United States Patent

US007865883B1

(12) (10) Patent No.: US 7.865.883 B1
Sistare et al. 45) Date of Patent: Jan. 4, 2011
(54) PARALLEL AND ASYNCHRONOUS 5,687,375 A * 11/1997 Schwiegelshohn 717/129
DEBUGGER AND DEBUGGING METHOD 5,781,778 A * 7/1998 Meier et al. 717/127
FOR MULTI-THREADED PROGRAMS 5,953,530 A 9/1999 Rishi et al.
6,158,045 A * 12/2000 You ...ccccviviiiiiiiininnnn... 717/124
(75) Inventors: Steven J. Sistare, Westford, MA (US); 6,378,125 B1* 4/2002 Batesetal. 717/129
David Plauger, Littleton, MA (US)
* cited by examiner
(73) Assignee: Oracle America, Inc., Redwood City,
CA (US) Primary Examfner—Lehﬁﬁs A Blullock, Ir.
Assistant Examiner—Chris Nelson
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm—Meyertons, Hood, Kivlin,
patent is extended or adjusted under 35 Kowert & Goetzel, P.C.
U.S.C. 154(b) by 0 days.
(37) ABSTRACT
(21) Appl. No.: 09/438,205
_ A debugger for aiding 1n the debugging of multi-threaded
(22) Filed: Nov. 12, 1999 program, 1n response to an event such as, for example, a
breakpoint 1n a thread which has caused an operating system
(51) Int. CI. to stop execution of all threads, identifies the thread which
GOOL %/44 (2006.01) contained the breakpoint. After identitying the thread which
GOG6L 9/46 (2006.01) contained the breakpoint, the debugger enables the operating
(52) US.CL ...l 717/129;°717/124;°717/123; system to resume execution of the other threads, that is, the
7177128, 7177127 threads which did not contain the breakpoint. By allowing the
(58) Field of Classification Search None other 1;1]_113{-1(15;:J that iS,, the threads which did not contain the
See application file for complete search history. breakpoint, to continue execution, the debugger’s impact on
(56) References Cited program execution 1s substantially reduced, particularly for

U.S. PATENT DOCUMENTS
5,093914 A * 3/1992 Coplienetal. 717/129

ALL THREADS

DEBUGGER 2

130. A THREAD EXECUTES A BREAKPOINT INSTRUCTION

131. OPERATING SYSTEM 23 WILL STOPS OPERATION OF

132. OPERATING SYSTEM TRANSFERS CONTROL TO THE

133. DEBUGGER 24 ASSUMES CONTROL

r‘

programs which contain a large number of threads.

20 Claims, 5 Drawing Sheets

134. DEBUGGER 24 IDENTIFIES THE THREAD WHICH
CONTAINED THE BREAKPOINT INSTRUCTION

135. DEBUGGER ENABLES THE OTHER THREADS TO

RESUME OPERATIONS

136, DEBUGGER ALLOWS THE QPERATOR TO CONTROL
SUBSEQUENT PROCESSING OPERATIONS IN
CONNECTION WITH THE IDENTIFIED THREAD BY
RECEIVING COMMANDS THEREFOR

U.S. Patent Jan. 4, 2011 Sheet 1 of 5 US 7,865,883 B1

US 7,865,883 Bl

L& WWVHO0Oud

(1)zZe
AVISHL

Sheet 2 of S

17 oY

3991940

W3 1LSAS
ONILVadd0

Jan. 4, 2011

0 LNJAWNHOIAND NOILNOAX A

U.S. Patent

FiG. Z

U.S. Patent Jan. 4, 2011 Sheet 3 of 5 US 7.865.883 B1

100. EXECUTION ENVIRONMENT 20, OPERATING SYSTEM
23 AND DEBUGGER 24 ARE STARTED AND INITIALIZED

101. THE OPERATING SYSTEM 23 AND DEBUGGER 24
CAN CONTROL INITIALIZATION OF THE PROGRAM 21,

WITH THE DEBUGGER 24 STARTING AT LEAST ONE
THREAD

110. PROGRAM 21 ISSUES A THREAD CREATION
REQUEST REQUESTING CREATION OF A THREAD

111. THREAD CREATION REQUEST IS PASSED TO THE
DEBUGGER 24

112. DEBUGGER 24 CREATES THE THREAD

113. DEBUGGER 24 ENABLES CREATED THREAD TO
START EXECUTION

U.S. Patent Jan. 4, 2011 Sheet 4 of 5 US 7,865,883 B1

120. PROGRAM 21 ISSUES A THREAD DELETION
REQUEST REQUESTING DELETION OF A THREAD

121. THREAD DELETION REQUEST IS PASSED TO THE
DEBUGGER 24

122. DEBUGGER DELETES THE THREAD

U.S. Patent Jan. 4, 2011 Sheet 5 of 5 US 7.865.883 B1

130. ATHREAD EXECUTES A BREAKPOINT INSTRUCTION

131. OPERATING SYSTEM 23 WILL STOPS OPERATION OF
ALL THREADS

132. OPERATING SYSTEM TRANSFERS CONTROL TO THE
DEBUGGER 2

133. DEBUGGER 24 ASSUMES CONTROL

134. DEBUGGER 24 IDENTIFIES THE THREAD WHICH
CONTAINED THE BREAKPOINT INSTRUCTION

135. DEBUGGER ENABLES THE OTHER THREADS TO
RESUME OPERATIONS

136. DEBUGGER ALLOWS THE OPERATOR TO CONTROL
SUBSEQUENT PROCESSING OPERATIONS IN
CONNECTION WITH THE IDENTIFIED THREAD BY
RECEIVING COMMANDS THEREFOR

rFlG. 3B

US 7,865,883 Bl

1

PARALLEL AND ASYNCHRONOUS
DEBUGGER AND DEBUGGING METHOD
FOR MULTI-THREADED PROGRAMS

FIELD OF THE INVENTION

The mvention relates generally to the field of digital com-
puter systems and more particularly to debuggers for assist-
ing in the debugging of programs. The mvention specifically
provides a debugger for assisting in the efficient debugging of
multi-threaded programs

BACKGROUND OF THE INVENTION

Computers typically execute programs 1n one or more pro-
cesses or threads on one or more processors. In developing
computer programs, programmers often use “debugging”
tools to enable them to verily correct operation of the pro-
grams. Using debugging tools, programmers can step through
a program and determine whether the results that the program
generates at various points are as would be expected. If the
results are correct at one point, and not at a subsequent point,
the programmer can expect that the portion of a program
between the two points 1s 1n error. Typically to facilitate
debugging, a programmer will msert “breakpoint™ instruc-
tions at locations in the code he or she wishes a program to
stop, to allow him or her to determine whether the program 1s
operating as expected. In debugging code for a single thread
in a single process, 1t 1s relatively straight-forward to follow
operations performed by the processor during debugging.

However, difficulties arise when a program i1s multi-
threaded. Current debuggers for multi-threaded programs are
synchronous, that 1s, they are configured to stop all threads of
a program when a breakpoint instruction 1s encountered 1n
any of the threads. After the threads are stopped, the program-
mer can 1ssue commands to the debugger to enable 1t to step
through the thread 1in which the breakpoint instruction was
encountered. This has a number of drawbacks. First, com-
mands provided by an programmer to a debugger, after a
breakpoint 1s encountered, to enable the thread 1n which the
breakpoint instruction was provided may never be completed
because that thread may block waiting for a resource that 1s
currently allocated to and owned by another thread. In addi-
tion, a program may make use ol library threads for, for
example, communication among processes, which may not
be known to the programmer. If a library thread 1s stalled, the
program being debugged may experience communication
errors. Furthermore, such debuggers typically do not scale
well as the number of threads increases.

SUMMARY OF THE INVENTION

The mvention provides a new and improved debugger sys-
tem and method for aiding 1n the efficient debugging of multi-
threaded programs 1n a digital computer system.

In brief summary, the new debugger, 1n response to events
such as, for example, a breakpoint 1n a thread which has
caused an operating system to stop execution of all threads,
identifies the thread which contained the breakpoint. After
identifying the thread which contained the breakpoint, the
debugger enables the operating system to resume execution
of the other threads, that 1s, the threads which did not contain
the breakpoint.

By allowing the other threads, that is, the threads which did
not contain the breakpoint, to continue execution, the debug-
ger’s impact on program execution 1s substantially reduced,
particularly for programs which contain a large number of

threads.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

This mvention 1s pointed out with particularity in the
appended claims. The above and further advantages of this
invention may be better understood by referring to the fol-
lowing description taken 1n conjunction with the accompany-
ing drawings, 1n which:

FIG. 1 1s a functional block diagram of a digital computer
having a parallel asynchronous debugger for facilitating the
debugging of a multi-threaded program:;

FIG. 2 1s a functional block diagram usetul 1n understand-
ing the operations performed by the parallel asynchronous
debugger; and

FIG. 3 1s a flow chart describing operations performed by
the parallel asynchronous debugger in connection with the
invention.

FIG. 3 A 1s atlow chart of operations performed 1n handling
a thread deletion request in accordance with an embodiment
of the present invention.

FIG. 3B 1s a flow chart of operations performed 1n handling
a break point mstruction 1n accordance with an embodiment
of the present invention.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

FIG. 1 attached hereto depicts an illustrative digital com-
puter 10 including a parallel asynchronous debugger for
facilitating the debugging of a multi-threaded program, con-
structed 1n accordance with the mvention. With reference to
FIG. 1, the computer system 10 1n one embodiment includes
a processor module 11 and operator interface elements com-
prising operator mput components such as a keyboard 12A
and/or a mouse 12B (generally 1dentified as operator input
clement(s) 12) and operator output components such as a
video display device 13 with mtegral speakers 15. The 1llus-
trative computer system 10 1s of the conventional stored-
program computer architecture.

The processor module 11 includes, for example, processor,
memory and mass storage devices such as disk and/or tape
storage elements (not separately shown) which perform pro-
cessing and storage operations 1n connection with digital data
provided thereto. The mass storage subsystems may include
such devices as disk or tape subsystems, optical disk storage
devices and CD-ROM devices 1n which information may be
stored and/or from which information may be retrieved. One
or more of the mass storage subsystems may utilize remov-
able storage media which may be removed and 1nstalled by an
operator, which may allow the operator to load programs and
data into the digital computer system 10 and obtain processed
data therefrom. Under control of control information pro-
vided thereto by the processor, information stored in the mass
storage subsystems may be transferred to the memory for
storage. After the mnformation 1s stored 1n the memory, the
processor may retrieve 1t from the memory for processing.
After the processed data 1s generated, the processor may also
enable the mass storage subsystems to retrieve the processed
data from the memory for relatively long-term storage.

The operator input element(s) 12 are provided to permit an
operator to input information for processing and/or control of
the digital computer system 10. The video display device 13
and speakers 15 are provided to, respectively, display visual
output information on a screen 14, and audio output informa-
tion, which are generated by the processor module 11, which
may 1nclude data that the operator may input for processing,
information that the operator may input to control processing,
as well as information generated during processing. The pro-

US 7,865,883 Bl

3

cessor module 11 generates imnformation for display by the
video display device 13 using a so-called *““graphical user
interface” (“GUI”), in which information for various appli-
cations programs 1s displayed using various “windows.”
Although the computer system 10 1s shown as comprising
particular components, such as the keyboard 12A and mouse
12B for recerving input information from an operator, and a
video display device 13 for displaying output information to
the operator, 1t will be appreciated that the computer system
10 may include a variety of components in addition to or
instead of those depicted 1n FI1G. 1.

In addition, the processor module 11 may include one or
more network or communication ports, generally identified
by reference numeral 15, which can be connected to commu-
nication links to connect the computer system 10 1n a com-
puter network, or to other computer systems (not shown)
over, for example, the public telephony system. The ports
enable the computer system 10 to transmit information to, and
receive information from, other computer systems and other
devices 1n the network.

The invention provides a parallel asynchronous debugger
for facilitating the debugging of a multi-threaded program.
The operations of the debugger will be described in connec-
tion with FIG. 2 and a flow control 1n FIG. 3. With reference
initially to FI1G. 2, that FIG. depicts an execution environment
20 for a program 21, the program comprising a plurality of
threads 22(1) through 22(T) (generally identified by refer-
ence numeral 22(¢)). The program 21 depicted in FIG. 2 may
comprise a single process, in which all of the threads 22(¢) are
executed 1n a single address space, or in multiple processes, 1n
which at least some of the threads are executed in different
address spaces. In addition, the threads may be executed by a
single processor, or some or all of them may be executed by
separate processors. The threads 22(¢) are executed under
control of an operating system 23, and, during a debugging
session, both the operating system 23 and execution of the
threads will be controlled by the debugger 24. Any conven-
tional operating system can be used 1n the execution environ-
ment 20, including Unix or a Unix-like operating system.

The debugger 24 performs a number of operations 1n con-
nection with the invention. Generally during normal process-
ing operations, that 1s, when a program 1s being executed
other than during a debugging session, the operating system
23 will, in response to requests from the program 21, control
creation of a thread and deletion of a thread. However, during
a debugging session, requests from the program to create and
delete threads are processed by the debugger 24. Thus, the
debugger 24 will be aware of the existence of each of the
threads.

In addition, 1f a thread 22(¢5) encounters a breakpoint
instruction during 1ts execution, and if execution of the other
threads 22(¢,), 22(¢,), . . . (t,, t,=t3) 1s stopped by, for example,
the operating system 23, the debugger 24 identifies the thread
22(¢5) which contained the breakpoint instruction, and
cnables the other threads 22(¢,), 22(z,), . . . to resume execu-
tion. Thereatfter, the debugger 24 enables the operator to step
through the thread 22(¢;) which contained the breakpoint
instruction on, for example, an instruction-by-instruction
basis, or otherwise control i1ts subsequent execution. The
debugger 24 can recetve commands from the operator
through an operator mput device 12, such as the keyboard
12A, mouse 12B, or the like, and can also enable the display
of information generated by the thread 22(#;) and/or one or
more of the other threads 22(¢,), 22(¢,), and the like on the
screen 14 of the video display device 13.

With this background, operations performed by the debug-
ger will be described 1n connection with the flow chart

10

15

20

25

30

35

40

45

50

55

60

65

4

depicted 1n FIG. 3. Generally, the execution environment 20,
operating system 23 and debugger 24 are started and 1nmitial-
ized 1n a conventional manner (step 100). Thereatter, the
operating system 23 and debugger 24 can control 1nitializa-
tion of the program 21, with the debugger starting at least one
thread 22(¢) (step 101). If the program 21 issues a thread
creation request requesting creation of a thread (step 110), the
thread creation request 1s passed to the debugger 24 (step
111), which can create the thread (step 112) and enable 1t to
start execution (step 113). Turning now to FIG. 3A, a flow-
chart of operations performed 1n handling a thread deletion
request 1n accordance with an embodiment of the present
invention 1s presented. If the program 21 issues a thread
deletion request requesting deletion of a thread (step 120), the

thread deletion request i1s passed to the debugger 24 (step
121), which can delete the thread (step 122).

Referring now to FIG. 3B, a flowchart of operations per-
formed 1n handling a break point mstruction 1n accordance
with an embodiment of the present invention 1s presented. IT
a thread 22(¢;) executes a breakpoint instruction (step 130),
which may result in a trap to the operating system 23, the
operating system 23 will typically stop operation of all of the
threads 22(,) (step 131) and transier control to the debugger
24 (step 132). In that case, the debugger 24 assumes control
(step 133) and 1dentifies the thread 22(7,), which contained
the breakpoint instruction (step 134). After the debugger has
identified the thread 22(¢;), 1t enables the other threads 22(¢,),
22(¢,),...(t,, 1, ...=tz)toresume operations (step 133), and
allows the operator to control subsequent processing opera-
tions 1n connection with the identified thread 22(¢;) by receiv-
ing commands therefor (step 136).

In those operations, the debugger 24 can receive com-
mands from the operator through an operator input device 12,
such as the keyboard 12A, mouse 12B, or the like, and can
also enable the display of information generated by the thread
22(¢3) and/or one or more of the other threads 22(¢,), 22(¢,),
and the like on the screen 14 of the video display device 13.
For example, the operator can iteratively 1ssue commands to
enable subsequent instructions in the identified thread to be
executed, for example, one-by-one, 1n which case the debug-
ger 24 will step through those instruction. At some point, the
operator may 1ssue a command to enable the thread’s subse-
quent instructions to be executed in a normal manner, 1n
which case the debugger 24 can allow the thread 22(z;) to
resume operations, until a breakpoint instruction 1s again
encountered, at which point the operations described above 1n
connection with steps 130-136 can be performed.

The debugger 24 can perform the operations described
above when the program 1ssues a thread creation or deletion
request (reference steps 110 and 120), or a thread 22(¢;)
executes a breakpoint instruction (reference step 130). Thus,
the operations described above 1n connection with FIG. 3 may
overlap. Thus, for example, the debugger can be controlling
operations 1n connection with several threads following
breakpoint instructions 1n each respective thread, contempo-
raneously.

A debugger 24 1n accordance with the invention provides a
number ol advantages. In particular 1t allows the debugger,
during a debugging session, to control operations 1n connec-
tion with a single thread in response to a breakpoint mnstruc-
tion contained in the thread, while allowing other threads to
continue operation 1n a conventional manner. This mimmizes
the likelihood that deadlock conditions will arise, which can
occur 1f execution of all threads 1s paused. It also reduces the
likelihood of errors which can arise in connection with stalled
library threads. Further, the debugger will scale more appro-

US 7,865,883 Bl

S

priately, since only the debugger 24 will control operations in
connection with the thread which contains the breakpoint
instruction.

It will be appreciated that a number of modifications may
be made to the debugger described herein. For example,
although the debugger 24 has been described 1n connection
with a breakpoint struction, 1t will be appreciated that the
debugger 24 can perform corresponding operations 1n con-
nection with other debugging instructions, such as mnstruc-
tions which give rise to watchpoint traps and the like.

It will be appreciated that a system 1n accordance with the
invention can be constructed in whole or in part from special
purpose hardware or a general purpose computer system, or
any combination thereof, any portion of which may be con-
trolled by a suitable program. Any program may in whole or
in part comprise part of or be stored on the system 1n a
conventional manner, or it may in whole or 1n part be provided
in to the system over a network or other mechanism for
transferring information 1n a conventional manner. In addi-
tion, 1t will be appreciated that the system may be operated
and/or otherwise controlled by means of information pro-
vided by an operator using operator mput elements (not
shown) which may be connected directly to the system or
which may transfer the information to the system over a
network or other mechanism for transiferring information in a
conventional manner.

The foregoing description has been limited to a specific
embodiment of this invention. It will be apparent, however,
that various vanations and modifications may be made to the
invention, with the attainment of some or all of the advantages
of the mvention. It 1s the object of the appended claims to
cover these and such other varniations and modifications as
come within the true spirit and scope of the mnvention.

What 1s claiamed as new and desired to be secured by
Letters Patent of the United States 1s:

1. A computer-readable storage medium, the computer
readable storage medium having stored thereon instructions
executable to cause one or more processors 1o:

execute, on a first processor, two or more threads associ-

ated with a program,

in response to a breakpoint event 1in connection with a

breakpoint in a first thread which has caused an operat-
ing system to stop execution of the two or more threads
associated with the program,

identify, by a debugger, the first thread as contaiming the
breakpoint,

transier control of the two or more threads associated
with the program from the operating system to the
debugger,

cnable others of the two or more threads to resume
executing by passing control of the others of the two

or more threads back to the operating system, wherein
the others of the two or more threads do not contain

the breakpoint mstruction, and

simultaneously execute the first thread under control of
the debugger, wherein the debugger controls subse-
quent processing operations 1 connection with the
first thread by recerving commands from a user, and

wherein the commands direct the debugger to step
through the first thread.

2. The computer-readable storage medium of claim 1, fur-
ther comprising 1nstructions executable to cause the one or
more processors to:

initialize an execution environment, the operating system,
and the debugger.

10

15

20

25

30

35

40

45

50

55

60

65

6

3. The computer-readable storage medium of claim 2, fur-
ther comprising instructions executable to cause the one or
more processors to:

imitialize the program; and

in response to a first request from the program, create,

under control of the debugger, a second thread among
the one or more threads.

4. The computer-readable storage medium of claim 3, fur-
ther comprising 1nstructions executable to cause the one or
more processors to:

in response to a second request from the program, delete,

under the control of the debugger, the second thread.

5. The computer-readable storage medium of claim 3,
wherein the first thread 1s executed 1n a first address space and
the second thread 1s executed 1n a second address space.

6. The computer-readable storage medium of claim 3,
wherein the first thread 1s executed by the first processor and
the second thread 1s executed by a second processor among
the one or more processors.

7. The computer-readable storage medium of claim 6, fur-
ther comprising 1nstructions executable to cause the one or
more processors to:

display information generated by the first thread and the

second thread.

8. A method, comprising:

executing, on a first processor, two or more threads asso-

ciated with a program:;

responsive to the first processor executing a breakpoint

instruction, stopping execution of the two or more
threads associated with the program:;

transierring control of the two or more threads associated

with the program from an operating system to a debug-
ger,

identifying as containing the breakpoint instruction, by the

debugger, a first thread from among the two or more
threads associated with the program:;

resuming execution of other threads from among the two or

more threads associated with the program by passing
control ofthe other threads back to the operating system,
wherein the other threads do not contain the breakpoint
instruction; and

simultaneously executing the first thread under control of

the debugger, wherein the debugger controls subsequent

processing operations in connection with the first thread

by recerving commands from a user, and

wherein the commands direct the debugger to step
through the first thread.

9. The method of claim 8, further comprising:

initializing an execution environment, the operating sys-

tem, and the debugger.

10. The method of claim 9, turther comprising:

imitializing the program; and

in response to a first request from the program, the debug-

ger creating a second thread under control of the debug-
ger among the two or more threads.

11. The method of claim 10, further comprising;:

in response to a second request from the program, the

debugger deleting the second thread.

12. The method of claim 11, wherein the first thread 1s
executed 1n a first address space and the second thread 1s
executed 1n a second address space.

13. The method of claim 11, wherein the first thread 1is
executed by the first processor and the second thread 1is
executed by a second processor.

14. The method of claim 13, further comprising displaying
information generated by the first thread and the second

thread.

US 7,865,883 Bl

7

15. A system, the system comprising;
ONe Or MOre Processors;
a memory storing program instructions, wherein the pro-
gram 1nstructions are executable to cause the one or
more processors to execute a method comprising:
executing, on a first processor among the one or more
processors, two or more threads associated with a
program;

responsive to the first processor executing a breakpoint
instruction, stopping execution of the two or more
threads associated with the program;

transferring control of the two or more threads associ-
ated with the program from an operating system to a
debugger;

identifying as containing the breakpoint instruction, by
the debugger, a first thread from among the two or
more threads associated with the program:;

resuming execution of other threads from among the two
or more threads associated with the program by pass-
ing control of the other threads back to the operating
system, wherein the other threads do not contain the
breakpoint instruction; and

simultaneously executing the first thread under control
of the debugger, wherein the debugger controls sub-

5

10

15

20

8

sequent processing operations 1in connection with the

first thread by receiving commands from a user, and

wherein the commands direct the debugger to step
through the first thread.

16. The system of claim 15, wherein the method further
comprises 1nitializing an execution environment, the operat-
ing system, and the debugger.

17. The system of claim 16, wherein the method further
comprises nitializing the program; and

in response to a first request from the program, the debug-

ger creating a second thread under control of the debug-
ger among the two or more threads.

18. The system of claim 17, wherein the method further
COMprises

in response to a second request from the program, the

debugger deleting the second thread.

19. The system of claim 18, wherein the first thread 1s
executed 1n a first address space and the second thread 1s
executed 1n a second address space.

20. The system of claim 18, wherein the first thread 1s
executed by the first processor and the second thread 1is
executed by a second processor.

	Front Page
	Drawings
	Specification
	Claims

