US007861051B2
a2 United States Patent (10) Patent No.: US 7.861,051 B2
Accapadi et al. 45) Date of Patent: *Dec. 28, 2010
(54) IMPLEMENTING A FAST FILE (56) References Cited
SYNCHRONIZATION IN A DATA
PROCESSING SYSTEM U.S. PATENT DOCUMENTS
(75) 1 o< M. A 5 Austin TX (US) 5,774,715 A * 6/1998 Madany etal. 707/101
nventors: Jos M. Accapadi, Austin, TX (US); 5,828,876 A * 10/1998 Fish et al. weovvvvevveevreennn.. 707/1
Mathew Accapadi, Austin, TX (US); .
Andrew Dunshea, Austin, TX (US): 6,282,602 Bl 8/2001 Blumenauetal. 711/4
" " " 7.647.355 B2* 1/2010 Bestetal. .ovvvvveeeeeeereennnn, 1/1

Dirk Michel, Austin, TX (US)

(73) Assignee: International Business Machines

Corporation, Armonk, NY (US) * cited by examiner

(*) Notice: Subject to any disclaimer, the term of this Primary Examiner—Hashem Farrokh

patent 1s extended or adjusted under 33 (74) Attorney, Agent, or Firm—Dillon & Yudell LLP
U.S.C. 154(b) by 115 days.

(37) ABSTRACT
This patent 1s subject to a terminal dis-

claimer.

A system and method for implementing a fast file synchroni-
zation 1n a data processing system. A memory management
unit divides a file stored 1n system memory 1nto a collection of
data block groups. In response to a master (e.g., processing

(21) Appl. No.: 12/143,552

(22) Filed: Jun. 20, 2008

(65) Prior Publication Data unit, peripheral, etc.) modilying a first data block group
among the collection of data block groups, the memory man-
US 2008/0256324 A1 Oct. 16, 2008 agement unit writes a first block group number associated
with the first data block group to system memory. In response
Related U.S. Application Data to a master moditying a second data block group, the memory
(63) Continuation of application No. 11/259,898, filed on ~ Management unit writes the first data block group to a hard
Oct. 27. 2005, now Pat. No. 7.464.237. disk drive and writes a second data block group number
associated with the second data block group to system
(51) Int.CL. memory. In response to a request to update modified data
GO6F 12/00 (2006.01) block groups of the file stored in the system memory to the
(52) USeCL oo, 711/162; 711/112 hard disk drive, the memory management unit writes the
(58) Field of Classification Search 711/162, second data block to the hard disk drive.
711/112
See application file for complete search history. 6 Claims, 3 Drawing Sheets

300
(START)
YSDQ

DIVIDING UP A FILE INTO
GROUPS OF DATA BLOCKS

304

WRITE
__ OCCURS IN FILE 7 -

5’306

STORE BLOCK GROUP 310
NUMBER OF MOST YES

| FSYNC SYSTEM
RECENTLY MODIFIED DATA CALL EXECUTED 7

BLOCK GROUP IN INODE
YES

NO

{312

308

WRITE DATA BLOCK GROUP
CORRESPONDING TQ STORED
BLOCK GROUP NUMBER 1O

- HARD DISK DRIVE

WRITE PREVIOUSLY MODIFIED
DATA BLOCK GROUP TO
HARD DISK DRIVE

>
z AR
Y
\&
=)
7 ..
> o IARQ
2 TVHIHdRAd TVIHdINId WVHAHdRIAd YSI0 QuVH
Uz || a4z | AN 0}
- an
-
= AYONIN
NFLSAS 30 |
70
—
=
X
g 90 |
LINN 0l
- LINN LINN
e e o ININIDVYNYIA
m ONISSIDON ONISSIDOUd AIONIN
= .
= U701 47201 LINN DONISSID0Nd ez 0!
-

U.S. Patent Dec. 28, 2010 Sheet 2 of 3 US 7.861,051 B2

SYSTEM MEMORY 10

OPERATING SYSTEM 20

SHELL 20

.

I

KERNEL

PO

06

APPLICATION PROGRAMS 2

-

8

PROGRAM FILES 210

212

SYSTEM BUS 106/
PERIPHERAL BUS 114

HARD DISK DRIVE 11

PROGRAM FILES 220

27272

.

FIg. 2

U.S. Patent Dec. 28, 2010 Sheet 3 of 3 US 7.861,051 B2

300
START

302

DIVIDING UP A FILE INTO]
GROUPS OF DATA BLOCKS |

WRITE
OCCURS IN FILE 7

| YES

I STORE BLOCK GROUP

NUMBER OF MOST | Yt
RECENTLY MODIFIED DATA
BLOCK GROUP IN INODE

. - | YES
| 308
WRITE PREVIOUSLY MODIFIED |

DATA BLOCK GROUP 1O
-ARD DISK DRIVE

FSYNC SYSTEM
CALL EXECUTED 7

312

WRITE DATA BLOCK GROUP
CORRESPONDING TO STORED

BLOCK GROUP NUMBER TO
HARD DISK DRIVE

F1g. 3

US 7,861,051 B2

1

IMPLEMENTING A FAST FILE
SYNCHRONIZATION IN A DATA
PROCESSING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application 1s a continuation of U.S. patent
application Ser. No. 11/259,898, filed on Oct. 27, 2005,

entitled “System and Method for Implementing a Fast File
Synchronization 1 a Data Processing System”. Applicants
claim benefit of priority under 35 U.S.C. §120 to U.S. patent
application Ser. No. 11/259,898, which 1s incorporated by
reference herein 1n 1ts entirety and for all purposes.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates 1n general to the field of data
processing systems. More particularly, the present invention
relates to the field of memory management 1n data processing,
systems. Still more particularly, the present invention relates
to a system and method for fast file synchronization 1n data
processing systems.

2. Description of the Related Art

In modern data processing systems, random access memo-
ries (RAM) are frequently utilized to cache read and write
accesses to files stored on secondary storage devices such as
hard disk drives. Write access to these files may be non-
synchronous (1.e., modifications may be made to the file
stored in RAM without modifying the copy of the file stored
in the hard disk drive) and still be considered complete write
accesses.

Generally, copies ol the files stored RAM must be synchro-
nized with the corresponding copies stored on the hard disk
drive. Increasing RAM and file sizes result in lengthening file
synchronization times. Therefore, there 1s a need for a system
and method for fast file synchronization within data process-
Ing systems.

SUMMARY OF THE INVENTION

The present mvention includes a system and method for
implementing a fast file synchronization in a data processing
system. A memory management unit divides a file stored 1n
system memory into a collection of data block groups. In
response to a master (e.g., processing unit, peripheral, etc.)
moditying a first data block group among the collection of
data block groups, the memory management unit writes a first
block group number associated with the first data block group
to system memory. In response to a master modifying a sec-
ond data block group, the memory management unit writes
the first data block group to a hard disk drive and writes a
second data block group number associated with the second
data block group to system memory. In response to a request
to update modified data block groups of the file stored in the
system memory to the hard disk drive, the memory manage-
ment unit writes the second data block to the hard disk drive.

The above-mentioned features, as well as additional objec-
tives, features, and advantages of the present mvention will
become apparent 1in the following detailed description.

BRIEF DESCRIPTION OF THE FIGURES

The novel features believed characteristic of the invention
are set forth i the appended claims. The invention 1itself,
however, as well as a preferred mode of use, further objects

10

15

20

25

30

35

40

45

50

55

60

65

2

and advantages thereot, will best be understood by reference
to the following detailed description of an 1illustrative
embodiment when read in conjunction with the accompany-
ing drawings, wherein:

FIG. 1 1llustrates a block diagram of an exemplary data
processing system in which a preferred embodiment of the
present invention may be implemented;

FIG. 2 depicts a block diagram of the contents of an exem-
plary system memory and hard disk drive according to a
preferred embodiment of the present invention; and

FIG. 3 1s a high-level logical flowchart of an exemplary
method of implementing a fast file synchronization 1n a data
processing system according to a preferred embodiment of
the present invention.

DETAILED DESCRIPTION OF A PR
EMBODIMENT

(L]
Y

ERRED

With reference now to the figures, and 1n particular to FIG.
1, there 1s depicted a block diagram of an exemplary data
processing system in which a preferred embodiment of the
present invention may be implemented. As depicted, exem-
plary data processing system 100 includes processing unit(s)
102a-n, which are coupled to system memory 104 via system
bus 106. As 1llustrated, at least one processing unit 102a-
includes a memory management unit 103 for controlling
access between different levels of a memory hierarchy. As
well-known to those with skill in the art, the memory system
of modern data processing systems (e.g., data processing
system 100) 1s organized as a hierarchy, where the memory
unit closer to the processing units 1s a subset of any level
turther away, and all the data or mstructions 1s stored at the
lowest level, usually a hard disk, optical, or tape drive. The
memory components closer to the processing unit, usually a
cache hierarchy or system memory 104 have lower latency
access times than a lower level, such as the hard disk drive
110. Therefore, i1t 1s advantageous to store Irequently
accessed instructions and/or data 1n cache or system memory
104 for quicker access times. Only when requested instruc-
tions and/or data i1s not available in the cache or system
memory 104 1s hard disk drive 110 accessed.

Preferably, system memory 104 may be implemented as a
collection of dynamic random access memory (DRAM) mod-
ules. Typically, system memory 104 includes data and
instructions for running a collection of applications. Mezza-
nine bus 108 acts as an intermediary between system bus 106
and peripheral bus 114. Those with skill in the art will appre-
ciate that peripheral bus 114 may be implemented as a periph-
eral component interconnect (PCI), accelerated graphics port
(AGP), or any other peripheral bus. Coupled to peripheral bus
114 1s hard disk drive 110, which 1s utilized by data process-
ing system 100 as a mass storage device. Also coupled to
peripheral bus 114 is a collection of peripherals 112a-7.

Those skilled 1n the art will appreciate that data processing
system 100 can include many additional components not
specifically 1illustrated 1n FIG. 1. Because such additional
components are not necessary for an understanding of the
present mvention, they are not illustrated 1 FIG. 1 or dis-
cussed further herein. It should also be understood, however,
that the enhancements to data processing system 100 to
improve handling of shared resources provided by the present
invention are applicable to data processing systems of any
system architecture and are 1n no way limited to the general-
1zed multi-processor architecture or symmetric multi-pro-
cessing (SMP) architecture illustrated 1n FIG. 1.

FIG. 2 1s a block diagram depicting exemplary contents of
system memory 104 and hard disk drive 110 illustrated 1n

US 7,861,051 B2

3

FIG. 1 according to a preferred embodiment of the present
invention. As depicted, data that populates system memory
104 includes operating system 202, application programs
208, and program files 210.

Operating system 202 includes a shell 204 for providing
transparent user access to resources such as application pro-
grams 208. Generally, shell 204 1s a program that provides an
interpreter and an interface between the user and the operat-
ing system. More specifically, shell 204 executes commands
that are entered 1into a command line user interface or from a
file. Thus, shell 204 (as 1t 1s called in UNIX®), also called a
command processor in Windows®, 1s generally the highest
level of the operating system software hierarchy and serves as
a command interpreter. The shell provides a system prompt,
interprets commands entered by keyboard, mouse, or other
user input media, and sends the interpreted command(s) to the
approprate lower levels of the operating system (e.g., kernel
206) for processing. Note that while shell 204 1s a text-based,
line-oriented user interface, the present invention will support
other user interface modes such as graphical, voice, gestural,
etc equally well.

As depicted, operating system 202 also includes kernel
206, which includes lower levels of functionality for operat-
ing system 202, including providing essential services
required by other parts of operating system 202 and applica-
tion programs 208, including memory management, process
and task management, disk management, and mouse and
keyboard management.

Applications programs 208 may include any program such
as a word processor, spreadsheet, web browser, etc. Also
including in system memory 104 are program files 210. Pro-
gram {iles 210 may include data and/or mstructions utilized
by application programs 208 and/or operating system 202 to
perform system tasks. In a preferred embodiment of the
present mvention, file 212 1s divided 1nto a number of data
block groups 212a-n. Associated with file 212 1s file descrip-
tor 214 (hereinafter referenced as “inode” in FI1G. 2), which 1s
preferably a data structure that stores data describing features
of file 212 including, but not limited to: the name, location,
modification time, access time, the number of the last data
block group modified, etc. of file 212.

Hard disk drive 110 1s coupled to system memory 104 by
system bus 106 and peripheral bus 114, as previously dis-
cussed 1 conjunction with FIG. 1. Hard disk drive 110 stores
a collection of program files 220, which includes file 222. As
previously discussed, many computer systems implement a
memory hierarchy that includes, but 1s not limited to a cache,
a system memory, and a secondary storage device, such as
hard disk drive 110. Typically, an access to a cache results in
a low-latency access penalty, but the cache has minimal stor-
age capacity. On the other hand, a secondary storage device
has a high-latency access penalty, but has very large storage
capacity. Therefore, 1t 1s desirable for frequently accessed
data or 1nstructions to be stored 1n a cache or system memory
104 and hard disk drive 110 1s only accessed when requested
data or instructions are not found in the cache or system
memory 104. However, modifications of data and/or instruc-
tions stored 1n cache or system memory 104 will result in a
coherency problem, where the master copies of the data and/
or instructions stored 1n hard disk drive 110 do not retlect the
modifications. To ensure coherency between all levels of the
memory hierarchy, the master copies of files stored in hard
disk drive 110 must be updated with the copies stored in cache
and/or system memory 104.

Still referring to FI1G. 2, local file 212 1s a copy of master
file 222 that 1s stored 1n system memory 104. In a preferred
embodiment of the present invention, when a data block

10

15

20

25

30

35

40

45

50

55

60

65

4

group withinfile 212 (e.g., data block group 212a) 1s modified
by either operating system 202 or one of application pro-
grams 208, the data block group number of the modified data
block group (1n this case, data block group 212a) 1s written to
inode 214 and any previously-modified data block group 1s
updated to hard disk drive 110. The interaction between sys-
tem memory 104 and hard disk drive 110.

FIG. 3 1s a huigh-level logical flowchart diagram illustrating
an exemplary method of implementing a fast file synchroni-
zation according to a preferred embodiment of the present
invention.

As previously discussed, the prior art requires an update to
master file 222 be made only when a synchronization
between file 212 and master file 222 1s requested by an appli-
cation program 208. If file 212 1s a large file, the synchroni-
zation step latency could be prohibitively lengthy. Therefore,
the present invention provides a fast file synchronization by
periodically updating master file 222 with any modifications
made to file 212 stored 1n system memory 104. Inode 214
stores the most-recently modified data block group (e.g., data
block group 212a) of file 212. If another data block group 1s
subsequently modified (e.g., data block group 2125), a data
block group number associated with data block group 2125 1s
stored 1n mode 214 to indicate that data block group 21256 1s
now the most-recently modified data block group and data
block group 212a 1s written to the corresponding data block
group (e.g., data block group 222a) of master file 222 stored
in hard disk drive 110. If an file synchromization system call
(hereinafter referred to as an “Isync system call”) 1s executed
by an application program 208 (or any other program stored
within data processing system 100), only the most-recently
modified data block group (e.g., 1n this case, data block group
212b) 1s sent to hard disk drive 110, thus greatly reducing the
synchronization step latency.

The process begins at step 300 and continues to step 302,
which 1llustrates a file (e.g., file 212) being divided up nto
groups ol data blocks. Those will skill 1n this art will appre-
ciate that the process described 1n step 302 may be performed
at any time after a copy of file 212 is stored in system memory
104. The process depicted 1n step 302 may also be performed
by processor(s) 102a-n, operating system 202, any applica-
tion program 208, memory management unit 103 or any other
method or component within data processing system 100. In
a preferred embodiment of the present invention, file 212 1s
divided into block groups of predetermined number of 4
Kbyte-sized pages. Preferably, there 1s no limit on the number
of block groups.

The process continues to step 304, which depicts memory
management unit 103 determining whether file 212 has been
modified with a write command from a master (e.g., process-
ing umt 102a-n, peripherals 112a-n, etc.). It file 212 has been
modified with a write command, the process continues to step
306, which illustrates memory management unit 103 storing
the block group number of the most recently modified data
block group of file 212 1n inode 214. The process proceeds to
step 308, which illustrates memory management unit 103
writing the previously modified data block group to hard disk
drive 110. The process then returns to step 304 and continues
in an 1terative fashion.

Returning to step 304, 1t file 212 has not been modified
with a write command, the process transitions to step 310,
which illustrates whether an fsync system call has been
executed on file 212. In a preferred embodiment of the present
invention, an fsync system call requests all modifications to a
specific file (e.g., file 212) stored 1n system memory 104 to be
updated to the corresponding master file (e.g., master file 222)
stored 1n hard disk drive 110. Those with skill in the art will

US 7,861,051 B2

S

appreciate that the present invention 1s not limited to requir-
ing that an “fsync” system call be utilized. Any system call
that performs a file update may be utilized to implement the
present invention.

If an fsync system call has been executed, memory man-
agement unit 103 examines 1node 214, retrieves the data
block group number of the most recently modified data block
group 1n file 212, and updates the most recently modified data
block group to master file 222 1n hard disk drive 110, as
depicted in step 312. The process returns to step 304 and
proceeds 1n an iterative fashion. If an fsync system call has not
been executed, the process returns to step 304 and proceeds in
an iterative fashion.

As disclosed, the present invention includes a system and
method for implementing a fast file synchronization 1n a data
processing system. A memory management unit divides a file
stored 1 system memory mto a collection of data block
groups. In response to a master (e.g., processing unit, periph-
eral, etc.) moditying a first data block group among the col-
lection of data block groups, the memory management unit
writes a first block group number associated with the first data
block group to system memory. In response to a master modi-
tying a second data block group, the memory management
unit writes the first data block group to a hard disk drive and
writes a second data block group number associated with the
second data block group to system memory. In response to a
request to update modified data block groups of the file stored
in the system memory to the hard disk drive, the memory
management unit writes the second data block to the hard disk
drive.

It should be understood that at least some aspects of the
present invention may alternatively be implemented in a com-
puter-usable medium that contains a program product. Pro-
grams defimng functions on the present mvention can be
delivered to a data storage system or a computer system via a
variety of signal-bearing media, which include, without limi-
tation, non-writable storage media (e.g., CD-ROM), writable
storage media (e.g., a tloppy diskette, hard disk drive, read/
write CD-ROM, optical media), and communication media,
such as computer and telephone networks including Ethernet,
the Internet, wireless networks, and like network systems. It
should be understood, theretfore, in such signal-bearing media
when carrying or encoding computer readable instructions
that the direct method functions in the present invention,
represent alternative embodiments of the present mvention.
Further, 1t 1s understood that the present invention may be
implemented by a system having means 1n the form of hard-
ware, software, or a combination of software and hardware as
described herein or their equivalent.

While the present invention has been particularly shown
and described with reference to a preferred embodiment, 1t
would be understood by those skilled 1n the art that various
changes 1n form and detail may be made therein without
departing ifrom the spirit and scope of the invention.

What 1s claimed 1s:

1. A data processing system comprising:

at least one processing unit;

an interconnect coupled to said at least one processing unit;

a system memory coupled to said interconnect;

a computer-usable medium embodying computer program
code, said computer program code comprising instruc-
tions executable by said at least one processing unit and
coniigured for:
dividing a file stored 1n system memory into a plurality

of data block groups;

10

15

20

25

30

35

40

45

50

55

60

6

associating said plurality of data block groups with a
plurality of block group numbers;

in response to modifying a first data block group among
said plurality of data block groups, writing a first
block group number among said plurality of block
group numbers associated with said first data block
group to said system memory;

in response to modifying a second data block group
among said plurality of data block groups, writing
said first data block group to a hard disk drive and
writing a second block group number among said
plurality of data block group numbers associated with
said second data block group to system memory; and

in response to arequest to update modified data blocks of
said file stored 1n said system memory to said hard
disk drive, writing said second data block group to
said hard disk drive.

2. The data processing system according to claim 1,
wherein said instructions for dividing are further configured
for:

dividing said file stored in system memory into said plu-

rality of data block groups, wherein said plurality of data
block groups are 4 Kbyte-sized pages.

3. The data processing system according to claim 1,
wherein said instructions for dividing are further configured
for:

dividing said file stored in system memory into a predeter-

mined number of data block groups.

4. A computer-usable storage medium embodying com-
puter program code, said computer program code comprising
computer executable mstructions configured for:

dividing a file stored 1n system memory 1nto a plurality of

data block groups;

associating said plurality of data block groups with a plu-

rality of block group numbers;

in response to modifying a first data block group among,

said plurality of data block groups, writing a first block
group number among said plurality of block group num-
bers associated with said first data block group to said
system memory;

in response to modifying a second data block group among,

said plurality of data block groups, writing said first data
block group to a hard disk drive and writing a second
block group number among said plurality of data block
group numbers associated with said second data block
group to system memory; and

in response to a request to update modified data blocks of

said file stored 1n said system memory to said hard disk
drive, writing said second data block group to said hard
disk drive.

5. The computer-usable storage medium according to
claim 4, wherein said embodied computer program code fur-
ther comprises computer executable nstructions configured
for:

dividing said file stored 1n system memory into said plu-

rality of data block groups, wherein said plurality of data
block groups are 4 Kbyte-sized pages.

6. The computer-usable storage medium according to
claim 4, wherein said embodied computer program code fur-
ther comprises computer executable nstructions configured
for:

dividing said file stored 1n system memory into a predeter-

mined number of data block groups.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

