
I/0 of the server which shares the target I/O card for sharing,
based on an 1I/O card sharing settings table 610 (see FIG. 29)
set 1n the memory 603. Similarly, the memory space 6032
(0x(QQ) 1s set so as to be associated with the MM I/O base
address 0xB of the server #2 which shares the I/O card 501,
and the memory space 6033 (0xR) 1s set so as to be associated
with the MM 1/O base address 0xC of the server #3.

Then, the /O areas associated with the MM [/O base
addresses of the servers #1 to #3, that 1s, OxA, 0xB, and O0xC,
share the 1/0 card 501. Accordingly, the address information
table 411 of the content addressable memory 410 1s set as
shown 1n FIG. 28 by the I/0 processor blade 650.

The address information table 411 of FIG. 28 includes: a
header 4111 which 1s to be compared with the header infor-
mation 451 of the PCI transaction recerved by the I/O card
sharing module 450 from any one of the servers #1 to #3; an
MM I/0 base address 4112 which 1s to be outputted when the
header information 431 has matched the header 4111 in the
address information table 411; and an address (referred to as
IoP ADDR 1n the drawing) 4113 of the memory space 1n the
I/0 processor blade 650, which 1s outputted when the header
information 451 has matched the header 4111 of the address
information table 411; and an offset 4114 which 1s to be
compared with the offset inputted to the content addressable
memory 410. The header 4111, the MM I/O base address
4112, the address 4113, and the ofiset 4114 are preset.

As described above, 1n the case where the servers #1 to #3
share the I/O card 501, the address information of the servers
#1 to #3 1s set to the header 4111 of the address information
table 411 of FIG. 28, while the MM I/O base addresses shown
in FI1G. 26 regarding the server #1 to #3 are set to the MM 1/0O
base address 4112. In the memory space address 4113, there
1s set the address information of the memory spaces 6031 to
6033 so as to be associated with the MM 1/O base address of
the servers #1 to #3 as shown 1n FIG. 27. In the offset 4114, a
difference from the MM I/O base address 1s set so as to obtain
the si1zes of the memory spaces of the servers #1 to #3.

In the header 4111, the destination 452 of the header infor-
mation 451 1s set in such a manner that the “Iol1” indicating
address information of the I/O card 501 forms a pair with each
of “SV1” to “SV3” indicating address information of the
servers #1 to #3 of the requester 453 which has requested the
I/0 access, and each pair 1s set as an address for comparison.

For example, the PCI transaction from the server #1 (server
blade 10-1) to the I/O card 501 1ncludes the destination 452 of
the header information 451 having “lol” set thereto, and the
requester 453 having “SV1”, which 1s the address informa-
tion of the server #1, set thereto. The header information 451
extracted by the header information extracting unit 406 is
inputted to the address information table 411 of the content

10

15

20

25

30

35

40

45

50

55

60

65

22

addressable memory 410, so that the content addressable
memory 410 outputs the MM I/O base address OxA of the
server #1 and the address=0xP of the memory space 6031 of
the I/0 processor blade 650 for sharing the I/O card 501 by the
server #1.

The MM I/O base address outputted from the content
addressable memory 410 1s inputted to the first transaction
decoder 402, and the address of the memory space 6031 is
inputted to the signal selecting unit 412.

The following explanation 1s given on the operation of the
transaction decoders 402 to 404 with the above-mentioned
memory space.

The first transaction decoder 402 extracts an 1nstruction
regarding the I/0 cards 501 and 502 trom the PCI transaction
main body 461 recerved from the header information extract-
ing unit 406. Based on the contents of the istruction, the I/0
card sharing module 450 makes a decision on what signal to
output to the I/O processor blade 650 or to the I/O cards 501
and 502 as follows.

A) In the case where the mstruction extracted from the PCI
transaction main body 461 1s a write istruction to the com-
mand register 512 of each of the I/O cards 501 and 502
(1nstruction to start the operation of the I/O card, for example,
a DMA transfer starting command), the transaction decoder
402 provides instructions to the interruption generating unit
407 to output an iterruption, and also to the signal selecting
unmt 412 to select the output from the interruption generating
umt 407 to output an outbound 1nstruction signal 401-2 of the
general bus 401 to the I/O processor blade 650. This interrup-
tion signal includes the address 4113 of the I/O processor
blade 650 outputted by the content addressable memory 410.
In executing the interruption, the header information 451 and
the offset each inputted to the content addressable memory
410 need to match the header 4111 and the offset 4114 of the
address information table 4111, respectively.

B) In the case where the 1nstruction extracted from the PCI
transaction main body 461 is a write instruction to a register
(for example, the base address register 511) other than the
command register 512 of each of the I/O cards 501 and 502
(1nstruction not to start the operation of the I/O card, such as
a DMA mitialization request), the transaction decoder 402
provides instructions to the memory writing unit 408 to write
the PCI transaction (including the header information 451
and the PCI transaction main body 461) to a predetermined
memory space of the I/O processor blade 650, and also pro-
vides instructions to the signal selecting unit 412 to select the
output from the memory writing unit 408 to output an out-
bound 1nstruction signal 401-2 of the general bus 401 to the
I/O processor blade 650. The memory writing unit 408 writes
the header information 4351 and the PCI transaction main
body 461 with respect to the address 4113 of the I/O processor
blade 650 outputted from the content addressable memory
410.

C) In the case where the 1nstruction extracted from the PCI
transaction main body 461 1s an instruction other than a write
request to the register of each of the I/O cards 501 and 502, the
transaction decoder 402 outputs the PCI transaction, which
has been received from a signal line 420, as an outbound PCI
transactions 311-2 and 312-2 without making any modifica-
tion thereto, through the general buses 311 and 312 connect-
ing the I/O card sharing module 450 and the I/O cards 501 and
502. In this case, the transaction decoder 402 refers to the
destination 452 of the header information 451 of the PCI
transaction so as to select one of the general buses 311 and
312 cach respectively connecting to the I/O cards 501 and
502, depending on which one of the I/O cards 501 and 502 1s

associated with the destination 452.

US 7,890,669 B2

23

In either of the above cases of A) to C), the transaction
decoder 402 refers to an I/O card sharing settings 4035
described later, and prohibits access when the server of the
requester does not have the destination I/O card allocated.
Also, when the transaction decoder 402 refers to the I/O card
sharing settings 405 described later to find that an allocation
state (attribute) 1s 1n an “EXCLUSIVE” state indicating an
exclusive use of the I/O card, the transaction decoder 402
transfers the PCI transaction as it 1s to the destination I/O card
according to the function described 1n the above C), without
performing address decoding by the content addressable
memory 410, to thereby allow normal access to be made

where the servers #1 to #n and the I/O cards 501 and 502
directly execute the I/O processing.

As described above, the transaction decoder 402 of the I/O
card sharing module 450, which 1s provided between the
servers #1 to #n and the 1/O cards 501 and 502, converts the
writing in the register of each of the I/O cards 501 and 502 1nto
the operation for the I/O processor blade 6350 (write process-
ing or an interruption processing with respect to the memory
space), thereby making it possible to share the I/0 cards 501
and 502 each having no sharing function. For example, when
the servers #1 to #n 1ssue a DMA transfer request (DMA
initialization request) to the I/0 cards 501 and 502, the trans-
action decoder 402 writes MM I/O base address, to which the
I/0O card sharing module 450 performs the DMA transter, 1n
the memory space of the I/0 processor blade 650, according
to the function described in the above B). Next, when the
servers #1 to #n provides 1nstructions to start the DMA trans-
ter, the transaction decoder 402 1nterrupts the I/O processor
blade 650 according to the function described in the above A)
and writes 1n the command register 512 and the base address
register 511 of either of the I/O cards 501 and 502, which 1s
caused to make DMA by the CPU 602 of the 1/O processor
blade 650 1n place of the servers #1 to #n. Then, one of the I/O
cards 501 and 502 performs a DMA transier to the requester
servers #1 to #n, following an instruction given by the I/O
processor blade 650 which has 1ssued an I/0O access request in
place of the servers #1 to #n. It should be noted that the
detailed operation of the I/O processor blade 6350 will be
described later. Further, upon receving a request from the
server blades 10-1 to 10-7 to refer a configuration register (not
shown) of the I/O card for imitialization at startup, the trans-
action decoder 402 interrupts the CPU 602 of the I/O proces-

sor blade 650, and writes the PCI transaction 1n the memory
603.

Described next 1s a main function of the second transaction
decoder 403 of the I/0 card sharing module 450. That 1s, the
second transaction decoder 403 performs filtering such that
an inbound instruction signal 401-1 recerved from the I/O
processor blade 650 through the general bus 401 1s outputted
exclusively to the I/0 card 501 or to the I/O card 502 which 1s
shared.

Accordingly, the 1/O card sharing module 450 includes a
register 430 for storing the 1/0O card sharing settings 405 as an
area for referring an I/O card sharing settings table 610 (see
FIG. 29) provided on the memory 603 of the I/O processor
blade 650.

Here, as shown in FIG. 29, the I/O card sharing settings
table 610 includes attributes for indicating each server allo-
cated (available) for each I/O card, which 1s set by the admin-
istrator through the console 5 or the like. The table 1s com-
posed of an identifier 611 including address information
(such as adevice number) of an I/O card, a type 612 indicating
a function of the I/O card, and allocation states 613 to 615 of
the servers #1 to #3.

10

15

20

25

30

35

40

45

50

55

60

65

24

FIG. 29 shows a relationship between (attributes of) the
servers #1 to #3 and the I/O cards 501 and 502, in which an [/O
card 1 under the 1dentifier 611 corresponds to the 1/O card
501, and the type 612 indicates SCSI card with the attribute of
“SHARED” indicating that the 1/O card 1 1s shared by the
servers #1, #2, and #3. The number of the allocation states 613
to 615 changes 1n accordance with the number of the servers
operating.

The I/0 card 2 under the identifier 611 corresponds to the
I/O card 502 of NIC card as indicated by the type 612. The
attribute “EXCLUSIVE” indicates that the 1/0 card 2 1s not
shared by the other servers #1 and #3. The number of the
allocation states 613 to 615 changes 1n accordance with the
number of the servers operating. The access from the servers
#1 and #3 to the I/O card 2 1s prohibited because the 1/O card
2 1s not allocated (available) to the servers #1 and #3.

Upon recerving the PCI transaction from the I/0 processor
blade 650, the transaction decoder 403 extracts a server
address (MM I/O base address) from the PCI transaction
main body 461 to compare the address with the MM 1/0 base
addresses 4112 1n the address information table 411, and 1f
the address match any one of the MM I/O base addresses,
obtains the destination and the requester from the header
4111 ofthe entry of the MM 1/O address. Next, the transaction
decoder 403 compares the destination thus obtained with the
identifier of the I/O card sharing settings 405, to thereby
search for the server which 1s identical to the requester
obtained from the matching entry. When the server thus
searched for has the I/O card associated with the destination
allocated thereto, which justifies the PCI transaction recerved
by the transaction decoder 403, the transaction decoder 403
outputs the PCI transaction to the I/O card as the destination.
On the other hand, when the corresponding server does not
have the I/O card associated with the destination allocated
thereto, which means that the I/O access request 1s unjustifi-
able, the transaction decoder 403 discards the PCI transac-
tion. The I/O card sharing module 450 may also notity the
server of the error after the PCI transaction 1s discarded.

Described next 1s a main function of the third transaction
decoder 404 of the 1I/O card sharing module 450. That 1s, the
third transaction decoder 404 converts the header information
451 and a server address of the PCI transaction main body 461
so as to return the outbound PCI transactions 311-1 and
312-1, which have been received from the I/O card 501 and
502 through the general bus 311 and 312, to the servers #1 to
#n each being requester of the I/O access.

The transaction decoder 404 determines whether the PCI
transactions 311-1 and 312-1, which have been recerved from
the I/O card side, requires an address conversion (such as
DMA) or not (for example, an event such as an interruption),
and selects any one of the output of the transaction decoder
404 and the imnbound transaction 311-1 and 312-1, by using
the signal selecting unit 413.

When the PCI transactions 311-1 and 312-1 recerved from
the 1I/0 card side 1s a DMA transier, the transaction decoder
404 determines that the address conversion 1s necessary and
instructs the signal selecting unit 413 to select an output from
the transaction decoder 404. On the other hand, when the PCI
transactions do not require the address conversion, the trans-
action decoder mstructs the signal selecting unit 413 to output
the received PCI transactions 311-1 and 312-1 without mak-
ing any modification thereto.

The transaction decoder 404 makes a determination as to
whether the address conversion 1s necessary or not, depend-
ing on whether the PCI transaction main body 461 shown 1n
FIG. 25 includes 1dentifiers (address information, etc.) of the
servers #1 to #n at predetermined significant bits set 1n an

US 7,890,669 B2

25

unused area of the MM I/O base address 462, as described
later. Specifically, the transaction decoder 404 determines
that the address conversion 1s necessary when the PCI trans-
action main body 461 includes 1dentifiers of the servers #1 to
#n (hereinafter, referred to as “server identifier”) at the sig-
nificant bits of the MM I/O base address 462. When the PCI
transaction main body 461 includes no server identifier, the
transaction decoder 404 determines that the address conver-
1011 1S Unnecessary.

(I/O Processor Blade)

Next, the function of the I/O processor blade 6350 1s
explained in the following. FIG. 30 1s a functional block
diagram mainly showing the I/O processor blade 6350.

In FIG. 30, the memory 603 of the I/O processor blade 650
stores the 1/0 card sharing settings table 610 of FIG. 29 and
the memory spaces 6031 and 6032 (represented by 603x1n the
drawing) of the I/O cards shared by the plurality of servers.
The memory 603 further includes an mterruption processing
unit 620 loaded by a ROM or the like (not shown), which 1s
activated upon an interruption (denoted by INT 1n the draw-
ing) from the I/O card sharing module 450. In activating the
server blades 10-1 to 10-7, an mitialization processing unit
630 1s loaded onto the memory 603 by an ROM or the like (not

shown) upon an interruption from the I/O card sharing mod-
ule 450.

The I/0 card sharing settings table 610 1s approprately set
by the administrator or the like through the console 5 con-
nected to the I/0 processor blade 650, as described above, by
which the allocation between the I/O cards and the servers #1
to #n 1s defined. The memory space 603x of the memory 603
1s set by the CPU 602 upon activation of the servers #1 to #n
as described later. When the PCI transaction received from
the switch 250 corresponds to the above B), for example,
when the PCI transaction includes a write command (DMA
initialization request) to the base address register 311 of the
I/O card, the I/O card sharing module 450 writes the PCI
transaction main body 461 and the header information 451
into the memory space 603x which corresponds to the 1/0
card to be accessed and the requester server.

After that, when the

PCI transaction received from the
switch 250 corresponds to the above A) (writing to the com-

mand register 5312), the 1/O card sharing module 450 inter-

rupts the CPU 602 of the 1/O processor blade 650 so as to
activate the interruption processing unit 620.

The interruption processing unit 620 writes the header
information 451 and PCI transaction main body 461 which
are written 1n advance into the memory space 603.x, based on
the address of the memory space 603x included in the inter-
ruption instruction provided by the I/O card sharing module
450. When the PCI transaction main body 461 includes a
DMA transfer command, the interruption processing unit 620
temporarily converts the header information 451 and the MM

I/0 base address 462 included the PCI transaction main body
461 as described later, to write the MM I/O base address thus
converted, 1into the address register 511 of the 1/0 card to be
activated.

Next, the interruption processing unit 620 writes an
instruction (for example, a DMA transier starting instruction)
included 1n the PCI transaction main body 461 which has
been mterrupted, into the command register 512 of the I/O
card which corresponds to the destination 452 of the header
information 451, to thereby activate the operation of the I/O
card.

10

15

20

25

30

35

40

45

50

55

60

65

26

Next, the following explanation 1s given regarding the
address conversion described above to be performed by the
interruption processing unit 620 1n the case of the DMA
transier.

As shown 1n FIG. 25, according to PCI-EXPRESS or PCI,
64 bits (0 to 63 bit 1n the drawing) are defined as the MM 1I/O
address space of the PCl transaction. Also, as regards the CPU
101 of each of the servers #1 to #n (server blades 10-1 to
10-72), a CPU capable of addressing with 64 bits 1s becoming,
increasingly common. It 1s not realistic, however, to provide
the server blades 10-1 to 10-2 each with the memory 102 that
tully occupies the address space of 64 bits, and therefore, the
memory space with several tens of GB at maximum 1s usually
provided under present circumstances. Accordingly, a prede-

termined value of less than 64 bits, for example, 52 bits (0 to
51 bit), 1s defined as a used area shown in FIG. 25 for the
address bus of the CPU 101 or the like.

Therefore, while the MM 1I/O address space has 64 bits

defined thereto, the Slgmﬁcant bits of the address space are
unused when the memory 1s installed 1n each of the server

blades 10-1 to 10-7.

As described above, 1n FIG. 25, the signiﬁcant bits o1 52 to
63 bits constitute an unused area 463 1n the MM I/O base
address 462 included 1n the PCI transaction main body 461
when 52 of the less significant bits are defined as an accessible
address space. The unused area 463 of FIG. 25 includes 12
bits, while the blade server system may include several tens of
server blades, so 1t 1s possible to 1dentity all the servers 1n the
casing by using at least 6 bits, for example, ofthe 12 bits inthe
unused area.

On the other hand, in the case of the I/O card conforming to
PCI-EXPRESS, 1t 1s impossible to make 1dentification of the
plurality of servers #1 to #n on the I/O card side. Once the
DMA transfer 1s started, the I/O card only recognizes the MM
I/O base address 462 on initialization, which makes 1t impos-

sible to perform the DMA transier to the plurality of servers
#1 to #n.

Therefore, according to this invention, 1n the case of the
DMA transier, the unused significant bits of the MM I/O base
address 462 of the PCI transaction are used for storing the
server 1dentifier (address information), and the interruption
processing unit 620 of the I/O processor blade 650 buries the
requester 453 serving as the server identifier 1n the unused

significant bits of the MM I/0 base address 462, to thereby
perform address conversion.

Then, the mterruption processing unit 620 writes the MM
I/O address 462 thus converted 1n the base address register
511 of the I/O card, and writes the start of the DMA transfer
in the command register 512, to thereby starts DMA of the I/O
card.

After the DMA transfer 1s started by the I/O card, the
transaction decoder 404 of the 1/0 card sharing module 4350
extracts, upon recerving the PCI transaction from the 1/0
card, the server 1dentifier buried in the unused area 463 which
1s the significant bits of the MM I/O base address 462, and
writes the server i1dentifier thus extracted in the destination
452 of the header information 451 1n the PCI transaction.
Then, the transaction decoder 404 writes “0” 1n the area from
which the server 1dentifier was extracted 1n the MM I/O base
address 462, to thereby delete the route information of the

requester buried 1n the area. After that, the transaction
decoder 404 transfers the PCI transaction to the switch 250.

The switch 250 further transfers the PCI transaction to a

server designated as the destination based on the header infor-
mation of the PCI transaction, that i1s, one of the servers #1 to

#n which has requested the DMA transfer.

US 7,890,669 B2

27

In other words, the interruption processing unit 620 of the
I/0O processor blade 650 writes 1n the address register 511 of
the I/0 card the address of the requester 453 buried as a server
identifier 1n the unused area 463 of the MM /O, thereby
activating the DMA transfer of the I/O card. Accordingly,
with respect to the DMA transier outputted from the I/0O card,
the server 1dentifier 1s extracted from the unused area 463 of
the MM 1/0 base address 462 1n the PCl transaction by the I/O
card sharing module 450 to set the server identifier in the
destination 452 of the header information 451. Thus, the [/O
card can be shared by the I/O card sharing module 450 and the
I/0 processor blade 650 even when the I/0 card itself does not
have a function of identifying the plurality of servers #1 to #n.

(I/O Card Sharing Processing)

Next, FIG. 31 shows processing o1 I/O card sharing, mainly

through a PCI transaction, by the I/O card sharing module 450
and the I/0O processor blade 650.

As shown 1n FIG. 31, 1n S1, the servers #1 to #n each set a
DMA 1nitialization command or the like in the PCI transac-
tion to send the PCI transaction to the I/O card making I/0O
access. Hach of the servers #1 to #n sets address information
(server 1identifier) of its own 1n the requester 453 of the header
information 451 of the PCI transaction, and sets the MM [/O

base address allocated for the I/O card by each of the servers
as the MM I/O base address 462.

In S2, when the I/O card sharing module 450 provided
between the I/O card and the servers receives the PCI trans-
action, the PCI transaction 1s written 1n the memory space
603x of the I/O processor blade 650 because the PCI transac-
tion 1includes the DMA 1nitialization command containing the
write command to the address register 511 of the I/O card. At
this time, the I/O card 1s not accessed.

In S3, when the servers #1 to #n each send the PCI trans-
action instructing the start of the DMA transfer to the I/O
card, the I/O card sharing module 450 interrupts the 1/0
processor blade 650 to activate the interruption processing,
unit 620 because the PCI transaction includes a command to
activate the operation of the I/O card.

The mterruption processing umt 620 reads the MM [/O
base address 462 from the PCI transaction written in the
memory space 603x, and writes the MM 1/O base address 462
in the address register 511 of the I/O card. At this time, the
interruption processing unit 620 buries the requester 453 of
the header information 451 indicating the requester server in
the unused area 463 of the MM I/O base address 462 within
the PCI transaction. Then, the interruption processing unit
620 writes start of the DMA transfer in the command register
512 of the I/O card to activate the operation of the I/0O card.

In S4, the I/O card performs the DMA transier (write or
read) with respect to the MM I/O base address set 1n the
address register 511.

In the PCI transaction by DMA from the I/O card, the
server 1dentifier 1s buried in the unused area 463 set as the

significant bit of the MM I/O base address 462.

In S5, upon reception of the PCI transaction, the I/O card
sharing module 450 provided between the 1/0 card and the
servers #1 to #n judges, by the transaction decoder 404 shown
in F1G. 24, whether or not the PCI transaction 1s performed by

DMA.

The judgment on whether or not the PCI transaction from
the I/O card 1s performed by DMA by the transaction decoder
404 1s carried out as follows. When all the bits of the unused
area 463 of the MM 1/O base address 462 are not “0”, 1t 1s
judged that the server identifier 1s buried to thereby judge that
the PCI transaction 1s performed by DMA.

5

10

15

20

25

30

35

40

45

50

55

60

65

28

In the case of the PCI transaction by DMA, the transaction
decoder 404 sets the contents of the unused area 463 of the
MM I/O base address 462 1n the destination 452 of the header
information 451, and converts the contents thereol into 1den-
tifiable address information of the servers #1 to #n by the
switch 250. After that, the transaction decoder 404 sets all the
bits of the unused area 463 to “0” and sends the PCI transac-
tion to delete the contents of the unused area 463.

Based on the destination 452, the switch 250 transfers the
PCI transaction by DMA to the requester server of DMA set
in the destination 452, and makes predetermined access with
respect to the MM 1/0 set as the servers #1 to #n.

As described above, the server identifier requesting DMA
(requester 453) 1s set 1n the predetermined significant bit of
the MM 1I/0 base address set 1n the address register 311 of the
I/O card. Therefore, even a general-purpose /O card can be
shared by the plurality of server blades 10-1 to 10-z because
the I/0 card sharing module 450 replaces information stored
in the destination 452 of each of the PCI transactions with
address information of the server requesting DMA even when
DMA 1s repeatedly made.

A time chart of FIG. 32 shows the above-mentioned pro-
cessing 1n time series. First, in S11, each of the servers #1 to
#n sets the DMA iitialization command or the like in the PCI
transaction and sends the PCI transaction to the I/O card
making the I/O access.

In S12, the I/O card sharing module 450 writes the contents
of the PCI transaction in the memory space of the I/O proces-
sor blade 650 since the PCI transaction includes a write
request with respect to the registers other than the command
register 512 of the 1I/O card.

Next, 1n S13, each of the servers #1 to #n sets a write
command to the command register 312 such as the DMA
transfer start command in the PCI transaction, and sends the
PCI transaction to the I/O card making the I/O access.

In S14, because the PCI transaction includes the write
command to the command register 312 of the I/O card, the I/O
card sharing module 450 requests interruption to the CPU 602
of the IO processor blade 650.

In S15, the CPU 602 of the I/O processor blade 650 acti-
vates the interruption processing unit 620 and reads out the
contents other than those of the command register 512, that 1s,
the contents of the address register 511 or the like.

In S16, when the contents of the PCl transaction read by the
interruption processing unit 620 are processed by DMA, the
requester 4353 of the header information 451 1s set 1n the
unused area 463 of the MM [/O base address 462. Then, the
MM I/O base address 462 subjected to address conversion 1s
written 1n the address register 511 of the I/O card, thereby
activating the operation of the I/O card by writing the DMA
transier start command 1n the command register 512.

In S17, the DMA controller 513 of the I/O card makes the
DMA access to the memory space of the address register 511.

In S18, upon reception of the PCI transaction from the I/O
card, the transaction decoder 404 judges whether the PCI
transaction 1s performed by DMA 1n the manner described
above. When judging that the PCl transaction 1s performed by
DMA, the transaction decoder 404 carries out the conversion
of the address information (rebuilding processing) by setting
the server i1dentifier of the unused area 463 of the MM [/O
base address 462 of the PCI transaction main body 461 1n the
destination 452 of the header information 451. Then, the
transaction decoder 404 sends the PCI transaction to the
server requesting DMA via the switch 250.

The above-mentioned procedure allows the DMA control-
ler 513 of the I/O card to execute the processing by burying
the identifier of the server requesting DMA 1n the unused area

US 7,890,669 B2

29

463 of the MM I/O base address 462. Thus, a single 1/0O card
can be shared by the plurality of servers #1 to #n.

(Setting Processing of Address Information)

Next, FIG. 33 shows a time chart illustrating an example of
a setting processing of an address information table 411
executed when server blades 10-1 to 10-» are activated.

The address information table 411 stored in the content
addressable memory (CAM) 410 1s updated by the processing
shown in FIG. 33 every time the server blades 10-1 to 10-7 are
activated. It should be noted that a case where a server blade
10-1 1s activated will be described below.

First, the server blade 10-1 1s tuned on 1n S20. In S21, by
turning the power of the server blade 10-1 on, the CPU 101
activates a BIOS (not shown) and requests read with respect
to the configuration register of each of the I/O cards 1n order
to perform 1nitialization of the I/0O card (device).

In S22, upon reception of the read request of the configu-
ration register of the I/0O card, the transaction decoder 402 of
the I/0 card sharing module 450 interrupts the CPU 602 of the
I/O processor blade 650, and writes the PCI transaction
including the read request of the configuration register 1n the
memory 603 as described above. At this time, because the
MM I/0 1s not set yet 1n the server blade 10-1 from which the
read request of the configuration register has been sent, the

transaction decoder 402 writes the read request 1n the address
set 1n advance.

In S23, the CPU 602 of the I/O processor blade 650 acti-
vates the initialization processing unit 630 shown 1n FIG. 30
by the iterruption of the transaction decoder 402. The 1ni-
tialization processing unit 630 confirms the I/O card allocated
to the server blade by reading the I/O card sharing settings
table 610 from the read request of the configuration register
written to the predetermined address.

In S24, when the I/O card i1s not allocated to the server
blade 10-1 (access prohibition), the mitialization processing,
unit 630 notifies the server blade 10-1 that the allocation 1s not
made via the I/O card sharing module 450 (handled as master
abort). On the other hand, when the IO card 1s allocated to the
server blade 10-1, the mitialization processing unit 630 reads
the contents of the configuration register of the I/O card and
responds to the server blade 10-1. It should be noted that the
processing of S24 1s executed sequentially for every I/O card
set 1n the I/O card sharing settings table 610.

In S25, upon reception of the contents of the configuration
register of the I/O card from the I/0O processor blade 650, the
server blade 10-1 sets the MM I/O space or the I/O space
based on the obtained information of the I/O card, and per-
forms setting or the like of the MM 1/0 base address. Then,
the server blade 10-1 notifies the MM I/O base address to the
I/0 card. The notification 1s executed for each 1/O card.

In S26, the I/O card sharing module 450 recerves the PCI
transaction notitying the MM [/O base address from the
server blade 10-1. Because the PCI transaction includes the
setting notification of the MM 1/O base address, the 1/O card
sharing module 450 1nterrupts the CPU 602 of the I/O pro-

cessor blade 650, and then writes the PCI transaction notify-
ing the MM I/0 base address in the memory 603. It should be

noted that the processing 1s performed in the same manner as
in S22.

In S27, the CPU 602 of the I/O processor blade 650 acti-

vates the mnitialization processing unit 630 by the interruption
of the transaction decoder 402. The initialization processing
unit 630 allocates the memory space 6031 associated with the
I/O card of the server blade 10-1 to the memory 603 1n
response to the setting notification of the MM /O base
address of the server blade 10-1 written to the predetermined

5

10

15

20

25

30

35

40

45

50

55

60

65

30

address. Then, the 1nitialization processing unit 630 notifies
the MM 1/O base address and the offset of the server blade
10-1, the address of the memory space 6031 of the I/O pro-
cessor blade 650, the address information of the allocated I/O
card, and the address information of the server blade 10-1 to
the I/O card sharing module 450, to thereby reflect those
addresses 1n the address information table 411 of the CAM
410. It should be noted that the processing of S27 1s repeat-
edly executed for each I/O card used by the server blade 10-1.

By the processing described above, direct access 1s not
made by the activated server blades 10-1 to 10-# to the I/O
cards 501 and 502 shared by the plurality of server blades
10-1 to 10-%. Further, the I/O processor blade 650 obtains the
contents of the configuration register as a substitute, and
performs setting or the like of the memory space 603x. In the
blade server system, a new server blade can be provided and
activated when the other server blades are being operated. In
such the case, the I/O processor blade 650 responds 1n place
of the I/0 card at the time of activation of the new server
blade, thereby making it possible to activate the new server
blade without 1nfluencing the 1/0O access of the other server
blades being operated.

It should be noted that the case where the server blade 1s
activated by the BIOS mounted thereto 1s described above.
However, the processing can be performed 1n the same man-
ner as described above even in the case of activating the server
blade by an extensible firmware interface (EMI) (not shown).

(I/0 Card Sharing Settings Table)

Heremnaftter, the I/O card sharing settings table 610 shown
in FI1G. 29 will be explained.

As described above, the I/O card sharing settings table 610
shows which one of the I/O cards 1s allocated to which server,
and the administrator suitably performing settings thereof
from the console 5 or the like. The attributes of the [/O cards,
that 1s, “shared”, “exclusive”, and “access prohibited” with
respect to the servers #1 to #n are displayed on a display of the
console 5 at an interface shown 1n FIG. 29, and may be set by
the interface such as a mouse and a keyboard (not shown).

The 1dentifier 611 of the I/O card sharing settings table 610
1s suitably set by the administrator each time the 1/O card 1s
added or changed. In addition, the type 612 indicating func-
tions or the like of the I/O card can be set 1n the table by
reading a class code and a subclass code of the configuration
register of the I/0 card.

With regard to the allocation states 613 to 615 of respective
servers #1 to #3, the administrator suitably sets the presence/
absence of the sharing and the presence/absence of the allo-
cation based on the characteristics, performance, and the like
of the servers #1 to #3 and the I/O cards. In FIG. 29, “shared”
1s set when the I/0 card 1s allocated to the plurality of servers
to be shared thereby, and “not allocated” i1s set when no
allocation 1s made. When the card i1s exclusively used by a
single server, “exclusive” 1s set and access to this I/O card
from other servers 1s prohibited. The server whose 1/O card
allocation 1s set to “not allocated” 1s denied of access to the
I/O card when accessing the I/O card. When the type of the
denied access 1s a read access, the I/0 card sharing module
450 makes a response on data whose every bit1s 1, and when
the access 1s a write access, the I/O card sharing module 450
notifies of the master abort.

The I/0 card sharing settings table 610 1s reflected on the
I/O card sharing settings 405 of the 1/0 card sharing module
450. Then, the second transaction decoder 403 managing the
PCI transaction from the 1I/O processor blade 650 to the I/O
card permits only the valid transaction and prohibits 1llegal
transaction, that 1s, access by the servers to which the 1I/O

US 7,890,669 B2

31

cards are not allocated in the 1/0O card sharing settings table
610, based on the 1/0 card sharing settings 405.

By the I/0 card sharing settings table 610, all the I/O cards
can be shared. However, a single I/O card 1s exclusively used
by a certain server and the other I/O card may be shared by
servers to secure throughput or the like. Accordingly,
“shared” and “exclusive” of the I/O card can be present at the
same time and 1t becomes possible to flexibly structure the I/ O
device of the blade server system, whereby the resources of
the I/0O device can be efficiently used.

Fourth Embodiment

FI1G. 34 1s a block diagram of a blade server system accord-
ing to a fourth embodiment of this invention. In the blade
server system of the fourth embodiment, a command chain
control unit 514 1s additionally provided to the I/O card of the
third embodiment. In addition, the blade server system 1s
composed of I/O cards 1501 and 1502 for performing 1/0
processing by sequentially reading a data structure set in a
memory 102 of each of servers #1 to #n. Other structures
thereol are the same as those of the third embodiment.

Each of the I/O cards 1501 and 1502 sequentially reads the
data structure set in the memory 102 of each of the server
blades 10-1 to 10-2 and performs an I/O operation in accor-
dance with the description of each of the data structures. In
other words, each of the 1/0 cards 1501 and 1502 performs a
so-called command chain processing.

As shown 1n FIG. 35, the servers #1 to #n operated by the
server blades 10-1 to 10-» each set data structures 1020 to
1022 in the predetermined address in the memory space of
cach of the servers #1 to #n 1n using the I/O cards.

For example, three data structures 1020 (CCWs 1to 3) are
set 1n the address 0xD 1n the memory space of the server #1,
two data structures 1021 (CCWs 11 and 12) are set 1n the
address OxE 1n the memory space of the server #2, and four
data structures 1022 (CCWs 21 to 24) are set 1n the address
OxF 1n the memory space of the server #3. It should be noted
that each of those data structures 1s suitably set by the OS or
the application of each of the servers #1 to #3.

A flag indicating the presence of subsequent data structure
1s set 1n the head and intermediate data structures. For
example, the flag indicating the presence of subsequent data
structure 1s set in the CCWs 1 and 2 of the data structure 1020,
and the tlag 1s not set 1n the CCW 3, which indicates that the
CCW 3 1s the final data structure.

Each of the servers #1 to #3 sends a command to activate
the operation to the I/O card 1501 or 1502 to be used, and
notifies the I/O card 1501 or 1502 of the addresses of the data
structures 1020 to 1022 set 1n each of the memory spaces.

Upon reception of the address set in the memory spaces
along with the command of activation from each of the serv-
ers #1 to #n, each of the I/O cards 1501 and 1502 reads the
data structure 1n the specified memory space to execute /O
access written 1n the data structures 1020 to 1022.

An example 1s shown below 1n which an I/O card sharing
module 450 and an I/O processor blade 650 identical to those
of the third embodiment are applied to the blade server system
equipped with the I/O cards 1501 and 1502 for performing the
command chain processing described above.

FI1G. 36 1s a time chart showing a sharing processing of the
I/0 cards by the I/O card sharing module 450 and the I/O
processor blade 650. It should be noted that a case where the
server #1 (server blade 10-1) uses the I/O card 1501 will be
explained below.

First, the server #1 sends a PCI transaction instructing to
activate the operation to the I/O card 1501 for making the I/O

5

10

15

20

25

30

35

40

45

50

55

60

65

32

access (S31). Through the PCI transaction, an MM I/O base
address allocated to the I/O card 1501 by the server #1 1s set
as the MM I/O base address 462. Further, the command
instructing to activate the operation and the address OxD of
the data structure 1020 are set in the PCI transaction main
body 461.

Upon reception of the PCI transaction from the server #1,
the I/0 card sharing module 450 analyzes the command of the
PCI transaction. Because the command to activate the opera-
tion 1s a write command to the command register 512 of the
I/O card 1501, the I/O card sharing module 450 interrupts the
CPU 602 of the I/0 processor blade 650 (S32). At the same
time, the I/O card sharing module 450 writes contents of the
PCI transaction in the predetermined memory space 6031 of
the I/O processor blade 6350 as shown 1n FIG. 27 (S33).

The CPU 602 activated by the interruption activates the
interruption processing unit 620 of the third embodiment.
Then, the interruption processing unit 620 reads the address
0xD of the data structure 1020 of the PCI transaction written
in the memory space to obtain the requester 453 of the MM
I/O base address 462. Next, the interruption processing unit
620 reads the data structure 1020 from the address obtained
with respect to the memory 102 of the sever #1 of the
requester 433, and copies the data structure 1020 1n the pre-
determined memory space of the I/O processor blade 650
(S34). It should be noted that, as shown in FIG. 37, each of the
memory spaces 1s an area provided for storing the data struc-
ture set 1n advance for each of the servers #1 to #n. In this
example, addresses 0xS, O0xT, and OxU are set as the memory
spaces for the data structure of each of the servers #1 to #3,
and the data structure 1020 of the server #1 1s stored in the
address starting from OxS as shown 1n FI1G. 37.

Next, the interruption processing unit 620 executes pro-
cessing of the MM I/O used in DMA or the like. The requester
4353 of the header information 451 set 1n the unused area 463
of the MM I/O base address 462 through the PCI transaction
written 1n the memory space 6031 1s written 1n the address
register 511 of the I/O card 1501 as the target, thereby execut-
ing an address conversion (S35).

After that, the interruption processing unit 620 writes the
command to activate the operation in the command register of
the I/O card 1501 and notifies the command register of the
address 0xS of the data structure 1020 to the command chain
control unit 514, based on the command of the recerved PCI
transaction to activate the operation of the I/O card (536).

The I/0 card 1501 1s activated based on the activation
command of the iterruption processing unit 620, and reads
one data structure (CCW 1) 1020 from the address OxS of the
memory 603 of the IO processor blade 650 recerved (S37).
With respect to the communication from the 1/0 card 1501 to
the I/O processor blade 650, the I/O card sharing module 450
performs the transter as 1t 1s.

The I/O card 1501 performs the 1/O operation in accor-
dance with the description of the data structure 1020. For

example, when the read data structure 1020 1s processed by
DMA, the I/0 card 1501 executes DMA transier with respect

to the MM I/O base address set 1n the address register 511
(S38). In the PCI transaction by DMA from the I/O card, a
server 1dentifier 1s buried in the unused area 463 set as the
significant bit of the MM 1/O base address 462.

Upon reception of the PCI transaction, the I/O card sharing
module 450 provided between the I/O card 1501 and the
server #1 judges whether or not the PCI transaction 1s per-
formed by DMA by the transaction decoder 404 shown 1n
FIG. 24.

The judgment on whether the PCI transaction from the I/O
card 1s performed by DMA by the transaction decoder 404 1s

US 7,890,669 B2

33

carried out as follows. When all bits of the unused area 463 of
the MM I/O base address 462 are not “0”, 1t 1s judged that the
server 1dentifier 1s buried and that the PCI transaction 1s
performed by DMA.

In the case of the PCI transaction by DMA, the transaction
decoder 404 sets the contents of the unused area 463 of the
MM I/O base address 462 1n the destination 452 of the header
information 451, and converts the contents thereof into i1den-
tifiable address information of the servers #1 to #n by the
switch 250. After that, the transaction decoder 404 sets all the
bits of the unused area 463 to “0” and sends the PCI transac-
tion to delete the contents of the unused area 463 (S39).

Based on the destination 452, the switch 250 transfers the
PCI transaction by DMA to the requester server of DMA set
in the destination 452, and makes predetermined access with
respect to the MM 1/O set as the servers #1 to #n.

When the I/O operation specified by the data structure
(CCW 1) 1020 1s completed, the I/O card 1501 reads the
subsequent data structure (CCW 2) from the specified address
0xS of the memory 603 of the I/O processor blade 650 to
execute the operation in the same manner as described above.

Thus, 1n the case of the I/O cards 1501 and 1502 {for
performing the command chain processing, the data struc-
tures 1020 to 1022 of respective servers #1 to #3 are copied to
the memory space of the memory 603 of the I/O processor
blade 650, whereby the I/O processor blade 650 responds to
the read request from the I/O cards 1501 and 1502 in place of
cach of the servers #1 to #3.

Therelore, by notifying the 1/0 card of the addresses of the
memory 603 storing the data structures 1020 to 1022 of the
servers requesting the I/0O access at the time of activation of
the I/0 cards 1501 and 1502, 1t becomes possible for the I/O
cards for performing the command chain processing to be
shared by a plurality of servers #1 to #3.

Fitth Embodiment

FI1G. 38 1s a block diagram of a blade server system accord-
ing to a fifth embodiment of this invention. In this embodi-
ment, an I/O card sharing module 450 1s incorporated 1n the
switch 250 of the first or fourth embodiment to be integrated
therewith.

A switch 250A includes the I/O card sharing module 450
and operates 1n the manner as described 1n the first or fourth
embodiment. By incorporating the I/O card sharing module
450 1n the switch 250A, 1t becomes possible to reduce the
number of slots mounted to the blade server system, and to
structure the casing 1n a compact manner.

SUMMARY

As described above, according to this invention, in the case
of performing DMA transier while sharing a single I/O card
by a plurality of server blades 10-1 to 10-#, the I/O processor
blade 650 buries 1n the MM I/O base address the identifier of
the server requesting DMA to the address register 511 of the
I/O card at the time of start of the DMA transier, and the I/O
card sharing module 450 relaying the PCI transaction to the
server from the I/0 card replaces the information stored in the
destination 452 of the header information 451 with the server
identifier buried in the MM 1/0 base address, thereby making
it possible to share an I/0O card having a general-purpose bus
by the servers.

After the start of the DMA transier, because the 1/0O pro-
cessor blade 650 does not intervene in the transier of the PCI
transaction and hardware such as the IO card sharing module
450 performs the address conversion, the sharing of the I/O

10

15

20

25

30

35

40

45

50

55

60

65

34

card by the plurality of servers can be realized while prevent-
ing the overhead due to software processing and deterioration
in performance of the I/O access as 1n the conventional case.

In addition, the I/O card shared by the plurality of server
blades 10-1 to 10-z may be composed of a general-purpose
interface, so 1n performing server mtegration as described
above, the I/0 card conventionally used can be used as 1t 1s,
thereby making it possible to suppress the increase 1n cost in
performing the server integration.

Further, in performing the server integration, a single 1/0O
card can be shared by the plurality of server blades 10-1 to
10-1, so 1t becomes possible to reduce the number of I/O cards
and to use a compact casing while preventing an increase n
the number of 1/0 cards as in the conventional case.

Further, by the I/0 card sharing settings table 610, the I/O
card shared by the plurality of servers and the I/O card exclu-
stvely used by a single server blade can be present at the same
time, so 1t becomes possible to tlexibly structure the blade
server system.

It should be noted that m the third to fifth embodiments
described above, an example 1n which a PCI-EXPRESS 1s
used as the general-purpose bus 1s shown. However, general-
purpose bus such as a PCI or PCI-X may also be employed.

In addition, in the third to fifth embodiments described
above, an example 1n which one of the server blades 10-1 to
10-2 corresponds to one of the servers #1 to #n 1s shown.
However, the server identifier may be set as the logical par-
tition number when each of the servers #1 to #n 1s configured
by the logical partition of the virtual computer.

Further, 1n the third to fifth embodiments described above,
an example 1s shown 1 which the I/O processor blade 650 1s
directly coupled to the I/O card sharing module 450. How-
ever, the I/O processor blade 650 may be couple to the switch
250. Further, the server blade may execute the processing of
the I/O processor blade 650 1n place of the I/O processor blade
650. In the third to fifth embodiments described above, the
I/O card sharing module 450 and the I/O processor blade 650
are independent of each other. However, an I/O hub mounted
with the I/0 card sharing module 450 and the IO processor
blade 650 may be employed as 1n the first embodiment.

As described above, this mvention can be applied to a
computer system composed of a plurality of servers and to a
chip set thereof.

While the present invention has been described in detail
and pictonially 1n the accompanying drawings, the present
invention 1s not limited to such detail but covers various
obvious modifications and equivalent arrangements, which
tall within the purview of the appended claims.

What 1s claimed 1s:

1. A computer system, comprising;:

at least one node composed of at least one processor and
memory;

an IO hub connecting at least one 1/0 card;

a switch connecting the node and the I/O hub, and

a plurality of logical servers, each being provided with an

operating system and run by one or a plurality of the at
least one node,

wherein each of the logical servers 1s set in advance to

allow one of exclusive use and shared use of the I/O card
connected to the I/0O hub via the switch,

wherein the I/0 hub allocates a virtual MM 1/O address
unique to each logical server to a physical MM 1/0
address associated with each I/O card,

wherein the I/0O hub keeps allocation information indicat-
ing relation between the allocated virtual MM 1/O
address, the physical MM 1/O address, and a server

US 7,890,669 B2

35

identifier unique to a logical server corresponding to the
allocated virtual MM I/O address, and

wherein, when an access request designating the allocated
virtual MM 1/O address as an access destination 1s
recetrved, the I/O hub refers to the allocation information
to extract, from the designated virtual MM I/0 address,
a corresponding physical MM I/O address to specily the
I/O card as an actual access destination of the access
request, and to extract the server identifier from the
designated virtual MM I/O address; and, based on the
extracted server 1dentifier, identifies the a logical server
that has 1ssued the access request.

2. The computer system according to claim 1,

wherein, when the access request designating the allocated
virtual MM 1/O address as the access destination 1s
received, the I/0 hub sends the server 1dentifier, along
with the received access request, to the 1/O card, and

wherein, when a DMA request 1s received from the 1/0O
card 1 response to the access request, the I/O hub
extracts the server identifier from the DMA request and,
based on the extracted server 1dentifier, identifies a logi-
cal server which 1s an object of the DMA request.

3. The computer system according to claim 2,

wherein the I/O hub converts a DMA address contained 1n
the DMA request into an address that 1s associated with
the logical server 1dentified as a logical server which 1s
the object of the DMA request, and

wherein the I/O hub executes the DMA request, sent from
the I/O card, according to the converted address to trans-
fer data to a memory space allocated to the i1dentified
logical server.

4. The computer system according to claim 2,

wherein, when the access request designating the allocated
virtual MM I/O address as the access destination 1s
recetved, the 17O hub buries the server identifier in a
significant bit of a DMA address contained 1n the access
request, and

wherein, when a DMA request 1s recerved from the 1/0
card 1 response to the access request, the I/O hub
extracts the server identifier buried 1n a significant bit of
a DMA address contained in the DMA request, and
based on the extracted server identifier, 1dentifies the
server to which the DMA request 1s made.

5. A computer system, comprising:

at least one node composed of at least one processor and
memory;

an I/0O hub connecting at least one 1/0 card;

a switch connecting the node and the 1/O hub, and

a server run by one or a plurality of the at least one node,

wherein the server 1s set 1n advance to allow one of exclu-

sive use and shared use of the I/O card connected to the
[/O hub via the switch,

wherein the I/0 hub allocates a virtual MM I/O address
umque to each server to a physical MM I/O address
associated with each 1/0 card,

wherein the I/O hub keeps allocation information indicat-
ing relation between the allocated virtual MM 1/O
address, the physical MM I/O address, and a server
identifier unique to the server,

wherein, when a request to access the 1I/O card 1s received
from the server, the 1I/O hub refers to the allocation

10

15

20

25

30

35

40

45

50

55

60

36

information to extract the server identifier from the
access request, and based on the extracted server 1den-
tifier, 1dentifies the server that has i1ssued the access
request,

wherein, when a request to access the 1/0 card 1s recerved
from the server, the I/O hub sends the server 1dentifier,
along with the received access request, to the 1/0 card,

wherein, when a DMA request 1s received from the 1/0
card 1n response to the access request, the I/O hub
extracts the server identifier from the DMA request, and
based on the extracted server identifier, identifies the
server to which the DMA request 1s made,

wherein the I/0 hub converts a DMA address contained 1n
the DMA request into an address that 1s associated with
the server identified as a server to which the DMA
request 1s made, and

wherein the 1/0 hub transters the DMA request sent from
the I/O card to a memory space 1n the 1dentified server at
the converted address.

6. A computer system, comprising:

at least one node composed of at least one processor and
memory;

an I/O hub connecting at least one I/0 card;

a switch connecting the node and the I/O hub, and

a server run by one or a plurality of the at least one node,

wherein the server 1s set in advance to allow one of exclu-

sive use and shared use of the I/O card connected to the
I/O hub via the switch,

wherein the I/0 hub allocates a virtual MM 1/O address
unique to each server to a physical MM /O address
assoclated with each 1/0 card,

wherein the I/O hub keeps allocation information indicat-
ing relation between the allocated virtual MM 1/0
address, the physical MM 1/O address, and a server
identifier unique to the server,

wherein, when a request to access the 1/0 card 1s recerved
from the server, the I/O hub refers to the allocation
information to extract the server identifier from the
access request, and based on the extracted server 1den-
tifier, identifies the server that has issued the access
request,

wherein, when a request to access the I/0O card 1s recerved
from the server, the I/O hub sends the server identifier,
along with the received access request, to the 1/0 card,

wherein, when a DMA request 1s received from the 1/0
card 1n response to the access request, the I/O hub
extracts the server identifier from the DMA request, and
based on the extracted server identifier, 1dentifies the
server to which the DMA request 1s made,

wherein, when a request to access the 1/0 card 1s recerved
from the server, the I/O hub buries the server identifier in
a significant bit of a DMA address contained in the
access request, and

wherein, when a DMA request 1s received from the 1/0
card 1n response to the access request, the I/O hub
extracts the server identifier buried 1n a significant bit of
a DMA address contained in the DMA request, and
based on the extracted server identifier, 1dentifies the
server to which the DMA request 1s made.

	Front Page
	Drawings
	Specification
	Claims

