US007865535B2
a2 United States Patent (10) Patent No.: US 7.865,535 B2
Brodsky et al. 45) Date of Patent: Jan. 4, 2011
(54) APPARATUS, SYSTEM, AND METHOD FOR A 2003/0097464 Al* 5/2003 Martinez et al. 709/238
DATA SERVER-MANAGED WEB SERVICES 2003/0126136 Al1* 7/2003 OmOIUIcvvvvvevnnnnnnn. 707/10
RUNTIME 2004/0044656 Al 3/2004 Cheenathocoeveveen.... 707/3
2004/0045004 Al 3/2004 Cheenath 719/310
75 2005/0278348 Al 12/2005 Falteretal.o........... 707/100
(75) " Inventors: Stephen A. Brodsky, Los Gatos, CA 2006/0031850 Al 2/2006 Falter etal. ..o..ov......... 719/320
(US); Suavi A. Demir, San Jose, CA 5006/0069777 A 19006 K
| ato et al.
(US); Michael Schenker, San Jose, CA 2006/0206599 Al 9/2006 Milligan etal. 709/223
(US); Peter Wansch, San Jose, CA (US); 2006/0288018 Al 12/2006 Allyetal. woovveveve..... 707/100
Maryela E. Weihrauch, San Jose, CA 2007/0067384 Al 3/2007 Angelov
(US) 2007/0073844 Al 3/2007 Schmidt et al.
OTHER PUBLICATIONS

(73) Assignee: International Business Machines

Corporation, Armonk, NY (US) “1.2 A Short Introduction to Web Services,” Chapter 1. Key Con-

cepts, Apr. 30, 2007. http://gdb.globus.org/gt4-tutorial/multiplehtml/
(*) Notice: Subject to any disclaimer, the term of this ch01s02.html.

patent 1s extended or adjusted under 35

%A -
U.S.C. 154(b) by 230 days. cited by examiner

Primary Examiner—Mohammad Al1

(21) Appl. No.: 11/750,886 Assistant Examiner—John P Hocker

_ (74) Attorney, Agent, or Firm—Kunzler Needham Massey &
(22) Filed: May 18, 2007 Thorpe
(65) Prior Publication Data (57) ABSTRACT

US 2008/0288547 Al Nov. 20, 2008 An apparatus, system, and method for creating and managing

(51) Int.Cl. a data server-managed web services runtime. A generic web
GO6F 7/00 (2006.01) service runtime modu}e apd associated runtimf; controller are

(52) US.CL oo, 707/805: 707/999.102: deployed on an application server. 'The runtime controller
j 707 /709” monitors a web services management mgtadata store for

(58) Field of Classification Search 707/1-10, ~ Shanges i the web service metadata defining the available

data access based web services. If a change 1s detected, the
generic web services runtime automatically updates the web
service artifacts and web service endpoint interface associ-

707/100, 805, 999.102
See application file for complete search history.

(56) References Cited ated with the atfected web service such that the change 1n the
web service metadata 1s retlected in the data access-based
U.s. PATENT DOCUMENTS web service. A user manages the web services management
7,072,807 B2 7/2006 Brownetal.c......... 703/ ~ metadata store and defines and manages data access-based
7,296,061 B2* 11/2007 Martinez et al. 700/211 Web services from the database containing the web services
7349980 B1* 3/2008 Darugar et al. 700/238 management metadata store without interacting with the
2003/0028685 Al* 2/2003 Smithetal. ..ooovvevve.... 709/328 application server.
2003/0033432 Al* 2/2003 Simpson etal. 709/246
2003/0055624 Al* 3/2003 Fletcher et al. 704/2 30 Claims, 7 Drawing Sheets

Weh Services System 100

Application Server
102
Generic Web Service Database
Runtime 130
120
Web Services
Management
Metadata Slore
140
Web Service Engine
Client 104

160

Cata Accass-Based
Web Service Data Storg

150

Runtime Controller

110

~—

U.S. Patent Jan. 4, 2011 Sheet 1 of 7 US 7,865,535 B2

Web Services System 100

.

Application Server
102

Generic Web Service Database
Runtime 130

120

Web Services

Management
Metadata Store
140
Web Service Engine
Client 104
160

Data Access-Based
Web Service Data Store
150

Runtime Contraoller
110

FI1G. 1

U.S. Patent Jan. 4, 2011 Sheet 2 of 7 US 7,865,535 B2

Web Service Metadata
220

WS Name 240 | Configuration document 250 | WSDL 260 | Status 270 | Timestamp 280

Database
130

. L
Web Services
Management

Metadata Store
140

Web Service Metadata

Data Access-Based Tool
Web Service 210
Data Store

150 Editor Management
212 214

User
200

FIG. 2

U.S. Patent

Jan. 4, 2011 Sheet 3 of 7

Application Server

Web Service Engine
104

Request
Processor
Module

320

102

Runtime Controller
110

Management
Module
310

Synchronization
Module
312

Endpoint Interface
Synch Module
314

Generic Web Service Runtime Module

WSDL
Publication
Module

330

Artifact
Module

336

Configuration

120

Validation

Definition
Module
334

schema
333

Web Service
Artifact
338a

SQL Block
339a

Web Service
Artifact
338b

SQL Block
339b

FIG. 3

US 7,865,535 B2

Database
130

Web Services
Management
Metadata Store
140

Data Access-Based

Web Service Data
150

U.S. Patent

Application Server
402

Web Service Engine
404

Runtime Controller
406

Generic Web Service
Runtime Module

408

Application Server
420

Web Service Engine
422

Runtime Controller
424a

Generic Web Service
Runtime Module
4262

Runtime Controller
424b

Generic Web Service

Runtime Module
426b

Jan. 4, 2011 Sheet 4 of 7

Database
430

Web Services
Management
Metadata Store
440

US 7,865,535 B2

Web Services System 400

./

Database
432

Data Access-Based
Web Service Data
450

U.S. Patent Jan. 4, 2011 Sheet 5 of 7 US 7.865.,535 B2

502

Setup Web Services Management Metadata Store

504
Configure connection information
500
Deploy generic web service runtime module and
runtime controller
5038

Setup connectivity and security

FIG. 5

U.S. Patent Jan. 4, 2011 Sheet 6 of 7 US 7.865.,535 B2

602
Check web service management metadata for
changes
604
no ves
606
New or
Modified Delete
608 616

Retrieve a web service . . .
. . Inactivate a web service artifact
configuration document
618

610
Validate the web service Inactivate the web service endpoint
configuration document Interface
612
Create a web service artifact
614

Create and update a web service
endpoint interface

A

FIG. 6

U.S. Patent Jan. 4, 2011 Sheet 7 of 7 US 7.865.,535 B2

702
Recelve a web service request
704
Resolve the request to an operation and a parameter
706
Determine an appropriate web service artifact
708
Execute a data operation
710
Return result as a web service response

FIG. 7

US 7,865,535 B2

1

APPARATUS, SYSTEM, AND METHOD FOR A
DATA SERVER-MANAGED WEB SERVICES
RUNTIME

BACKGROUND OF THE INVENTION

1. Field of the Invention

This mvention relates to the creation of, and management
of, web services. More specifically, the invention relates to
the creation of a web service which 1s defined and managed by
way ol a database management system.

2. Description of the Related Art

The computing world 1s far from homogeneous; various
platiorms, languages, and operating systems are available and
in use across the globe. In addition, computers within the
same organization or network often operate on different plat-
forms. Allowing these entities to communicate with one
another 1s often very difficult given that they do not ‘speak the
same language.” The nability of computers to communicate
across platforms increases expenses when functional legacy
systems need to be replaced simply to provide compatibility,
or when programmers have to translate, or ‘port” code from
one computing language to another to provide the same func-
tionality on a different machine.

Web services provide a solution to the problem by provid-
ing a standard means for communicating across different
platforms and frameworks 1n a network. Web services are
application components which are self-contained and seli-
describing using open protocols for communication. These
services can be imvoked by a client regardless of the underly-
ing platforms of the service provider and the client so long as
both participants to the transaction adhere to the accepted
web services protocols. Typically, 1n a web service environ-
ment, clients and servers communicate XML messages,
adhering to the HT'TP protocol, and using the SOAP standard.
Web services may use different service invocation languages
(such as XML-RPC), and other transier protocols, but SOAP
and HTTP currently are the most popular choices.

Generally, web services are meant to be invoked by client
applications, as opposed to being used directly by humans.
Web services can allow an entity to share mnformation while
maintaining control over the source of the information. For
example, web services can be used to by companies to pro-
vide clients with access to certain information without expos-
ing the entire database and creating vulnerabilities. For
example, a web service can be developed to allow a client to
retrieve a user’s address, as stored 1n the company’s database,
and update that address as needed. The web service allows the
client application to access this information regardless of the
platform that 1s being used, so long as both sides use the same
agreed-upon protocols. In addition, the company does not
have to open the database to the clients 1n order to provide the
information, making 1t a more secure method of information
sharing.

Typically, creating a web service to expose data mvolves a
service provider creating an application and placing the code
on an application server. The management of the web service
and 1ts life cycle 1s all done on the application server (often
referred to as the application server side or tier). Although
intuitive to those familiar with application servers, this
approach to exposing data through a web service has a num-
ber of difficulties.

First, creating and managing web services on an applica-
tion server can be difficult for Database Administrators and
others who have limited experience working outside of the
database environment. The process of writing web services,
deploying them on an application server and then managing

10

15

20

25

30

35

40

45

50

55

60

65

2

them from that point can be cumbersome for an individual
with a specialization 1n database, creation, design, and man-
agement. IT the Database Administrator lets another indi-
vidual, such as an Application Server administrator, create
and manage the web services for the database, the Database
Admuinistrator 1s giving up some control of the database;
access to the data 1s now possible through a web service
managed on a separate server by a separate individual. The
developed web services may allow changes to the data that the
Database Administrator did not intend to allow, and shutting
down the web services to allow for maintenance at the data-
base adds a layer of complexity when the web services need
to be stopped and restarted at the application server by a
Systems Administrator.

Even for those familiar with application servers, develop-
ing and deploying web services, such as those used to access
information in a database, 1s often a time-consuming process.
To develop a web service, an application developer codes the
service 1 a supported programming language such as Java or
C++, writes SQL, XQuery or other data access statements to
access mformation i1n the database, provides namespaces,
operation names, and message style, and then packages the
code 1n a deployable component. To deploy the web service,
the web application administrator sets up and configures a
data source for a data server, deploys the web service as an
application, and configures settings for the web service such
as security and resource references. The web application
administrator also manages the life-cycle of the web service,
which may require repeating many of the above steps.

In addition, 1f a web service 1s distributed over multiple
application servers or nodes 1n order to provide high avail-
ability, the code for the web service must be manually copied,
maintained, and kept in synchronization across all servers on
which the code 1s located. These applications servers them-
selves may not be of a uniform type, requiring the user to
handle each imndividual case of deployment and management
according to the requirements of each system. As a result of
the foregoing, creating, developing, and maintaining web
services can impose a high cost on an organization at all
points 1n the web service lifecycle, particularly 1n a hetero-
geneous environment.

From the foregoing discussion, it 1s apparent that there 1s a
need for a data server-managed web service tool which allows
a Database Administrator or other user familiar with the data-
base tier or side to easily and efficiently create, control, and
deploy web services from the database side, as opposed to the
application server side. The tool should 1deally 1nsulate the
details of running and managing the web service on an appli-
cation server such that a Database Administrator can eflec-
tively monitor and manage the web services from a Database
Management System (DBMS). The tool should also central-
ize the management of the web service regardless of the
number and type of application servers on which the web
service 1s deployed.

SUMMARY OF THE INVENTION

The present mvention has been developed 1n response to
the present state of the art, and in particular, 1n response to the
problems and needs in the art that have not yet been fully
solved. Accordingly, the present mnvention has been devel-
opedto provide an apparatus, system, and method for creating
and managing a data server-managed web services runtime
that overcomes many of the above referenced shortcomings
in the art.

The present mvention comprises a computer program
product, the operations of the computer program product

US 7,865,535 B2

3

comprising accessing web service metadata in a web services
management metadata store, determining that there 1s a
change 1n the web service metadata 1n the web services man-
agement metadata store, and automatically managing a data
access-based web service 1n response to a change 1n the web
service metadata in the web services management metadata
store, wherein the data access-based web service 1s config-
ured to execute 1n cooperation with a generic web service
runtime module deployed on an application server, the appli-
cation server configured to support dynamic deployment of
web services.

Where a change 1n the web service metadata comprises
web service metadata added to a web services management
metadata store, automatically managing a data access-based
web service further comprises retrieving a web service con-
figuration document from the web services management
metadata store, creating a web service artifact from the web
service configuration document, the web service configura-
tion document satisiying a web service configuration schema,
and starting a web service artifact such that a request proces-
sor associated with the generic web service runtime module
accepts requests associated with the web service artifact.
Starting a web service artifact further comprises aweb service
artifact executing web service requests without a generic web
service runtime module restarting.

Where a change in the web service metadata comprises
web service metadata removed from the web services man-
agement metadata store, automatically managing a data
access-based web service comprises mnactivating a web ser-
vice runtime artifact associated with the data access-based
web service 1dentified by the removed web service metadata.

In certain embodiments, a change 1n the web service meta-
data 1s determined by evaluating a timestamp associated with
a web service defined 1n the web services management meta-
data store. In addition, the computer program product may
turther comprise a user defining the web service metadata 1n
the web services management metadata store. The web ser-
vice metadata further comprises a web service name, a web
service configuration document, a web services description
language document, a web service status, and a timestamp.

In certain embodiments the web service configuration
document 1s an XML file, the web service configuration
schema 1s an XML Schema document, and the web service
configuration document specifies Structured Query Lan-
guage (SQL) data operations on a data store. The computer
program product may further comprise publishing a web
services description language (WSDL) document associated
with the data access-based web service.

Also disclosed 1s a system for operation of a data server-
managed web services runtime, the system comprising an
application server configured to support dynamic deployment
of web services and host a plurality of web services runtime
modules, the application server comprising a memory device
and at least one processor. The system further comprises a
web services management metadata store comprising a web
service name, a web service configuration document, a web
services description language (WSDL) document, a web ser-
vice status and a timestamp, and a data access-based web
service data data store comprising web service-accessible
data and stored procedures. The system further comprises a
runtime controller configured to operate on the application
server and to manage a single unique generic web service
runtime, and a generic web service runtime module config-
ured to operate on the application server and to create one or
more web service artifacts for one or more web services based
on a web service configuration document.

10

15

20

25

30

35

40

45

50

55

60

65

4

In certain embodiments the system also comprises a web
service metadata tool configured to communicate with the
web services management metadata store, the web service
metadata tool configured to expose a user to data access-
based web service data and stored procedures available for
deployment as a data access-based web service and to recerve
metadata from the user, the metadata defining a new data
access-based web service. The web service metadata tool
turther generates a web service configuration document and a
WSDL document from the user metadata, and stores a web
service name, the web service configuration document, the
WSDL document, a status, and a timestamp 1n the web ser-
vices management metadata store.

The runtime controller further comprises a synchroniza-
tion module configured to determine a change 1n the web
services management metadata store and to notify the generic
web service runtime module of the change, an endpoint inter-
face synchronization module configured to maintain web ser-
vice endpoint mterface definitions 1in a web service engine,
and a management module configured to enable start and stop
operations on web service artifacts on a generic web services
runtime module.

The present mnvention also discloses a system for the opera-
tion of a data server-managed runtime, wherein the system
comprises a plurality of application servers configured to
support dynamic deployment of web services and host a
plurality of web services runtime modules and runtime con-
trollers, a plurality of databases, the databases further com-
prising a common web services management metadata store
and a common data access-based web service data data store,
a plurality of web service runtime modules configured to
operate on one of the plurality application servers and to
create one or more web service artifacts for one or more web
services based on a web service configuration document, and
a plurality of generic web service runtime modules config-
ured to operate on one of the plurality of application servers
and to create one or more web service artifacts for one or more
web services based on a web service configuration document.

-

T'he generic web services runtime modules on a plurality of
application servers further comprise redundant web service
artifacts defining data access-based web services, the redun-
dant web service artifacts dertved from web service metadata
stored 1n the common web services management metadata
store. In certain embodiments, the plurality of application
servers comprises heterogenecous platforms. An application
server may also comprise a plurality of runtime controllers
and generic web service runtime modules, where the runtime
controllers have an associated unique generic web service
runtime module.

Reterence throughout this specification to features, advan-
tages, or similar language does not imply that all of the
features and advantages that may be realized with the present
invention should be or are 1n any single embodiment of the
invention. Rather, language referring to the features and
advantages 1s understood to mean that a specific feature,
advantage, or characteristic described in connection with an
embodiment 1s 1included i at least one embodiment of the
present invention. Thus, discussion of the features and advan-
tages, and similar language, throughout this specification
may, but do not necessarily, refer to the same embodiment.

Furthermore, the described features, advantages, and char-
acteristics of the invention may be combined 1n any suitable
manner in one or more embodiments. One skilled 1n the
relevant art will recognize that the invention may be practiced
without one or more of the specific features or advantages of
a particular embodiment. In other 1nstances, additional fea-

US 7,865,535 B2

S

tures and advantages may be recognized 1n certain embodi-
ments that may not be present in all embodiments of the
invention.

These teatures and advantages of the present invention will
become more fully apparent from the following description

and appended claims, or may be learned by the practice of the
invention as set forth hereinatter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the advantages of the invention will be readily
understood, a more particular description of the immvention
briefly described above will be rendered by reference to spe-
cific embodiments that are illustrated 1n the appended draw-
ings. Understanding that these drawings depict only typical
embodiments of the mvention and are not therefore to be
considered to be limiting of 1ts scope, the invention will be
described and explained with additional specificity and detail
through the use of the accompanying drawings, 1n which:

FIG. 1 1s a schematic block diagram illustrating one
embodiment of a web services system 1n accordance with the
present invention;

FIG. 2 1s a schematic block diagram illustrating one
embodiment of a database and web service metadata tool 1n
accordance with the present invention;

FI1G. 3 1s schematic block diagram illustrating one embodi-
ment of an application server 1n accordance with the present
invention;

FIG. 4 1s a schematic block diagram illustrating one
embodiment of a web services system comprising multiple
application servers and multiple databases in accordance with
the present invention;

FIG. 5 1s a schematic flow chart diagram illustrating one
embodiment of a method for deploying a generic web ser-
vices runtime module 1n accordance with the present inven-
tion;

FIG. 6 1s a schematic flow chart diagram illustrating one
embodiment of a method for creating a web service 1in accor-
dance with the present invention; and

FI1G. 7 1s a schematic flow chart diagram illustrating one
embodiment of a method for handling a web service request
in accordance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Many of the functional units described 1n this specification
have been labeled as modules, 1n order to more particularly
emphasize their implementation independence. For example,
a module may be implemented as a hardware circuit compris-
ing custom VLSI circuits or gate arrays, off-the-shelf semi-
conductors such as logic chips, transistors, or other discrete
components. A module may also be implemented 1n program-
mable hardware devices such as a processor and memory
device, field programmable gate arrays, programmable array
logic, programmable logic devices or the like.

Modules may also be implemented 1n software for execu-
tion by various types of processors. An 1dentified module of
executable code may, for instance, comprise one or more
physical or logical blocks of computer instructions, which
may, for instance, be organized as an object, procedure, or
function. Nevertheless, the executables of an 1dentified mod-
ule need not be physically located together, but may comprise
disparate instructions stored in different locations which,
when joined logically together, comprise the module and
achieve the stated purpose for the module.

Indeed, a module of executable code may be a single
instruction, or many instructions, and may even be distributed

10

15

20

25

30

35

40

45

50

55

60

65

6

over several different code lines, among different programs,
and across several memory devices. Similarly, operational
data may be 1dentified and 1llustrated herein within modules
and may be embodied 1n any suitable form and organized
within any suitable type of data structure. The operational
data may be collected as a single data set, or may be distrib-
uted over different locations including over different storage
devices.

Reference throughout this specification to “one embodi-
ment,” “an embodiment,” or similar language means that a
particular feature, structure, or characteristic described in
connection with the embodiment 1s 1ncluded 1n at least one
embodiment of the present invention. Thus, appearances of
the phrases “in one embodiment,” “in an embodiment,” and
similar language throughout this specification may, but do not
necessarily, all refer to the same embodiment.

Furthermore, the described features, structures, or charac-
teristics of the mvention may be combined 1n any suitable
manner 1in one or more embodiments. In the following
description, numerous specific details are provided, such as
examples of programming, software modules, user selec-
tions, network transactions, database queries, database struc-
tures, hardware modules, hardware circuits, hardware proces-
sors and memory, hardware chips, etc., to provide a thorough
understanding of embodiments of the invention. One skilled
in the relevant art will recognize, however, that the invention
may be practiced without one or more of the specific details,
or with other methods, components, materials, and so forth.
In other instances, well-known structures, matenials, or
operations are not shown or described in detail to avoid
obscuring aspects of the mnvention.

FIG. 1 1s a block diagram 1llustrating one embodiment of a
web services system 100 1n accordance with the present
invention. While the depicted embodiments throughout this
application make specific reference to web services and a web
service system, those of skill 1n the art will recognize that the
present mvention relates to all network protocols. The web
services system 100 includes a client 160, an application
server 102, and a database 130. The web services system 100
allows a client 160 to access services and resources associated
with the application server 102 and the database 130 regard-
less of the inherent compatibility of the underlying platiorms
of each piece. The web services system 100 enables distrib-
uted computing, where the client 160 can access resources
associated with the database 130, as defined by the available
web services, without executing those operations directly on
the database 130; rather, the client 160 requests an available
operation from the application server 102, which executes the
operations associated with the request, and returns the results
to the client 160.

While the web services system 100 1s capable of providing,
any number of web services, the focus of this invention 1s data
access-based web services. A data access-based web service
1s a web service whose primary function 1s to perform data-
base operations on a database 130. These operations may
include adding, removing, or editing tables and records 1n the
database 130, as well as accessing stored procedures. The
data access-based web service may also include other opera-
tions as part of the web service. For example, a data access-
based web service may perform additional operations on the
data retrieved from the database 130, such as conversion from
one form of currency to another, before returning the result.

The application server 102 1s a soitware program config-
ured to execute and manage a plurality of applications. The
applications deliver application services to client computers
or devices. The application server 102 typically includes
middleware and the known modules to provide web services.

[[

US 7,865,535 B2

7

In one embodiment, the application server 102 1s an IBM
WebSphere™ Application Server, available from Interna-
tional Business Machines of Armonk N.Y. The application
server 102 may serve as part of a service-oriented architecture
to provide data access services.

The application server 102 further supports dynamic
deployment of web services. Dynamic deployment, or ‘hot
deployment” and ‘dynamic reloading’, allows components to
be added to the application server 102 or components to be
edited without stopping and/or restarting the application
server 102 before those changes take effect. Dynamic deploy-
ment also allows the removal of components without restart-
ing the application server 102. In an application server 102
supporting dynamic deployment, web service deployment
information can be added to, or removed {from, the web ser-
vice engine 104 (also commonly referred to as the SOAP
engine) and the web service engine 104 will accept and
respond to these changes without requiring that the applica-
tion server 102 restart.

An application server 102 further comprises a web service
engine 104. The web service engine 104 recerves, interprets,
and handles web services requests from clients 160. The web
service engine 104 also packages and sends web services
responses to a client 160. Various commercial and open-
source web service engines exist. In one embodiment, the
web service engine 104 1s the Apache Axis engine.

In a preferred embodiment, the web service engine 104 1s a
Simple Object Access Protocol (SOAP) engine capable of
receiving and generating SOAP messages. The W3C specifi-
cation defines SOAP as a lightweight protocol for exchanging
structured information 1n a decentralized, distributed envi-
ronment. The SOAP message comprises three parts: an enve-
lope defining a framework for describing the contents of a
message and how to process 1t, encoding rules for expressing,
application-defined datatypes, and a convention for repre-
senting remote procedure calls and responses. The web ser-
vice engine 104 recerves and interprets, and also composes
and sends, SOAP messages.

In accordance with the present imvention, the application
server 102 further comprises a runtime controller 110. The
runtime controller 110 manages the generic web service runt-
ime module 120. The runtime controller 110 tracks and moni-
tors web service metadata in the web services management
metadata store 140 and ensures that the service endpoints in
the web service engine 104 are kept current. This particular
teature of the runtime controller 110 1s discussed 1n greater
detail 1n connection with FIGS. 3 and 6.

Each generic web service runtime module 120 has an asso-
ciated runtime controller 110. In addition, the runtime con-
troller 110 1s configured to communicate with the database
130 and the web services management metadata store 140. A
user may deploy multiple runtime controllers 110 and mul-
tiple generic web service runtime modules 120 on an appli-
cation server 102, so long as each generic web service runtime
module 120 has a unique runtime controller 110.

In accordance with the present mnvention, the application
server 102 further comprises a generic web service runtime
module 120. The generic web service runtime module 120
serves as an operating environment for data access-based web
services. The generic web service runtime module 120 cre-
ates data access-based web services from web service meta-
data stored 1n the web services management metadata store
140. These data access-based web services retrieve data from
the data access-based web service data data store 1350 in
response to a web service request. The generic web service
runtime module 120 provides one or more executable com-
puter instructions that enable each data access-based web

10

15

20

25

30

35

40

45

50

55

60

65

8

service to fulfill web service requests and generate proper
web services responses. As mentioned above, a data access-
based web service 1s a web service whose primary function 1s
to perform database operations on a database 130. These
operations may include adding, removing, or editing tables
and records 1n the database 130, as well as accessing stored
procedures. Data access-based web services may also per-
form additional operations or actions 1n conjunction with the
database operations.

The generic web service runtime module 120 employs the
web service engine 104 to recerve and respond to web service
requests. In one embodiment, the generic web service runt-
ime module 120 also publishes a web services language
description document (WSDL) which contains a description
of a web service, including the methods, parameters, and
output of a related web service which 1s used by a caller in a
client 160 to execute the web service. The WSDL 1s the
contract between the service requester and the service pro-
vider. The function of the generic web service runtime mod-
ule 120 1s discussed 1n greater detail in connection with FIGS.
3 and 6.

The web services system 100 further comprises a client
160. The client 160 represents an entity requesting a web
service from the application server 102. The Client 160 sends
the request 1n conformance with the SOAP protocols and 1n
accordance with the description set forth in a WSDL docu-
ment.

The web service system 100 further comprises a database
130. The database 130 comprises a structured set of data and
a database management system (DBMS) such as IBM’s DB2
system or other system as known to those in the art. The
database 130 includes a web services management metadata
store 140 and a data access-based web service data data store
150.

The web services management metadata store 140, 1n one
embodiment, comprises a table of records containing the web
service metadata that specifies the behavior and structure of a
web service. While the term ‘metadata’ 1s used throughout the
application, those of skill 1n the art will recognize that meta-
data 1s only one way for providing the required control data
necessary for specitying the operation of the present inven-
tion. The contents and creation of the web services metadata
1s discussed 1n greater detail 1n relation to FIG. 2. The con-
figuration of the web services management metadata store
140 1s discussed 1n greater detail in FIG. 5. The generic web
service runtime module 120 defines data access-based web
services based on the web services metadata stored 1n the web

services management metadata store 140.

The database 130 further comprises a data access-based
web service data data store 150. The data access-based web
service data data store 150 contains the data that 1s the subject
of, and available to, a data access-based web service. For
example, a company’s employee records may comprise a
portion of the data access-based web service data data store
150. As such, that information may be used as the subject of
an appropriate web service.

Those skilled 1n the art will recognize that the web services
system 100 1s simply one of many possible configurations.
For example, the web services management metadata store
140 and the data access-based web service data data store 150
need not be located on the same database 130, so long as the
connection information to the stores 1s properly provided to
the runtime controller 110 and the generic web service runt-
ime module 120. Further, the web services system 100 may
comprise multiple application servers 102. These servers may
similarly comprise a runtime controller 110 and a generic
web service runtime module 120 which are also 1n connection

US 7,865,535 B2

9

with database 130. There 1s no restriction on the number of
runtime controllers 110 and generic web service runtime
modules 120 which may be associated with a database 130
and the related data stores. An alternative configuration for a

web services system 100 1s discussed 1n greater detail in
connection with FIG. 4.

FIG. 2 1s a schematic block diagram illustrating one
embodiment of a database 130 and a web service metadata
tool 210 1n accordance with the present invention. The data-
base 130 includes a web services management metadata store
140 and data access-based web service data data store 150. As
discussed above, the web services management metadata
store 140 contains web service metadata 220 describing a
web service 1n a format accessible to a generic web service
runtime module 120 and a runtime controller 110. The web
service metadata 220 describes a data access-based web ser-
vice defined by a user 200. The generic web service runtime
module 120 uses the web service metadata 220 to create aweb
service that conforms to the user 200’°s definition. The con-
tents of the web service metadata 220 are described in greater
detail below.

The data access-based web service data data store 150
contains the ‘raw’ data that the web services are intended to
access and perform operations on. This data access-based
web service data data store 150 includes data organized 1n a
relational database of tables and rows or data 1n a hierarchical
database. In addition, the data access-based web service data
data store 150 may include stored procedures. In one embodi-
ment, the data access-based web service data data store 150
comprises records stored in a database 130. As mentioned
above, the data access-based web service data data store 150
may comprise any stored information accessible to the
generic web services runtime module 120,

The web service metadata tool 210 1s one method for a user
200 to enter web service metadata 220 1nto the web services
management metadata store 140. While a user 200 may insert
the web service metadata 220 manually into the web services
management metadata store 140, 1n a preferred embodiment
the web service metadata tool 210 provides this functionality.
The web service metadata tool 210 provides tooling which
allows the user 200 to easily specily the operations of a data
access-based web services and, from that user specification,
generates the web service metadata 220 that describes that
service in a way that the generic web services runtime module
120 can understand. The web service metadata tool 210 also
provides the user 200 with an interface on the database side
trom which the user 200 can start, stop, and otherwise manage
the day-to-day operations of a defined data access-based web
service. To facilitate these functions, the web service meta-
data tool 210 further comprises an editor module 212 and a
management module 214. The editor module 212 allows a
user 200 to create new data-access based web services, edit
ex1isting data-access based web services, or delete data-access
based web services made available in accordance with the
present invention.

The management module 214 allows a user 200 to perform
administrative functions related to data-access based web
services. For example, the management module 214 may
allow a user 200 to disable a particular data-access based web
service without affecting the other data-access based web
services made available through the generic web service runt-
ime module 120. In addition, the management module 214
may allow a user 200 to create a schedule specilying times
during which the data-access based web services are available
or offline, allowing easy coordination of data-access based
web service access with other database administrative tasks

10

15

20

25

30

35

40

45

50

55

60

65

10

such as back up process, during which access to the data
access-based web service data data store 150 may be cut ofl.

In the depicted embodiment, a user 200 1s a Database
Administrator or other individual developing a data access-
based web service from a database 130. The user 200 creates
the data access-based web service by operating the web ser-
vice metadata tool 210. The web service metadata tool 210
may comprise software that 1s part of a DBMS such as IBM’s
DB2, IBM’s IMS, Oracle, MS SQL server, a plug-in, or other
configuration allowing for communication with and opera-
tions on data within a database 130.

The web service metadata tool 210, in one embodiment,
first performs a resource discovery function on the database
130. The resource discovery function determines what data in
the database 130 may be accessed by a database operation
such as an SQL statement. The web service metadata tool 210
exposes this discovered accessible data to a user 200 as data
available for use as part of a web service.

While this specification frequently makes reference to
SQL statements as the relevant database operations, those of
skill 1n the art will recognize that SQL 1s not the only query
language or means to perform database operations. A user
may use other query languages such as XQuery to perform the
specified operations. References to SQL statements through-
out this specification can be replaced with references to
XQuery statements or other means for executing database
operations. The use of SQL statements simply constitutes one
of many possible embodiments.

The user 200 provides a web service name and may select
from the discovered data, which 1s a part of the data access-
based web service data data store 150, what to incorporate
into that named data access-based web service. The user 200
may also specily what parameters the data access-based web
service will expect to receive and what SQL code may be
necessary to perform the desired operations on the selected
data. In addition, the user 200 may specily other operations
that should be performed either prior to, or after, execution of
the SQL statements. The user 200 can also specily what the
data-access based web service will return to the user 1n the
event that the requested data 1s not found or some other error
occurs 1n the execution of the web service.

For example, a user 200 may create a data access-based
web service called “getFiveYearAverage” which takes an
employee 1D number as a parameter and returns the average
salary of that employee over the past five years. In this par-
ticular example, the data access-based web service data data
store 150 does not have an average salary field; however, the
resource discovery function performed by the web service
metadata tool 210 indicates that a field “EmplSalary™ 1s avail-
able. The user 200 uses the web service metadata tool 210 to
select the “EmplID” and “EmplSalary” fields for the data
access-based web service and generates the SQL code nec-
essary to extract five salary values associated with that
employee ID for five years into the past from the present date.
The user 200 may then write additional code to calculate the
average salary based on the five retrieved salary values and
return the result of the calculation. The user 200 may further
specily that a value of negative one 1s returned 1f a salary for
any of the five years could not be retrieved.

The web service metadata tool 210 may provide the func-
tionality above through any number of ways familiar to those
skilled 1n the art; the web service metadata tool 210 may
comprise a graphical user interface (GUI) from which the
user 200 can select fields and operations for the web service,
or otherwise provide a means for recerving from a user 1den-
tification of the relevant data and operations.

US 7,865,535 B2

11

The web service metadata tool 210 takes the input from the
user 200 and creates the web service metadata 220. The web
service metadata 220 describes the operations of a web ser-
vice, and provides the necessary information for the generic
web service runtime module 120 to create the web service.
However, the web service metadata 220 1s notitself a program
that alone acts as a web service; rather, the web service
metadata 220 1s a description of the behavior and operation of
a web service. The web service metadata 220 1s stored 1n the
web services management metadata store 140 on the database
130. One embodiment of the web service metadata 220 cre-

10

12

the web service. The web service configuration document 250

also contains the executable database operations performed
as part of the web service.

In one embodiment, the web service configuration docu-

ment 250 1s an XML document and the database operations
are specified as SQL statements. For example, a web service

providing operations to add an employee record, remove an
employee record, get an employee record, and update an

employee record may have a corresponding web service con-
figuration document 250 as follows:

<7?xml version="1.0" encoding="UTEF-8" 7>

<dsc:conflg xmlns:dsc="http://ibm.com/datatools/dsws/config”
buildNumber="2007/04/23 09:49:53:109 PDT” dbType="IDBC”
restBinding="true” serviceName="EmployeeManagementService”
soapBinding="true” targetNamespace="urn:example” xmlns:tns="urn:example’>

<dsc:operations>

<dsc:update operationName="addEmployee™>
<dsc:statement>
<I[CDATA[INSERT INTO EMPLOYEE values (:empno, :firsthame, :midinit,
:lastname, :workdept, :phoneno, :hiredate, :job, :edlevel, :sex, :birthdate, :salary,
:bonus, :comm) |]>
</dsc:statement>

</dsc:update>

<dsc:update operationName="removeEmployee’>
<dsc:statement>
<{[CDATA[DELETE from EMPLOYEE where empno =:empno |]>

</ds¢:statement>

</dsc:update>

<dsc:query operationName="getEmployee>
<dsc:statement>
<![CDATA[SELECT * from Employee |]>
</dsc:statement>
</dsc:query>
<dsc:update operationName="updateEmployee>
<dsc:statement>
<![CDATA[update employee set (empno, firstnme, midinit, lastname, workdept,
phoneno, hiredate, job, edlevel, sex, birthdate, salary, bonus, comm) = (:empno,
firstname, :midinit, :lastname, :workdept, :phoneno, :hiredate, :job, :edlevel, :sex,
:birthdate, :salary, :bonus, :comm) where empno = :empno []>
</dsc:statement>

</dsc:update>

</dsc:operations>
</dsc:config>

ated by the web service metadata tool 210 1s shown 1n FIG. 2.
The web service metadata 220 comprises a web service name
(WS name) 240, a web service configuration document 2350,

a web service description language document (WSDL) 260, a
status 270, and a timestamp 280.

The web service name 240 comprises an 1dentifier of a web
service record 1n the web services management metadata
store 140. In one embodiment, the web service name 240
constitutes a key for the table. A web service name 240 may
be provided by the user 200 through the web service metadata
tool 210 as part of the web service creation process, or the web

service name 240 may be generated by the web service meta-
data tool 210.

The web service configuration document 250 1s a docu-
ment describing the methods, operations, and subject of the
web service 1 a format that a generic web service runtime
module 120 can interpret. The interpretation of a web service
configuration document 250 1n accordance with the present
invention 1s presented in greater detail in connection with

FIGS. 3 and 6.

The web service configuration document 250 contains
information concerming the name of the web service, the
operations, and the fields in the database 130 associated with

45

50

55

60

65

The WSDL 260 1s a web service description language
document which provides a model for describing a web ser-
vice. A WSDL provides an XML-based description of a web
service as well as providing a description of how to commu-
nicate with the web service by defining the public interface to
the web service and informing a client of the functions avail-
able as well as any special datatypes associated with the web
service. The WSDL 260 provides the information necessary
for clients to interact with the described web service.

—

The WSDL 260, 1n one embodiment, 1s also created by the
web service metadata tool 210 1n response to a user 200
providing parameters defining a data access-based web ser-

vice. The structure and function of a WSDL document 1s
well-known to those in the art. One of skill 1n the art can create
a tooling module such thata WSDL document 1s created from
a user-specified set of operations and parameters for a web
service. By way of example, the WSDL generated 1n connec-
tion with the example configuration document above 1s pro-
vided in Appendix A. Those of skill 1n the art will recognize
that the WSDL 1n Appendix A provides a potential client of

the web service defined by the configuration document above

US 7,865,535 B2

13

with the information necessary to make use of the web ser-
vice, including the names and parameters of the provided
operations.

The web service metadata 220, 1n one embodiment, further
comprises a status 270. The status 270 field stores the opera-
tional status of the web service associated with the web ser-
vice name 240. In one embodiment, the status 270 may be set
to ‘active’ when the corresponding data access-based web
service 1s available, and set to ‘1nactive’ when the data access-
based web service 1s disabled or otherwise unavailable. Alter-
natively, the presence of a row 1n a table of web services
metadata 220 may indicate that the data access-based web
service 1s active and the removal of the row may indicate that
the data access-based web service 1s mactive.

The web services management metadata store 140, 1n one
embodiment, further comprises a timestamp 280 associated
with a data access-based web service. The timestamp pro-
vides a token that can be used to determine when or if a
change to a data access-based web service was made. The
creation of a new data access-based web service, editing an
existing data access-based web service, or removing or 1nac-
tivating a data access-based web service, as well as changes to
a status or other component of the web service metadata 220
causes the web service metadata tool 210 to create a new
timestamp 280. Preferably, these changes are made by a user
interacting exclusively with the DBMS.

The web service metadata tool 210 may further comprise
an editor module 212 for making changes to a data access-
based web service 1in the web services management metadata
store 140. A user 200 operates the editor module 212 to edit or
delete a data access-based web service. In one embodiment,
when a user 200 edits an existing data access-based web
service, the web service metadata tool 210 overwrites the
entries 1 the web services management metadata store 140
alfected by the edit. The web service metadata tool 210 also
creates a new timestamp 280 for the web service. If a user 200
deletes a data access-based web service, the web service
metadata tool 210 may remove the metadata that defines the
data access-based web service from the web services man-
agement metadata store 140 completely.

The web service metadata tool 210 further comprises a
management module 214 which allows a user 200 to manage
the operation of a data access-based web service from the
database 130, instead of the application server 102. A user
200 uses the management module 214 to start or stop a data
access-based web service. In one embodiment, the manage-
ment module 214 starts and stops a service by changing the
status 270 of a web service to either ‘active’ or ‘inactive’.
Alternatively, adding or removing metadata defining a data
access-based web service alfects whether the data access-
based web service 1s activated or deactivated. The run time
controller 110 detects the change and dynamically starts or
stops the data access-based web service as indicated.

This allows the user 200 to easily control access to the
database 130 by data access-based web services. The user 200
can easily cut off data access-based web service access to the
database 1n order to perform database maintenance or other
tasks. In one embodiment, the web service metadata tool 210
may further allow a user 200 to create a schedule defining the
availability of data access-based web services.

Those of skill 1n the art will recognize that the web services
metadata 220 may be more complex and comprise more fields
than those shown in order to provide additional tools and
functionality to a user 200. Additional tools and fields may
support more advanced features such as versioning data
access-based web services.

10

15

20

25

30

35

40

45

50

55

60

65

14

In addition, those of skill in the art will recognize that using,
the web service metadata tool 210 1s not necessary to practice
the imnvention; a user 200 may, for example, store the required
information for the definition and operation of a data access-
based web service directly into the web services management
metadata store 140 using SQL statements.

In such an embodiment, the user 200 would have to prop-
erly create and define the relevant web service metadata 220,
such as the web service name 240, web service configuration
document 250, WSDL 260, status 270 and timestamp 280 1n
order for the present invention to function correctly. As such,
the web service metadata tool 210 simplifies the process of
creating the necessary web service metadata 220 by creating
an abstraction insulating the user 200 from the mechanics of
creating properly defined metadata 1n accordance with the
present invention.

FIG. 3 1s schematic block diagram illustrating one embodi-
ment of an application server 102 1n accordance with the
present invention. In the depicted embodiment, the applica-
tion server 102 comprises a web service engine 104, a runtime
controller 110, and a generic web service runtime module
120. FIG. 3 further depicts a database 130 comprising a web
services management metadata store 140 and a data access-
based web service data data store 150.

The runtime controller 110, as discussed above 1n conjunc-
tion with FIG. 1, further comprises a management module
310, a synchronization module 312, and an endpoint interface
synchronization module 314. The management module 310
provides a user on the application server 102 with manage-
ment tools for the generic web service runtime module 120.

For example, an application server user may use the man-
agement module 310 to start or stop the operation of the
generic web service runtime module 120 on the application
server 102. In addition, the management module 310 allows a
user to deploy and configure a generic web service runtime
module 120. The management module 310 also leverages the
web service functionality provided by the tools on the appli-
cation server 102, allowing a user to configure connectivity
and security settings for the generic web service runtime
module 120. For example, the management module 310 may
use application server tools to allow a user to set up a pass-
word and ID associated with the generic web service runtime
module 120.

The synchronization module 312 ensures that the data
access-based web services exposed by the generic web ser-
vice runtime module 120 are consistent with the definitions of
those data access-based web services defined in the web
services management metadata store 140. In one embodi-
ment, the synchronization module 312 polls the web services
management metadata store 140 at regular intervals 1n order
to determine whether the most current data access-based web
service definitions are in use. In such an embodiment, the
synchronization module 312 may include a data structure, not
shown 1n FIG. 3, comprising the web service name 240 and a
timestamp 280. At regular intervals the synchronization mod-
ule 312 polls the web services management metadata store
140 and extracts the timestamps 280 for the listed web service
names 240. The synchronization module 312 then compares
the extracted information to that kept 1n the synchromization
module data structure. If the timestamps 280 do not match for
a particular web service name 240, the web services manage-
ment metadata store 140 has a changed definition and the
synchronization module 312 directs the generic web service
runtime module 120 to update the related data access-based
web service operating on the application server 102.

If a web service name 240 and timestamp 280 are 1n the
web services management metadata store 140 but not 1n the

US 7,865,535 B2

15

data structure, the synchronization module 312 directs the
generic web service runtime module 120 to create and start
the data access-based web service operating on the applica-
tion server 102. It the data structure contains a web service
name 240 but the same web service name 240 1s not found in
the web services management metadata store 140, the syn-
chronization module 314 directs the generic web service runt-
ime module 120 to halt the data access-based web service
operating on the application server 102.

In an alternative embodiment, the synchronization module
312 may determine whether or not there has been a change to
the web services management metadata store 140 based on a
polling interval. For example, if a polling interval 1s set for
every five minutes, the synchromization module 312 can
determine whether the generic web service runtime module
120 needs to update a data access-based web service by
determining 11 any timestamps 280 were changed 1n the past
five minutes. Consequently, in such an embodiment a status
field 270 may not be needed. Those of skill in the art will
recognize that multiple methods exist to synchronize data and
ensure consistency, including notification configurations.
Embodiments of the invention are not limited to or dependent
upon the use of any particular synchronization method.

The endpoint interface synchronization module 314
ensures that the web service engine 104 has the current end-
point interface definitions needed to allow access to the data
access-based web services. A web service endpoint interface
specifies the location on an application server where a web
service artifact 338 associated with that particular web ser-
vice endpoint interface 1s defined. When the artifact module
336 creates an endpoint interface for a data access-based web
service the artifact module 336 notifies the endpoint interface
synchronization module 314, which provides the endpoint
interface and an 1dentifier of the associated data access-based
web service to the web service engine 104.

The generic web service runtime module 120 also includes
a definition module 334, a validation module 332, a WSDL
publication module 330, an artifact module 336, and web
service artifacts 338a-b. The definition module 334 1s invoked
when the runtime controller 110 determines that there 1s a
need to update a data access-based web service operating on
the application server 102. It a data access-based web service
has been added or edited, the definition module 334 retrieves
the web service configuration document 2350 associated with
the data access-based web service from the web services
management metadata store 140. If a data access-based web
service was removed, the definition module 334 destroys the
web service artifact 338 corresponding to the removed web
service and indicates to the endpoint interface synchroniza-
tion module 314 that the web service endpoint interface 1s no
longer valid and should be removed from the web service
engine 104.

The validation module 332 receives a web service configu-
ration document 250 from the definition module 334. The
validation module turther comprises a web service configu-
ration schema 333. The web service configuration schema
333 lays out an acceptable structure of a web service configu-
ration document 250, speciiying the structure of a web ser-
vice configuration document 250 that the generic web ser-
vices runtime module 120 can process. In one embodiment,
the web service configuration schema 333 1s an XML schema
document.

The validation module 332 uses the web service configu-
ration schema 333 to determine whether the web service
configuration document 230 1s a compliant document. Meth-
ods and tools for validating a document based on a schema are
well known to those 1n the art. In one embodiment, if a web

10

15

20

25

30

35

40

45

50

55

60

65

16

service configuration document 250 does not comply with the
web service configuration schema 333, the validation module
332 provides a database user 200 who creates and manages
data access-based web services with a message indicating
that the particular web service could not be created and indi-
cating what problems were encountered.

The WSDL publication module 330 makes a WSDL avail-
able to the data access-based web service clients. The WSDL
publication module 330 retrieves the WSDL 260 associated
with a validated web service from the web services manage-
ment metadata store 140. In one embodiment, the WSDL
publication module 330 makes the WSDL 260 available
through a service broker such as the Universal Description
Discovery and Integration (UDDI) registry. The WSDL pub-
lication module 330 makes the protocol bindings and mes-
sage formats required to interact with the web service, as
described in the WSDL 260, available for consumption.

The artifact module 336 receives a web service configura-
tion document 250 from the validation module 332 11 the web
service configuration document 250 1s compliant with the
web service configuration schema 333. The artifact module
336 interprets the web service configuration document 250
and creates the web service artifact 338 according to the
specifications given in the web service configuration docu-
ment 250. The artifact module 336 also creates the appropri-
ate endpoint interface for the web service artifact 338 and
provides the endpoint intertace synchromzation module 314
with the endpoint interface for the data access-based web
service.

The web service artifact 338, also referred to as the web
service runtime artifact, comprises executable code that per-
forms database operations, as specified by the web service
configuration document 250, 1n response to a request from a
data access-based web service. The web service artifact 338
may also contain additional operations to be performed either
betore or after the execution of the database operations. The
web service artifact 338 performs the necessary database
operations, along with the other related operations, that make
up the data-access based web service. In one embodiment,
these database operations are SQL statements represented as
SQL Block 339. Those of skill 1n the art will recognize that
other languages or statements can be used to execute the
database operations as defined 1n the web service configura-
tion document 250. The web service artifact 338 receives
requests for service and the parameters associated with that
request from a request processor module 320 1n the web
service engine 104. The web service artifact 338 executes the
code 1n response to the request, using the provided param-
eters, and returns the results of the operations to the request
processor module 320.

For example, a web service artifact 338 may receive a web
service request with an operation name “addEmployee™, as
shown above 1n the example web service configuration docu-
ment 250. A valid request also comprises the parameters
empno, firstname, midinit, and others shown above 1n con-
nection with the “addEmployee’ operation. The web service
artifact 338a then executes the SQL statements associated
with the operation such that the employee 1s added to the data
access-based web service data data store 150 in the database
130. While this particular operation does not return informa-
tion from the data access-based web service data data store
150 to the client that requested the web service, the web
service artifact 338 may return a flag or indicator of a suc-
cessiul update to the request processor module 320.

The generic web service runtime module 120 may com-
prise multiple web service artifacts 338a-b, as depicted in
FIG. 3. The number of web service artifacts 338 1in the generic

US 7,865,535 B2

17

web service runtime module 120 corresponds to the number
of data access-based web services defined 1n the web services
management metadata store 140. For example, 1f there are ten
different data access-based web services defined 1n the web
services management metadata store 140, the generic web
service runtime module 120 will have ten different web ser-
vice artifacts 338 representing the distinct web services avail-
able. Those of skill in the art will recognize, however, that the
web service artifacts 338a-b may be configured such that they
can be used by other data access-based web services; for
example, a data access-based web service may require the
database operations performed by web service artifacts
338a-b 1n addition to other operations; the new data access-
based web service may make use of web service artifacts
338a-b to execute the operations they provide rather than
replicate those same operations. Such a configuration may be
used to reduce redundancy between web service artifacts.

The preferred embodiments add an additional element to
the hot deployment of web services; generally, hot deploy-
ment refers to the ability to add or edit components such as
web services to an application server 102 without restarting,
the application server 102 before those components take
elfect. The preferred embodiments extend the concept of hot
deployment by allowing a user to create, modily, and manage
data access-based web services without restarting the generic
web service runtime module 120. The user 200 can therefore
define, manage, and deploy data access-based web services
without restarting either the application server 102 or the
generic web service runtime module 120 before those ser-
vices are available. As such, the preferred embodiments allow
a user 200 to perform data access-based web service tasks
from the database side without making any manual changes to
the application server 102 which hosts the data access-based
web service.

The web service engine 104 comprises the core function-
ality provided by the application server 102 for handling and
processing web services requests. The web service engine
104 recerves web service requests and sends web service
responses. The web service engine 104 maintains a set of
configuration data (not shown) regarding the available web
services such that the web service engine 104 knows how to
handle requests for a particular web service. This configura-
tion data includes the endpoint interface definitions associ-
ated with the web service artifacts available on the application
server 102. The endpoint interface synchromzation module
314 of the runtime controller 110 updates the endpoint inter-
face defimitions associated with the web service artifacts 338
and otherwise ensures that the configuration data 1s kept 1n
synchronization with the current status of data access-based
web services 1 the generic web service runtime module 120.

When a client 160, as depicted in FIG. 1, sends a web
service request to the application server 102, the web service
engine 104 recerves the request. The request processor mod-
ule 320 1n the web service engine 104 unwraps the SOAP web
service request and extracts the operation and the parameters
from the request. I1 the requested service does not exist, the
request processor module 320 responds with an error indicat-
ing that the service was not found. Otherwise, the request
processor module determines the appropriate web service on
the application server 102 and provides 1t with the parameters
to allow the web service to execute.

If the requested web service 1s a data access-based web
service defined in the web services management metadata
store 140, the request processor module 320 uses the endpoint
interface information 1n its configuration data to forward the
parameters to the web service artifact 338 associated with the
web service request. The web service artifact 338 recerves the

10

15

20

25

30

35

40

45

50

55

60

65

18

parameters from the request processor module 320 and
executes the SQL statements 1n the SQL Block 338 on the
data access-based web service data data store 150. The web
service artifact 338 also executes any other instructions which
are a part of the data access-based web service. The web
service artifact 338 returns the results of the operations to the
request processor module 320 in the Web Service Engine 320.
The request processor module 320 then constructs a SOAP
envelope for the response and may perform additional pro-
cessing of the data, such as providing encryption for security
purposes. Once the request processor module 320 completes
the pre-response processing, the request processor module
320 returns the SOAP response to the requesting client 160.

FIG. 4 1s a schematic block diagram illustrating one
embodiment of a web services system 400 comprising mul-
tiple application servers 402, 420 and multiple databases 430,
432. Application server 402 includes a web service engine
404, runtime controller 406, and generic web service runtime
module 408. FIG. 4 depicts application server 402 1n elec-
tronic communication with a database 430 which includes the
web services management metadata store 440 and a database
432 comprising a data access-based web service data data
store 430.

FIG. 4 illustrates that the data stores 440 and 450 can be
physically separate repositories. Additional configurations
are possible where the data access-based web service data
data store 450 1s located on multiple physical units. A web
services management metadata store 440 may also be imple-
mented as a subset of a data access-based web service data
data store 450; such a configuration may be useful, for
example, to create a data access-based web service which
allows the generic web service runtime module 408 to ‘boot-
strap’; that 1s, a user may develop a data access-based web
service to manage and configure the web services manage-
ment metadata store 440 1tself, as a subset of the data access-
based web service data data store 450. In such an embodi-
ment, the web service metadata tool 210 may itself be a web
service provided by a generic web service runtime module
408.

Communication between the application servers 402 and
420 to the data stores 440 and 450 located on databases 430
and 432 1s crucial to the proper operation of the web services
system 400. Application server 420 includes a web service
engine 422, runtime controllers 424a-b and generic web ser-
vice runtime modules 426a-b. Each generic web service runt-
ime module 426a-b has one associated runtime controller
424 a-b. Each runtime controller 424a-b and each generic web
service runtime module 4264a-b 1s configured to communicate
with the web services management metadata store 440 and
the data access-based web service data data store 450. In
addition, each runtime controller 424a-6 contributes to the
maintenance ol accurate configuration data in the web service
engine 422. The runtime controllers 424a-b manage the con-
figuration data related to the data access-based web services
associated with their respective generic web service runtime
modules 426a-b.

As aresult, an individual may easily maintain data access-
based web services 1n accordance with certain embodiments
of the mvention from a database even when an n-to-n appli-
cation servers to databases relationship exists. For example, a
database administrator may create a new data access-based
web service definition 1n the web services management meta-
data store 440 as described 1n FIG. 2. When the new web
service definition 1s detected by the runtime controllers 406,
424a, and 4245, each runtime controller directs the respective
generic web service runtime modules 408, 4264, and 4265 to
create data access-based web services as described 1n con-

US 7,865,535 B2

19

nection with FIG. 3. The runtime controllers 406, 424a, and
424b also provide the information enabling the activation of

these web services to the web service engines 422 and 404 as
described 1n the discussion of FIG. 3.

Managing and creating data access-based web services in
this manner provides a number of advantages; a web service
can easily be deployed with high availability by providing
multiple embodiments of that service. A user can deploy
multiple copies of a particular data access-based web service
in a single operation on the database side. In addition, the
present invention simplifies the maintenance of a data access-
based web service distributed over numerous application
servers; as above, the changes can be made on various appli-
cation servers through a single operation at the database.
Further, those of skill in the art will recognize that this holds
true even where the application servers are not of the same
type; thus, a single operation can update or deploy data
access-based web services across a WebLogic Server, Web-
Sphere Server, and Oracle OC41 Server simultaneously with-
out requiring the user to account for the differences in the
application server platforms. The differences are handled
when the embodiments of the invention are deployed on the
different platforms; once the runtime controllers 406 and
424a-b and generic web service runtimes 408 and 426a-b are
in place, they use the web service metadata to create the data
access-based web services on their particular application
server 402 and 420 platiforms.

The schematic flow chart diagrams that follow are gener-
ally set forth as logical flow chart diagrams. As such, the
depicted order and labeled steps are indicative of one embodi-
ment of the presented method. Other steps and methods may
be concerved that are equivalent 1n function, logic, or effect to
one or more steps, or portions thereol, of the illustrated
method. Additionally, the format and symbols employed are
provided to explain the logical steps of the method and are
understood not to limit the scope of the method. Although
various arrow types and line types may be employed in the
flow chart diagrams, they are understood not to limit the scope
of the corresponding method. Indeed, some arrows or other
connectors may be used to indicate only the logical flow of the
method. For instance, an arrow may indicate a waiting or
monitoring period of unspecified duration between enumer-
ated steps of the depicted method. Additionally, the order 1n
which a particular method occurs may or may not strictly
adhere to the order of the corresponding steps shown.

FIG. 5 1s a schematic flow chart diagram illustrating one
embodiment of a method for deploying a generic web ser-
vices runtime module 1n accordance with the present inven-
tion. The deployment of a generic web service runtime mod-
ule 120 and the associated actions described 1n connection
with FIG. 3 constitute a one-time action necessary prior to
practicing the management of data access-based web services
in accordance with the present invention. A user 200 sets up
502 the web services management metadata store 140 on the
database 130. The user 200 may, for example, 1ssue CREATE
TABLE statements to set up the web services management
metadata store 140 and define the fields and structure appro-
priately. In one embodiment, the CREATE TABLE state-
ments may be as follows:

CREATE TABLE services (name VARCHAR (50) NOT NULL,
config XML NOT NULL, wsdl XML, lastModified TIMESTAMP,
PRIMARY KEY (name)) CREATE TABLE servicesXSLTScripts
(serviceName VARCHAR (50) NOT NULL, xsl XML NOT NULL,
fileName VARCHAR (255) NOT NULL, CONSTRAINT
FK_SERVICES FOREIGN KEY (serviceName) REFERENCES
services (name) ON DELETE CASCADE);

10

15

20

25

30

35

40

45

50

55

60

65

20

Those of skill in the art will appreciate that the exact state-
ments 1ssued can vary and will depend upon the information
that the user wishes to keep in the web services management
metadata store 140.

A user with access to, and appropriate privileges on, the
application server 102 configures 504 connection iforma-
tion to the database 130 such that application server 102 can
access mnformation on the database 130, allowing the runtime
controller 110 and generic web service runtime module 120
to access the web services management metadata store 140
and data access-based web service data data store 150. As
explained above in connection with FIG. 4, the user may have
to configure connection information for multiple databases in
certain embodiments of the web services system. The user
also deploys 506 the generic web service runtime module 120
and runtime controller 110 on the application server 102.
Deploying these modules may further include ensuring that
the modules can properly access, and be accessed by, the calls
from the web service engine 104 such that the coordination
necessary to the present ivention, as described above, can
OCCUL.

The application server user also sets up 508 any connec-
tivity and security settings necessary for the generic web
service runtime module 120. For example, the application
server user may perform additional fine-tuning such as cre-
ating and setting user ID and passwords. Once the generic
web service runtime module 120 1s properly deployed and
configured, a user 200 may begin to manage data access-
based web services from the database 130 1n accordance with
the present invention.

FIG. 6 1s a schematic tlow chart diagram illustrating one
embodiment of a method for creating a web service 1n accor-
dance with the present invention. A runtime controller 110
checks 602 a web services management metadata store 140
for changes to the web services management metadata using
a synchronization module 312. The synchronization module
312 determines 604 whether or not there has been a change 1n
the metadata; if there has been no change, the synchromization
module 312 waits until the next polling interval and repeats its
determination 604 until the synchronization module 312
detects a change 1n the web services management metadata
store 140. If a change occurs, the synchronization module 312
further determines 606 whether the change 1s the addition or
modification of a data access-based web service or a deletion.
Those of skill in the art will recognize that there are more
possible changes than those listed; for example, a change may
simply be a change 1n the status 270 of the web service, 1n
which case the affected web service 1s either deactivated or
reactivated based on the command. While additional actions
are not depicted 1n the example, the scope of the claimed
invention 1s not limited to the addition, modification, or
removal of web services.

If a change 1n the web services management metadata store
140 indicates that an existing web service should be modified
or that a new web service should be created, the definition
module 334 retrieves 608 a web service configuration docu-
ment 250. The validation module 332 then validates 610 the
web service configuration document 250 against a web ser-
vice configuration schema 333. The artifact module 336 cre-
ates 612 a web service artifact 338 from the validated web
service configuration document 250. The artifact module 336
also creates 614 a web service endpoint interface for the web
service, and the endpoint interface synchromzation module
314 registers the updated configuration information compris-
ing the endpoint interface with the web service engine 104.
Thenewly-created or modified data access-based web service
1s then ready to process web service requests.

US 7,865,535 B2

21

If the synchronization module 312 determines 606 that the
operation 1s a delete operation, the artifact module 336 1nac-
tivates 616 the affected web service artifact 338, and also
instructs the endpoint interface synchronization module 314
to mactivate 618 the web service endpoint interface from the
configuration information in the web service engine 104. In
one embodiment, inactivation of the web service artifact 338
and web service endpoint interface simply constitutes delet-
ing the artifact and interface. The artifact module 336 lever-
ages the dynamic deployment of web services of the applica-
tion server 102 to halt and/or remove the web service artifact
338. Advantageously, the user need not interact with the
application server 102.

FIG. 7 1s a schematic flow chart diagram illustrating one
embodiment of a method for handling a web service request.
A client 160 sends a web service request to the application
server 102. The request processor module 320 receives 702
the request. The request processor module 320 resolves 704
the request to an operation and associated parameters. The
request processor module 320 determines 706 an appropriate
web service artifact 338 associated with the web service
request.

The request processor module 320 passes control and any
parameters to the associated web service artifact 338 which
executes 708 a data-access based data operation in the form of
a web service. In one embodiment, executing a data operation
may consist of executing the statements 1n an SQL block 339.
When the data operation has been successtully executed, the
web service artifact 338 passes any result to the request pro-
cessor module 320. The request processor module 320 returns
710 the result as a web service response. Returning the
request as a web service response may further comprise com-
posing the response mto an appropriate SOAP envelope (or
other loosely coupled network format) and performing any
additional necessary data processing such as encryption.

The present invention may be embodied 1n other specific
forms without departing from its spirit or essential character-
istics. The described embodiments are to be considered 1n all
respects only as illustrative and not restrictive. The scope of
the invention 1s, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What 1s claimed 1s:

1. A computer program product comprising a computer
useable medium having a computer readable program for a
data server-managed web services runtime, the operations of
the computer program product comprising:

a generic web service runtime module accessing web ser-
vice metadata in a web services management metadata
store, wherein the web service metadata defines behav-
1ior and structure of a data access based web service for
accessing data 1n a datastore: wherein the web service
metadata 1s defined on a database management system
(DBMS), and wherein the web service metadata com-
prises: a web service name, a web service configuration
document, a web services description language docu-
ment and a timestamp;

the generic web service runtime module creating a data
access-based web service from the web service meta-
data, the generic web service runtime module operating
on an application server;

a synchronization module monitoring for a change 1n the
web service metadata 1n the web services management
metadata store;

and the generic web service runtime module automatically
managing the data access based web service defined by

10

15

20

25

30

35

40

45

50

55

60

65

22

the web service metadata 1n response to detecting the
change 1n the web service metadata 1n the web services
management metadata store;

the application server configured to support dynamic

deployment of web services.
2. The computer program product of claim 1, wherein a the
change 1n the web service metadata comprises web service
metadata added to a web services management metadata
store, automatically managing the data access based web
service Turther comprising:
retrieving the web service configuration document from
the web services management metadata store on the
DBMS;

creating an executable web service artifact from the web
service configuration document, the web service con-
figuration document satistying a web service configura-
tion schema; and starting the executable web service
artifact such that a request processor associated with the
generic web service runtime module accepts requests
associated with the web service artifact.

3. The computer program product of claim 2, further com-
prising creating a web service endpoint interface associated
with the web service artifact and providing the web service
endpoint interface to a web services engine.

4. The computer program product of claim 2, wherein
starting the web service artifact further comprises the web
service artifact executing web service requests without the
generic web service runtime module restarting.

5. The computer program product of claim 1, wherein the
change 1n the web service metadata comprises the web ser-
vice metadata being removed from the web services manage-
ment metadata store, and wherein automatically managing
the data access based web service comprises inactivating a
web service runtime artifact associated with the data access
based web service identified by the removed web service
metadata.

6. The computer program product of claim 3, further com-
prising 1nactivating a web service endpoint interface in a web
services engine, the web service endpoint interface associated
with the web service runtime artifact.

7. The computer program product of claim 1, wherein the
change in the web service metadata 1s determined by evalu-
ating the timestamp associated with the data access-based
web service defined by the web service metadata 1n the web
services management metadata store.

8. The computer program product of claim 1, wherein a
user defines the web service metadata 1n the web services
management metadata store using a tool provided by the
database management system (DBMS).

9. The computer program product of claim 2, wherein the
web service configuration document 1s an XML file and the
web service configuration schema 1s an XML Schema docu-
ment.

10. The computer program product of claim 2, wherein the
web service configuration document specifies Structured
Query Language (SQL) data operations on a data store.

11. The computer program product of claim 1, further
comprising publishing a web services description language
(WSDL) document associated with the data access based web
Service.

12. A computer program product comprising a computer
useable medium having a computer readable program for a
data server-managed web services runtime, the computer pro-
gram product comprising;

a generic web services runtime module accessing web

service metadata from a data store, wherein the data
store comprises web services metadata and data access

US 7,865,535 B2

23

based web service data, the web services metadata defin-
ing behavior and structure of a data access based web
service for accessing data 1n a datastore, wherein the
web service metadata 1s defined on a database manage-
ment system (DBMS), and wherein the web service
metadata comprises: a web service name, a web service
configuration document, a web services description lan-
guage document and a timestamp;

the generic web services runtime module automatically
changing the availability of the data access based web
service i response to a change 1n the web service meta-
data in the data store, wherein the data-access based web
service 1s created by the generic web service runtime
module using the web service metadata and executed by
the generic web service runtime module deployed on an
application server using the web service metatada meta-
data, the application server configured to support
dynamic deployment of web services;

a runtime controller comprising a synchronization module,
the synchronization module configured to determine
that there 1s a change in the web service metadata in the
data store and notifying the generic web services runt-
ime module of the change; and

the application server configured to support dynamic
deployment of web services.

13. The computer program product of claim 12, wherein

the generic web services runtime module further comprises:

a definition module configured to retrieve the web service
configuration document from the web services manage-
ment metadata store 1n response to the runtime control-
ler notifying the generic web service runtime module
that a new data access based web service exists;

a validation module configured to validate the web service
confliguration document against a web service configu-
ration schema associated with the generic web services
runtime module; and

an artifact module configured to create a web service runt-
ime artifact based on the web service configuration
document, the web service configuration document sat-
1stying the web service configuration schema associated
with the generic web service runtime module, the arti-
fact module further creating a web service endpoint
interface associated with the web service runtime arti-
fact.

14. The computer program product of claim 12, the runtime
controller further comprising an endpoint interface synchro-
nization module configured to utilize dynamic deployment
services of the application server to provide a web service
engine with a web service endpoint interface such that the
web service engine accepts requests associated with the web
service endpoint interface.

15. The computer program product of claim 12, the runtime
controller further comprising a management module config-
ured to allow a user to start, stop, and configure a generic web
services runtime module from the application server.

16. The computer program product of claim 13, wherein
the change 1n the web service metadata comprises web ser-
vice metadata being removed from the web service manage-
ment metadata store, the definition module further configured
to utilize dynamic deployment services of the application
server to remove the web service runtime artifact associated
with the removed data access based web services definition
and to notily the runtime controller of the removal of the web
service runtime artifact, the runtime controller configured to
utilize dynamic deployment services of the application server
to remove a web service endpoint interface associated with
the removed web service runtime artifact.

10

15

20

25

30

35

40

45

50

55

60

65

24

17. The computer program product of claim 12, the runtime
controller determining that there 1s a change 1n the web ser-
vice metadata by evaluating a timestamp associated with the
web service metadata 1n the web services management meta-
data store against a polling 1nterval.

18. The computer program product of claim 12, wherein a
user defines the web service metadata 1n the web services
management metadata store through a web service metadata
tool.

19. The computer program product of claim 13, wherein
the web service configuration document is an XML document
and the web service configuration schema1s an XML Schema
document.

20. The computer program product of claim 12, wherein
the web service configuration document specifies SQL data
operations on a data store.

21. The computer program product of claim 12, the generic
web services runtime further comprising a WSDL publica-
tion module publishing a web services description language
(WSDL) document associated with a data access based web
service.

22. A system for operation of a data server-managed web
services runtime, the system comprising;:

an application server configured to support dynamic
deployment of web services and host a plurality of web
services runtime modules, the application server com-
prising a memory device and at least one processor;

a database management system (DBMS) comprising a web
services management metadata store comprising web
services metadata; the metadata comprising: a web ser-
vice name, a web service configuration document, a web
services description language (WSDL) document, a web
service status and a timestamp;

the DBMS further comprising a data access based web
service data datastore comprising web service-acces-
sible data and stored procedures;

the application server further comprising a runtime con-
troller configured to operate on the application server
and to manage a single unique generic web service runt-
ime:; and

the application server further comprising a generic web
service runtime module configured to operate on the
application server and to create one or more web service
artifacts for one or more web services from the web
service configuration document the data-access based
web services configured to access the data access based
web service data datastore;

wherein the web service metadata defines behavior and
structure of a data access based web service for access-
ing data in a datastore:

a synchronization module monitoring for a change 1n the
web service metadata 1n the web services management
metadata store;

and the generic web service runtime module automatically
managing the data access based web service defined by
the web service metadata 1n response to detecting the
change 1n the web service metadata 1n the web services
management metadata store.

23. The system of claim 22 further comprising a web ser-
vice metadata tool that 1s part of the DBMS and that 1s con-
figured to commumnicate with the web services management
metadata store, the web service metadata tool configured to:

expose a user to data-access based web service data and
stored procedures available for deployment as a data
access based web service;

recerve metadata from the user, the metadata defining a
new data-access based web service:

US 7,865,535 B2

25

generate a the web service configuration document and the
WSDL document from the user metadata; and

store the web service name, the web service configuration
document, the WSDL document, the status, and the
timestamp 1n the web services management metadata
store.

24. The system of claim 22, wherein the runtime controller
turther comprises: a synchronization module configured to
determine a change in the web services management meta-
data store and to notily the generic web service runtime
module of the change; an endpoint interface synchromization
module configured to maintain web service endpoint inter-
face definitions 1n a web service engine; and a management
module configured to enable start and stop operations on web
service artifacts on a generic web services runtime module.

25. A system for operation of a data server-managed web
services runtime, the system comprising;:

a plurality of application servers, the application servers
configured to support dynamic deployment of web ser-
vices and host a plurality of web services runtime mod-
ules and runtime controllers, the application servers
comprising a memory device and at least one processor;

a plurality of databases comprising a database manage-
ment system (DBMS), the databases further comprising
a common web services management metadata store and
a common data access-based web service data datastore,
the web service management metadata store comprising
web service metadata defining behavior and structure of
a data access based web service, the web service meta-
data comprising a web service name, a web service
configuration document, and a web services description
language document and a timestamp; and

a plurality of generic web service runtime modules config-
ured to operate on one of the plurality of application
servers and to create one or more executable web service
artifacts on the application servers, the executable web

5

10

15

20

25

30

35

26

service artifacts created using one or more for one or
more web services from a web service configuration
documents stored in the web services management
metadata store and defined by a user from the DBMS;

the generic web service runtime module creating a data
access-based web service from the web service meta-
data, a synchronization module monitoring for a change
in the web service metadata in the web services manage-
ment metadata store;

and the generic web service runtime module automatically

managing the data access based web service defined by
the web service metadata 1n response to detecting the
change 1n the web service metadata 1n the web services
management metadata store.

26. The system of claim 25, wherein the generic web ser-
vices runtime modules on the plurality of application servers
further comprise redundant web service artifacts defining
data access based web services, the redundant web service
artifacts derived from web service metadata stored in the
common web services management metadata store.

277. The system of claim 23, wherein the plurality of appli-
cation servers comprises heterogeneous platforms.

28. The system of claim 235, wherein an application server
further comprises a plurality of runtime controllers and
generic web service runtime modules.

29. The system of claim 28, wherein the runtime control-
lers each have an associated unique generic web service runt-
ime module.

30. The system of claim 28, wherein the generic web ser-
vice runtime modules further comprise redundant web ser-
vice artifacts defiming data access based web services, the
redundant web service artifacts derived from web service
metadata stored 1in the common web services management
metadata store.

	Front Page
	Drawings
	Specification
	Claims

