United States Patent

US007853085B2

(12) (10) Patent No.: US 7.853.085 B2
Miller 45) Date of Patent: Dec. 14, 2010
(54) VIEWPOINT-INVARIANT DETECTION AND 6,263,089 B1* 7/2001 Otsukaetal. ............... 382/107
IDENTIFICATION OF A 6,320,578 B1* 11/2001 Shiitani etal. .............. 345/419
THREE-DIMENSIONAL OBJECT FROM 6,362,833 B2 3/2002 Trika
TWO-DIMENSIONAT IMAGERY 6,360,282 B1* 4/2002 Trka ..cccoovvvivvivnnnnnnnnn. 345/423
6,381,346 Bl 4/2002 Eraslan
_ : : 6,434,278 Bl 8/2002 Hashimoto
(75) Inventor: Michael Miller, Jackson, NH (US) 6.520.626 Bl  3/2003 Watanabe cf al.
. : _ 6,532,011 Bl 3/2003 Francini et al.
(73) Assignee: Animetrics, Inc., Jackson, NH (US) 6.556.196 Bl 4/2003 Blanz et al
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 1466 days.
EP 1039417 Al * 3/1999
(21) Appl. No.: 10/794,943
(Continued)
(22) Filed: Mar. 5, 2004 OTHER PURT ICATIONS
(65) Prior Publication Data Weisstein, “Matrix Norm,” Dec. 22, 2003, http://mathworld.wol-
US 2004/0190775 A1 Sep. 30, 2004 fram.com/MatrixNorm html 2 pages).
(Continued)
Related U.S. Application Data
o o Primary Examiner—Brian Q Le
(60) Provisional appllcatlon No. §O/452j429j filed on Mar. Assistant Examiner—Tsung-Yun Tsai
6, 2003, provisional app.hcatlon ij' 6_0/ 452,430, filed (74) Attorney, Agent, or Firm—Wilmer Cutler Pickering Hale
on Mar. 6, 2003, provisional application No. 60/452, & Dorr [ 1P
431, filed on Mar. 6, 2003. '
(37) ABSTRACT
(51) Int.CL
GOOK 9/62 (2006.01) A method and system for detecting a source multifeatured
(52) US.CL o, 382/215,J 382/107,, 382/154 three-dimensional ijec‘[ from two-dimensional source
(58) Field of Classification Search ......... 382/190-294; imagery, and for locating a best-matching three-dimensional
345/419-423 object from a candidate database of such objects by perform-
See application file for complete search history. ing a viewpoint and lighting invariant search among the can-
] didate objects. The invention further includes the method and
(56) References Cited

U.S. PATENT DOCUMENTS

5,742,291 A 4/1998 Palm
5,844,573 A 12/1998 Poggio et al.
5,990,901 A 11/1999 Lawton et al.
6,226,418 Bl 5/2001 Miller et al.
6,249,600 Bl 6/2001 Reed et al.

system for determining the optimally-fitting viewpoint, light-
ing, and deformation of the located three-dimensional candi-
date and basing an 1dentification of the candidate with the
source on the quality of {it between projections of the candi-
date and the source imagery.

48 Claims, 4 Drawing Sheets

3D CANDIDATE AVATARS
A

JUMP DETECTION

AT~

\

CONFIDENCE
LEVEL

BEST
~=3 CANDIDATE

AVATAR

- —-—-‘ REFINE AVATAR POSITION I

BEST

OF MATCH i —

30 POSITION



US 7,853,085 B2
Page 2

U.S. PATENT DOCUMENTS

7,340,159 B2 3/2008 Sugiura et al.
2001/0033685 A1 10/2001 Ishiyama
2002/0012454 Al 1/2002 Liu et al.
2002/0106114 Al 8/2002 Yan et al.
2003/0099409 Al 5/2003 Rowe
2003/0123713 Al 7/2003 Geng
2003/0169906 Al 9/2003 Gokturk et al.
2006/0204069 Al1* 9/2006 Le Brasetal. .............. 382/132

FOREIGN PATENT DOCUMENTS

EP 1 039417 9/2000

EP 1 143 375 10/2001

EP 1 204 069 5/2002

WO 01/63560 8/2001
OTHER PUBLICATTONS

Weisstein, “Projective Geometry,” Dec. 22, 2003, http://mathworld.
wolfram.com/ProjectiveGeometry.html (3 pages).

Eriksson et al., “Towards 3-dimensional face recognition,” IEEE
Cape Town, (Sep. 28, 1999), pp. 401-406.

Hsu et al., “Face modeling for recognition,” Proceedings 2001 Inter-
national Conference on Image Processing, vol. 1 (Oct. 7, 2001), pp.
693-696.

International Search Report for PCT/US2004/006604, Sep. 2, 2004;
18 pages.

International Search Report for PCT/US2004/006614, Aug. 26,
2004; 15 pages.

International Search Report for PCT/US2004/006827, Aug. 26,
2004, 15 pages.

Lanitis et al., “Toward Automatic Simulation of Aging Effects on
Face Images,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, No. 4 (Apr. 2002), pp. 442-455.

Lee et al., “3-D deformable face model for pose determination and
face synthesis,” IEEE Computer Society, (Sep. 27, 1999) pp. 260-
265.

Lopez et al., “3D head pose computation from 2D images: templates
versus features,” IEEE Computer Society, vol. 3 (Oct. 23, 1995), pp.
599-602.

Pighin et al., “Synthesizing realistic facial expressions from photo-
graphs,” Computer Graphics Conference Proceedings, (Jul. 19,
1998), pp. 75-84.

Tang et al., “Face recognition using synthesized intermediate views,”
Proceedings of the 38" Midwest Symposium in Rio de Janeiro, Brazil,
(Aug. 13, 1995), pp. 1066-1069.

Rein-Lien Hsu et al., “Face modeling for recognition” Proceedings
2001 International Conference on Image Processing. ICIP 2001.
Thessaloniki, Greece, Oct. 7-10, 2001, International Conference on
Image Processing, New York, NY: IEEE, US, vol. vol. 1 of 3. Cont. 8,
Oct. 7, 2001, pp. 693-696, XP010563858 ISBN: 0-7803-6725-1.
Li-An Tang et al., “Face recognition using synthesized intermediate
views” Circuits and Systems, 1995., Proceedings., Proceedings of the
38th Midwest Symposium on Rio De Janeiro, Brazil Aug. 13-16,
1995, New York, NY USA, IEEE, US, Aug. 13, 1995, pp. 1066-10609,
XP010165313 ISBN: 0-7803-2972-4.

European Patent Office, Communication Pursuant to Article 96(2)
EPC, Sep. 21, 2007,

* cited by examiner




US 7,853,085 B2

Sheet 1 of 4

Dec. 14, 2010

U.S. Patent

| Ol

NOILISOd d¢
1534

/

AN

|

NOILISOd dVLVAY 3NId3Y

dVLVAV
S 1LVOIANYO
1539

SHVLVAY ALVAIONYD (¢

HOLVIA 40
13A37T
3ON3AI4ANOD




AV1dSIQ  [~ddC
N34S

US 7,853,085 B2

35Vav.LvQ
dVLIVAV

Sheet 2 of 4

9¢¢ d3ZATVNY -

NI LSAS

PCCH ONILYHILO

Dec. 14, 2010

$Y¥344N8

3OV443LN]I = A
m 8(C- NEISe — 1MNdNI
S
ot
A
SI
= 00z ="

¢ O\
30IN3C
oNiSNTS [~ U¢
NOILISOd g1z ~ QdvOgAIN
SNG WILSAS
Nd?
oY

dyvo8
JOVAI

[SOHAVYHO

01¢

207 O3dIA

p0z~ d3Z11I19I0

90¢

S30IAd
JOVH01S
SSVYIN



U.S. Patent Dec. 14, 2010 Sheet 3 of 4 US 7.853.085 B2

ANALYZER 276

307

PROJECTION MODULE

304

RENDERING MODULE

306

DETECTION MODULE

308

DIFFUSION-MATCHING MODULE

FIG. 3



U.S. Patent Dec. 14, 2010 Sheet 4 of 4 US 7.853.085 B2

. 406 402
OETECTION

PRIOR SOURCE POSITION
INFORMATION OF SOURCE FEATURE ITEMS

:404_

VIEWPOINT - INVARIANT
SEARCH

| 410

SELECTION
OF OPTIMAL CANDIDATE AVATAR

412

DIFFUSION - MATCHING

416

DETERMINATION OF ID

SOURCE IMAGERY

FIG. 4



US 7,853,085 B2

1

VIEWPOINT-INVARIANT DETECTION AND
IDENTIFICATION OF A
THREE-DIMENSIONAL OBJECT FROM
TWO-DIMENSIONAL IMAGERY

RELATED APPLICATIONS

This application claims priority to and the benefits of U.S.
Provisional Applications Ser. Nos. 60/452,429, 60/452,430

and 60/452,431 filed on Mar. 6, 2003 (the entire disclosures of
which are hereby incorporated by reference).

FIELD OF THE INVENTION

The present invention relates to object modeling and 1den-
tification systems, and more particularly to the identification
ol atarget object from two- and three-dimensional input using
three-dimensional models of the candidate objects.

BACKGROUND OF THE INVENTION

In many situations 1t 1s desirable to be able to identily a
three-dimensional (3D) multifeatured object automatically
from a set ol candidate objects, particularly when only a
partial representation of the target object 1s available. In a
typical situation, only one or more two-dimensional (2D)
source 1mages of the 3D object may be available, perhaps
photographs taken from different viewpoints. Conventional
methods of 1identitying a 3D object using 2D images as input
are iherently vulnerable to changes 1n lighting conditions
and varying orientations of the object. For example, in the
case where the multifeatured object 1s a face, existing meth-
ods generally use 2D facial photographs as source input. Such
photographs will be greatly affected by vanations in lighting
conditions and viewpoint, yet traditional methods have no
way of taking changing lighting or viewpoints into consider-
ation—they simply analyze the 2D image as 1s. I1 the source
object 1s not oriented head-on, the eflicacy of most methods
decreases; the further out of plane the object is, the less
reliable the 1dentification becomes.

Accordingly, 1dentification of a 3D multifeatured object
from a 2D 1mage can give good results in controlled condi-
tions 1n which one or more reference 1mages of the object can
be taken 1n advance from the same viewpoints and under the
same lighting conditions which prevail when the source
image(s ) to be used for identification are taken. This situation
rarely occurs 1n practice, however, since the object to be
identified may not be available or cooperative, and it 1s often
impossible to predict the orientation and lighting conditions
under which the source image(s) will be captured. For
example, 1n the case of face recognition, the source 1image 1s
often taken by a surveillance camera which may capture a
side view, or a view from above. Typically the reference
image will be a head-on view, which may be difficult to
identify with the source 1image.

To cope with varying viewpoints, some 1dentification
methods capture and store 1mages of the object taken from
multiple viewing angles. However, this process 1s slow and
costly, and 1t would be impractical to capture 1mages corre-
sponding to the possible range of angles and lighting. Another
approach 1s to capture a 3D 1image of the object by using a 3D
imaging device or scanner, and then to electronically generate
a number of reference 2D 1images corresponding to different
viewpoints and lighting conditions. This technique 1s also
computationally burdensome and still does not enable the
source 1mage(s) to be matched to the continuum of possible
rotations and translations of the source 3D object. In another
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variation, a 3D model of the target object may be created with
a generalized model of the type of 3D object which 1s to be
identified. The model may be parameterized, with parameters
chosen to make the model correspond to the source 2D 1imag-
ery. This 3D model may then be used to generate multiple
reference 2D 1mages corresponding to different viewpoints
and lighting conditions. Since such 3D models typically have
only a few degrees of freedom, however, the 3D model will
usually not correspond closely to the 3D geometry of the
target object, causing an inherent limitation to the accuracy of
this approach.

Another challenge faced by object identification systems 1s
to locate the object to be recognized from within a large,
cluttered field 1n an efficient manner. Traditional methods are
not hierarchical in their approach, but mstead apply compu-
tationally intensive matching methods which attempt to
match source images with reference 1images. Such methods
are not suitable for rapid object detection and 1dentification.

Accordingly, there exists aneed for an automated approach
that efliciently locates and 1dentifies a 3D object from source

2D imagery 1n a manner that 1s robust under varying lighting
conditions and source viewpoints.

SUMMARY OF THE INVENTION

The present invention provides an automated method and
system for 1dentifying a 3D multifeatured object when only
partial source information representing the object 1s avail-
able. Typically, the source information takes the form of one
or more 2D projections of the 3D object, but may also include
3D data, such as from a 3D camera or scanner. The invention
uses a set of candidate 3D representations of multifeatured
objects, at least one of which 1s to be identified with the source
object should a successiul identification be made. In order to
detect and locate the position of the source object 1n the
source 2D 1mage, the invention searches for feature points,
curves, surfaces, or subvolumes which are characteristic of
the 3D object and are substantially invariant under varying
viewpoint and lighting. Next, all possible positions (1.€., ori-
entations and translations) for each 3D candidate representa-
tion are searched to 1identily the candidate representation for
which the optimal rigid motion (rotation and translation) has
a projection which most closely matches the source feature
items. The closeness of the match 1s determined by a measure
such as the mimmum mean-squared error (MMSE) between
the feature items in the projection of the 3D representation
and the corresponding feature items 1n the 2D source image.
The comparison 1s performed 1 3D between the estimated
deprojected positions of the feature items from the 2D source
image and the corresponding feature items of the candidate
3D representation. The rigid motion of the closest-fitting 3D
candidate representation 1s tuned further by comparing por-
tions of the source 2D 1magery with corresponding portions
of the projected best-fitting 3D representation. The quality of
{1t between the source imagery and the selected 3D represen-
tation 1n the tuned position 1s then determined. If the fit rises
above a predetermined threshold, the identification 1s suc-
cessiul.

Thus the 1dentification preferably proceeds in a hierarchi-
cal fashion. First, the presence of the object to be 1dentified 1s
detected 1n the source imagery using a coarse detection tech-
nique that rapidly locates a small number of feature items.
Second, the candidate representations are searched for corre-
spondence to these feature 1items across a continuum of pos-
sible viewpoints. Third, the optimal position of the best-
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fitting candidate representation is refined by determining the
best match between source imagery and projections of the 3D

representation.

In a first aspect, therefore, the invention comprises a
method of 1dentifying a multifeatured object corresponding,
to at least one source 2D projection of a source multifeatured
object. In accordance with the method, a set of candidate 3D
representations 1s provided. The source 2D projection 1s
detected within the source imagery and a viewpoint-invariant
search of the candidate 3D representations 1s performed to
locate the candidate 3D representation having a 2D projection
most resembling the source 2D projection(s). This candidate
3D representation 1s then compared with the source 2D pro-
jection(s) to determine whether the candidate corresponds to
the source. In some embodiments, the detection of the source
2D projection 1s performed by locating viewpoint-invariant
and lighting-invariant feature 1tems 1n the source 2D 1mage.
This detection may be performed 1n real time. Each candidate
3D representation may be searched over a range of possible
2D projections of the 3D representation without actually gen-
erating any projections. The search over a range of possible

2D projections may comprise computing a rigid motion of the
candidate 3D representation optimally consistent with a

viewpoint of the source multifeatured object 1n at least one of
the 2D projections.

In some embodiments, the optimum rigid motion 1s deter-
mined by estimating a conditional mean pose or geometric

registration as 1t relates to feature items comprising points,
curves, surfaces, and subvolumes 1n a 3D coordinate space
associated with the candidate 3D representation such that the
feature 1tems are projectionally consistent with feature 1tems
in source 2D projection(s). MMSE estimates between the
conditional mean estimate of the projected feature 1tems and
corresponding feature items of the candidate 3D representa-
tion are generated. A quality of fit 1s determined by, for
example, comparing portions of the projection of the candi-
date 3D representation yielding the lowest MMSE estimate
and corresponding portions of the source 2D representation,
and determining the optimum rigid motion as corresponding
to the best quality of fit. If the quality of fit corresponding to
the optimum rigid motion exceeds a predetermined threshold,
the candidate 3D representation 1s positively identified with
the source object.

In a second aspect, the invention comprises a system for
identifying a multifeatured object corresponding to at least
one source 2D projection ol a source multifeatured object.
The system comprises a database comprising a plurality of
candidate 3D representations of multifeatured objects, a
detection module for detecting the source 2D projection 1n an
image, and an analyzer. The analyzer performs a viewpoint-
invariant search of the candidate 3D representations to locate
the one having a 2D projection most resembling the source
2D projection(s), and compares the source 2D projection(s)
with the located candidate 3D representation to determine
whether the candidate corresponds to the source. In some
embodiments, the detection module detects the source 2D
projection by locating viewpoint-invariant and lighting-in-
variant feature items in the source 2D 1mage. This detection
may be performed in real time. The analyzer may search each
candidate 3D representation over a range of possible 2D
projections of the 3D representation without actually gener-
ating any projections. The search over a range of possible 2D
projections may comprise computing a rigid motion of the
candidate 3D representation optimally consistent with a
viewpoint of the source multifeatured object 1n at least one of
the 2D projections.
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In some embodiments, the analyzer determines the opti-
mum rigid motion by estimating a conditional mean pose or
geometric registration as 1t relates to feature items comprising
points, curves, surfaces, and subvolumes in a 3D coordinate
space associated with the candidate 3D representation such
that the feature 1tems are projectionally consistent with fea-
ture 1tems 1n source 2D projection(s). The analyzer generates
MMSE estimates between the conditional mean estimate of
the projected feature items and corresponding feature 1tems
of the candidate 3D representation. The analyzer further gen-
erates a quality of fit by, for example, comparing portions of
the projection of the candidate 3D representation yielding the
lowest MMSE estimate and corresponding portions of the
source 2D representation, and determines the optimum rigid
motion as corresponding to the best quality of fit. If the
quality of fit corresponding to the optimum rigid motion
exceeds a predetermined threshold, the analyzer positively
identifies the candidate 3D representation with the source
object.

In a third aspect, the above described methods and systems
are used for the case when the 3D multifeatured object 1s a
face, and the candidate 3D representations are avatars.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, like reference characters generally refer to
the same parts throughout the different views. The drawings
are not necessarily to scale, emphasis instead generally being
placed upon illustrating the principles of the invention. In the
following description, various embodiments of the invention
are described with reference to the following drawings, 1n
which:

FIG. 1 schematically 1llustrates the various components of
the mnvention, starting with the scene 1n which the target to be
identified appears and the candidate avatars, and yielding a
confidence level of match after performing jump-detection, a
viewpolint-invariant search, and refinement of avatar pose and
geometry.

FIG. 2 1s a block diagram showing a representative hard-
ware environment for the present invention.

FIG. 3 1s a block diagram showing components of the
analyzer illustrated 1n FIG. 3.

FIG. 4 15 a block diagram showing the key functions per-
formed by the analyzer.

PR.

(L]
By

ERRED

DETAILED DESCRIPTION OF THE
EMBODIMENT

The invention can be used for identifying any multifea-
tured object, such as faces, animals, plants, or buildings with
one or more candidate 3D representations of generically simi-
lar objects. For ease of explanation, however, the ensuing
description will focus on faces as an exemplary (and non-
limiting) application.

In one embodiment of the invention, the 3D representation
of a face 1s an avatar model. The avatar geometry may be
represented by a mesh of points 1n 3D which are the vertices
of set of triangular polygons approximating the surface of the
avatar. In one representation, each vertex i1s given a color
value, and each triangular face may be colored according to
an average ol the color values assigned to 1ts vertices. The
color values are determined from a 2D texture map which
may be dertved from a photograph. The avatar 1s associated
with a coordinate system which 1s fixed to it, and 1s indexed by
three angular degrees of freedom (pitch, roll, and yaw), and
three translational degrees of freedom of the rigid body center
in three-space. In addition, individual features of the avatar,
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such as the chin, teeth and eyes may have their own local
coordinates (e.g., chin axis) which form part of the avatar
description. The present invention may be equally applied to
avatars for which a different data representation 1s used. For
example, texture values may be represented as RGB values,
or using other color representations, such as HSL. The data
representing the avatar vertices and the relationships among,

the vertices may vary. For example, the mesh points may be
connected to form non-triangular polygons representing the
avatar surface.

The avatar(s) used herein may be generated using the
method or system described 1 U.S. Ser. No. 10/794,353,

entitled VIEWPOINT-INVARIANT IMAGE MATCHING
AND GENERATION OF THREE-DIMENSIONAL MOD-

ELS FROM TWO-DIMENSIONAL IMAGERY and filed

contemporancously herewith, the entire contents of which 1s
incorporated by reference.

The 1nvention may include a conventional rendering
engine for generating 2D 1magery from a 3D avatar. The
rendering engine may be implemented in OpenGL, or 1n any
other 3D rendering system, and allows for the rapid projec-
tion of a 3D avatar into a 2D 1mage plane representing a
camera view of the 3D avatar. The rendering engine may also
include the specification of the avatar lighting, allowing for
the generation of 2D projections corresponding to varying,
illuminations of the avatar. As 1s well known 1n the art, light-
ing corresponding to a varying number of light sources of
varying colors, intensities, and positions may be generated.

FI1G. 1 illustrates the basic operation of the invention 1n the
case where the 3D multifeatured object to be 1dentified 1s a
face and the set of candidate 3D representations are avatars.
The 1dentification process starts with the determination of a
set of facial features which are substantially invariant across
different faces under varying lighting conditions and under
varying poses. Such features may include brightness order
relationships, image gradients, and edges. For example, the
relationship between the inside and outside of a nostril would
be substantially invariant under face, pose, and lighting varia-
tions; or alternatively the change 1n intensity from the eye-
brow to the surrounding skin.

The source 1image 1s then scanned automatically to detect
the presence of the invariant feature points. Since the number
ol points being detected 1s relatively small, typically in the
range of 3-100 s, the detection 1s very rapid, and can be
performed 1n real time as, for example, when a moving image
1s being tracked. This step of the identification 1s called
“jump-detection,” and provides a rapid detection of position
and ornientation of a face 1n the 1image. The technique can be
used effectively even when the source imagery includes only
a part of the target face, or when the target face 1s partially
obscured, such as, for example, by sunglasses or facial hair.
This feature of the present mnvention allows reliable 1dentifi-
cation when the quality and extent of source target imagery 1s
poor and 1s invariant to photometric and geometric change.

As understood by those of ordinary skill in the art, the
approach may use Bayesian classifiers and decision trees 1n
which hierarchical detection probes are built from training,
data generated from actual avatars. The detection probes are
desirably stored at multiple pixel scales so that the specific
parameters, such as for orientation ol a feature, are only
computed on finer scales 1f the larger-scale probes yield a
positive detection. The feature-detection probes may be gen-
crated from 1mage databases representing large numbers of
individuals who have had their features demarcated and seg-
regated so that the detection probes become specifically tuned
to these features. Jump-detection may use pattern classifica-
tion, Bayes nets, neural networks, or other known techniques
for determiming the location of features 1n facial images. A
preferred technique 1s based on Bayesian classifiers and deci-
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6

s10n trees 1n which hierarchical detection probes are designed
from training data generated from the actual instances of the
individual avatars so as to make the detection probes opti-
mally etlicient. However, the detection probes need not be
generated from the avatars themselves. Instead, they can be
generated from families of 2D facial images which have been
measured or have already been assembled 1nto databases.

Detectors for an individual face are desirably built from
imagery rendered at many different scales, positions, rota-
tions, and illuminations of the avatar representing that 1ndi-
vidual. To increase the efficiency of the detection process, the
probes are grouped and classified according to type of pose,
such as frontal and side views. The classification scheme 1s
used to decompose the set of possible poses into groups
ranging from coarse classifications to fine ones. The coarsest
group accounts for all poses 1n a reference range. When a
detection 1s performed within the coarse group, the probes
within the finer range corresponding to the detection are
utilized. A face 1s detected at a given pose 1f and only 1t the
response 1s positive of every detector for a group containing

the given pose. Such a coarse-to-fine strategy organizes the
detectors generated from the avatar database so that most
parts of the scene 1n the source image which do not include a
face can be rejected using the coarse probes only using very
little computation. The more computationally intensive
operations are thereby progressively concentrated in the areas
where detections occur.

For purely 3D sources of imagery such as from methods for
directly constructing triangulated meshes (structured light,
camera arrays, depth finding) detection of features 01 0, 1, 2,
3 dimensional points, curves, subsurfaces and subvolumes
are detected using hierarchical detections on the 3D geom-
etries from points of high curvatures, principal and gyral
curves assoclated with extrema of curvature, and subsurfaces
associated particular surface properties as measured by the
surface normals and shape operators. Such photometric
invariant features may be generated via such methods as
dynamic programming.

Once the location of a face has been detected 1n the source
2D 1image, the source image 1s compared with a set of candi-
date 3D avatars. The set typically contains as many members
as there are candidates for identification for which 3D avatars
have been constructed, but the set of candidates may be
reduced by manual or other methods 1f some candidates can
be eliminated. The lighting-invariant and pose-invariant fea-
tures corresponding to those detected 1n the source 2D 1mag-
ery are 1dentified 1n each of the candidate 3D representations.
The viewpoint-invariant search then notionally subjects each
candidate 3D avatar to all possible rigid motions, projects 1ts
teatures 1nto 2D, compares the features to the corresponding
features 1n the target photograph, and determines the position
in three-space of each candidate avatar that best corresponds
to the source 2D 1mage. The avatar for which a particular rigid
motion provides the closest fit between projected features and
those of the source 1mage 1s selected as the best candidate
avatar. In FIG. 1, this best candidate 1s 1llustrated as the avatar
in the middle of the three avatars shown at top right.

The viewpoint-invariant search 1s preferably based on the
computation of the conditional mean estimate of the reverse
projection positions 1n 3D of the 2D feature 1tems, followed
by the computation of MMSE estimates for the rotation and
translation parameters 1n 3D, given the estimates of the 3D
positions of the feature 1tems. Since position 1n 3D space 1s a
vector parameter, the MMSE estimate for translation position
1s closed form; when substituted back into the squared error
function, 1t gives an explicit function in terms of only the
rotations. Since the rotations are not vector parameters, they
may be calculated using non-linear gradient descent through
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the tangent space of the group or via local representation
using the angular velocities of the skew-symmetric matrices.

The pose-invariant search of the candidate avatars uses a
gradient algorithm which may be optimized for speed and
eificiency by various techniques, including the following
three approaches. First, the projected imagery that 1s being
compared to each candidate avatar may be aggregated into
groups of 8x8, 16x16 and so on, and split up into finer reso-
lution only 1n the later stages when matching 1s being per-
formed for the purposes of determining 1f a positive 1dentifi-
cation exists. Second, the avatars themselves may be
coarsened to reduce the number of points being compared 1n
the 1mitial stages of the search. Third, special-purpose graph-
ics hardware may be deployed to generate avatar projections
and 1mage-feature reverse projections rapidly. In addition to
or 1n lieu of the least squares or weighted least squares tech-
niques described herein, the distance metrics used to measure
the quality of fit between the reverse projections of feature
items from the source imagery and corresponding items in the
3D avatar may be, for example, Poisson or other distance
metrics which may or may not satisiy the triangle inequality.
Such metrics may include the similitude metric which 1s
invariant to rotation, scale and translation, as well as the
Euclidean and spline metrics for small or large deformations.

[T feature 1items measured 1n 3D are available, such as from
actual 3D source data from 3D cameras or scanners, the
feature 1tem matching generating the metric correspondence
may be performed directly, without the intermediate step of
calculating the conditional mean estimate of the deprojected
2D features. The cost function used for positioning the 3D
avatar can be minimized using algorithms such as closed form
quadratic optimization, 1terative Newton descent or gradient
methods.

Once the pose-invariant search has determined the best-
fitting candidate avatar, and the pose for which the feature
matching i1s optimal, the 3D position of this avatar may be
refined using a technmique called diffusion-matching, as
shown at lower right 1n FIG. 1. In this technique, projective
imagery of the best-fitting candidate avatar in the optimal
pose (as determined by the pose-invariant search) 1s com-
pared directly with source imagery. An expression called the
matching energy characterizes the quality of the match
between the projected avatar and source 1imagery 1n terms of
avatar rotation and translation parameters. The matching
energy 1s expanded 1n a first order Taylor series, and a qua-
dratic form 1s established for the angular velocity skew-sym-
metric matrix representing rotation and the linear velocity
representing translation. Solving in closed form gives the
explicit formula for the translation 1n terms of angular veloci-
ties, and resubstituting gives a quadratic form which only has
the skew-symmetric angular velocities. A closed-form
expression for these can be calculated, from which the trans-
lation velocities can be calculated in closed form. Iterating
with these formulas diffuses the avatar head in three-space.
The computation involved 1n the diffusion-matching may be
accelerated by coarsening the source image into lattices of
8x8, 16x16, 32x32 or other numbers of pixels. In addition,
the avatar models may be coarsened to reduce the number of
facets, thereby reducing the required sampling of the pro-
jected avatar. When 3D source imagery 1s available, such as
from a 3D camera or a 3D scanner, the diffusion-matching is
performed directly in 3D without the need for projection. The
optimal pose corresponds to the position and rotation for
corresponding to the minimum matching energy. The match-
ing distance corresponding to this pose 1s a quality of {it
measure or a metric distance, and 1s used to determine
whether a positive identification between source imagery and
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candidate avatar 1s made, as shown 1n the lower left of F1G. 1.
A positive 1dentification of the source object with the best
candidate avatar 1s made 1f the matching distance between the
projection of the best candidate avatar 1n the optimal pose and
the source 1imagery exceeds a pre-determined threshold cor-
responding to a desired confidence level.

To take account of the possible range of lighting prevailing,
when the source imagery was captured, a set of photometric
basis functions representing the entire lighting sphere 1s com-
puted 1n order to represent the lighting of each avatar using
principal components or another method for generating typi-
cal states of lighting. While the diffusion-matching process 1s
adjusting the geometry to find the best pose and small defor-
mation of the best candidate avatar, the lighting which opti-
mizes the match can be selected. The photometric basis of
variation 1s computed for the candidate avatar being gener-
ated by positioning the avatar at all positions and poses and
variations of the lighting. From this candidate set of lightings
the basis function can be generated using principal compo-
nents analysis or any other technique for generating typical
states of photometric 1llumination. During the diffusion-
matching process, the basis functions for photometric 1llumi-
nation can be selected which optimize the matching cost.
Photometric variation 1s accommodated by varying the pho-
tometric basis function representing 1llumination variability
to minmimize the matching energy. In the projective imagery,

these photometric basis functions provide a non-orthogonal
basis. Therefore, for each template diffusion step 1n matching,
the geometry, there 1s a closed-form least-squares solution for
the photometric basis functions. The diffusion-matching
algorithm continually refines the pose (rotation and transla-
tion) to decrease the matching energy. The ID algorithm
selects the avatar which has smallest matching energy.

The various components of the present invention can be
used independently of each other. For example, the jump-
detection technique and pose-invariant search need not be
used to cue the diffusion-matching process. Alternatively, the
pose estimate that results from jump-detection may be used
directly to estimate a quality of match to a candidate avatar
without performing the pose-invariant search, especially
when a reasonable number of features are 1dentified 1n the 2D
source 1imagery. It 1s not necessary to use diffusion-matching
in order to perform an 1dentification.

The pose-1nvariant search 1s now considered without defor-
mation of the candidate avatar. In the following discussion, a
3D candidate avatar 1s referred to as a CAD (computer-aided
design) model, or by the symbol CAD. The setotx =(x,,y ,2,),
1=1, . . ., N features 1s defined on the CAD model. The
projective geometry mapping 1s defined as either positive or
negative z, 1.¢., projection occurs along the z axis. In all the
projective geometry (for negative z-axis

projection), or (for positive z-axis projection) 1s the projected
position of

p-—(wlxj ﬂ:’gyj]
Tl g
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the point x; where o. 1s the projection angle. Let the rigid
transformation be of the form A=0.,b: xFPOx+b centered
around x_=0. The following data structures are defined
throughout:

(x; x> x; 00 0 0 0 0° (Equation 1)
1 2 3
0 0 0 0 0 0O xi,- xf, x_?;-)

The basis vectors 7Z.,, Z,, 7, at the tangent to the 3x3
rotation element O are defined as:

Z,=1,0°=[0,1,025,023,—011,—012,-0,3,0,0,0" (Equation 2)
Z3=130°7=[0,0,0,031,03,033,—021,—025,023]" (Equation 4)
(0 1 07 (Equation 5)
where 1y =| -1 0 0 |,
0 0 0,
(0 0 I (00 09
l,=1 0 0 0, 1;=10 0O 1],

with the notation () indicating a matrix transpose.

The viewpoint-invariant search determines the optimal
rotation and translation for the candidate avatars using the
teature 1items as follows. Given the projective points p,, =1,
2, ...,and angid transformation of the form O, b:x POx+b
(centered around center x_=0), the projective points for posi-
tive (1.e., z>0) are given by

QyXx; Q¥
Pi= ’ .
<J i

For positive (1.e., z>0) mapping with

D = (@1355 ﬂfz}ff)
i Zf " Zj' "

1=1, ..., N, the 3x9 matrix MI.:XI.—Q"IXQ 1s computed with
the 1dentity matrix

(1 0 O
=0 1 0
00 1,
ogving
( Pii (Equation 6)
&1 N N
Pi(P)"Y
Pi=| P2 ,Qf:(f— 2],Q:ZQ5,XQ:ZQ1XI
s 1] — —
\ 1 /
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The cost function 1s evaluated exhaustively, choosing the
minimum

N (Equation 7)

N
min Ox; + b —z; P||? = min Ox; + b)Y O;(0x; + b),
z,@,b;” zi Pl m;( Y Qi(Ox; +b)

and determining the translation at the minimum only, where
b=—(2._,”Q,) '2_,”Q,0x,. The minimum is obtained via
brute force search or running a search algorithm to conver-
gence:

N ) (Equation 8)
C ) — : f E : . A
Brutelorce: O = argmém 8, [.l M; O; M,

/

HE’W]_.

GradientOQ™" = EZilﬂfﬁ IOG“,‘ (Equation 9)

b

N
QJ}EW:QZ(Z M;QI'M; Oo:fd’ ZJ, >, j: 1, 2, 3
i=1

/

with <f,g>=>_ *fg..

In a typical situation, there will be prior information about
the position of the object 1 three-space. For example, 1n a
tracking system the position from the previous track will be
available. The present invention can incorporate such infor-
mation as follows. Given a sequence of pointsp,, =1, ..., N

and a rigid transformation of the form O,b:xFO0x+b (cen-
tered around x_=0), the MMSE of rotation and translation O,

bsatisfies:

(Equation 10)

z.0b

N
min > [|0x; + b=z PIF + (b — ) I (b - p) =
=1

N
%]51;1; (0X; +bY Q;(0x; + b) + (b= ¥ Z71(b - ).

The 3x9 matrix M, and the 3x1 column vector:

M:Xf—gz_ 1XQ: N ZQE_IXQ: sz@m_l): lngz_lzw
q):QE_lZu——p,ZMZZ‘ H (Equation 11)

are computed.

Next, the translation b=—Q,. ' X Qf) +Q,'Z  atminimum O
1s obtained by exhaustive search or gradient algorithm run
until convergence:

) (Equation 12)
O +

Pt

BruteForce. O

N
argngn()r[z M'Q;M; + N'T'N
i=1 J

b

N
QOT[Z MIQuy — N2\
i=1

/

Gradient: 0" = gZi=1 "Li P “, ;™ (Equation 13)

b

N
= < Q(Z M!O:M; + N'ZIN [0 +
i=1

/

N
22 Mr?Qil;b _er_lf;‘ba Zj s
i=1
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with the projection onto the basis vectors 7, Z,, 7., of equa-
tions 9 and 13 defined at the tangent to O°’? in the exponential
representation where " are the directional derivatives of
the cost function.

As 1ndicated above, 1f feature 1items measured 1n 3D are
available, such as from actual 3D source data from 3D cam-
eras or scanners, the feature item matching may be performed
directly, without the intermediate step of calculating the con-
ditional mean estimate of the deprojected 2D features. The
cost function used for positioning the 3D avatar can be mini-
mized using algorithms such as closed form quadratic opti-
mization, iterative Newton descent or gradient methods.

The technique 1s now generalized to include source 1mag-
ery with arbitrary view angles. Let the image plane be the
indexed sequence of pixels indexed by pe[0,1]2, with the

projection mapping points x=(X.y,2)elR°> Fp(x)=
(p,(X)>Pp2(X)) Where

X apy 2R n
p1(x) = z-l—_n’ pa2(x) = z-l—_n | = ' 2 = 7

where n=cotangent of angle ol view, w, h are width and height
which determine the aspect ratio. For the discrete setting of
pixels 1n the projective image plane with color (R,G, B)
template, the observed projective 11(p) 1s an (R,G, B) vector.
The projective matrix becomes

— 0 0
sz I+ R ,
4]
0 — 0
\ 74+ n /

operating on points (X,y,z)elR> according to the projective
matrix

— 0 0
I+nR
Peilx, y, 2) = (pi(x, ¥, 2), p2(x, ¥, 2) = - Y
0 — 0
\ Z+n AR

the point x(p) being the point on the 3D CAD model which
projects to the point p 1n the image plane. Then the projected
template matrices resulting from finite differences on the
(R,G.,B) components at the projective coordinate p of the
template value are derived, and the norm 1s interpreted com-

ponentwise:

(Equation 14)

V II(p) =
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-continued
V' (p) = V' I(p) Py (Equation 15)
r Oll(p) STl oY “1
(p) &y (p) %) 0(24)
dp1 zp)+n  dpy z(p)+n
oIl p)® ST p)&
_ (pF (pr 0(25) |
dp; zp)+n  9pr zp)+n
all(p)® @ all(p)”
. Op1 dp)+nrn  Op2 p)+n ,_,

with matrix norm

|A-BIP=|A"-B"1°+|45-B%*+|4°-B" (Equation 16)

As understood by those of ordinary skill 1n the art, forward
differences, backward differences, or balanced differences
can be used to represent the derivatives 1n the 1image plane.
The capital representation 1s used to denote the reordered
matrix of rotation O=(0,,, 0,5, Ojx, . . . , O3, O3, 033), and
then

Ix33x1 3x9 Ox]

The following matrices are required throughout:

I(p)=I(p)-T1(p), Qp)=VI(p)V'IL(p), M(p)=
I(p)VII(p)+Q(p)x(p), O=2,0(p).

(Equation 17)
M=2,M(p), X(p)=X(p)-0 ' Xg, Xo=Z,0(0)X(p),

X A 2=M (p)YX(p) (Equation 18)

The estimation of translation and rotation of the avatar
using a single source 1mage proceeds as follows. The given

image I1(p), pe[0,1]° is modeled with projective mean field
II(p)(o-+b) flowing under the F

Euclidean transformation

(X (Equation 19)
x=| V¥V | 0ox+ b, where

A

(011 012 013 (D
o=|o02 022 02| b=]|by

L 031 032 033 D,

The problem 1s to estimate the rotation and translation o, b
such that

min > [l(p) = To. b. p)IF* ~ (Equation 20)
pel0,1]4
min »  [[(p) ~ [(p) — V' [I(p)Py(y (0x(p) + b — x(p))I*

o.b
pefo,1]12

First the above matrices and adjusted points Q.M XQ,X(p)

X ,,are computed. Then the optimizing rotation/translation O,
b is solved as follows:
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Pt

O = argmjn—QO"'}?L + Or[ (Equation 21)
0

> ff(pr(p)ff(p)]O;

pe[0,1]2

=0 "M-0'X,0 (Equation 22)

In the situation where targets are tracked in a series of
images, and in some nstances when a single image only 1s
available, knowledge of the position of the center of the target
will often be available. This knowledge can be incorporated
by placing the target position at the centered position 0. Given
the image 1(p), Pe[0,1]” under the Euclidean transformation,
the minimization problem now becomes

min > [[(p)~11(p) = V' [(p)(ox(p) ~x(p) + )|+ (Eauation 25)

pel0,1]°

b'Zb.

I1 the mean position 1s not zero, but 1s u, b 1s redefined as b=
b-u; and the estimate of position b 1s adjusted by adding u to

give the true optimum translation estimate b=b+p.
Adjusted points and matrices are defined as follows:

X(p)=X(p)-(0+ E)_IXQ,, (Equation 24)

Xo =) Q(pX(p)
P

Xo=) QpX(p)=Xg-0Q+X) Xo.
P

Xu=) MpYX(p), 0z =0 +X.
P

The optimizing rotation/translation O,b is solved as follows:

O=arg,,;, —20'(X,/-X,'0s ' (M-00s " M+205
M)+0'(Z,0,112X(p) O(p)

X(p)+X,'0s 20 'X,)0 (Equation 25)

5=0s "M-05 ' X,0=(0+2) 'M-(0+2) "' X ,0. (Equation 26)

In other cases, a series of 1mages may be available which
are similar except for changes 1n the facial expression of the
target. In order to track such changes, or even to locate a face
with a changed expression in a single frame, the motions may
be parametrically defined via an expression basis E,, E,, . ..
defined as functions which describe how the points moves on
the face associated with “smile”, “eyebrow liit” and other
expressions. Given the image I(p).pe[0, 1]° transformed by
the changed expression, the problem 1s to estimate the coet-
ficients ,, €, . .. describing the magnitude of each expression

such that

min ) l(p) = I(p) - V' [(p)ox(p) - (Equation 27)

pe[0,1]°

x(p)+b+ Y GE P .

The optimal 0,b may be computed using the techniques
described above, as the optimum expressions may be com-

10

15

20

25

30

35

40

45

50

55

60

65

14

puted for the optimum rigid motion as determined above, or
the optimum expressions and rigid motions may be computed
simultaneously.

For example, the expression for jaw motion may corre-
spond to a large deformation such that the flow of jaw par-
ticles follow a rotation around the fixed jaw axis according to
O(v):p—0O(y)p where O rotates the jaw points around the jaw
axis v.

Extreme expressions correspond to large deformations
with ¢:x P¢(x) satisfying ¢=¢,,¢ =,V (¢ (X))ds+x, xe CAD.
The deformation of the CAD model constructing the mapping
x2¢(x),xeCAD 1s generated:

min > [l(p) = H(p) = V' II(p)((a(p)) - x(p))|*.  (Bauation 28)
pe[0,1]°

To combine the rigid motions with the large deformations
the transformation xP¢(x), xeCAD 1s defined relative to
coordinates which have already been transformed by the rigid
motions, implying that the transformations are composed, or

are deformed simultaneously as 1n Equation 27 and are opti-
mized together.

The diffusion-matching techmque may be used both for the
case when only 2D source information (such as one or more
photographs) 1s available, or when source measurements per-
formed directly in 3D are available, such as from actual 3D
measurement sets corresponding to 3D cameras. In the latter
case, diffusion-matching 1s performed directly 1 3D space
without the step of projecting the current avatar configuration
onto the image plane.

During both the pose-invariant search and the diffusion-
matching process for refimng avatar position and shape, the
notional lighting on the candidate avatar 1s varied so as to
enable optimal matching to the lighting conditions that pre-
vail 1n the available source 2D and/or 3D data. For the pose-
invariant search, the candidate lighting 1s determined wvia
inner products based on kernels defined from the source fea-
ture 1tems. Thus, although the feature 1items have character-
1stics which are independent of lighting, once they have been
detected they can be used to extract information about the
source lighting conditions.

During the diffusion-matching process, the candidate set of
lightings 1s determined by adjusting the photometric basis
variation components. The photometric basis of variation 1s
computed for the candidate avatar being generated by posi-
tioning the avatar at all positions and poses and varying the
lighting. From this candidate set of lightings the basis func-
tions can be generated using principal components analysis or
any other suitable technique for generating typical states of
photometric illumination. Since the photometric basis func-
tions provide a non-orthogonal basis, there 1s a closed-form
least-squares solution for the functions for each step of the
diffusion-matching. The diffusion-matching process refines
the candidate avatar rotation and translation to decrease the
matching cost. The basis functions for photometric 1llumina-
tion which minimize the matching cost are selected.

In general the textured lighting field T(x), xeCAD can be
written via a basis describing all possible variations. This
basis 1s computed using principal components on the CAD
model by varying all possible 1lluminations and computing

the principle components using the method of variations. The
projected texture field (hereafter 1), 1s modeled as PT(p),
pe[0,1]2 indexed over the image, with the texture field
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T(x)=2,_,“t.$,(x). The transformation o, b, e, v is initialized to
be 1dentity transformation, and the following iteration 1s per-
formed. First, the dxd matrix

F(o, b, e, v) = (Equation 29)
1 |
(F(P‘Eﬁf(ﬂa b!‘ €, V)a Paﬁj(ﬂa ba €, 1’})> + E(S(I R .)J)]
1s computed. Second, the optimum t, t,, . . . for each (o, b, e,
v) using projected bases Pg:
(I, Pp(o, b, e, v)) (Equation 30)
(7)) o2
| = F(o, b, e, v)_l
L-\Td y <Ia P¢d(ﬂa ‘ba €, V))
\ o2 /

1s computed. Third, o, b, e, v are varied to generate the
mimmum cost match using techniques described above.
These three steps are iterated until convergence occurs.

A typical case arises when the source 1magery includes just
a single measured photograph I of the individual face. A
collection of avatar models {CAD? a=1, ..., A}, is provided.
The task 1s to select the avatar model which 1s most represen-
tative of the individual image being analyzed, incorporating,
both unknown rotations and translations of the head. Each of
the candidate avatars a=1, . . ., A has a projected texture field
IT%. In a typical implementation, each texture field I1” 1s first
loaded 1nto a rendering buffer for projection. The rotation,
translation and lighting are parameters which optimally {it the
candidate avatar to the photograph are calculated using the
appropriate pose-invariant search techniques described
above, and solving for best match, or minimum value of the
cost function for each avatar:

C(a) = min (Equation 31)

o,b.t

2

pe[0,11°

((p) —TI%(p) = V' TI*(p)Py oy (0x(p) + b — x(p)))°.

The avatar a which has the lowest cost a=arg_ . C(a) is
selected as the closest match. If landmarks are available D
D-, . . ., the cost 1s adjusted to include the extra term 2,(Ox +
b)Q,(Ox,+b).

In the case where multiple photographs I, v=1, ...,V are

available, a series of costs are obtained =, "C™(a) for each
avatar, and the minimum 1s selected:

ﬁ,:{:ll'gm i E‘V: 1 Vc(v)'

il

The mvention 1s able to take account of changes in the
source imagery caused by different expressions on the target
face. Given is a collection of avatar models {CAD?,
a=1,...,A}, and a single measured photograph I of the target
face; the task 1s to select the ID of the avatar model which 1s
most representative of the individual photograph being ana-
lyzed incorporating both rotation, translation, and possible
changes in geometry resulting from facial expression. Each of
the candidate avatars a=1, . . ., A 1s first loaded 1nto a render-
ing buifer for projection. The rotation, translation, expres-
s1ons and lightings which optimally {it the candidate avatar to
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the photograph are calculated using the appropriate tech-
niques described above, and the minimum cost for each avatar
1s solved for as follows:

2.

pel0,1]4

' ; . (Equation 32)
Cla)= min I(p) - 1I"(p) = V' 1I"(p) Px(p)

(GX(P) +b—x(p)+ Z e; L (X(P))] :

The avatar a which has the lowest cost a=arg, . C(a) is
selected as the closest match. In the case when Iilultiple
photographs 17, v=1, . ..,V are available, a series of costs are
obtained X, _,"C™(a) for each avatar, and the minimum is
selected:

a=arg . ¥ _."C™,

a—v=1

For example, for jaw motion, the expression may corre-
spond to a large deformation in which the flow of jaw particles
follow a rotation around the fixed jaw axis according to O(y):
p—O(v)p where O rotates the jaw points around the jaw axis
v. For extreme expressions corresponding to large deforma-
tion, ¢: x PP(x) satisfying ¢=¢, ¢ =/, v (¢ (x))ds+x, xe CAD.
The deformation of the CAD model and construction of the
mapping x 2¢(x), xeCAD gives a cost function

in )

C(a) =min
pel0,1]%

2 (Equation 33)
I(p)—1(p) = V' II(p)@(x(p)) — x(p))| -

The cost function calculation shown 1n Equation 32 can
also include rotation and translation.

The present invention may also take into account small
changes 1n source geometry, including those not necessarily
caused by facial expression. Examples include changes
caused by aging, plastic surgery, or weight change. Givenis a
collection of avatar models {CAD? a=1,...,A}, and a single
measured photograph I of the target face; the invention 1s to
select the ID of the avatar model which 1s most representative
of the individual photograph being analyzed incorporating
both rotation, translation, expressions and possible small
changes 1 geometry. The small changes in geometry are
represented via ¢: xPx+v(x) and large deformation
¢: xPPp(x) satisfying ¢=¢,,0=/,v_(¢.(X))ds+x, xeCAD.
First, each of the candidate avatars a=1, . . ., A are loaded 1nto
a rendering buffer for projection. The rotation, translation,
expressions, and lightings which optimally {it the candidate
avatar to the photograph are calculated using the appropriate

previous inventions and the minimum cost for each avatar 1s
solved for as follows:

2.

pel0,11?

| ) o (Equation 34)
Cl@)= min I(p) = 1(p) — V' T*(p) Py

(GX(P) +b—x(p)+ Z e; L (x(p) + v(P))] :

The avatar a which has the lowest cost a=arg min_ (C(a) is
selected as the closest match. For ID from multiple photo-
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graphs 1, v=1, . . ., V, a series of costs is obtained
> _,"C™)(a) for each avatar, and the minimum is selected:

U:

a=argmin >._ 'C™,

For large deformations the cost function in Equation 34 is
adjusted to accommodate the large deformation ¢: x 2¢(x).

When 3D measurements of the source object are available,
all of the above techmques may be used as described herein
with the indexing proceeding over the 1image I(p), pe3D lat-
tice which may be a dense volume, or a triangulate mesh of
the head, such as from a 3D scan (e.g., a so-called “cyber-
scan’’). In this case, the template II does not represent the
projection of the object to 2D projective geometry, but rather
1s the 3D representation of the template CAD model specified
by the rotation/translation, expressions, deformations, and
lighting parameters o, b, e, v, t. The above techniques are
adapted by computing directly over the 3D lattice indices as
follows:

Eﬁ n (Equation 35)
ob.e vt

> i@ -] . b.e. o =
xe3Diattice
Z 10— |-

xc3D{attice

v ]—I (X)ox(p) + b + Z e E:(x) + v .

min
ob.e.v

To accommodate large deformations 1n the 3D measurements
the transformation ¢: xF>¢(x) 1s included in the Equation
rather than via small additive transformations.

There are circumstances where there 1s no direct z infor-
mation, so that movement in z 1s equivalent to changing scale
in the image plane. The scales 1s a linear parameter which
varies non-linearly with changes 1n z. The sequence of rota-
tions/translations (five parameters) and scale are determined
in a manner directly analogous to the techniques described
above 1n all of the expressions 1nvolving the scale and rota-
tion.

The following describes the technique of the invention
when source video 1magery 1s available. Given the sequence
of imagery 1 (p), n=0, pe[0,1]° modeled as a Gaussian ran-
dom field with I +(p) having mean field II (p)(o(n)-+b(n))
flowing under the Euclidean transtformation, the sequence of
rotations and translations o(t), b(t) or equivalently “veloci-

ties” v(-, n)=(o—-1d)-+b, n=1, 2, . . . are estimated, such that
2 (Equation 36)
o Z fn+1(f:?)—]_[(ﬂ, b, p)|| =
pe[0,1]2 "

min
o.b

2.

pe[0,1]2

lnr1 (P) = ]_[ (p) =

V' [ [ () Puotox(p) + b - x(p))

For each n, the techniques described above, including prior
target position information and scale information, may be
used to generate o(n),b(n),s(n),e(n),t(n), (i.e., the optimal
rotations, translations, scales, and expressions) by including,
them 1n the optimization as in Equation 35 above. Stmilarly 1f
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projective landmark points are availablep,, ,p,. .. .., n>0, 1=1,
2, ..., the cost 1s changed to the landmark cost for matching
as described above.

The techniques presented herein for 1dentifying a source
using candidate avatars can be used in tandem with currently
existing 2D face-recognition methods. This can serve to
increase the confidence of an 1dentification, and reduce false
positives. In this situation, the ID 1s reduced to checking the
subset A — A of avatars which have been detected using any
preexisting approach, and filtering them using the avatar-
based techniques presented herein.

Retfer now to FIG. 2, which illustrates a hardware system
200 incorporating the invention. As indicated therein, the
system includes a video source 202 (e.g., a video camera or a
scanning device) which supplies a still mput image to be
analyzed. The output of the video source 202 1s digitized as a
frame 1nto an array of pixels by a digitizer 204. The digitized
images are transmitted along the system bus 206 over which
all system components communicate, and may be stored 1n a
mass storage device (such as a hard disc or optical storage
unit) 208 as well as in main system memory 210 (specifically,
within a partition defining a series of 1dentically sized input

image buifers) 212.

The operation of the illustrated system 1s directed by a
central-processing umt (“CPU”) 214. To facilitate rapid
execution of the image-processing operations hereinafter
described, the system preferably contains a graphics or
image-processing board 216; this 1s a standard component
well-known to those skilled 1n the art.

—

T'he user interacts with the system using a keyboard 218
and a position-sensing device (e.g., amouse) 220. The output
of either device can be used to designate information or select
particular points or areas ol a screen display 220 to direct
functions performed by the system.

The main memory 210 contains a group of modules that
control the operation of the CPU 212 and 1ts interaction with
the other hardware components. An operating system 222
directs the execution of low-level, basic system functions
such as memory allocation, file management and operation of
mass storage devices 208. At a higher level, the analyzer 226,
implemented as a series of stored instructions, directs execus-
tion of the primary functions performed by the invention, as
discussed below; and 1nstructions defining a user interface
228 allow straightforward interaction over screen display
222. The user interface 228 generates words or graphical
images on the display 222 to prompt action by the user, and
accepts commands from the keyboard 218 and/or position-
sensing device 220. Finally, the memory 210 includes a par-
tition 230 for storing for storing a database of 3D candidate
avatars, as described above.

The contents of each image buifer 212 define a “raster,”
1.€., a regular 2D pattern of discrete pixel positions that col-
lectively represent an image and may be used to drive (e.g., by
means of 1mage-processing board 216 or an 1image server)
screen display 222 to display that image. The content of each
memory location 1n a frame buffer directly governs the
appearance of a corresponding pixel on the display 222.

It must be understood that although the modules of main
memory 210 have been described separately, this 1s for clarity
of presentation only; so long as the system performs all the
necessary functions, 1t 1s immaterial how they are distributed
within the system and the programming architecture thereof.
Likewise, though conceptually organized as grids, pixelmaps
need not actually be stored digitally 1n this fashion. Rather, for
convenience of memory utilization and transmission, the ras-
ter pattern 1s usually encoded as an ordered array of pixels.
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As noted above, execution of the key tasks associated with
the present invention 1s directed by the analyzer 226, which
governs the operation of the CPU 212 and controls 1ts inter-
action with main memory 210 in performing the steps neces-
sary to perform detection of the target in the source imagery,
the pose-1nvariant search over the set of candidate 3D repre-
sentations, and the diffusion-matching of candidate 3D rep-
resentation geometry and photometry to optimally match a
candidate 3D representations to a target multifeatured object.
FIG. 3 1llustrates the components of a preferred implementa-
tion of the analyzer 226. The projection module 302 takes a
3D model and makes a 2D projection of it onto any chosen
plane. In general, an efficient projection module 302 will be
required 1n order to create numerous projections over the
space ol rotations and translations for each of the candidate
avatars. The rendering module 304 allows for the rapid pro-
jection of a 3D avatar into 2D with the option of including the
specification of the avatar lighting. Ordinarily, a separate
rendering buffer 1s allocated to each projected texture field
IT%. The 2D projection corresponds to the chosen lighting of
the 3D avatar. The detection module 306 searches for specific
viewpoint-invariant and lighting-invariant feature i1tems in
the 2D source projection. The features may include eyes,
nostrils, lips, and may incorporate probes that operate at
several different pixel scales. The diffusion-matching module
308 performs a controlled search of the geometric and pho-
tometric properties of a candidate 3D avatar to determine the
viewpoint, geometry and lighting of the candidate which
optimally fits the source imagery. The diffusion-matching
module may use the pose determined by the viewpoint-in-
variant search as its starting point, or it may use the pose
determined by the jump-detection module 306. Alternatively,
the diffusion-matching module may use as input other pose
information, such as that determined manually or via other
methods.

The detection module 306, execution of the pose-invariant
search, and diffusion-matching module 308 may operate 1n
parallel and hierarchically. For example, when many source
images are made available, such as from a video source,
jump-detection may operate continually on each image. If the
jump-detection module 306 detects a potential target, the
pose-invariant search may be performed on the detected tar-
get. If the pose-invariant search results 1n a potential candi-
date avatar, the diffusion-matching proceeds, using the ditiu-
sion-matching module 308.

FI1G. 4 illustrates the functions of the invention performed
in main memory. In step 402, the system examines the source
imagery using the jump-detection module 306, and automati-
cally detects pose-invariant and lighting-invariant features of
a face, such as eyeballs, nostrils, and lips that can be used for
matching purposes, as described above. In step 404, the pose-
invariant search 1s performed using the techniques described
above. In step 406, any prior information that may be avail-
able about the position of the source object with respect to the
available 2D projections 1s added into the computation, as
described herein. When 3D measurements of the source are
available, this data 1s used to constrain the rigid-motion
search as shown 1n step 408 and as described above. When the
viewpoint-invariant search 404 1s completed over all the can-
didate 3D avatars, the best-fitting avatar 1s selected 1n step
410, as described above. Subsequently, the pose, geometry
and lighting of the best-fitting avatar located 1n step 410 1s
subjected to controlled variations 1n the diffusion-matching
step 412. The projections of these variations in the best-fitting
candidate avatar are compared directly with the source imag-
cry 414. 3D measurements 408 of the source object, 11 avail-
able, are used to constrain the diffusion-matching 412. The

10

15

20

25

30

35

40

45

50

55

60

20

diffusion-matching step 412 vields a pose, geometry, and
lightning for the best-fitting 3D avatar which best matches the
source 1magery. The analyzer compares the projection of
avatar configuration selected by the diffusion-matching pro-
cess with the source imagery to produce a quality of fit. In step
416, this quality of {it 1s used to determine whether the can-
didate 1s positively identified with the source.

As noted previously, while certain aspects of the hardware
implementation have been described for the case where the
target object 1s a face and the reference object 1s an avatar, the
invention 1s not limited to the matching of faces, but may be
used for matching any multifeatured object using a database
of reference 3D representations that correspond to the generic
type of the target object to be matched.

It will therefore be seen that the foregoing represents a
highly extensible and advantageous approach to the genera-
tion of 3D models of a target multifeatured object when only
partial information describing the object 1s available. The
terms and expressions employed herein are used as terms of
description and not of limitation, and there 1s no 1ntention, 1n
the use of such terms and expressions, ol excluding any
equivalents of the features shown and described or portions
thereof, but 1t 1s recognized that various modifications are
possible within the scope of the mnvention claimed. For
example, the various modules of the invention can be 1imple-
mented on a general-purpose computer using appropriate
software instructions, or as hardware circuits, or as mixed
hardware-software combinations (wherein, for example,
pixel manipulation and rendering 1s performed by dedicated
hardware components).

What 1s claimed 1s:

1. A method of analyzing an image that contains a 2D
projection of a source multifeatured object, the method com-
prising;:

a. providing a plurality of 3D representations of candidate

multifeatured objects;

b. detecting the 2D projection of the source multifeatured
object 1n the 1mage;

c. searching over rigid motions and deformations of the
plurality of 3D representations to locate a best match the
candidate 3D representation, the best match 3D repre-
sentation being the 3D representation among the plural-
ity of 3D representations that produces a 2D projection
most resembling the 2D projection of the source multi-
featured object,

wherein said searching involves selecting each 3D repre-
sentation among the plurality of 3D representations and
for each selected 3D representation applying both rigid
motion and deformation operators to that selected 3D
representation to generate multiple versions of that
selected 3D representation, and for each version of that
selected 3D representation, computing a measure of fit
between that version of that selected 3D representation
and the 2D projection of the source multifeatured object,
and

wherein the best match 3D representation 1s the version of
the 3D representation from the plurality of 3D represen-
tations that yields a best measure of fit; and

d. comparing the 2D projection of the source multifeatured
object with the best match 3D representation to deter-
mine whether the best match 3D representation corre-
sponds to the source multifeatured object.

2. The method of claim 1, wherein detecting the 2D pro-

65 jection of the source multifeatured object involves locating

viewpoint-invariant and lighting-invariant feature items in
the 1mage.
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3. The method of claim 2, wherein detecting 1s performed
substantially in real time.

4. The method of claim 1, wherein searching involves
searching each 3D representation of the plurality of 3D rep-
resentations over at least one of

(1) a range of virtual lightings so as to match source-object
lighting conditions prevailing when the source imagery
was captured, and

(11) a range of deformations.

5. The method of claim 4 wherein the deformations are
small deformations.

6. The method of claim 4 wherein the deformations accom-
modate movements of parts of the source object.

7. The method of claim 4 wherein the deformations are
large deformations.

8. The method of claim 4 wherein the deformations are
associated with changes in the source object over time.

9. The method of claim 1, wherein searching further com-
prises, for each candidate 3D representation, searching over a
range of possible 2D projections of the 3D representations
without actually generating any projections.

10. The method of claim 1, wherein searching further com-
prises, for each candidate 3D representation, searching over a
range of possible 2D projections and computing an optimal
rigid motion of the candidate 3D representation that corre-
sponds to a 2D projection that 1s optimally consistent with the
2D projection of the source multifeatured object.

11. The method of claim 10 wherein computing the optimal
rigid motion ivolves:

a. estimating a conditional mean of feature 1tems compris-
ing points, curves, surfaces, and subvolumes 1n a 3D
coordinate space associated with the candidate 3D rep-
resentation, which feature 1tems are projectionally con-
sistent with feature 1tems in the at least one source 2D
projection;

b. generating, for rigid motions of the candidate 3D repre-
sentation, minimum mean-squared error estimates
between the conditional mean estimate of the projected
feature 1tems and corresponding feature items of the
candidate 3D representation; and

¢. determining a quality of fit by comparing portions of the
projection of the 3D candidate representation and cor-
responding portions of the source 2D representation,
and defining the optimum rigid motion as that corre-
sponding to the best quality of {it.

12. The method of claim 1, wherein comparing results 1n a
positive identification of the candidate 3D representation with
the source object when the degree of match between the
projection of the 3D representation and the source 2D 1image
exceeds a pre-determined threshold.

13. The method of claim 1 wherein searching over rigid
motions and deformations of the plurality of 3D representa-
tions to locate the best match 3D representation involves
simultaneously searching over rigid motions and deforma-
tions of the plurality of 3D representations to locate the best
match 3D representation.

14. A method of analyzing an image that contains a 2D
projection of a source face, the method comprising:

a. providing a plurality of candidate 3D avatars;

b. detecting the 2D projection of the source face 1n an

1mage;

c. searching over rigid motions and deformations of the
plurality of candidate 3D avatars to locate a best match
3D avatar, the best match 3D avatar being the candidate
3D avatar among the plurality of candidate 3D avatars
that produces a 2D projection most resembling the 2D
projection of the source face,
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wherein said searching involves selecting each candidate
3D avatar among the plurality of candidate 3D avatars
and for each selected candidate 3D avatar applying both
rigid motion and deformation operators to that selected
candidate 3D avatar to generate multiple versions of that
selected candidate 3D avatar, and for each version of that
selected candidate 3D avatar, computing a measure of fit

between that version of that selected candidate 3D avatar
and the 2D projection of the source face, and

wherein the best match 3D avatar 1s the version of the
candidate 3D avatar from the plurality of candidate 3D
avatars that yields a best measure of fit; and

d. comparing the 2D projection of the source face with the
best match 3D avatar to determine whether the best
match 3D avatar corresponds to the source face.

15. The method of claim 14, wherein detecting the 2D
projection of the source face mvolves locating viewpoint-
invariant and lighting-invariant feature items 1n the 1mage.

16. The method of claim 135, wherein detecting 1s per-
formed substantially in real time.

17. The method of claim 14, wherein searching involves
searching each candidate 3D avatar of the plurality of candi-
date 3D avatars over at least one of:

(1) a range of virtual lightings so as to match source-face
lighting conditions prevailing when the source imagery
was captured, and

(1) a range of deformations.

18. The method of claim 17 wherein the deformations are
small deformations.

19. The method of claim 17 wherein the deformations
accommodate facial movements.

20. The method of claim 17 wherein the deformations are
large deformations.

21. The method of claim 17 wherein the deformations are
associated with changes in the source face over time.

22. The method of claim 14, wherein searching comprises,
for each candidate 3D avatar, searching over a range ol pos-
sible 2D projections of the 3D avatar without actually gener-
ating any projections.

23. The method of claim 14, wherein searching further
comprises, for each candidate 3D avatar, searching over a
range ol possible 2D projections and computing an optimal
rigid motion of the candidate 3D avatar that corresponds to a
2D projection that 1s optimally consistent with the 2D pro-
jection of the source face.

24 . The method of claim 23 wherein computing the optimal
rigid motion 1nvolves:

a. estimating a conditional mean of feature items compris-

ing points, curves, surfaces, and subvolumes 1n a 3D
coordinate space associated with the candidate 3D ava-

tar, which feature items are projectionally consistent
with feature 1tems in the at least one source 2D projec-

tion;
b. generating, for rigid motions of the candidate 3D avatar,
minimum mean squared error estimates between the

conditional mean estimate of the projected feature 1tems
and corresponding feature items of the candidate 3D

avatar; and

¢. determining a quality of it by comparing portions of the
projection of the candidate 3D avatar and corresponding
portions of the source 2D representation, and defining
the optimum rigid motion as that corresponding to the
best quality of fit.

25. A system for analyzing an image that contains a 2D
projection of a source multifeatured object, the system com-
prising:
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a. a database comprising a plurality of 3D representations
of candidate multifeatured objects;

b. a detection module for detecting the 2D projection of the
source multifeatured object 1n the 1mage;

c. an analyzer implemented least 1n part by a central pro-
cessing unit for (1) searching over rigid motions and
deformations of the 3D representations to locate a best
match 3D representation, the best match 3D representa-
tion being the 3D representation among the plurality of
3D representations that produces a 2D projection most
resembling the 2D projection of the source multifea-
tured object, and (1) comparing the 2D projection of the
source multifeatured object with the best match 3D rep-
resentation to determine whether the best match 3D
representation corresponds to the source multifeatured
object,

wherein said searching involves selecting each 3D repre-
sentation among the plurality of 3D representations and
for each selected 30 representation applying both rigid
motion and deformation operators to that selected 3D
representation to generate multiple versions of that
selected 3D representation, and for each version of that
selected 3D representation, computing a measure of fit
between that version of that selected 3D representation
and the 2D projection of the source multifeatured object,
and

wherein the best match 3D representation 1s the version of
the 3D representation from the plurality of 3D represen-
tations that yields a best measure of fit.

26. The method of claim 14, wherein comparing results in

a positive 1identification of the candidate 3D avatar with the
source face when the degree of match between the projection
of the 3D avatar and the source 2D 1mage exceeds a prede-
termined threshold.

27. The method of claim 14 wherein searching over rigid
motions and deformations of the plurality of candidate 3D
avatars to locate the best match 3D avatar involves simulta-
neously searching over rigid motions and deformations of the
plurality of candidate 3D avatars to locate the best match 3D
avatar.

28. The system of claim 24 wherein searching over rigid
motions and deformations of the plurality of 3D representa-
tions to locate the best match 3D representation involves
simultaneously searching over rigid motions and deforma-
tions of the plurality of 3D representations to locate the best
match 3D representation.

29. The system of claim 28, wherein the detection module
detects the 2D projection of the source multifeatured object
by locating viewpoint-invariant and lighting-invariant feature
items 1n the 1mage.

30. The system of claim 29, wherein the detection module
performs the detection substantially in real time.

31. The system of claim 28, wherein the analyzer further
comprises a diffusion-matching module which searches 2D
projections of the 3D candidate representations generated
from at least one of:

(1) a range of virtual lightings so as match source-object
lighting conditions prevailing when the source imagery
was captured, and

(11) a range ol deformations.

32. The system of claim 31 wherein the deformations are
small deformations.

33. The system of claim 31 wherein the deformations
accommodate movements of parts of the source object.

34. The system of claim 31 wherein the deformations are
large deformations.
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35. The system of claim 31 wherein the deformations are
associated with changes 1n the source object over time.

36. The system of claim 28 wherein the analyzer searches,
for each 3D representation among the plurality of 3D repre-
sentations, over a range of possible 2D projections of that 3D
representation without actually generating any projections.

377. The system of claim 36, wherein the analyzer computes
the optimum rigid motion of the 3D representation that cor-
responds to a 2D projection that 1s optimally consistent with
the 2D projection of the source multifeatured object.

38. The system of claim 37, wherein the analyzer 1s con-
figured to determine the optimum rigid motion by:

a. estimating a conditional mean of feature 1items compris-
ing points, curves, surfaces, and subvolumes 1 a 3D
coordinate space associated with the candidate 3D rep-
resentation, which feature 1items are projectionally con-
sistent with feature 1tems in the at least one source 2D
projection;

b. generating, for rigid motions of the candidate 3D repre-
sentation, mimmum mean-squared error estimates
between the conditional mean estimate of the projected
feature 1tems and corresponding feature items of the
candidate 3D representation; and

c. determining a quality of {it by comparing portions of the
projection of the candidate 3D representation and cor-
responding portions of the source 2D representation,
and defining the optimum rigid motion as that corre-
sponding to the best quality of fit.

39. The system of claim 28, wherein the analyzer outputs a
positive 1dentification of the best match 3D representation
with the source object when the degree of correspondence
between the projection of the 3D representation and the
source 2D 1image exceeds a pre-determined threshold.

40. A system for analyzing an image that contains a 2D
projection of a source face, the system comprising:

a. a database comprising a plurality of candidate 3D ava-

tars;

b. a detection module for detecting the 2D projection of the
source face in a1* the image;

c. an analyzer implemented at least in part by a central
processing unit for (1) searching over rigid motions and
deformations of the candidate 3D avatars to locate a best
match 3D avatar, the best match 3D avatar being the
candidate 3D avatar among the plurality of candidate 3D
avatars that produces a 2D projection most resembling
the 2D projection of the source face, and (1) comparing
the 2D projection of the source face with the best match
3D avatar to determine whether the best match 3D avatar
corresponds to the source face,

wherein said searching 1involves selecting each candidate
3D avatar among the plurality of candidate 3D avatars
and for each selected candidate 313 avatar applying both
rigid motion and deformation operators to that selected
candidate 3D avatar to generate multiple versions of that
selected candidate 3D avatar, and for each version of that
selected candidate 3D avatar, computing a measure of fit
between that version of that selected candidate 3D avatar
and the 2D projection of the source face, and

wherein the best match 3D avatar 1s the version of the
candidate 3D avatar from the plurality of candidate 3D
avatars that yields a best measure of fit.

41. The system of claim 40, wherein the detection module
detects the 2D projection of a face by locating viewpoint-
invariant and lighting-invariant feature items 1n the source 2D
image.

42. The system of claim 41, wherein the detection module
performs the detection substantially in real time.
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43. The system of claim 40, wherein the analyzer further
comprises a diffusion-matching module which searches 2D
projections of the candidate avatar generated from at least one
of:

(1) a range of virtual lightings so as match source-head
lighting conditions prevailing when the source imagery
was captured, and

(11) a range ol deformations.

44. The system of claim 40 wherein the analyzer searches,
for each candidate 3D avatar, over a range of possible 2D
projections of the 3D avatars without actually generating any
projections.

45. The system of claim 44, wherein the analyzer computes
the optimum rnigid motion of the candidate 3D avatar that
corresponds to a 2D projection that 1s optimally consistent
with the 2D projection of the source face.

46. The system of claim 45, wherein the analyzer 1s con-
figured to determine the optimum rigid motion by:

a. estimating a conditional mean of feature 1tems compris-
ing points, curves, surfaces, and subvolumes 1n a 3D
coordinate space associated with the candidate 3D ava-
tar, which feature items are projectionally consistent
with feature 1tems in the at least one source 2D projec-
tion;
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b. generating, for rigid motions of the candidate 3D avatar,
minimum mean-squared error estimates between the
conditional mean estimate of the projected feature 1tems
and corresponding feature items of the candidate 3D
avatar; and

c. determining a quality of it by comparing portions of the
projection of the candidate 3D avatar and corresponding
portions of the source 2D representation, and defining
the optimum rigid motion as that corresponding to the
best quality of fit.

4'7. The system of claim 40, wherein the analyzer 1s con-
figured to output a positive 1identification of the candidate 3D
avatar with the source face when the degree of match between
the projection of the 3D avatar and the source 2D image
exceeds a predetermined threshold.

48. The system of claim 40 wherein searching over rigid
motions and deformations of the plurality of candidate 3D
avatars to locate the best match 3D avatar involves simulta-
neously searching over rigid motions and deformations of the
plurality of candidate 3D avatars to locate the best match 3D
avatar.
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