12 United States Patent

Shah et al.

US007856019B2

US 7,856,019 B2
Dec. 21, 2010

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)
(22)

(65)

(63)

(51)

(52)
(58)

(56)

CONVERGENCE OF MULTICAST TRAFFIC

Sunil P. Shah, San Jose, CA (US); Arnel
Lim, San Jose, CA (US); Donald B.
Grosser, Apex, NC (US); Jim Pan, San
Ramon, CA (US); Kesavan
Thiruvenkatasamy, Sunnyvale, CA
(US); Ki-Hong Park, Cupertino, CA
(US); Manpreet S. Sandhu, Santa Clara,
CA (US); Prakash Kashyap, Cupertino,
CA (US)

Inventors:

Extreme Networks, Inc., Santa Clara,
CA (US)

Assignee:

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 64 days.

Notice:

Appl. No.: 12/205,715

Filed: Sep. 5, 2008

Prior Publication Data

US 2010/0054246 Al Mar. 4, 2010

Related U.S. Application Data

Continuation-in-part of application No. 12/201,799,
filed on Aug. 29, 2008, now abandoned.

Int. CI.

HO4L 12/28 (2006.01)

HO4L 12/56 (2006.01)

US.CL 370/390; 370/392

Field of Classification Search

3770/389,
370/390, 392

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,766,482 Bl 7/2004 Yip et al.
6,801,506 Bl 10/2004 Dey
7,626,930 B2 12/2009 Agmon et al.

(Continued)
FOREIGN PATENT DOCUMENTS

WO WO 03/077459 9/2003

(Continued)
OTHER PUBLICATIONS

International Search Report & Written Opinion for PCT/US2009/
036539, mailed Jul. 24, 2009, 20 pages.

(Continued)

Primary Examiner—Ronald Abelson
(74) Attorney, Agent, or Firm—Blakely Sokoloifl Taylor &
Zatman, LL.P

(57) ABSTRACT

A multicast data packet sent from a source node 1s recerved by
a transit node. The multicast data packet includes a source
address and a multicast group address. A hardware cache miss
1s detected at the transit node for the multicast data packet.
The multicast data packet 1s hardware-flooded onto ports of
the network. The flooding consists of forwarding a copy of the
multicast data packet to neighbor nodes of the transit node
based on virtual local area network (VLAN) membership. A
cache-miss copy of the multicast data packet 1s sent to an
out-oi-line processing unit where it 1s processed 1n soltware.
The processing includes establishing, via a hardware abstrac-
tion layer, a hardware cache entry for the multicast data
packet. The cache-miss copy 1s not forwarded onto the net-
work.

5978378 A * 11/1999 Van Seters etal. 370/401 17 Claims, 7 Drawing Sheets
NODE 226
il N
MC TX P2
210 [P1
—[P3] NoODE 220
|JP1_ NODE 216
P
[Pz]| NODE212 [P2
P2
P1
iL NODE 222
NODE 214 P71] =5
P 73] NODE 218
MC RX
P _pg_] 254
NODEZ228 [P2. il
NODE 230

K NETWORK 200

US 7,856,019 B2
Page 2

U.S. PATENT DOCUMENTS

2005/0094634 Al
2007/0115989 Al*
2007/0204068 Al 8/2007 Oku et al.
2007/0253326 Al 11/2007 Saha et al.
2008/0240118 Al* 10/2008 Royetal.cceeeenenenens 370/400
2009/0269062 Al* 10/2009 Jesteletal. 398/59

5/2005 Santhanakrishnan et al.
5/2007 Mirtorabr et al. 370/392

FOREIGN PATENT DOCUMENTS

WO WO 2004/102853 11/2004
WO WO 2008/055427 5/2008
OTHER PUBLICATIONS

International Search Report and Written Opinion mailed Sep. 29,
2009 for PCT/US2009/051681.

Christensen, M., et al., “Considerations for Internet Group Manage-
ment Protocol (IGMP) and Multicast Listener Discovery (MLD)
Snooping Switches™, ric4541 txt. IETF Standard, Internet Engineer-
ing Task Force, May 2006.

Christensen, M., et al., “IGMP and MLD Snooping Switches”, draft-
ietf-magma-snoop-00.txt. IETF Standard-Working-Draft, Internet
Engineering Task Force, Oct. 2001.

Schneider, K., et al., “Design and Implementation of an Offload
Engine for Internet Group Messaging Protocol Multicast Snooping™,
IET Communications. 2008, vol. 2, No. 3, pp. 484-492.

Serbest, Y., et al., “Supporting IP Multicast over VPLS”, draft-
serbest-12vpn-vpls-mcast-03.txt. IETF Standard Working Draft.
Internet Engineering Task Force. Jul. 2005.

Non-Final Office Action for U.S. Appl. No. 12/098,286, mailed Dec.
17, 2009, 18 pages.

Pending U.S. Appl. No. 12/098,286, filed Apr. 4, 2008, inventor
Kashyap et al.

* cited by examiner

US 7,856,019 B2

Sheet 1 of 7

Dec. 21, 2010

0Ll
J0IA3d
MHOMLAN

U.S. Patent

021 (S)31gv.L FHVYMANVH

0€1 LINN
ONISSJ004d

Vel
ddOVNVIA
LSVOILTNA

=

orl
d0S55300dd LIMoVd

gl
1VH

U.S. Patent Dec. 21, 2010 Sheet 2 of 7 US 7,856,019 B2

P1
NODE 222
P2
MC RX
224

P2
NODE 220
P1
N NETWORK 200

P3

NODE 226
P1
P1
NODE 218
P2

-

P2
P3

P1
NODE 23

P2
NODE 214
P1
P2

MC TX

210

BT
E NODE 217

P2
28 [P

FIG. 2
P
NODE 228

U.S. Patent Dec. 21, 2010 Sheet 3 of 7 US 7.856,019 B2

RECEIVE MULTICAST PACKET
310

FORWARD PACKET
330

FLOOD PACKET
240

SEND COPY TO PROCESSING
UNIT
390

CREATE HW CACHE ENTRY
360

FIG. 3

(LYY HOI4d) ¥ 91

US 7,856,019 B2

_ 90y 140d AYVINIYd

Ly 1d0d ONIY

/0¥ 1 40d AYYANOD3S

1y 3SVaVLYQ —
307 3SvavLva _

m ONIGHYMYOS NI Y MO v0p
S SNYIA V1VQ
3 507 3LY1S
- —

b7 adlL 0Ly M3INIL V4

AMYMYO4T4d

= 917 140d 9T M3INIL OT13H
S a3x0019 daL s
< TTF 300N LISNVAL #0F JAON 9315V 505 NYIA
>
: | TONLINOD

/17
(‘913 'ad4 HSN14 ‘NMOG
I MNIT ‘MOIHD-HLTIVIH)

JOVSSdA T041NOD
-] 000
00F WALSAS 54V

10¥ NIVIWOQ SdV3

U.S. Patent

)
as
- .
= G 9l4
&
Iy ~
L .
I~
S
-
__ 0¥S
026 (S)318V.L IIYMAUYH M0SSIN0Nd [TV
I~
Cojny
-
\r,
>
E 2€5 TANYIA
99
_ __
= 0ES LINN
= ONISSIO0NC 3°C
B $$300 e
w WH
=
018G
30IA3A T
WYOMLIN o

o>dVd

U.S. Patent

U.S. Patent Dec. 21, 2010 Sheet 6 of 7 US 7.856,019 B2

DETECT TOPOLOGY CHANGE
010

CLEAR IGMP SNOOPING TABLE
020

SEND PROXY QUERIES
030

DETECT CACHE MISS

040

FLOOD PACKET
650

SEND COPY TO PROCESSING
UNIT

060

CREATE HW CACHE ENTRY
o FIG. 6

U.S. Patent Dec. 21, 2010 Sheet 7 of 7 US 7.856,019 B2

/ 700

702 710
PROCESSOR
VIDEQ DISPLAY
INSTRUCTIONS 126
706 708
712
STATIC MEMORY ALPHA-NUMERIC
INPUT DEVICE
722
714
NETWORK
INTERFACE DEVICE CURSOR CONTROL
DEVICE
B
U
S

7160

COMPUTER READABLE
MEDIUM 724

INSTRUCTIONS 726
H 704

MAIN MEMORY
.

INSTRUCTIONS 726

WORLD WIDE WEB

FIG. 7

US 7,856,019 B2

1
CONVERGENCE OF MULTICAST TRAFFIC

This application 1s a Continuation-in-Part of U.S. patent

application Ser. No. 12/201,799 entitled Improved Conver-
gence of Multicast Traffic and filed on Aug. 29, 2008, now
abandoned and claims priority thereto.

FIELD

Embodiments disclosed herein relate to computer net-
working and more particularly to convergence of multicast
traffic after a topology change 1n a network.

BACKGROUND

Multicasting 1s a technique for point-to-multipoint com-
munication over an Internet Protocol (IP) infrastructure. Mul-
ticasting leverages network infrastructure to require that a
source only send a single packet out to the network, even if 1t
needs to be delivered to multiple destinations. The leveraging,
1s accomplished by having network nodes replicate the packet
(only as needed) for delivery to multiple receivers.

A multicast group address (e.g., an IP multicast) 1s used by
sources and recervers to send and recerve content. Sources use
the multicast group address as the destination IP address in
their data packets. Recetvers use the multicast group address
to “subscribe” to the multicast traffic associated with the
multicast group address. In other words, these receivers use
the multicast group address to communicate to the network
the desire to receive trailic addressed to that multicast group.

The Internet Group Management Protocol (IGMP) 1s an
example of a protocol that 1s used to manage the membership
of IP multicast groups. Typically, IP hosts send out IGMP
queries which are broadcast to other network hosts via mul-
ticast routers. Network devices (e.g., Layer 2 switches) can
“listen 1n” on conversations between hosts and routers, a
process known 1n the art as IGMP snooping. When a device
hears a multicast group “join” message from a host, the device
notes the interface (e.g., port) upon which it heard the mes-
sage and adds the interface to the group. Similarly, when a
device hears a multicast group “leave” message or aresponse
timer expires, the switch will remove that host’s switch inter-
face from the group. These “join™ and/or “leave” messages
are commonly referred to as “IGMP reports.” To that end, an
IGMP snooping table maintains in hardware (e.g., a cache)
the list of hosts and/or interfaces that are members of a mul-
ticast group based on IGMP reports.

When there 1s a topology change 1n a network that uses
multicasting, the IGMP snooping table 1s cleared and IGMP
queries are sent out, so that devices in the network can relearn
the IGMP snooping membership. If there are data packets in
the network during a topology change, these packets will
experience a cache miss 1n hardware because of the clearing
of the IGMP snooping table. All of the packets that experience
a cache miss are sent to the device CPU for forwarding 1n
soltware, which 1s sometimes referred to as “slow-path”™ for-
warding because forwarding in software i1s significantly
slower than forwarding packets in hardware.

More problematic, however, 1s the case where there are
thousands of data packets in the network during a topology
change. In this case, there are thousands of data packets in the
CPU queue, consuming CPU resources which would other-
wise be spent re-programming the hardware cache with new
IGMP snooping table entries. In other words, as the number
of multicast packets in the network increases, 1t increases the
convergence time of the multicast traffic 1n the network (1.e.,
the time 1t takes to re-program the hardware cache to restore

10

15

20

25

30

35

40

45

50

55

60

65

2

an acceptable rate of cache misses 1n the multicast tratfic).
Additionally, the scenarios described above assume a single
virtual local area network (VLAN). If a large number (e.g.,
thousands) of VL ANs exist in the network, each IGMP query
would be sent out on each of the VL ANSs, causing all of the
hosts on each VL AN to respond with their respective IGMP
reports indicating their IGMP membership. Thus, the CPU 1s
burdened with even more slow-path forwarding, exacerbating
the multicast convergence problem even further.

SUMMARY OF THE INVENTION

Embodiments disclosed herein facilitate convergence of
multicast traflic 1n a network after a topology change. When
a network node receives a multicast data packet, the packet 1s
processed. If the node detects a cache miss for the data packet,
that packet 1s flooded via hardware onto ports of the network.
Additionally, a copy of the packet (that caused the cache miss)
1s sent to an out-of-line processing unit. The copy of the
packet 1s processed without forwarding the copy onto the
network from the processing unit. Processing of the packet
includes establishing a hardware cache entry for the packet
via a hardware abstraction layer.

BRIEF DESCRIPTION OF THE DRAWINGS

The following description includes discussion of figures
having 1llustrations given by way of example of implementa-
tions of embodiments of the invention. The drawings should
be understood by way of example, and not by way of limita-
tion. As used herein, references to one or more “embodi-
ments” are to be understood as describing a particular feature,
structure, or characteristic included 1n at least one implemen-
tation of the invention. Thus, phrases such as “in one embodi-
ment” or “in an alternate embodiment” appearing herein
describe various embodiments and implementations of the
invention, and do not necessarily all refer to the same embodi-
ment. However, they are also not necessarily mutually exclu-
SIVE.

FIG. 1 1s a block diagram 1llustrating a network device.

FIG. 2 1s a block diagram 1llustrating a network that uses
multicasting according to various embodiments.

FIG. 3 15 a flow diagram illustrating a process for multicast
convergence.

FIG. 4 1s a block diagram 1llustrating a prior art Ethernet
Automatic Protection Switching (EAPS) system.

FIG. 5 15 a block diagram illustrating a network device that
employs Ethernet Automatic Protection Switching (EAPS).

FIG. 6 15 a flow diagram 1llustrating a process for multicast
convergence in an EAPS ring network.

FIG. 7 1s a block diagram 1llustrating a suitable computing,
environment for practicing various embodiments described
herein.

DETAILED DESCRIPTION

In the following description, numerous details are set forth.
It will be apparent, however, to one skilled in the art, that the
present invention may be practiced without these specific
details. In some instances, well-known structures and devices
are shown 1n block diagram form, rather than in detail, 1n
order to avoid obscuring the present invention.

As provided herein, methods, apparatuses, and systems
tacilitate improved convergence of multicast traific 1n a net-
work after a topology change. When a network node receives
a multicast data packet, the packet 1s processed. 11 the node
detects a cache miss for the data packet, that packet 1s tlooded

US 7,856,019 B2

3

via hardware onto ports of the network. Additionally, a copy
of the packet (that caused the cache miss) 1s sent to an out-
of-line processing unit. The copy of the packet 1s processed
without forwarding the copy onto the network from the pro-
cessing unit. Processing of the packet includes establishing a
hardware cache entry for the packet via a hardware abstrac-
tion layer.

In some embodiments, cache misses occur and are detected
when a new multicast stream begins sending traific on a
network. Rather than simply forwarding the cache misses to a
CPU for learning (in hardware) and subsequent forwarding
(1.e., slow-path forwarding) onto the network (e.g., IGMP
snooping enabled), a special forwarding mode 1s employed.
In this special forwarding mode, packets causing cache
misses are itially tlooded via hardware to ports of the net-
work. In addition, the cache misses are sent to a CPU for
processing. The processing includes learning the address(es)
of each packet (e.g., source IP address and multicast group 1P
address) and programming new entries in hardware. By pro-
gramming entries in hardware, future packets having the
same source and group (S,) address will cause a cache hit
and be immediately forwarded out only those ports where
there are actual receivers. Forwarding only on ports where
there are actual recervers may be referred to as “selective
torwarding.” Packets that are selectively forwarded will cease
to be flooded from that point forward.

In various embodiments, the processing by the CPU spe-
cifically does NOT 1include forwarding cache-miss packet
copies from the CPU out onto the network (e.g., “slow-path
forwarding,” “software-forwarding,” etc.). This 1s because
slow-path forwarding would cause duplicate packets to be
sent out on the network (given that the packets causing cache
misses are already being tlooded to the network). The special
torwarding mode may be controlled by a user, for example,
via a command line interface (CLI).

In embodiments that are employed for use in a network
having a ring topology (e.g., an Ethernet automatic protection
switching (EAPS) ring topology), a similar special forward-
ing mode may be triggered automatically 1n response to
detecting a topology change in the network. When the topol-
ogy changes 1n an EAPS ring network, forwarding entries
(referred to as forwarding database (FDB) entries) are cleared
and have to be relearned. Thus, in these embodiments, a
detected topology change will cause the ring network to enter
a hardware flooding mode that 1s capped by a timer. As used
herein, tlooding refers to sending copies of packets on egress
ports of a network device based, for example, on VLAN
membership. In other words, flooding may cause packets to
be forwarded on egress ports of a network device, but not
necessarily on all egress ports.

During the flooding period, packets that cause cache
misses are also forwarded to a network device processing
unit. The processing unit creates a multicast cache entry for
cach cache-miss packet and the cache entries are pro-
grammed 1n hardware via a hardware abstraction layer. Sub-
sequent packets that produce a hit on a hardware entry will be
torwarded 1n hardware based on the programmed egress ports
associated with the entry. In this way, cache misses will
eventually taper off as the new multicast cache entries are
programmed.

When the hardware flooding mode timer expires, the net-
work device may revert back to 1ts previous operational mode.
For example, 11 the device were operating 1n an IGMP snoop-
ing-enabled mode prior to the “mmitial hardware tlooding”
mode, the device might revert back to that mode upon expi-
ration of the timer. In embodiments that do not use IGMP
snooping, it may be necessary to push the current/updated

10

15

20

25

30

35

40

45

50

55

60

65

4

multicast cache list to the hardware abstraction layer (HAL)
upon expiration of the time to prevent future cache misses.

FIG. 1 1s a block diagram illustrating a network device
according to various embodiments. Network device 110
includes one or more hardware tables 120 (e.g., cache) a
processing unit 130 (e.g., a central processing unit (CPU), a
network processing unit (NPU), etc.), and a packet processor
140. Packet processor 140 recerves incoming packets. For
cach incoming packet (having a source address and a multi-
cast group address), packet processor 140 does a lookup of
hardware table 120 to determine 11 the source address and the
multicast group address (S, (G) of the incoming packet match
one of the entries in the table. If yes, then packet processor
140 forwards the packet out to the network (e.g., based on the
multicast group address).

If the (S, G) address combination does not match an entry
in table 120, packet processor 140 floods all traffic having the
(S,) address combination to the network and generates a
cache-miss. This cache-miss event, or simply cache-miss, 1s
sent to processing unit 130, specifically to kernel 132. Kernel
132 sends the cache-miss to a multicast (MC) manager 134.
In some embodiments, flooding will cause traific to be sent
out on all egress ports of network device 110. In other
embodiments, packets will be forwarded only on egress ports
based on, for example, VLAN membership.

In COIl]llIlCthIl with packet processor 140 tlooding the (S,
G) tratfic, processing unit 130 works to resolve the cache-
miss. MC manager 134 initiates proxy IGMP queries that are
sent out on the network. Based on any IGMP reports received
in response to the proxy IGMP queries, MC manager 134
programs hardware abstraction layer (HAL) 136 with for-
warding entries for (S,) traflic. HAL 136 subsequently
configures hardware table 120 to include the forwarding
entries. Once forwarding entries have been “learned” (i.e.,
programmed) for the (S, G) group, subsequent (S, G) traffic
will “hit” hardware table 120 and be forwarded according to
the forwarding entries (1.e., without flooding). It 1s important
to note that cache-misses are not forwarded back out to the
network after processing (as would be the case 1n a standard
IGMP snooping-enabled mode). In embodiments described
herein, cache-misses are not slow-path forwarded by the CPU
to the network so as to avoid duplicate packets (because, as
discussed, the packets will have already been forwarded to the
network via the hardware-tflooding).

The mnitial hardware-tflooding mode used by device 110 1s
controlled by a user via a command line interface 138 1n
various embodiments. Thus, the user can have the device
operate 1n a normal IGMP snooping-enabled or snooping-
disabled mode, or the user can operate the device to use IGMP
snooping-enabled with 1nitial hardware-tlooding mode.

FIG. 2 1s a block diagram illustrating a network that
employs multicasting and IGMP snooping. In a standard
snooping-enabled scenario, network 200 1s one 1 which a
multicast transmitter (MC Tx) 210 sends IGMP queries to
determine which nodes, if any, are interested in receiving
multicast traffic for a particular multicast group, for example,
group ABC. Multicast recerver (MC Rx) 224 receives the
query from MC Tx 210 and reports that 1t 1s interested 1n
receiving multicast traflic for group ABC. The various net-
work nodes “listen” to the communication between MC Tx
210 and MC Rx 224, noting that MC Rx 224 1s interested 1n
multicast traific for group ABC by updating their respective
multicast lists for the group ABC. For example, node 222
adds port P2 to 1ts multicast list for the group ABC given that
MC Rx 1s communicatively connected to node 222 via port
P2. Likewise, node 220 adds 1ts port P2 to 1ts multicast list for
group ABC given that port P2 1s the port by which tratfic will

US 7,856,019 B2

S

reach MC Rx 224. As illustrated in FIG. 2, nodes 218, 216,
214 and 212 also add their respective P2 ports to their respec-
tive multicast lists for group ABC. In this way, group ABC
traific arriving at node 212 will be appropriately forwarded
through the network to MC Rx 224. Additionally, in the
standard snooping-enabled scenario, cache-misses are sent to
the CPU. These packets may be slow-path forwarded by the
CPU, but they will not be forwarded 1n hardware until the
hardware abstraction layer programs the hardware.

However, 1n various scenarios, a new multicast stream may
be started on network 200 without the aforementioned IGMP
queries and/or reports. For example, if a stream for group
XYZ 1s started from node 228 without any preceding IGMP
queries and/or reports, each group XY Z packet that reaches
network 200 will cause a cache-miss, given that none of the
nodes 1n network 200 has any multicast list entries for group
XY 7. Using the standard IGMP snooping-enabled technique,
described above, these cache-misses will build up 1n a slow-
path forwarding queue 1n the processing unit of the network
node, sapping processing resources and delaying conver-
gence of the XYZ stream. The convergence delay 1s com-
pounded 11 multiple new and different streams are started at or
relatively near the same time on network 200.

In various embodiments, a cache-miss at a network node,
such as described above, will cause the network node to enter
a state of iitial hardware-tlooding. As used herein, “hard-
ware-flooding” or “initial hardware-tlooding™ refers to the act
ol hardware-flooding as an 1nitial response to a cache-miss.
As described previously, cache-misses are sent to the network
device processing unit (€.g., processing unit 130 of F1G. 1) for
processing. The mitial hardware-tlooding occurs, at least in
part, during the period of time that the cache miss 1s being
processed by the processing unit. Once the cache miss has
been processed (e.g., a new entry has been programmed in
hardware for the XY Z multicast group), subsequent packets
belonging to the XY Z group will “hit” the cache (i.e., a table
lookup for the XYZ packets will generate a match). Cache
hits are honored (1.e., they will be forwarded only on the
egress ports defined in the corresponding forwarding entry as
opposed to flooding them).

Thus, as the number of packets “hitting” the cache
increases, the size of the processing queue for cache-misses in
the processing unit decreases. The initial hardware-flooding
reduces the processing burden of the processing unit, facili-
tating faster convergence of the stream(s).

FI1G. 3 1s a flow diagram 1illustrating a process for multicast
convergence. A multicast packet 1s received 310 at a network
device. The network device determines 320 whether there 1s a
cache-hit or a cache-miss for the packet, based at least in part
on the source IP address and the group multicast IP address
(1.e., (S,) address combination) of the packet. 11 the packet
causes a cache-hit, then the packet 1s forwarded 330 accord-
ing to the forwarding information in the cache entry. It the
packet causes a cache-miss, the network device enters a state
of mitial hardware-tlooding 340 with respect to traific having
that (S, G) combination. The hardware-flooding causes the
packet to be forwarded on egress ports of the network device
per VLAN membership. In other words, the packet may be
forwarded on all egress ports of the network device, but not
necessarily all egress ports.

In addition to flooding the packet, a copy of the packet that
caused the cache-miss 15 sent 350 to a processing unit on the
network device. The processing unit then creates 360 a cache
entry for the (S, G) combination. The sending and processing
of the cache-miss packet may occur before, during, and/or
after the hardware-flooding commences. The cache entry
allows subsequent packets with the same (S, G) combination

22

10

15

20

25

30

35

40

45

50

55

60

65

6

to be forwarded 1n hardware without cache-miss processing.
As mentioned above, the processing of the cache-miss packet
does not include slow-path forwarding because 1t would cre-
ate duplicate packets on the network.

FIG. 4 1s a block diagram 1llustrating a prior art Ethernet
Automatic Protection Switching (EAPS) system. The EAPS
system 400 consists of one or more EAPS domains 401. A
control VL AN 403 is created for each EAPS domain 401 for
the purpose of sending and recerving EAPS system control
messages 417. The EAPS domain 401 1s created to protect a
group of one or more data carrying VLANs 404.

The EAPS system 400 operates on a ring network 402. One
node on the ring network 402 1s designated as the master node
405. The two ring ports on the master node 405 are designated
as primary port 406 and secondary port 407. All other nodes
on the ring network 402 are transit nodes 411 and each has 1ts
respective ring ports 412. Fach master node 405 and transit
node 411 has a forwarding database (FDB), 408 and 413
respectively, i which they store information about the net-
work communication paths. The master node 405 has a state
register 409 for storing the state of the rning network 402. For
the purpose of illustration, the states of the ring network 402
are described either as “failed,” meaning there 1s a fault or
break 1n the ring network 402, or as “complete,” meaming that
the ring network 1s unbroken or the ring network has been
restored and all nodes are communicating correctly. The tran-
sit nodes 411 have a state register 414 1n which they store the
pre-forwarding state, and a pre-forwarding timer 415. The
transit nodes 411 also have a temporarily-blocked-port stor-
age area (IBP) 416 1n which they store the 1dentification of
the port that 1s temporarily blocked.

The master node 405 and the transit nodes 411 use control
messages 417 to communicate via the control VLAN 403.
Some examples of control messages 417 1n embodiments are
health-check messages, link-down messages, and flush-FDB
messages. The transit node 411 recognizes a message sent on
the control VLLAN 403 as a control message 417 because 1t has
a special MAC (media access control) address that corre-
sponds to an entry 1n the forwarding database 413. The master
node and the transit nodes forward the control message 417
prior to copying it to the central processing unit (CPU) of the
node where, among other things, 1t 1s logged for use in
troubleshooting. Forwarding the control message 417 before
processing by the CPU facilitates the convergence of the ring
network 402 after a fault in substantially less time than can be
achieved with previous prior art methods.

The master node 405 has a hello-timer 418, which 1s the
clock for sending the health-check control messages 417.
Once the hello-timer 418 1s started, it prompts the master
node 405 to send a health-check message 417 on the control
VLAN 403 at regular intervals, for example evVery one sec-
ond. The health-check message 417 1s forwarded around the
ring network 402 and returns to the master node 405 nearly
instantaneously. When the master node 405 sends the health-
check message 417, it sets the fail-timer 410. Should the
fail-timer 410 expire before the health-check message 1s
returned to the master node 405, the master node 405 deter-
mines that there 1s a fault in the ring network 402. The health-
check messages 417 are sent even during a fault. When the
fault 1s restored, the master node 405 knows immediately
because the return of the health-check message 417 1s
resumed.

FIG. 5 15 a block diagram 1llustrating a network device that
employs Ethernet Automatic Protection Switching (EAPS)
according to various embodiments. Network device 510
includes one or more hardware tables 520 (e.g., cache) a
processing unit 330 (e.g., a central processing unit (CPU), a

US 7,856,019 B2

7

network processing umit (NPU), etc.), and a packet processor
540. In some embodiments, whenever there 1s an EAPS topol-
ogy change, EAPS 538 sends a MC manager 534 a list of
VL ANs along with 1ts port lists. MC manager 534 already has
a list of forwarding entries that have been programmed 1n
hardware abstraction layer (HAL) 536 and a list of other
entries that are 1n 1ts software table based on IGMP reports.

Thus, when MC manager 534 receives the list of VL ANs
and the port lists from EAPS 538, MC manager 5334 treats this
information much like it would IGMP reports. In other words,
tor forwarding entries that have already been programmed 1n
HAL 536, MC manager 534 will add the EAPS egress ports
(corresponding to particular multicast streams) to 1ts cache
list and send the updated cache list to HAL 536. The differ-
ence 1s that the EAPS egress ports lists are received by MC
manager 534 much more quickly than IGMP reports, thus
significantly reducing the convergence time of the multicast
stream(s).

For forwarding entries that have not been programmed in
HATL 536 for aknown multicast stream, MC manager 534 will

dd the EAPS ports to 1ts existing multicast group list. For
streams that are not in HAL 536, data tlow will only resume
when such streams reach the network device, cause a Layer 2
(L2) cache miss and the .2 cache miss 1s sent to MC Manager
534. MC manager 534 will process the cache miss by updat-
ing HAL 536 with a new cache entry. Once the new cache
entry has been created, data flow for the new stream(s) will be
switched in hardware.

In other embodiments, 1n addition to receiving port lists
from EAPS 538 (rather than wait for IGMP reports), MC
manager 534 initiates a hardware-tlooding state and starts a
timer. The timer might be around 435 seconds 1n length in some
embodiments, but it could be much shorter or longer depend-
ing on the particular needs of the network. As part of initiating
the flooding state, MC manager 534 programs HAL 3536 to set
relevant VLANSs 1nto a hardware-flooding mode. With this
hardware-flooding state/mode, MC manager 534 receives 1.2
cache misses, creates cache entries and programs HAL 536,
as described previously, and L2 cache misses will begin to
taper oil as hardware entries get populated. However, the
hardware (1.e., packet processor 540 and hardware table(s)
520) will be 1n a state such that it 1s 1n the hardware-flooding
mode (e.g., on a particular VLAN), but at the same time,
cache hits on the hardware will be honored by forwarding
based on the egress port list for the cache hit. Thus, for those
entries programmed 1n hardware, packets will not be flooded
or sent to processing unit 330. However, for all other multicast
data packet where there 1s a cache miss, these packets will be
flooded 1n hardware while a copy of the cache miss packet 1s
sent to CPU 330 for processing (1.e., learning and/or gener-
ating a new cache entry without forwarding the packet back
out to the network).

Once the flooding timer expires, MC manager 534 reverts
back to the standard IGMP snooping-enable mode.

It should be noted that when EAPS 538 sends a message to
MC manager 534 to mmitiate hardware-flooding, existing
cache entries should not be flushed. Otherwise, additional
cache misses will be generated and sent to processing unit
530, causing further processing strain.

In embodiments that involve EAPS rings, it 1s possible that
an egress port for which there 1s no recerver 1s added to a
multicast group list. Using regular IGMP ageing, traffic sent
to a port with no recerver will eventually age out, but it may be
longer than 1s desirable. Thus, a “fast” age-out could be
employed. For example, 11 IGMP queries are being used, an
IGMP report should be expected within a certain period of
time (e.g., 5-10 seconds, or shorter or longer). The expected

10

15

20

25

30

35

40

45

50

55

60

65

8

time for receiving the report could be used as the “fast”
age-out time to reduce the amount of unnecessary traffic.

FIG. 6 15 a flow diagram 1llustrating a process for multicast
convergence 1n an EAPS ring network. A topology change 1s
detected 610 1n the EAPS network. In response, at least one
node clears 620 1ts IGMP snooping table. Proxy IGMP que-
ries are sent 630 to relearn multicast forwarding entries. At
some point, a cache miss 1s detected 640 on the EAPS net-
work. Rather than send the cache-miss packet to the process-
ing umt for slow-path forwarding, the packet 1s tflooded 650
via hardware out to the network on one or more egress ports.
A copy of the cache-miss packet 1s sent 660 to the device’s
processing unit where a hardware cache entry 1s created 670
for the cache-miss packet. The processing unit does not slow-
path forward the cache-miss packet back to the network.

FIG. 7 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system 700
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines 1 a Local Area Network (LAN), an intranet, an
extranet, or the Internet. The machine may operate 1n the
capacity of a server or a client machine 1n a client-server
network environment, or as a peer machine 1n a peer-to-peer
(or distributed) network environment. The machine may be a
personal computer (PC), a tablet PC, a set-top box (STB), a
Personal Digital Assistant (PDA), a cellular telephone, or any
machine capable of executing a set of instructions (sequential
or otherwise) that specily actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines (e.g., computers) that individually or jointly
execute a set (or multiple sets) of instructions to perform any
one or more of the methodologies discussed herein.

The exemplary computer system 700 includes a processor
702, a main memory 704 (e.g., read-only memory (ROM),
flash memory, dynamic random access memory (DRAM)
such as synchronous DRAM (SDRAM) or Rambus DRAM
(RDRAM), etc.), a static memory 806 (¢.g., tlash memory,
static random access memory (SRAM), etc.), and a secondary
memory 818 (e.g., a data storage device), which communi-
cate with each other via a bus 708.

Processor 702 represents one or more general-purpose pro-
cessing devices such as a microprocessor, central processing
unit, or the like. More particularly, the processor 702 may be
a complex mstruction set computing (CISC) microprocessor,
reduced instruction set computing (RISC) microprocessor,
very long instruction word (VLIW) microprocessor, a pro-
cessor 1implementing other instruction sets, or processors
implementing a combination of instruction sets. Processor
702 may also be one or more special-purpose processing
devices such as an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA), a digital
signal processor (DSP), network processor, or the like. Pro-
cessor 702 1s configured to execute the processing logic 126
for performing the operations and steps discussed herein.

The computer system 700 may further include a network
interface device 716. The computer system 700 also may
include a video display unit 710 (e.g., a liguid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 712 (e.g., akeyboard), and a cursor control device 714
(e.g., a mouse).

The secondary memory 718 may include a machine-read-
able storage medium (or more specifically a computer-read-
able storage medium) 724 on which 1s stored one or more sets
of instructions (e.g., software 722) embodying any one or

US 7,856,019 B2

9

more of the methodologies or functions described herein. The
soltware 722 may also reside, completely or at least partially,
within the main memory 704 and/or within the processing
device 702 during execution thereof by the computer system
700, the main memory 704 and the processing device 702 also
constituting machine-readable storage media. The software
722 may further be transmitted or received over a network
720 via the network 1nterface device 716.

While the machine-readable storage medium 724 1s shown
in an exemplary embodiment to be a single medium, the term
“machine-readable storage medium™ should be taken to
include a single medium or multiple media (e.g., a centralized
or distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“machine-readable storage medium™ shall also be taken to
include any medium that 1s capable of storing or encoding a
set of mstructions for execution by the machine and that cause
the machine to perform any one or more of the methodologies
of the present invention. The term “machine readable storage
medium”™ shall accordingly be taken to include, but not be
limited to, solid-state memories, and optical and magnetic
media.

Various operations or functions are described herein,
which may be implemented or defined as software code or
instructions. Such content may be directly executable (“ob-
ject” or “executable” form), source code, or difference code.
Software implementations of the embodiments described
herein may be provided via an article of manufacture with the
code or 1nstructions stored thereon, or via a method of oper-
ating a communication interface to send data via the commu-
nication iterface. A machine or computer readable storage
medium may cause a machine to perform the functions or
operations described, and includes any mechanism that stores
information 1n a form accessible by a machine (e.g., comput-
ing device, electronic system, etc.), such as recordable/non-
recordable media (e.g., read only memory (ROM), random
access memory (RAM), magnetic disk storage media, optical
storage media, tlash memory devices, etc.). A communication
interface includes any mechanism that interfaces to any of a
hardwired, wireless, optical, etc., medium to communicate to
another device, such as a memory bus interface, a processor
bus 1nterface, an Internet connection, a disk controller, etc.
The communication interface can be configured by providing
configuration parameters and/or sending signals to prepare
the communication interface to provide a data signal describ-
ing the software content. The communication interface can be
accessed via one or more commands or signals sent to the
communication interface.

The present invention also relates to a system for perform-
ing the operations herein. This system may be specially con-
structed for the required purposes, or 1t may comprise a gen-
eral purpose computer selectively activated or reconfigured
by a computer program stored 1n the computer. Such a com-
puter program may be stored in a computer readable storage
medium, such as, but not limited to, any type of disk including,
floppy disks, optical disks, CDROMs, and magnetic-optical
disks, read-only memories (ROMSs), random access memo-
riecs (RAMs), EPROMs, EEPROMSs, magnetic or optical
cards, or any type of media suitable for storing electronic
instructions, each coupled to a computer system bus.

The methods and displays presented herein are not imnher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or 1t may prove
convenient to construct a more a specialized system to per-
form the required operations of the method. Structure for a
variety of these systems will appear as set forth 1n the descrip-

10

15

20

25

30

35

40

45

50

55

60

65

10

tion below. In addition, the present invention 1s not described
with reference to any particular programming language or
operating system. It will be appreciated that a varnety of
programming languages may be used to implement the teach-
ings of the mvention as described herein, and the teachings
may be implemented within a variety of operating systems.

Various components described herein may be a means for
performing the functions described herein. Each component
described herein includes software, hardware, or a combina-
tion of these. The operations and functions described herein
can be implemented as software modules, hardware modules,
special-purpose hardware (e.g., application specific hard-
ware, application specific integrated circuits (ASICs), digital
signal processors (DSPs), etc.), embedded controllers, hard-
wired circuitry, etc.

Aside from what 1s described herein, various modifications
may be made to the disclosed embodiments and implemen-
tations of the mvention without departing from their scope.
Theretfore, the 1llustrations and examples herein should be
construed 1n an illustrative, and not a restrictive sense. The
scope of the invention should be measured solely by reference
to the claims that follow.

What 1s claimed 1s:

1. A method comprising;:

receving from a source node a multicast data packet at a

transit node, the multicast data packet having a source
address and a multicast group address;

comparing the source address and the multicast group

address of the multicast data packet with a hardware
entry of a hardware cache;

detecting at the transit node a hardware cache miss for the

multicast data packet 1n response to the comparing not
resulting 1n a match of the hardware entry with the
source address and the multicast group address of the
multicast data packet;

flooding via hardware the multicast data packet to ports of

the network 1n response to detecting the hardware cache
miss, wherein the tlooding comprises forwarding a copy
of the multicast data packet to neighboring nodes of the
transit node based on virtual local area network (VLAN)
membership;

sending a copy of the multicast data packet to an out-of-line

processing unit;
software-processing the copy of the multicast data packet
without forwarding the copy onto the network from the
out-of-line processing unit, the software-processing to
include establishing a hardware cache entry for the mul-
ticast data packet via a hardware abstraction layer; and

forwarding a future multicast data packet only to neighbor-
ing nodes of the transit node that subscribe to multicast
traffic 1n response to matching a source address and a
multicast group address of the future multicast data
packet with the hardware cache entry for the multicast
data packet.

2. The method of claim 1, wherein the out-oi-line process-
ing unit 1s one of a central processing unit (CPU) or a network
processing unit (NPU).

3. The method of claim 1, wherein flooding via hardware
the multicast data packet to ports of the network comprises:

entering a state of initial hardware flooding while the copy

of the multicast data 1s being software-processed by the
out-of-line processing unit.

4. A method comprising:

comparing a source address and a multicast group address

of a multicast data packet with a hardware entry of a
hardware cache;

US 7,856,019 B2

11

detecting at an Ethernet Automatic Protection Switching

(EAPS) node a hardware cache miss for the multicast
data packet, the detecting in response to the comparing
not resulting in a match of the hardware entry with the
source address and the multicast group address of the
multicast data packet;

flooding via hardware the multicast data packet to ports of
an EAPS network 1n response to detecting the hardware
cache miss, wherein the flooding comprises forwarding
a copy ol the multicast data packet to neighboring nodes
of the EAPS node based on virtual local area network
(VLAN) membership;

sending a copy of the multicast data packet to an out-of-line
processing unit;

soltware-processing the copy of the multicast data packet
without forwarding the copy to the EAPS network from
the out-of-line processing unit, the software-processing
to include establishing a hardware cache entry for the
multicast data packet via a hardware abstraction layer;
and

forwarding a future multicast data packet only to neighbor-
ing nodes of the EAPS node that subscribe to multicast
traffic 1n response to matching a source address and a
multicast group address of the future multicast data
packet with the hardware cache entry for the multicast
data packet.

5. The method of claim 4, wherein the hardware-flooding 1s

commenced with a corresponding timer.

6. The method of claim 5, further comprising ceasing the

hardware-flooding upon expiration of the timer.
7. A network device comprising:
a packet processor operable to recerve a multicast data
packet having a source address and a multicast group
address:
a hardware cache operable to store forwarding entries for
multicast traific, the forwarding entries based on a
source address and a multicast group address;
the packet processor further operable to:
compare the source address and the multicast group
address of the multicast data packet with a forwarding,
entry of the hardware cache;

detect a hardware cache miss for the multicast data
packet 1n response to the comparing not resulting 1n a
match of the forwarding entry with the source address
and the multicast group address of the multicast data
packet,

flood the multicast packet to ports of a network in
response to detecting the hardware cache miss,
wherein flooding comprises forwarding a copy of the
multicast data packet to neighboring nodes of the

transit node based on virtual local area network
(VLAN) membership, and

send a copy of the multicast data packet to a processing
unit;

wherein the processing unit 1s further operable to software-
process the copy of the multicast data packet without
forwarding the copy to the network, the software-pro-
cessing to include establishing a hardware cache entry
for the multicast data packet via a hardware abstraction
layer, and

wherein the packet processor 1s further operable to forward
a future multicast data packet only to neighboring nodes
of the transit node that subscribe to multicast traffic 1n
response to matching a source address and a multicast
group address of the future multicast data packet with
the hardware cache entry for the multicast data packet.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

8. The network device of claim 7, wherein the processing
umt includes an Ethernet automatic protection switching
(EAPS) component to configure the network device on an
EAPS network.

9. The network device of claim 8, wherein the packet
processor further comprises a timer and wherein the flooding
by the packet processor ceases upon expiration of the timer.

10. The network device of claim 7, wherein the processing
unit includes a command line interface (CLI) to configure the
network device on a network.

11. A computer readable storage medium having computer
executable instructions stored thereon that, when executed by
a computer, cause the computer to perform a method com-
prising;:

recerving from a source node a multicast data packet at a

transit node, the multicast data packet having a source
address and a multicast group address;

comparing the source address and the multicast group

address of the multicast data packet with a hardware
entry of a hardware cache;

detecting at the transit node a hardware cache miss for the

multicast data packet 1n response to the comparing not
resulting 1n a match of the hardware entry with the
source address and the multicast group address of the
multicast data packet;

flooding via hardware the multicast data packet to ports of

the network, wherein the flooding comprises forwarding
a copy of the multicast data packet to neighboring nodes
of the transit node based on virtual local area network
(VLAN) membership;

sending a copy of the multicast data packet to an out-of-line

processing unit;
software-processing the copy of the multicast data packet
without forwarding the copy to the network from the
out-of-line processing unit, the software-processing to
include establishing a hardware cache entry for the mul-
ticast data packet via a hardware abstraction layer; and

forwarding a future multicast data packet only to neighbor-
ing nodes of the transit node that subscribe to multicast
traffic 1n response to matching a source address and a
multicast group address of the future multicast data
packet with the hardware cache entry for the multicast
data packet.

12. The computer readable storage medium of claim 11,
wherein the out-of-line processing unit 1s one of a central
processing unit (CPU) or a network processing unit (NPU).

13. The computer readable storage medium of claim 11,
wherein flooding via hardware the multicast data packet to
ports of the network comprises:

entering a state of 1imitial hardware flooding while the copy

of the multicast data 1s being software-processed by the
out-of-line processing unit.

14. A computer readable storage medium having computer
executable instructions stored thereon that, when executed by
a computer, cause the computer to perform a method com-
prising;:

comparing a source address and a multicast group address

of a multicast data packet with a hardware entry of a
hardware cache:

detecting at an Ethernet Automatic Protection Switching
(EAPS) node a hardware cache miss for the multicast

data packet, the detecting in response to the comparing

not resulting 1n a match of the hardware entry with the
source address and the multicast group address of the
multicast data packet;

flooding via hardware the multicast data packet to ports of
an EAPS network, wherein the flooding comprises for-

US 7,856,019 B2

13

warding a copy of the multicast data packet to neighbor-
ing nodes of the EAPS node based on virtual local area
network (VLAN) membership;

sending a copy of the multicast data packet to an out-of-line
processing unit;

soltware-processing the copy of the multicast data packet
without forwarding the copy onto the EAPS network
from the out-of-line processing umt, the soltware-pro-
cessing to mclude establishing a hardware cache entry
for the multicast data packet via a hardware abstraction
layer; and

forwarding a future multicast data packet only to neighbor-
ing nodes of the EAPS node that subscribe to multicast
traffic 1n response to matching a source address and a
multicast group address of the future multicast data
packet with the hardware cache entry for the multicast
data packet.

14

15. The computer readable storage medium of claim 14,
wherein the hardware-flooding 1s commenced with a corre-
sponding timer.

16. The computer readable storage medium of claim 15,

turther comprising ceasing the hardware-tflooding upon expi-
ration of the timer.

17. The computer readable storage medium of claim 14,
wherein flooding via hardware the multicast data packet to

10" ports of the network comprises:

15

entering a state of 1imitial hardware flooding while the copy
of the multicast data 1s being software-processed by the
out-of-line processing unit.

	Front Page
	Drawings
	Specification
	Claims

