12 United States Patent

Huang et al.

US007873964B2

US 7.873,964 B2
Jan. 18, 2011

(10) Patent No.:
45) Date of Patent:

(54) KERNEL FUNCTIONS FOR 5,664,145 A 9/1997 Apperley et al.
INTER-PROCESSOR COMMUNICATIONS IN 5,701,502 A 12/1997 Baker et al.
HIGH PERFORMANCE MULTI-PROCESSOR 5,721,820 A 2/1998 Abali et al.
SYSTEMS 5,832,240 A 11/1998 Larsen et al.
5,852,602 A 12/1998 Sugawara
(75) Inventors: Kaiyuan Huang, Ottawa (CA); Michael g’gzg’gg i ' é/,}ggg Emford ctal. oo 7107263
918, rawford et al.
F. Kemp, Ottawa (CA); Ernst Munter, 5.087.495 A 11/1999 Ault et al.
Ottawa (CA); Venkatesh Bathala, 6,098,105 A * 82000 Desnoyersetal. 709/237
Nepean (CA); Damodharan 6,151,639 A 11/2000 Tucker et al.
Narayvanan, Kanata (CA) 6,161,152 A 12/2000 Garg et al.
6,181,704 Bl 1/2001 Drottar et al.
(73) Assignee: Liquid Computing Corporation, 6,408,351 Bl 6/2002 Hamdi et al.
Ottawa (CA)
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 OTHER PUBLICALIONS
U.S.C. 154(b) by 1083 days. Office Action issued in U.S. Appl. No. 11/761,865, mailed Dec. 23,
2009.
(21) Appl. No.: 11/554,535 _
(Continued)
(22) Filed: Oct. 30, 2006 Primary Examiner—Diem K Cao
(65) Prior Publication Data (74) Attorney, Agent, or Firm—DLA Piper LLP US
US 2008/0148291 A1 Jun. 19, 2008 (57) ABSTRACT
(51) Imt.Cl. In a multi-processor system with a high degree of inter pro-
Goor 3/00 (2006.01) cessor communication, an operating system extension 1s
Goorl 9/44 (2006.01) described as a kernel function to poll a recetve buifer. This 1s
Gool 9/46 (2006.01) an opportunistic poll that continues to run 1n the user context
Goor 13/00 (2006.01) after an application process has invoked the kernel with a
(52) US.CL .., 719/314; 719/313 blocking receive function. It 1s also running whenever no
(58) Field of Classification Search 719/314 higher priority task is running. New data packets may be
See application file for complete search history. recerved for the present user application process while avoid-
_ ing context switches, and for a different user process while
(56) Reterences Cited avoiding interrupts. A hardware implemented delay timer and
U.S PATENT DOCUMENTS a butter fill monitor generate interrupts when the system 1s not
polling, thus guaranteeing a maximum latency and prevent-
4,841,526 A 6/1989 Wilson et al. ing butfer overtlow, but these interrupts are largely avoided by
5,390,299 A 2/1995 Rege et al. polling when the system is handling a large amount of inter
5,453,982 A 9/1995 Pennington et al. rocessor data traffic
5,469,571 A 11/1995 Bunnell P '
5,644,569 A 7/1997 Walker
5,652,885 A * 7/1997 Reedetal. 713/1 33 Claims, 5 Drawing Sheets
310 300 .
e 318 {\..f‘ "\, 306\\ ¥§:1;P(ﬁgn”[')g APP-4
Application E 344
Resume Resume
2 ’ ‘“
£ “ ?42@‘*&6 i ‘
330 7 324~ 332 332
e ‘ Ready | Expired Tasks \ &
316 312 Tasks | Active Tasks \ P
H User Space - _ Yield
-+ - API o ——— . L 338 Yield
Kernel Space X ernel
EE, 214 ;348 Polling
e Thread / 3¢ |
: Block/
320 328_ 340 7| Unblock Unblock
User Block/ :
Polling 5 Unboc%l Blocked Tasks
334

US 7,873,964 B2
Page 2

U.S. PATENT DOCUMENTS

6,425,038 Bl 7/2002 Sprecher
6,453,360 Bl 9/2002 Muller et al.
6,459,698 Bl 10/2002 Acharya
6,539,436 B2 3/2003 Garnigues et al.
6,628,965 Bl 9/2003 Larosa et al.
6,779,050 B2 8/2004 Horton et al.
6,781,992 Bl 8/2004 Rana et al.
6,792,492 Bl 9/2004 Grnitfin
6,832,261 B1 12/2004 Westbrook et al.
6,895,010 Bl 5/2005 Chang et al.
6,914,877 Bl 7/2005 Alamineh
6,978,312 B2 12/2005 Eydelman et al.
7,133,407 B2 11/2006 Jinzaki et al.
7,139,268 Bl 11/2006 Bhagwat et al.
7,266,688 B2 9/2007 Fronberg
7,409,468 B2 8/2008 Biran et al.
7.478,138 B2 1/2009 Chang et al.
7,512,128 B2 3/2009 DiMambro et al.
7,561,567 Bl 7/2009 Olson et al.
7,580,519 Bl 8/2009 Goh
2002/0004842 Al 1/2002 Ghose et al.
2002/0009075 Al 1/2002 Fesas, Jr.
2002/0016851 Al 2/2002 Border
2002/0032821 Al 3/2002 Garrigues et al.
2002/0138790 Al 9/2002 Nishtala
2003/0035420 Al 2/2003 Niu
2004/0030745 Al 2/2004 Boucher et al.
2004/0062201 Al 4/2004 Deshpande
2004/0088641 Al 5/2004 Torsner et al.
2004/0133802 Al 7/2004 Liu
2004/0165588 Al 8/2004 Pandya
2004/0205769 Al1* 10/2004 Ruutucovvevvinninnenn. 719/313
2004/0215847 Al1* 10/2004 Duirstine et al. 710/38
2004/0218623 Al 11/2004 Goldenberg et al.
2005/0053084 Al 3/2005 Abrol et al.
2005/0091383 Al 4/2005 Bender et al.
2005/0091502 Al 4/2005 Cargille et al.
2005/0157757 Al 7/2005 Thudt
2005/0185604 Al 8/2005 Agarwal
2005/0198350 Al 9/2005 Tan et al.
2005/0223118 A1 10/2005 Tucker et al.
2005/0238057 A1 10/2005 Toma et al.
2006/0013258 Al 1/2006 Banerjee et al.
2006/0047875 Al 3/2006 Aguilar, Jr. et al.
2006/0064621 Al 3/2006 Fuh et al.
2006/0101178 Al 5/2006 Zhong et al.
2006/0101473 Al 5/2006 Tayloretal. 719/314
2006/0136570 Al 6/2006 Pandya
2006/0221953 A1 10/2006 Basso et al.
2006/0259487 A1 11/2006 Havens et al.
2006/0268688 Al 11/2006 Isozu
2007/0005827 Al1* 1/2007 Sarangam et al. 710/46
2007/0118841 Al1* 5/2007 Driveretal. 719/314
2007/0291778 Al 12/2007 Huang et al.
2007/0294426 Al 12/2007 Huang et al.
2007/0299970 A1 12/2007 Huang et al.
OTHER PUBLICATIONS

Jiuxing Liu et al., MPI OVer InfimmBand: Early Experiences:, Net-
work-Based Computing Laboratory Computer and Information Sci-
ence, Ohio State University, Aug. 2003, 16 pages.

Notice of Allowance 1ssued 1n U.S. Appl. No. 11/761,840, mailed
Dec. 14, 2009.

Office Action 1ssued 1n U.S. Appl. No. 11/761,865, mailed Dec. 11,
20009.

Citation containing the publication date for Swift, Michael M. et al.,
“Improving the reliability of commodity operating systems”. In
ACM Transactions on Computer Systems (TOCS), vol. 23, No. 1, pp.
77-110. Published Feb. 2005 (retrieved Mar. 19, 2008 from the
internet: http://portal.acm.org/citation.cfm?1d=1047919.

Swift, Michael M. et al. “Improving the reliability of commodity
operating systems”. In ACM Transactions on Computer Systems
(TOCS), vol. 23, No. 1, pp. 77-110. Publishing February, http://www.

scs.stanford.edu/nyu/041fa/sched/readings/nooks.pdf, 2004,
International Search Report mailed Apr. 10, 2008, in corresponding
International Application No. PCT/US07/79102, filed Sep. 20, 2007.
Written Opinion mailed Apr. 10, 2008, in corresponding Interna-
tional Application No. PCT/US07/79102, filed Sep. 20, 2007.

International Search Report 1ssued in International Application No.
PC'T/IB2006/004296, mailed Feb. 10, 2008.

Written Opinion 1ssued in International Application No. PCT/
[B2006/004296, mailed Feb. 10, 2008.

International Preliminary Report on Patentability 1ssued in Interna-
tional Application No. PCT/IB2006/004296, mailed May 14, 2008.

Office Action 1ssued 1n U.S. Appl. No. 11/535,258, mailed Sep. 1,
2009.

International Search Report 1ssued in International Application No.
PCT/US2007/071031, mailed Feb. 4, 2008.

Written Opinion i1ssued in International Application No. PCT/
US2007/071031, mailed Feb. 4, 2008.

International Preliminary Report on Patentability 1ssued in Interna-
tional Application No. PCT/US2007/071031, mailed Dec. 22, 2008.

International Search Report 1ssued in International Application No.
PCT/US2007/071036, mailed Jun. 10, 2008.

Written Opinion i1ssued in International Application No. PCT/
US2007/071036, mailed Jun. 10, 2008.

International Preliminary Report on Patentability issued in Interna-
tional Application No. PCT/US2007/071038, mailed Dec. 22, 2008.

International Search Report 1ssued in International Application No.
PCT/US2007/071038, mailed Aug. 21, 2008.

Written Opinion 1ssued in International Application No. PCT/
US2007/071038, mailed Aug. 21, 2008.

International Preliminary Report on Patentability issued in Interna-
tional Application No. PCT/US2007/071040, mailed Dec. 22, 2008.

International Search Report 1ssued in International Application No.
PC'T/US2007/071040, mailed Oct. 1, 2008.

Written Opinion i1ssued in International Application No. PCT/
US2007/071040, mailed Oct. 1, 2008.

“Message Passing Interface (MPI)”, http://www.lInl.gov.computing/
tutorials/mpi, printed Mar. 8, 2007.

“GASNet Specification™, Version 1.8, Released Nov. 2, 2006, Editor:
Dan Bonachea, bonacheas@cs.berkeley.edu, http://gasnet.cs.
berkely.edu.

Office Action 1ssued 1n U.S. Appl. No. 11/761,885, mailed Sep. 17,
2008.

Office Action 1ssued 1n U.S. Appl. No. 11/761,885, mailed Feb. 4,
20009.

Office Action 1ssued in U.S. Appl. No. 11/761,885, mailed Aug. 24,
20009.

Office Action 1ssued 1n U.S. Appl. No. 11/761,804, mailed Aug. 22,
2008.

Office Action 1ssued in U.S. Appl. No. 11/761,804, mailed Jan. 8,
2009.

Notice of Allowance 1ssued in U.S. Appl. No. 11/761,804, mailed
Aug. 7, 2009,

Office Action 1ssued 1n U.S. Appl. No. 11/761,827, mailed Oct. 5,
20009.

UPC Consortium, “UPC Language Specifications V1.2, pp. 1-129,
May 31, 2005.

Linux Kemel Development Second Edition by Robert Love, ISBN:
0672327201, “Chapter 4. Process Scheduling”, pp. 1-19, Jan. 12,
2005.

Information Sciences Institute, “Iransmission Control Protocol,
DARPA Internet Program, Protocol Specification, Sep. 1991” pp.
1-85.

Supported by ARPA and NSF under grant ASC-9310330, the
National Science Foundation Science and Technology Center Coop-
erative Agreement No. CCR-8809615, and by the Commission of the
European Community through Esprit project P6643, “MPI: A mes-
sage-passing interface standard, Message passing interface forum,
Nov. 15, 2003

US 7,873,964 B2
Page 3

File History of U.S. Appl. No. 11/535,258, electronically captured File History of U.S. Appl. No. 11/761,865, electronically captured

from PAIR on Jul. 6, 2010. from PAIR on Jul. 6, 2010.
File History of U.S. Appl. No. 11/761,804, electronically captured File History of U.S. Appl. No. 11/761,885, electronically captured
from PAIR on Jul. 6, 2010. from PAIR on Jul. 6, 2010.

File History of U.S. Appl. No. 11/761,827, electronically captured
from PAIR on Jul. 6, 2010. * cited by examiner

US 7,873,964 B2

,...-..--waéjmi id) Y PEl cet

b
&
= e S gtk J NQ oﬁ
m A m B Eqm
=
=) m o i 9P| |
" w T At | i | ddV ddV ddVv
: T
ol AN S —
NI o M
0L1 A D | A 47’

U.S. Patent
S
S
\
A
S

@\
o
<t
& ®
5 Z 'bro
ol
)
7
~ vl Trod-ouay|
- e
[OUIdY
v W0zl Sl PPIA
&
3 W1d o Kejaq. e
> [OUIDY
7 ol L _ . _ A _ <. |- d_._. _.
6l 1 30¢
- 3Ll —_
< UIoy
%
=
S
AN

AV oedg

oLl

et 142" M
00¢

U.S. Patent

US 7,873,964 B2

0 Ll T e
3ul[|0d
Ao01qup] .
. A1901d 195[1
0[qU) P0[qU[)
A901d m
. 9Ct / peany.
w uifjod L
- [OUIDY] Ve 143
- d0rdg [oUIOYy
> L == == 1dV
2 m m d0vdq I9sN
- m |z
— ” -
o ’ D
— ; >
iy m S
< <
=
~
-
uonedddy
QTR CLA T D N 198
b-ddV sul[[0d-UON

€ddV yse] Sulj[od

- 3
-ddv Yse] 3ulod| +o¢ zoe 794V A5t 1, oUlIOd

U.S. Patent

U.S. Patent Jan. 18, 2011 Sheet 4 of 5 US 7,873,964 B2

320
C_Enter > § CRetum >
40

2 404

406 4061 0Py Data
Yes
NO
408 412
New HW-Packet? Process
Packet
NoO
414
Yes

NoO

416
Data for self?
NG Yes
410
Other Task

2
Ready to run’ Deliver Data
Ves 418
420
Blocked Target

waiting for data?

Unblock
Target Task 422

"cescsssssdeansscscsas
"

428

Blocked
424

FIG. 4

U.S. Patent Jan. 18, 2011 Sheet 5 of 5 US 7,873,964 B2

502

> I

504

New HW-Packet?

Process
Packet
508

510
Data to deliver?
NO
Yes
Deliver Data
512

514

500

Other Task
Ready to run?

Yes

Blocked Target
waliting for data”

Unblock
Target Task

US 7,873,964 B2

1

KERNEL FUNCTIONS FOR
INTER-PROCESSOR COMMUNICATIONS IN
HIGH PERFORMANCE MULTI-PROCESSOR

SYSTEMS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to multi processor systems,
such as High Performance Computing (HPC) systems with a
high degree of inter-processor communication.

2. Description of the Related Information

Communication between soltware entities (applications)
on different host computers 1s frequently carried 1n packets
over standard transmission protocols, such as TCP. Many
application programs may be runmng concurrently on each
computer, and methods have been developed to allow such
programs to communicate independently. The operating sys-
tem 1n each computer, specifically the part of the operating,
system referred to as the “operating system kernel” or “ker-
nel”, has the task of managing the processes under which the
application programs run. The kernel also provides the com-
munications services for the entire computer, in that 1t medi-
ates between the application programs and the hardware such
as Ethernet interfaces or customized I/O interfaces that pro-
vide the circuitry for receiving and sending data packets. An
example of an operating system so structured 1s Linux.

In a system such as a massively parallel multi-processor
system, or “super computer” that contains a large number of
computing modules, a very large number of communication
paths may be required to carry data from the memories of one
computing modules to the memories or the CPU the other
computing modules. A common example of a distributed
application 1n which such data communication occurs 1s the
computation of certain mathematical algorithms such as
matrix multiplication. A full mesh interconnection of N com-
puting modules would require Nx(N-1) independent data
communication paths to allow every computing module to
communicate directly with each of the other computing mod-
ules.

State of the art HPC systems are multi-processor systems
with a high degree of inter-processor communication. Such
systems are designed to provide the capability to run distrib-
uted applications. A distributed application may be designed
using the Message Passing Interface (MPI) library for inter-
process communication. Another method of programming an
HPC system or super computer 1s based on the UPC (Unified
Parallel C) programming language, which provides program-
mers with the capability to write a single program that will run
on the multiple CPUs of the system while using the memory
units of the CPUs as a shared distributed memory. Both the
MPI standard, published as “MPI: A message-Passing Inter-
face Standard, November 2003, © 1993, 1994, 1993, Univer-
sity of Tennessee, Knoxville Tenn.) and the UPC program-
ming language specification (published by the UPC
Consortium, May 2005) are hereby incorporated by reference
in their entireties.

In etther case, the communication path from one process
running 1 one computer to another process running in
another computer must by necessity traverse a physical inter-
connect network as well as the software/hardware interface 1n
cach computer. Modern computer operating systems such as
Linux are multi-tasking process oriented and include a kernel
that schedules the processes (e.g. application processes) to
run, and that provides the interfacing to the hardware input/
output (1/0) devices.

10

15

20

25

30

35

40

45

50

55

60

65

2

The overhead, both 1n terms of processing power and
latency that 1s associated with the inter-process communica-
tion based on standard protocols, 1s a major performance
bottleneck in HPC systems. This overhead includes the num-
ber of CPU cycles associated with context switching between
application processes, and the corresponding memory
accesses. Commonly assigned U.S. patent applications “High

Performance Memory Based Communications Interface”,
Ser. No. 60/736,004, filed on Nov. 12, 2005 and “Methods

And Systems For Scalable Interconnect”, Ser. No. 60/736,
106, filed on Nov. 12, 2005 disclose data communications
protocols that may be advantageously used to reduce latency.
The goal of high performance computing 1s to apply the
combined CPU instruction cycles, measured 1n Teratlops or
Petatlops, ol many CPUs to solving a computational problem.
Inter-processor communication 1s a necessary evil, and any
CPU cycles spent while a CPU 1s waiting for data to arrive are
cycles that are not available for problem solving.

The latency, from one running application process in one
CPU to an application process in another CPU, 1s the sum of
the hardware delay, the communications protocol processing
in the kernels of both CPUs, and the interaction between the
kernel and the I/O hardware. In order to achieve very high
performance in a distributed multi-processor system, any
reduction 1n this latency 1s believed to be valuable and worth-
while.

SUMMARY OF THE INVENTION

Accordingly, an embodiment of the present invention 1s a
method for operating a computer, the computer having a
multi-tasking operating system that includes a user space and
a kernel 1in a kernel space, a recetve buller and a plurality of
application processes, each of the plurality of application
processes including a user application that runs 1n the user
space. The method may include steps of polling the receive
buifer from a user polling function that runs in the kernel
space; receving in the receive bulfer a data packet having a
header and user data; reading the header of the received data
packet; identilying a target application process of the plural-
ity ol application processes from the read header; delivering
the user data to the 1dentified target apphcatlon process, and 1T
the 1dentified target application process 1s 1n a blocked state,
changing the blocked target application process to an
unblocked state.

Each of the plurality of application processes may be asso-
ciated with a process context and the method may further
include a step of discarding the data packet if the process
context of the target application process does not exist. The
polling step may be carried out by a polling application pro-
cesses that includes the user polling function. The target
application process in the delivering step may be a polling
application process or a non-polling application process that
does not include the user polling function. The polling step
may be carried out as long as the recetve bufler 1s empty and
no other application process 1s ready to run. The method may
further iclude a step of each of the plurality of application
processes assuming the blocked state when 1t 1s waiting for
user data. After the polling step 1s carried out by a first user
polling function of a first application process of the plurality
of application processes and after the identifying step 1dent-
fies the target application process as a second one of the
plurality of application processes, the method further may
include a step of the first application process assuming the
blocked state. The polling step may be carried out such that
alter a first application process of the plurality of application

processes 1ssues a blocking recerve call to indicate that it 1s

US 7,873,964 B2

3

ready to recerve data, the polling step 1s carried out to poll the
receive bulfer and the method further may include a step of
copying the user data from the receive buller to the user space
of the first application process 11 the 1dentified target applica-
tion process 1s the first application process. The method may
turther include a step of each of the plurality of application
processes assuming the blocked state after its associated user
application 1ssues a blocking receive call to the kernel indi-
cating that the 1ssuing user application 1s waiting for data and
the 1dentitying step 1dentifies the target application process as
being an other one of the plurality of application processes.
The kernel may further carry out a step of changing the other
one of the plurality of application processes to the unblocked
state to enable the unblocked user application to recerve and
process the user data of the data packet received 1n the receive
bufter. When the i1dentified target application process 1s not
yet waiting for the data packet received in the recerve butfer,
the method further may include a step of the kernel sending,
the user data to a queue from which the i1dentified target
application process can remove the user data after having
1ssued a blocking receive call to indicate to the kernel that it 1s
waiting for data, but before the i1dentified target application
process assumes the blocked state. The method may further
include a step of generating a receive buller interrupt signal
alter a selectable period of time, the selectable period of time
being configured to be started each time a new data packet
arrives at an input of the recerve butfer, unless the selectable
period of time has at least already partially elapsed. The
method may also include a step of clearing the selectable
period of time when the polling step 1s carried out. A step of
programmatically setting the selectable period of time may
also be carried out. The fill level of the recerve butler may be
monitored, and a receive butler {ill interrupt signal may be
generated when the receive buller fills to a selectable fill level.
The kernel may include a kernel polling thread, and the
method further may include a step of the kernel polling thread
polling the recerve butier when none of the plurality of appli-
cation processes are running or are ready to run. The kernel
polling thread polling step may be carried out persistently,
yielding and suspending execution only temporarily when
one of the plurality of application processes 1s ready to run.
After the kernel polling thread polling step, the method fur-
ther may include steps of, when a data packet 1s present in the
receive buller, reading the header of the data packet, 1denti-
tying the target application process for the user data from the
read header, delivering the user data to the 1dentified target
application process and changing the state of the target appli-

cation process to the unblocked state if the target application
process 1s 1n the blocked state.

According to another embodiment, the present invention 1s
also a computer that may include a multi-tasking operating
system having a user space and a kernel 1n a kernel space; a
receive buller, configured to receive a data packet having a
header and user data; a plurality of application processes,
cach of the plurality of application processes including a user
application that runs in the user space, at least one of the
plurality of application processes being polling application
processes that also include a user polling function that runs in
the kernel space, each of the plurality of application process
being configured to assume an unblocked or a blocked state,
the user polling function being configured to poll the receive
builer and, when a data packet is present in the receive bulfer,
to read the header of the data packet, to identily a target
application process for the data packet from the read header,
to deliver the user data to the identified target application

10

15

20

25

30

35

40

45

50

55

60

65

4

process and to change a state of the target application process
to the unblocked state 11 the target application process 1s 1n the
blocked state.

Each of the plurality of application processes may be asso-
ciated with a process context and the kernel may be further
configured to discard the data packet 11 the process context of
the target application process does not exist. The user polling
function may be configured to poll the recerve butler as long
as the recerve buller 1s empty and no other application process
1s ready to run. Each of the plurality of application processes
may be configured to assume the blocked state when waiting
for user data. The user polling function of each of the at least
one polling application process may be configured to cause 1ts
application process to assume the blocked state when the
target application process 1s 1dentified as a application pro-
cess of the plurality of application processes other than 1tself.
The user polling function of each of the at least one polling
application process may be configured such that after a first
polling application process makes a blocking recerve call to
the kernel to indicate that 1t 1s ready to receive data, but before
the first polling application process assumes the blocked
state, the user polling function polls the receive bufier and
copies the user data from the recerve buller to the user space
of the first polling application process if the identified target
application process 1s the first polling application process.
Each of the plurality of application processes may be config-
ured to assume the blocked state after making a blocking
receive call to the kernel indicating that the 1ssuing user
application 1s waiting for data and a new data packet for an
other one of the plurality of application processes 1s recerved
in the recerve butler. The kernel may be configured to change
the other one of the plurality of application processes to the
unblocked state to enable the user application of the
unblocked application process to receive and process of the
user data recerved in the receive buflfer. When the 1dentified
target application process 1s not yet waiting for the user data
in the data packet received in the receive butlfer, the kernel
may be configured to send the user data to a queue from which
the 1dentified target application process can remove the user
data after having 1ssued a recerve blocking call to indicate to
the kernel that 1t 1s waiting for data, but before the 1dentified
target application process assumes the blocked state. The
computer may also include a delay timer configured to gen-
crate a recerve buller delay interrupt signal after a selectable
period of time, the delay timer being configured to be started
cach time a new data packet arrives at an input of the recerve
builer, unless the selectable period of time has at least already
partially elapsed. The delay timer may be configured to be
cleared when the user polling function reads the header of the
data packet from the receive butler. The selectable period of
time may be programmatically selectable. The computer may
also 1include a fill level monitor coupled to the receive butler,
the fill level monitor being configured to monitor a fill level of
the recerve bulter and to generate a recerve butfer fill interrupt
signal when a selectable receive butfer fill level 1s reached.
The kernel further may include a kernel polling thread that 1s
configured to poll the receive bulfer when none of the plural-
ity of application processes are runmng or are ready to run.
The kernel polling thread may be configured to run persis-
tently, yielding and suspending execution only temporarily
when one of the plurality of application processes 1s ready to
run. The kernel polling thread may be configured to poll the
receive butler and, when a data packet s present in the receive
builer, to read the header of the data packet, to identily a target
application process for the user data from the read header, to
deliver the user data to the i1dentified target application pro-

US 7,873,964 B2

S

cess, and to change the state of the target application process
to the unblocked state if the target application process 1s in the
blocked state.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to facilitate a more full understanding of the
present invention, reference 1s now made to the appended
drawings. These drawings should not be construed as limiting
the present invention, but are intended to be exemplary only.

FIG. 1 1s a block diagram of a multi-processor system 100
according to an embodiment of the present invention.

FI1G. 2 1s a detailed block diagram 200 1llustrating imple-
mentation details of the hardware/software interaction that
takes place 1n the CM 102 of the multi-processor system 100
of FIG. 1.

FIG. 3 1s a software block diagram 300 that illustrates
relationships between applications 1n a computing module,
for example the CM 102 of the multi-processor system 100 of
FIG. 1.

FI1G. 4 1s a flowchart of the User Polling function 320 of the
software block diagram 300 of FIG. 3, according to an
embodiment of the present invention.

FIG. 5 1s a flowchart of the Kernel Polling Thread 326 of
the software block diagram 300 of FIG. 3, according to an

embodiment of the present invention.

DETAILED DESCRIPTION

FIG. 1 1s a block diagram of a HPC system 100 according
to an embodiment of the present invention. The HPC system
100 includes a plurality of computing modules (CM) 102,
104, 106, 108 and 110 and a network 112. As the computing

modules 102 to 110 may be similar to one another, only the
CM 102 1s shown 1n further detail. The CM 102 1s referred to

herein as the “local CM”’, whereas the other CMs 104 to 110
are referred to as “remote CMs”, meaning the CMs 104 to 110
may be remote to the CM 102. The CM 102 may include
software 114 and hardware 116. As shown, the hardware 116
may include a recerve FIFO 118, a Delay Timer 120, and a
Fill-Level Monitor (FLM) 119. The hardware 116 may fur-
ther include a computing hardware platform (not shown) on
which the software 114 may be executed. The software 114
may include an operating system kernel 122 and one or more
application processes (APP), as shown at reference numerals
124,126 and 128. In FI1G. 1, three application processes (APP
124 to 128) are shown for illustrative purposes, although
embodiments of the present inventions are not to be limited
thereby. The kernel 122 may include a number of process
contexts (PC) 130,132 and 134, where each ol the PCs 130 to
134 1s associated with one of the APPs 124 to 128 respec-
tively.

Bidirectional links 136 to 144 couple the CMs 102 to 110
to the network 112, respectively, enabling any one of the CMs
102 to 110 to send data packets to any other one of the CMs
102 to 110.

The kernel 122 of the CM 102 may be logically linked with
the hardware 116 through a delay interrupt link 146, a FIFO-
interrupt link 148, and a control link 150.

One or more of the APPs 124 to 128 may be compiled, for
example, with the Message Passing Interface (MPI) library
that provides a convenient programming method for process-
to-process communication between processes (1.€. APPs)
within the same CM, as well as between processes 1n different
CMs. Although this embodiment of the present invention 1s
described relative to MPI, other multi-processing or distrib-
uted processing conventions that make use of packet-based

10

15

20

25

30

35

40

45

50

55

60

65

6

communication may be used, as may be approprate. Further-
more, although embodiments of the present invention are
illustrated with the simplified example of a hardware 1mple-
mentation based on a number of distinct CMs using packet
communications over a network or switching fabric, other
implementations are possible, including the use of symmetric
multi-processing (SMP), multi-core computing modules, and
bus based communications, as those of skill in this art may
appreciate.

The APP 128 and 1ts relationship with the kernel 122 1s
described below 1n greater detail. The APPs 124 to 128 may
be application processes of various kinds, but for the exem-
plary and illustrative purposes herein, each of the APPs 1s
either a “polling task™ or a “non-polling task™, for reasons that
will become clear 1n the description below. Briefly, a “non-
polling task™ 1s an interrupt-driven application process, in the
commonly understood sense, while a “polling task™ 1s an
application process enhanced by an embodiment of the
present mvention. For the purposes of this description, the
description below assumes the APP 124 be a “non-polling
task™ and the APPs 126 and 128 to be “polling tasks™.

Data may be sent from a process in any CM, for example a
remote APP (not 1llustrated) 1in one of the remote CMs 104 to
110 to the APP 128 1n the CM 102. Using MPI, this may be
accomplished in a number of ways. For example, the sending
APP calls an MPI “send” function to send data to the receiv-
ing APP 128. Independently, but at approximately the same
time, the APP 128 1ssues a blocking MPI “recerve” call. After
the APP 128 has 1ssued the MPI “receive”, the APP 128 1s
suspended by the kernel (blocked) until the expected data has
been sent from the remote CM through the network 112 to the
local CM 102, and received (recognized) by the kernel 122 to
be made available to the receiving APP 128.

The data arrives 1n the hardware 116 of the local CM 102
from the network 112 over the link 136, and is stored 1n the
FIFO 118. The arriving data may come 1n a single packet or in
a stream ol packets that are destined for the receiving appli-
cation process (APP 128 1in the example). Other packets may
also arrtve from the same or other remote CMs, and may be
destined for the same or another APP on the CM 102.

Conventionally, the arrival of data would result 1n an inter-
rupt to be processed by the kernel. The kernel would read the
data, determine the target application, deliver the data into the
data space of the application, and reschedule the application
i 1t was blocked and waiting for the data. IT the application
was not blocked, the kernel could hold the data 1n a system
builer until the application requests 1t. It 1s believed advanta-
geous to avoid this interrupt and 1ts associated cost 1n terms of
context switching, including memory page management.

One solution to avoid might be a user space polling
method. User space polling basically would require the map-
ping of the hardware to the user application space (with one
privileged process) and allow the application full control of
the hardware 1n terms of sending and receiving packets. As a
result, the operating system kernel would be completely
bypassed and thus the overhead as well. The main difficulty
with this approach 1s that sharing of the hardware becomes
troublesome and counter-productive for performance 1 shar-
ing between multiple processes 1s required. In the latter case,
the (privileged) user space program would become a proxy
and may even require other kernel agents for coordination.
Reliability and security are among other problems, as those of
skill 1n this art may recognize.

Accordingly, an embodiment of the present invention adds
certain polling functions (to be described 1n detail below) to
the kernel, thus preserving the strict separation of the user
applications from the operating system, which remains in full

US 7,873,964 B2

7

control of the hardware. The interaction between the software
114 and the hardware 116 1s further described hereunder,
relative to FIG. 1. According to an embodiment of the present
invention, data packets arriving over the link 136 are stored 1n
the FIFO 118. The software 114, specifically the kernel 122,
may become aware of the presence of available data packets
in the FIFO 118 by, for example, one of three means: the
delayed interrupt coupled from the Delay Timer 120 over the
lelayed interrupt link 146; the FIFO interrupt coupled from

C
the FLLM 119 over the FIFO-interrupt link 148; or by polling
the FIFO directly over the control link 150.

Hardware/Soltware Interaction

FI1G. 2 1s adetailed block diagram 200 1llustrating details of
the hardware/software interaction that takes place 1n the CM
102, according to an embodiment of the present mnvention.
The same reference numerals are used in the block diagram
100 and the detailed block diagram 200, where such reference
numerals refer to the same structure or function. As shown in
FIG. 2, the block diagram 200 shows the hardware 116, the
software 114, and the network 112, which are shown to be
interconnected by the links 136, 146, 148, and 150. The
illustrated hardware 116 includes the FIFO 118, the FLM
119, and the Delay Timer 120 (as in FI1G. 1). FIG. 2 also shows
a FIFO mput 202 connected to receive packets over the link
136 to the network 112; a FIFO threshold 204 representing a
predetermined fill level 1n the FIFO 118; a FIFO output 206
coupled to the link 150 over which the software 114 (when 1n
the polling state) may read the contents of the FIFO 118; a
timer “set” imput 208 for starting the Delay Timer 120, which
Delay Timer will the expire (fire) after a predetermined delay,
and a timer “clear” mput 210 for stopping the Delay Timer
120, 1.e. preventing 1t from firing.

The software 114 1s illustrated in the detailed block dia-
gram 200 1n a different aspect. The soitware 114 1s divided
into a User Space and a Kernel Space, showing a simple state
diagram having three states 1n which a process or task may be
running: an application state (App) 212, an “other kernel”
state 214, and a new 1nventive polling state 216. When in the
App state 212, the software runs 1n the User Space, meaning,
that 1t runs an application (e.g. the APP 128 of FIG. 1) with
user privileges and 1s restricted to accessing the resources
(memory) made available to 1t by the kernel. When 1n the
other kernel state 214, the soitware 1s dealing with interrupts
and running any other conventional kernel task. When 1n the
polling state 216, the solftware 1s 1nteracting with the hard-
ware 114, specifically with the FIFO 118 and the Delay Timer
120. Attention 1s drawn to the polling state 216 which (in
conjunction with the illustrated hardware objects 118, 119,
and 120) embodies the aspects of embodiments of the present
invention. When running in the kernel space (the other kernel
state 214 and the polling state 216), the soitware runs with full
privileges and 1s able to access all resources. The software
model and the embodiments of the present mvention pre-
sented herein are based on the Linux operating system, but the
scope of the imnventions also extend beyond the Linux imple-
mentation to include other software systems in which appli-
cations and kernel are differentiated by hardware/memory
privileges or protection levels.

According to embodiments of the present invention, tran-
sitions between the three 1llustrated states may include:

a process running in the App state 212 invokes tasks in the
other kernel state 214 through a standard application
program 1nterface (API), as commonly understood by
persons conversant with software practice;

a process running in the App state 212 may be a “polling”™
application (e.g. the APP 128 of FIG. 1) 1n which case 1t

5

10

15

20

25

30

35

40

45

50

55

60

65

8

may transition into the polling state 216 to run a polling
task (App-poll) when 1t 1s expecting data from the net-
work, and return from the polling state 216 when the
data are available (Return w/data); and

the polling state 216 may be entered from the other kernel

state 214, for example when no higher priority task 1s
ready to run (Kernel-poll), and return to the other kernel
state 214 when the polling state 216 gives up control
voluntarily (yield).

The operation of the polling tasks that run in the polling
state 216 1s described in more detail below, relative to FIGS.
3.4, and 5. The detailed interaction between the software 114
and the hardware 116 1s further described herein below, 1n
conjunction with FIG. 2. A new data packet arriving from the
network 112 over the link 136 1s entered into the FIFO 118 by
way of the FIFO input 202. The arrival of the new data packet
also sets (starts) the Delay Timer 120 by way of 1ts “set” input
208. If the software 114 1s in the polling state 216, and the
FIFO 118 was empty immediately before the arrival of the
new data packet, the software will immediately (on the next
polling cycle) discover the presence of the new data packet in
the FIFO 118 and read it over the control link 150, thus
removing 1t from the FIFO 118. At the same time, the “clear”
input 210 of the Delay Timer 120 1s activated, stopping the
timer to avoid the mterrupt that would have occurred if the
Delay Timer 120 had been allowed to continue and fire.

However, the software 114 may not have been 1n the poll-
ing state 216 when the new data packet arrived 1n the FIFO
118, for example because an application process (in the App
state 212) was busy computing. In this case, the Delay Timer
120 will fire after 1ts predetermined delay and present an
interrupt (the delay interrupt) over the delay interrupt link 146
as described earlier.

The predetermined delay of the Delay Timer 120 1s setto be
suificiently long to bridge the polling cycle of the polling task
running in the polling state 216, but short enough to provide
a guarantee of a tolerable maximum latency. The Delay Timer
120 may be restarted each time a new data packet arrives over
the link 136, regardless of the state of the fill-state of the FIFO
118. Thus, 1f a burst of packets were to arrive 1n rapid succes-
s1on, the Delay Timer 120, being constantly restarted, would
not fire for a long period—while the FIFO 118 fills up with
data packets. I at this time, the software 114 1s not polling
(not1n the polling state 216) and consequently not reading the
FIFO 118, the FIFO 118 might overflow and data packets
would be lost. In a preferred embodiment, therefore, the
Delay Timer 120 1s not restarted with newly arriving data
packets 1f 1t 1s already running. This guarantees a maximum
tolerable latency.

The FLM 119 in the hardware 116 monitors (constantly)
the {11l level of the FIFO 118, and upon reaching the prede-
termined threshold 204, sends the FIFO iterrupt to the soft-
ware 114 over the FIFO interrupt link 148. In a preferred
embodiment, the Fill Level Monitor 119 1s set to accommo-
date burst traific which may arrive within the timeout period

of the Delay Timer 120 thus preventing overtlow of the FIFO
118.

In the interest of low latency and avoiding the cost (1n terms
of CPU cycles) of mterrupts, the software should be 1n the
polling state 216 whenever data packets are recerved or
expected to arrive 1n the FIFO 118. In this way, the interrupts
associated with data arrival (the delay iterrupt and the FIFO
interrupt) can be largely avoided.

Received packets are best processed and handed over to the
destined (target) application process when the application
process 1s ready to recerve them. If a packet arrives but the
application process 1s not ready to receive 1t, for example

US 7,873,964 B2

9

when 1t 1s still busy computing, 1t does not do any good to
interrupt the busy application process, only to resume the
busy processing of the application process later. If the appli-
cation process has not posted a receive (1ssued the MPI
“recerve’” function call for example), the received data cannot
be copied to the application designated receive buller either
and has to stay 1n a system buffer anyway. It does, however,
help to remove the packet from the head of the FIFO, which
means that the subsequently arrived packets can already be
processed—these might be destined for a different process.
The delayed interrupt thus helps provide a guarantee of a
tolerable maximum latency and prevent the FIFO from over-
flowing. The computing time as well as latency savings are
two-fold: interrupts are eliminated statistically (for example,
on a 2 GHz AMD Opteron processor, overhead processing
related to interrupt handling costs microseconds) and the
frequency of process context switching 1s reduced. A process
context switching may cost many microseconds, and the main
cost that 1s avoided 1s repagination, that 1s the memory man-
agement associated with virtual memory when switching
between user processes. In switching between kernel threads
or between a kernel thread and a user process, there may not
be a need for repagination.

Embodiments of the present invention may be configured
to present the received data to the target application process
when 1t needs 1t, let the target application process come to
pick 1t up (saving interrupt and context switching costs), and
use the interrupts (146 and 148) only to provide a tolerable
maximum latency guarantee and to prevent the FIFO 118
from overtlowing.

Returning to the system view shown 1n FIG. 1, the kernel
122 may respond to the interrupts (the timer interrupt from the
Delay Timer 120 over the delay interrupt link 146, or the
FIFO-1interrupt link 148) by:

reading the header of the first data packet in the FIFO 118

over the control link 150;

from the header, identifying the target application process
(the APP 128 1n the example);

retrieving the associated process context (the PC 134 1n the
example);

copying the payload of the data packet to the memory space
of the target application process (APP 128) 1f the target

application process 1s blocked (1.e. waiting for the data),
or to system memory otherwise; and

rescheduling the application process (APP 128) 1f the
application process 11 1t was blocked.

The kernel 122 may continue reading and processing pack-
ets from the FIFO 118 as long as packets are available 1n the
FIFO. It 1s to be understood that the preceding description 1s
a simplified view of the hardware/kernel interaction, and that
many details known to those of skill 1n this art have been left
out for the sake of clarity.

In the HPC system 100, the end-to-end latency may be
defined as the time that elapses from the sending of data by the
remote application process, and the recerving of the data by
the local application process ready for processing. In the
interest of computational efficiency, this latency must be as
small as possible. The latency includes many components,
both hardware and software related, and 1t 1s 1mportant to
address every single one of these. The processing of inter-
rupts, including the context switching between the inter-
rupted process and the application process that will run as a
result of the mterrupt, 1s a major component in the latency.
Embodiments of the present inventions relate to techniques to
reduce latency by avoiding many interrupts altogether, and to
reduce context switching.

10

15

20

25

30

35

40

45

50

55

60

65

10

The polling state 216 (FIG. 2) 1s usetul 1n reducing latency
by avoiding most or all interrupts 1n HPC applications. It 1s
realized 1n the form of a “kernel polling method” (a set of
polling functions) that 1s described 1n greater detail below,
with the aid of flow diagrams in FIGS. 3, 4, and 5. A kernel
polling method according to an embodiment of the present
invention includes extending the capability of the kernel 1n a
multitasking operating system, to allow certain applications
to poll the receive FIFO after 1ssuing a “receive” call, instead
of blocking immediately. A multiprocessor system such as the
HPC system 100 FIG. 1 frequently will be running processor
intensive applications that communicate with each other,
under a multitasking operating system such as, for example,
Linux. Each of the computing modules (e.g. CM 102 to 110)
may individually include multiple CPUs 1n an SMP configu-
ration, but overall, the HPC 100 as a whole may be built on a
non-uniform memory architecture (INUMA) with packet-
based inter-processor communication. When running a high-
performance distributed application, e.g. a numerical (“num-
ber crunching’”) application, 1t 1s desired that each processor’s
resources be dedicated to performing the application process-
ing task as efliciently as possible, with few processing
resources (instruction cycles) lost to servicing the iter-pro-
cess communications. At times, the entire processing capac-
ity of the HPC system may be dedicated almost 100% to
running the distributed application, and other processes may
take a back seat. Most, 11 not all application processes 1n this
scenario, however, make frequent blocking calls to wait for
data from other application processes. While waiting, being
blocked until data arrive, other processes, e.g. application
processes ol the same distributed application which are also
sending and receiving data, can run. Normally, when the
expected data arrive, an iterrupt would be used to wake up
the blocked process to continue processing.

In the high performance application scenario, 1t 1s not
unusual, and perhaps even very common, that several appli-
cation processes could be blocked at the same time, each
waiting for data. If each of these application processes need to
be woken up with an interrupt each time their expected data
arrive, a great deal of computational resources would have to
be expended on servicing the interrupts and retrieving the
relevant process contexts, address translation tables, and
switching from kernel to user mode and back.

Application processes may be categorized into two kinds
of tasks; namely, polling tasks (P1) and non-polling tasks
(NPT). According to embodiments of the present inventions,
a polling task 1s an application process of a distributed appli-
cation which, having for example 1ssued an MPI “‘receive”
call to the kernel 1s allowed to remain 1n context and polls the
hardware for arriving data packets. Only a restricted class of
processes may be selected to be PTs. PT's are generally high
priority and latency sensitive processes. All other application
processes are non-polling tasks. After a currently runmng
polling task (the original PT) 1ssues a blocking MPI “recetve”
call, the original PT 1s thus not blocked immediately. One of
a small number of possible events may happen next. Such
events may include a) the expected data for the original PT
arrive, and the PT can continue processing without ever hav-
ing blocked, or b) the expected data for a different waiting
application process (P1T or NPT) arrive, 1n which case that
different application process 1s woken up and can continue
processing, while the original PT 1s blocked, or ¢) new data
for a different application process arrive, but that application
has not yet 1ssued the corresponding “receive” call. The new
data are sent to a queue (a socket queue, for example) for that
application process which will later pick up the data imme-
diately and without blocking as soon as 1t does make the

US 7,873,964 B2

11

“recerve’” call, or d) a non-polling task (NPT) becomes ready
to run due to a different event while no polled events have
occurred, in which case the waiting application process (the
original PT) 1s blocked and control 1s passed to the NPT.

Note that an allocated time slice for the original PT might
expire before any of the conditions a) to d) occur. However, at
that point no other process can be ready to run (otherwise the
condition d) would have obtained), and the original PT will be
immediately rescheduled. The original PT thus effectively
continues to run indefinitely until one of the conditions a) to
d) arises.

It may happen that no task 1s running or ready to run, but
data may still be recerved, the data being destined for a cur-
rently blocked task. This can arise after the condition d) when
the original P'T blocked, the NPT that had taken over blocks or
stops, and no other task 1s ready to run. At that point, other PT's
may also be blocked waiting for data. In this case, an idle
thread would normally be running in the kernel, and an inter-
rupt would be required to wake up the receiving process.
However, embodiments of the present invention enable
avoiding this interrupt as well, by substituting (or enhancing)
the kernel 1dle thread with a single “kernel polling thread”
that 1s given a high priority (to be scheduled ahead of most
non-polling tasks), and 1s made persistent, 1.e. given an nfi-
nite time slice.

When the kernel polling thread detects new data arriving,
that are destined for a waiting task (the target task of the data),
tor example a blocked application process, the data are deliv-
ered to the target task and the task 1s made ready to run, e.g.
the blocked application process 1s unblocked.

Software Block Diagram

FIG. 3 1s a software block diagram 300 that illustrates
relationships between applications 1in a computing module,
for example the CM 102 of the HPC system 100 of FIG. 1,
according to embodiments of the present invention. The sofit-
ware block diagram 300 shows a number of application pro-

cesses APP-1 to APP-4 (reference numerals 302 to 308), and
a grouping of kernel elements 310.

It 1s understood that the software block diagram 300 1s
merely an exemplary illustration to assist 1n the understand-
ing of embodiments of the present invention. A full imple-
mentation of the software naturally may include many other
components. The number of application processes shown
illustrates an arbitrary snapshot of a dynamic system which
may include a lesser or greater number of application pro-
cesses and other tasks (processes). Embodiments of the
present invention described herein are based on a Linux oper-
ating system, but the scope of the present inventions extends
to include within its scope other multi-tasking (multiprocess-
ing) operating systems as those of skill may appreciate.

Embodiments of the present invention also include multi-
core CPUs and multiple CPUs configured as symmetric
multi-processor (SMP) clusters. For the purposes of the fol-
lowing description, each SMP cluster 1s treated as a single
computing module, and the inter-process communication 1s
assumed to be between CMs. The communication between
the tasks running in the cores of a multi-core CPUs and 1n the
CPUs of a SMP cluster could be implemented in a manner
analogous to the embodiment described below, as may be
readily appreciated by persons familiar with the art of oper-
ating system design for SMP. For example, hardware packet
transmission of data may be bypassed completely when com-
municating between the cores of a multi-core CPU and more

eificient direct memory-to-memory copying (including
DMA) may be substituted for sending data between the CPUs
of an SMP cluster.

10

15

20

25

30

35

40

45

50

55

60

65

12

The application process APP-1 (302) may be divided into a
user space 312 and a kernel space 314. The meaning of the
terms User Space and Kernel Space 1s well known to persons
skilled 1n the art of computer operating system design. Gen-
crally, the functions running in the kernel space (“kernel
functions™) have processor privileges that permit these func-
tions to access computer hardware directly, while the user
applications have reduced processor and memory privileges
and make use of, and communicate with, kernel functions
through a well-defined Application Process Interface (API)
316.

The application process APP-1 (302) which 1s a polling
task, includes a “User Application” 318 running in the user
space and a “User Polling” function 320 running 1n the kernel
space. There may be other kernel functions used by the appli-
cation process APP-1 (302) but these are outside the scope of
this description. In the example being developed herein, the
application processes APP-2 and APP-3 (304 and 306) are
also polling tasks, and are similar to the application process
APP-1 (302). The application process APP-4 (308) 1s a non-
polling task which means that 1t does not include the User
Polling function 320 or any similar polling function. It should
be noted that the User Polling function 320, according to an
embodiment of the present mvention, 1s not part of a user
space program but rather a logical function that the kernel
extends to all PTss.

Within the context of the present inventions, 1t 1s antici-
pated that the user of the HPC system 100 (FI1G. 1) will create
applications in the form of distributed high performance MPI
applications. An MPI application 1s comprised of a plurality
of application processes, one or more of which may run
concurrently 1n one, more than one, or all CMs of the HPC
system 100 at the same time as other (non MPI) application
processes may also run. In communicating with each other,
the MPI application processes make frequent use of “send”
and “recerve” calls to the kernel. The processes of an MPI
application are advantageously designated as polling tasks 1n
order to take advantage of the User Polling function 320,
which 1s the logical function that the kernel extends, accord-
ing to embodiments of the present invention, to application
processes that are designated as PTs.

The application process APP-1 (302) may be one of the
plurality of processes of the distributed MPI application. The
User Application 318 1s a run-time instance of a compiled
user program, a detailed description of which i1s outside the
scope of this disclosure. However 1t 1s expected that the User
Application 318 will make frequent calls to inter-process
communications functions i general, and to the blocking
MPI “recerve” function 1n particular. In a conventional imple-
mentation, the MPI “receive” function might immediately
block (stop the calling application process), transier control
to the next available other process, and wait until data arrive,
signaled by an interrupt that lets the original application
resume or continue. According to embodiments of the present
invention, however, a call from the User Application 318 to
the MPI “receive” function does not block immediately but
invokes the User Polling function 320 within the kernel. The
MPI programming library also includes non-blocking recerve
calls but they are not of concern here as they just run as
normal.

It may be helpiul to also refer to HPC system 100 of FIG.
1 1n conjunction with the following description of FIG. 3. The
APP-1 (302) of FIG. 3 may be mapped onto the combination
of the APP 128 and the PC 134, and includes other kernel
functions (not shown in FIG. 1) of the CM 102.

The grouping of kernel elements 310 includes a scheduler
322, a collection of ready tasks 324, a Kernel Polling Thread

US 7,873,964 B2

13

326, and a collection of Blocked Tasks 328. The implemen-
tation of other kernel elements except for the Kernel Polling
Thread 326 1s provided by the traditional operating system,
and a detailed description of these 1s outside the scope of this
disclosure.

The collection of Ready Tasks 324 includes the tasks (pro-
cesses) that are ready to run. When the currently running task
(process) terminates, yields, or blocks, the Scheduler 322
selects from among the Ready Tasks 324 the next task to run
(resume), based on task priority. A task, for example an appli-
cation process, may block as a result of a call to a blocking
kernel function, such as an MPI “receive’ call. The collection
of Blocked Tasks 328 includes the tasks (processes) that are
blocked. When a task 1s subsequently unblocked, it will run
immediately, or 1t moves into the collection of Ready Tasks
324 to be rescheduled by priority, depending on operating
system usage.

For simplicity, the collection of Ready Tasks 324 1s illus-
trated as a single block. Depending on operating system
usage, the group of Ready Tasks 324 may be divided into two
groups: an “Active” group of tasks which are ready to run and
have not consumed their current time slice assignment and an
“Expired” group of tasks which are ready to run but have
consumed their current time slice assignment. When an active
task expires (has consumed its current time slice assignment),
it 1s placed into the expired group. When the Active group
becomes empty, the two groups are swapped; 1.e., they trade
roles and the “Expired” group now becomes the “Active”
group. This 1s important to ensure that even the lowest priority
task gets the chance to run 1ts full time slice, 111t 15 not getting,
blocked for other reasons, even if there are higher priority
tasks ready to run 1n the meantime but are in the “Expired”
group.

In the case of yield, an active task voluntarnly gives up its
remaining time slice and joins the “Expired” group. When a
task joins the “Expired” group, it gets a full new time slice to
be used when the Expired group becomes the “Active” group
later. It 1s also important to note the fact that when a task
yields, 1t joins the “Expired” group so that lower priority tasks
will get the chance to run.

When a task “yields”, for example as a result of having
expired (run for a predefined time), 1t 1s moved into the
collection of Ready Tasks 324 (“Expired” group) because it 1s
ready to run, and be rescheduled according to priority, when
the “Expired” group becomes the “Active” group. The Kernel
Polling Thread 326 i1s a process that 1s described in more
detail below relative to FIG. 5. The linkages between the
various blocks of the software block diagram 300 are shown

as linkage arrows labeled with verbs indicating the purpose of
the linkage. These linkages are:

“Yield” 330: from the User Application 318 1n the APP-1 to
the Ready Tasks 324, and equivalently,

“Yield” 332: from the other application processes in the
APP-2, APP-3, and APP-4, to the Ready Tasks 324;

“Block/Unblock™ 334: from the User Polling function 320
in the APP-1 to the Blocked Tasks 328, and equivalently,

“Block/Unblock™ 336: from the User Polling functions in
the APP-2 and APP-3, and possible other kernel tunc-
tions 1n the APP-4, to the Blocked Tasks 328;

“Yield” 338: from the Kernel Polling Thread 326 to the
Ready Tasks 324;

“Unblock™ 340: from the Kernel Polling Thread 326 to the
Blocked Tasks 328;

“Resume” 342: from the Scheduler 322 to the APP-1;

“Resume” 344: {from the Scheduler 322 to the APP-2,
APP-3, and APP-4;

10

15

20

25

30

35

40

45

50

55

60

65

14

“Resume™ 346: from the Scheduler 322 to the Kernel Poll-
ing Thread 326.

The “Yield” linkages (330, 332, and 338) indicate that the
process or function at the source of the linkage arrow 1s able
to yield and thus be placed into the collection of Ready Tasks
324.

The “Block/Unblock™ linkages (334 and 336) indicate that
the process or kernel function running 1n that process at the
source of the linkage arrow 1s able to block 1tself, 1.e. putitselt
into the collection of Blocked Tasks 328, and is also able to
unblock any process that 1s currently in the Blocked Tasks
328.

The “Unblock’ linkage 340 indicates that the Kernel Poll-
ing Thread 326 1s able to unblock any process that 1s currently
in the Blocked Tasks 328.

The “Resume” linkages (342, 344, and 346) indicate that
the Scheduler 322 at the source of the linkage arrows may
allow the processes or functions at the tips of the arrows to
resume execution from the point at which they last yielded.

User Polling Function

FIG. 4 15 a detailed tlowchart of the User Polling function
320 of the software block diagram 300 of FIG. 3. The User
Polling function 320 includes an entry point “Enter”” 402 and
a return point “Return” 404. As shown in FIG. 3, the User
Polling function 320 is entered from the application process
318 expecting to recerve data, by a “Receive” call, and returns
(label “Return”) to the application process 318. The steps of
the User Polling function 320 include the following decisions
(diamond shaped blocks, having one entry and “Yes” and
“No” exits), actions (rectangular blocks, having one entry and
one exit), and states (circles):

406: “Have Data?” tests whether expected data 1s already
available and ready to be copied to the user space
memory of the present application (APP-1). This may be
indicated through the process context PC 134 (FIG. 1,
not shown in FIG. 3);

408: “New Hardware Packet?” tests whether a new data
packet 1s available 1n the hardware FIFO 118 (FIG. 1);

410: “Other Task Ready to run?” tests whether any other
task 1s ready to run, by inspecting the collection of

Ready Tasks 324 1n the kernel elements 310 (FIG. 3);

412: “Process Packet” processes the header of the received
data packet to determine the target application process of
the packet. This step may also include the processing of
the protocol aspects of the packet, such as acknowledge-
ments for example;

414: “Data to Deliver?” tests whether the recerved data
packet has data to deliver to an application process. The
packet may just be an acknowledgement or other proto-
col element that the kernel deals with directly and that
contains no data to be delivered to any application pro-
CESS;

416: “Data for self?” tests whether the recetved data 1s for
the calling application process, 1.¢. the application pro-
cess APP 128 (FIG. 1) or the equivalent APP-1 (302,
FIG. 3) 1n the example;

418: “Deliver Data” updates a data-available indicator and
reference 1n the process context (e.g. PC 132) of the
target application process (which may be the APP 126 or
APP-2, ref 304, in the example or any other process
which 1s not currently running);

420: “Blocked Target waiting for data?” tests whether the
target application process (1.e. the APP 126 or the APP-2
in the example) 1s blocked and waiting for data, by

making reference to the collection of Blocked Tasks 328
in the kernel elements 310 (FIG. 3);

US 7,873,964 B2

15

422: “Unblock Target Task™ unblocks the task (1.¢. the APP
126 or the APP-2 1n the example) by moving 1t into the
collection of Ready Tasks 324, for example by 1nserting
the task (application process) 1n the appropriate queue of
the Ready Tasks 324 according to the usage of the oper-
ating system;

424: “Blocked” state, indicates that the present task (1.e. the
APP 128 orthe APP-1 1n the example) 1s blocked and has
been moved from the group of Ready Tasks 324 into the
group of Blocked Tasks 328 according to the usage of the
operating system;

426: “Copy Data” copies the data from the hardware butier
(1.e. the FIFO 118, FIG. 1, in the example) to the user
memory space of the calling application (the APP 128 or
the APP-1 1n the example); and

428: “Unblock”, an action by the kernel to unblock the
present task, 1.e. moving 1t back into the Ready Tasks
group 324.

The steps are interconnected as follows:

From “Enter” 402 to “Have Data?” 406;
from “Yes” of “Have Data?”” 406 to “Copy Data™ 426;
from “No” of “Have Data?”” 406 to “New Hardware Packet?”

408:
from “Yes” of ‘“New Hardware Packet?” 408 to “Process
Packet” 412;

from “No” of “New Hardware Packet?” 408 to “Other Task

Ready to run?” 410;
from “Yes” of “Other Task Ready to run?” 410 to “Blocked”

424;
from “No” of “Other Task Ready to run?” 410 to “Have

Data?” 406;
from “Process Packet” 412 to “Data to Deliver?” 414;
from “Yes” of “Data to Deliver?” 414 to “Data for selt?” 416;
from “No” of “Data to Deliver?” 414 to “Other Task Ready to

run?” 410;
from “Yes” of “Data for seltf?” 416 to “Copy Data™ 426;
from “No” of “Data for selt?”” 416 to “Deliver Data” 418;
from “Deliver Data” 418 to “Blocked Target waiting for

data?” 420;
from “Yes” of “Blocked Target waiting for data?” 420 to

“Unblock Target Task™ 422;
from “No” of “Blocked Target waiting for data?” 420 to

“Have Data”?” 406;
from “Unblock Target Task™ 422 to “Blocked™ 424;
from “Blocked” 424 through “Unblock’™ 428 to “Have Data?”

406.

In narrative terms, the User Polling function 320 includes a
short polling loop including the three decision steps: 406:
“Have Data?”, 408: “New Hardware Packet?”, and 410:
“Other Task Ready to run?””. The loop will cycle continuously
from the bottom (the last step “Other Task Ready to run?”
410) back to the top (the first step “Have Data?” 406) as long
as the outcome of every one of the three decision steps 1s false
(exits “No”). I the outcome of the decision step “Have
Data?” 406 1s true (exit “Yes”) then data for the present
application has already been receirved in the hardware and
detected by the software, either by the Kernel Polling Thread
326 (see FIG. 5 below), the User Polling function 320 (FIG. 3)
running in the context of a different polling task, or as the
result of a hardware interrupt, see FIG. 2. If a data packet 1s
thus indicated to be available in the hardware, the payload

data of the packet 1s copied to the application memory space
in the next step (“Copy Data” 426) and the User Polling

function 320 returns.

If the outcome of the decision step “New Hardware
Packet?” 408 1s true (exit “Yes”) then a new data packet has
arrived in the hardware (the FIFO 118). The header of the new

5

10

15

20

25

30

35

40

45

50

55

60

65

16

data packet 1s read by accessing the FIFO, without reading the
payload. In the next step “Process Packet” 412, the header of
the packet 1s processed, and the target application of the
packet (1f any) 1s determined. The packet may not be a data
packet but one of a number of other types of packets (e.g. an
acknowledgement packet or a maintenance packet), that 1s
processed and dealt with by the kernel. In the following step
“Data to Deliver?” 414, it 1s determined whether the received
data packet has data to deliver to an application process. If 1t
does not, the short polling loop continues with the step “Other
Task Ready to run?” 410. If the outcome of the decision step
“Data to Deliver?”” 414 1s true (exit “Yes”), then the target of
the recetved data may be the present application process or
another application process. It the target 1s the present appli-
cation process (“Data for self?”” 416 returns “Yes”) then the
payload data of the packet 1s copied to the application process
memory space 1n the next step (“Copy Data” 426) and the
User Polling function 320 returns. If the target of the received
data 1s not the present application (e.g. APP 128), but another

application (e.g. APP 126) then the step “Data for self?” 416
returns “No”. In that case, the step “Deliver Data” 418 1s
performed. In the step “Deliver Data” 418 an indicator or
descriptor of the data packet that arrived 1n the hardware (1.¢.
FIFO 118, FIG. 1), 1s stored 1nto the process context (e.g. the
PC 132) of the target (e.g. APP 126). The indicator (or
descriptor) enables the target to read the actual data from the
hardware later. By amanipulation of pointers in the hardware,
the data packet may appear to have been removed from the
FIFO but i1t still remains stored 1n the hardware and needs to
be copied 1nto the user process memory space only once, by
the target application process when 1t runs later.

After the data was delivered to the target (the target appli-
cation process determined in the earlier step “Process Packet™
412) 1t 1s necessary to check whether that process 1s blocked
and waiting for data (i.e. in the Blocked Tasks 328), or is
already 1n the ready-to-run state (1.e. 1n the Ready Tasks 324).
If the target application process (target task) 1s blocked and
waiting for data (the decision step “Blocked Target waiting,
for data?”” 420 returns “Yes™’) then the target task 1s unblocked
in the step “Unblock Target Task™ 422, and the present task,
1.¢. the calling application (APP-1 of FIG. 3, or APP 128 of
FIG. 1 in the example) 1s blocked to reach the “Blocked” state
424 until 1t 1s 1tself unblocked (“Unblock™ 428) from another
kernel task before 1t can resume polling. I1 the target applica-
tion process (target task) 1s not blocked or blocked but not
waiting for data (the decision step “Blocked Target waiting
for data?”” 420 returns “No””) then the short polling loop starts
again from the top with the step “Have Data?” 406.

The decision step at the bottom of the short polling loop 1s
“Other Task Ready to run?”” 410. If the outcome of this step 1s
true (“Yes”) then another task 1s ready to run, and the present
task must block, 1.e. go mnto “Blocked” state 424 until 1t 1s
itsell unblocked (“Unblock™ 428) from another kernel task
before 1t can resume polling.

The User Polling function 320 1s merely conducting an
opportunistic poll of the hardware—opportunistic because no
other task was ready to run, and all other polling tasks are
therefore blocked. So the User Polling function 320 1s taking
advantage of otherwise wasted available CPU instruction
cycles to poll the hardware. Furthermore, 1t 1s possible, and
even likely depending on the structure of the application, that
the next recerved data packet 1s destined for the present appli-
cation (APP-1 or APP 128 in the example). In that case, the
relevant process context (PC 134) 1s still valid and does not
need to be restored when the packet does arrive. However,
when another task is ready to run as determined 1n the step
“Other Task Ready to run?” 410, the User Polling function

US 7,873,964 B2

17

320 must stop polling, the current application process must
block (*Blocked” state 424), and thus give up the CPU imme-
diately to the scheduler 322 which will select another task to
run.

When the present polling task (APP-1 1n the example)
which includes the User Application 318 and the User Polling
function 320, 1s blocked (“Blocked” state 424) 1t remains
suspended until 1t 1s unblocked (*“Unblock™ 428) by another
task. Unblocking may occur as the result of the step “Unblock
Target Task™ 422 executed 1n the context of a different APP,
for example APP-2, or a similar action by the Kernel Polling
Thread 326 (sec below). After the present polling task 1s
unblocked, 1t 1s placed into the “Active” group 1n the Ready
Tasks 324 from where 1t will eventually be scheduled to run
by the Scheduler 322. At that time, the polling task User
Polling function 320 resumes executing at the top of the loop
(the step “Have Data?” 406) and may immediately discover
that it has had data already delivered to 1t by a different polling,
task or by the Kernel Polling Thread 326.

Kernel Polling Thread

FIG. 5 1s a detailed flowchart of the Kernel Polling Thread
326 of the software block diagram 300. The Kernel Polling
Thread 326 includes an initial entry point “Init” 502 but no
ex1t because once mmtialized, the Kernel Polling Thread 326
will loop continuously, stopping only temporarily when 1t
yields. The Kernel Polling Thread 326 vields when 1t finds
that any other task has become ready to run, irrespective of
whether that task becomes ready to run due to data delivered
by the Kernel Polling Thread 326 or due to some other event
for which the task has been waiting. The Kernel Polling
Thread 326 joins the Expired group (by vielding) of the
Ready Tasks 324 to allow the newly ready task to run even 1f
that task may have a lower priority.

The steps of the Kernel Polling Thread 326 include the
tollowing decisions and actions, many of which are equiva-
lent to decision and action steps of the User Polling function
320, having the same names. The reference numerals of the
equivalent steps in the User Polling tunction 320 of FIG. 4 are
indicated 1n parentheses.

504 (408): “New Hardware Packet?” tests whether a data

packet 1s available in the hardware FIFO 118 (FIG. 1);

506 (410): “Other Task Ready to run?” tests whether any
non-polling task 1s ready to run, by mspecting the col-
lection of Ready Tasks 324 in the kernel elements 310
(FIG. 3);

508 (412): “Process Packet” processes the header of the
received data packet to determine the target application
process of the packet. This step may also include the
processing of the protocol aspects of the packet, such as
acknowledgements for example;

510 (414):; “Data to Deliver?” tests whether the received
data packet has data to deliver to an application process.
The packet may just be an acknowledgement or other
protocol element that the kernel deals with directly and
that contains no data to be delivered to any application
pProcess;

512 (418): “Deliver Data” updates a data-available indica-
tor and reference 1n the process context (e.g. PC 132) of
the target application process (which may be the APP
126 or APP-2, ref 304, 1n the example and which 1s not
currently running);

514 (420): “Blocked Target waiting for data?” tests
whether the target application process (i.e. the APP 126
or APP-2 1n the example) 1s blocked and waiting for data,

by making reference to the collection of Blocked Tasks
328 1n the kernel elements 310 (FIG. 3);

10

15

20

25

30

35

40

45

50

55

60

65

18

516 (422): “Unblock Target Task unblocks the task (1.e.
the APP 126 or APP-2 1n the example) by moving 1t into
the collection of Ready Tasks 324, for example by insert-
ing the task (application process) in the approprate
queue of the Ready Tasks 324 according to the usage of
the operating system; and

518: “Yield” places the current task (Kernel Polling Thread
326) into the “Expired” group of the Ready Tasks col-
lection 324 and yields control to the scheduler which
will select the next ready-to-run task according to the
usage of the operating system. I no other task 1s ready to
run then the Kemel Polling Thread 326 will resume
immediately.

520: “Resume” an action by the kernel to resume the
present task, 1.e. when the “Expired” group of the Ready
Tasks 324 becomes the “Active” group, as described
carlier.

The steps are interconnected as follows:

From “Init” 502 to “New Hardware Packet?” 504;
from “Yes” of “New Hardware Packet?” 504 to “Process

Packet” 508;
from “No” of “New Hardware Packet?” 504 to “Other Task

Ready to run?” 506;
from “Yes” of “Other Task Ready to run?” 506 to “Yield” 518;
from “No” of “Other Task Ready to run?” 506 to “New

Hardware Packet?” 504;
from “Process Packet” 508 to “Datato Deliver?” 510:
from “Yes” of “Data to Deliver?” 510 to “Deliver Data™ 512;
from “No” of “Data to Deliver?” 5310 to “Other Task Ready to

run?” 306;
from “Deliver Data” 512 to “Blocked Target waiting for

data?” 514;
from “Yes” of “Blocked Target waiting for data?” 514 to

“Unblock Target Task™ 516;
from “No”” of “Blocked Target waiting for data?” 514 to “New

Hardware Packet?” 504
from “Unblock Target Task™ 516 to “Yield” 518; and
from “Yield” 518 through “Resume” 520 to “New Hardware

Packet?” 504.

In narrative terms, the Kernel Polling Thread 326 1s similar
to the User Polling function 320 with the following excep-
tions: the Kernel Polling Thread 326 does not have a calling
application to which to return data, and the Kernel Polling
Thread 326 never blocks, it merely yields. The Kernel Polling
Thread 326 includes a short polling loop including the two
decision steps 3504: “New Hardware Packet?” and 306:
“Other Task Ready to run?” The loop will cycle continuously
from the bottom (the last step “Other Task Ready to run?”
506) to the top (the first step “New Hardware Packet?” 504) as
long as the outcome of each of the two decision steps 1s false
(exits “INo”). If the outcome of the decision step “New Hard-
ware Packet?” 504 1s true (exit “Yes”) then a new data packet
has arrived 1n the hardware (the FIFO 118). The header of the
new data packet 1s read by accessing the FIFO, without read-
ing the payload. In the next step “Process Packet” 508, the
header of the packet 1s processed, and the target application of
the packet (11 any) 1s determined. The packet may not be a data
packet but one of a number of other types of packets (e.g. an
acknowledgement packet or a maintenance packet), that 1s
processed and dealt with by the kernel. In the following step
“Data to Deliver?” 510, 1t 1s determined whether the received
data packet has data to deliver to an application process. If 1t
does not, the short polling loop continues with the step “Other
Task Ready to run?” 506. However, 11 the outcome of the
decision step “Data to Deliver?” 510 1s true (exit “Yes”) then
the step “Deliver Data™ 512 1s performed. In the step “Deliver
Data” 512 an indicator or descriptor of the data packet that has

US 7,873,964 B2

19

arrived 1n the hardware (1.e. FIFO 118, FIG. 1), 1s stored nto
the process context of the target application (the target appli-
cation process determined 1n the earlier step “Process Packet™
508).

After the data was delivered to the target application, 1t 1s
necessary to check whether that process 1s blocked and wait-
ing for data (1.e. 1n the collection of Blocked Tasks 328, FIG.
3), or merely suspended (for example, because it previously
yielded due to 1ts time slice having expired, but 1s ready to be
scheduled to run, 1.e. 1n the collection of Ready Tasks 324). It
the target application process (target task) i1s not blocked or
blocked but not waiting for data (the decision step “Blocked
Target waiting for data?” 514 returns “No”) then the short
polling loop starts again immediately from the top with the
step “New Hardware Packet?” 504. If the target application
process (target task) i1s blocked and waiting for data (the
decision step “Blocked Target waiting for data?”” 514 returns
“Yes”) then the target task 1s unblocked 1n the step “Unblock
Target Task™ 516, and the Kernel Polling Thread 326 yields 1n
the step “Yield” 518, until it 1s rescheduled to resume (“Re-
sume” 520). When the Kernel Polling Thread 326 resumes
alter the yield, 1t starts again at the top o the polling loop, with
the step “New Hardware Packet?” 504.

The delayed interrupt method and the kernel polling
method of the present invention are techniques to help avoid
the waste of CPU cycles 1n a distributed multi-processor
system with a heavy inter processor communication load,
such as 1s encountered in MPI applications and other distrib-
uted applications. The average latency 1s reduced because the
Kernel Polling Thread 326 and the User Polling function 320
that runs in the kernel efficiently catch arriving data packets
without expensive process switching delays or interrupts.

While the foregoing detailed description has described
preferred embodiments of the present mnvention, 1t 1s to be
understood that the above description 1s 1llustrative only and
not limiting of the disclosed invention. Those of skill 1n this
art will recognize other alternative embodiments and all such
embodiments are deemed to fall within the scope of the
present invention. Thus, the present invention should be lim-
ited only by the claims as set forth below.

The mvention claimed 1s:
1. A method for operating a computer, the computer having
a multi-tasking operating system that includes a user space
and a kernel 1n a kernel space, a receive bulfer and a plurality
ol application processes, each of the plurality of application
processes 1ncluding a user application that runs 1n the user
space, the method comprising the steps of:
polling the recerve buller from a user polling function that
runs in the kernel space;
receiving in the receive butler a data packet having a header
and user data;
reading the header of the received data packet;

identifying a target application process of the plurality of
application processes from the read header;
delivering the user data to the identified target application
process, and
if the 1dentified target application process 1s 1n a blocked
state, changing the blocked target application process to
an unblocked state;
wherein the polling step 1s carried out by a polling appli-
cation process that includes the user polling function.
2. The method of claim 1, wherein each of the plurality of
application processes 1s associated with a process context and
wherein the method further includes a step of discarding the
data packet 1f the process context of the target application
process does not exist.

10

15

20

25

30

35

40

45

50

55

60

65

20

3. The method of claim 1, wherein the target application
process 1n the delivering step 1s one of a polling application
process and a non-polling application process that does not
include the user polling function.

4. The method of claam 1, wherein the polling step 1s
carried out as long as the receive bulfer 1s empty and no other
application process 1s ready to run.

5. The method of claim 1, further comprising the step of
cach of the plurality of application processes assuming the
blocked state when it 1s waiting for user data.

6. The method of claim 1, wherein, after the polling step 1s
carried out by a first user polling function of a first application
process of the plurality of application processes and after the
identifving step 1dentifies the target application process as a
second one of the plurality of application processes, the
method further includes a step of the first application process
assuming the blocked state.

7. The method of claam 1, wherein the polling step 1s
carried out such that after a first application process of the
plurality of application processes 1ssues a blocking receive
call to indicate that it 1s ready to receive data, the polling step
1s carried out to poll the recerve buller and the method further
includes a step of copying the user data from the recerve
butler to the user space of the first application process 1f the
identified target application process is the first application
process.

8. The method of claim 1, further including a step of each
of the plurality of application processes assuming the blocked
state after 1ts associated user application 1ssues a blocking
receive call to the kernel indicating that the i1ssuing user
application 1s waiting for data and the 1dentifying step 1den-
tifies the target application process as being an other one of
the plurality of application processes.

9. The method of claim 8, wherein the kernel further carries
out a step of changing the other one of the plurality of appli-
cation processes to the umblocked state to enable the
unblocked user application to receirve and process the user
data of the data packet received in the receive butler.

10. The method of claim 1 wherein, when the identified
target application process 1s not yet waiting for the data
packet recerved 1n the receive builer, the method further
includes a step of the kernel sending the user data to a queue
from which the identified target application process can
remove the user data after having 1ssued a blocking receive
call to indicate to the kernel that 1t 1s waiting for data, but
betfore the 1dentified target application process assumes the
blocked state.

11. The method of claim 1, further including a step of
generating a receive buller interrupt signal after a selectable
period of time, the selectable period of time being configured
to be started each time a new data packet arrives at an input of
the recerve butler, unless the selectable period of time has at
least already partially elapsed.

12. The method of claim 11, further including a step of
clearing the selectable period of time when the polling step 1s
carried out.

13. The method of claim 11, further including a step of
programmatically setting the selectable period of time.

14. The method of claim 1, further including steps of moni-
toring a fill level of the receive butler, and generating a receive
buifer fill interrupt signal when the recerve butfer fills to a
selectable fill level.

15. The method of claim 1, wherein the kernel includes a
kernel polling thread, and wheremn the method further
includes a step of the kernel polling thread polling the recerve
builter when none of the plurality of application processes are
running or are ready to run.

US 7,873,964 B2

21

16. The method of claim 15, wherein the kernel polling
thread polling step 1s carried out persistently, yielding and
suspending execution only temporarily when one of the plu-
rality of application processes 1s ready to run.

17. The method of claim 15 wherein, after the kernel poll-
ing thread polling step, the method further includes steps of,
when a data packet 1s present 1n the receive butter, reading the
header of the data packet, 1dentifying the target application
process for the user data from the read header, delivering the
user data to the identified target application process and
changing the state of the target application process to the
unblocked state 1t the target application process i1s 1n the
blocked state.

18. A computer, comprising:

a multi-tasking operating system having a user space and a

kernel 1n a kernel space;

a receive buller, configured to receive a data packet having,
a header and user data;

a plurality of application processes, each of the plurality of
application processes including a user application that
runs 1n the user space, at least one of the plurality of
application processes being polling application pro-
cesses that also 1include a user polling function that runs
in the kernel space, each of the plurality of application
process being configured to assume an unblocked or a
blocked state, the user polling function being configured
to poll the recerve buffer and, when a data packet 1s
present 1n the receive butler, to read the header of the
data packet, to 1dentify a target application process for
the data packet from the read header, to deliver the user
data to the identified target application process and to
change a state of the target application process to the
unblocked state i1 the target application process 1s 1n the
blocked state.

19. The computer of claim 18, wherein each of the plurality
of application processes 1s associated with a process context
and wherein the kernel 1s further configured to discard the
data packet 1f the process context of the target application
process does not exist.

20. The computer of claim 18, wherein the user polling
function 1s configured to poll the receive buller as long as the
receive buller 1s empty and no other application process 1s
ready to run.

21. The computer of claim 18, wherein each of the plurality
of application processes 1s configured to assume the blocked
state when waiting for user data.

22. The computer of claim 18, wherein the user polling
function of each of the at least one polling application process
1s configured to cause 1ts application process to assume the
blocked state when the target application process 1s identified
as a application process of the plurality of application pro-
cesses other than 1itself.

23. The computer of claim 18, wherein the user polling
function of each of the at least one polling application process
1s configured such that after a first polling application process
makes a blocking recerve call to the kernel to indicate that it
1s ready to receive data, but before the first polling application

10

15

20

25

30

35

40

45

50

55

22

process assumes the blocked state, the user polling function
polls the receive bulfer and copies the user data from the
receive buller to the user space of the first polling application
process 1f the 1dentified target application process 1s the first
polling application process.

24. The computer of claim 18, wherein each of the plurality
of application processes 1s configured to assume the blocked
state after making a blocking receive call to the kernel 1ndi-
cating that the 1ssuing user application 1s waiting for data and
a new data packe‘[for an other one of the plurahty of appli-
cation processes 1s received 1n the receive butler.

25. The computer of claim 24, wherein the kernel 1s con-
figured to change the other one of the plurality of application
processes to the unblocked state to enable the user application
of the unblocked application process to receive and process of
the user data received 1n the receive buller.

26. The computer of claim 18 wherein, when the identified
target application process 1s not yet waiting for the user data
in the data packet recerved 1n the receive buller, the kernel 1s
configured to send the user data to a queue from which the
identified target application process can remove the user data
alter having 1ssued a receive blocking call to indicate to the
kernel that 1t 1s waiting for data, but before the identified target
application process assumes the blocked state.

277. The computer of claim 18, further including a delay
timer that 1s configured to generate a receive builer delay
interrupt signal after a selectable period of time, the delay
timer being configured to be started each time a new data
packet arrives at an input of the receive buller, unless the
selectable period of time has at least already partially elapsed.

28. The computer of claim 27, wherein the delay timer 1s
configured to be cleared when the user polhng function reads
the header of the data packet from the receive butler.

29. The computer of claim 28, wherein the selectable
period of time 1s programmatically selectable.

30. The computer of claim 28, further including a fill level
monitor coupled to the recerve bulfer, the fill level monitor
being configured to monitor a fill level of the recerve butler
and to generate a receive butler fill interrupt signal when a
selectable receive butfer fill level 1s reached.

31. The computer of claim 18, wherein the kernel turther
includes a kernel polling thread that 1s configured to poll the
receive buller when none of the plurality of application pro-
cesses are running or are ready to run.

32. The computer of claim 31, wherein the kernel polling
thread 1s configured to run persistently, yielding and suspend-
ing execution only temporarily when one of the plurality of
application processes 1s ready to run.

33. The computer of claim 31, wherein the kernel polling
thread 1s configured to poll the recerve buller and, when a data
packet1s present in the receive butler, to read the header of the
data packet, to 1dentify a target application process for the
user data from the read header, to deliver the user data to the
identified target application process, and to change the state
of the target application process to the unblocked state 1t the
target application process 1s in the blocked state.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

