12 United States Patent

Raghavan et al.

US007840700B2

US 7,840,700 B2
Nov. 23, 2010

(10) Patent No.:
45) Date of Patent:

(54) DYNAMICALLY ADDING APPLICATION
LOGIC AND PROTOCOL ADAPTERS TO A
PROGRAMMABLE NETWORK ELEMENT

(75) Inventors: Kollivakkam Raghavan, San Jose, CA
(US); Pravin Singhal, Cupertino, CA
(US); Sunil Potti, Castro Valley, CA
(US); Tefcros Anthias, Los Altos, CA
(US)
(73) Assignee: Cisco Technology, Inc., San Jose, CA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 667 days.
(21) Appl. No.: 11/473,194
(22) Filed: Jun. 21, 2006
(65) Prior Publication Data
US 2007/0011332 Al Jan. 11, 2007
Related U.S. Application Data
(60) Provisional application No. 60/692,715, filed on Jun.
21, 2005.
(51) Int.CL
GO6l’ 15/173 (2006.01)

(52) US.Cl e 709/238
(58) Field of Classification Search 709/238
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,796,743 A
6,611,526 Bl
6,772,211 B2*

8/1998 Bunting et al.
8/2003 Chinnaswamy et al.
8/2004 Luetal.coovvnenenennn, 709/226

1/2008 Parekh et al.
8/2008 Moon

7,321,556 Bl
7,415,512 Bl

(Continued)

FOREIGN PATENT DOCUMENTS
WO 03/021465 Al 3/2003

OTHER PUBLICATIONS

WO

International Searching Authority, “Notification of Transmittal of the
International Search Report and the Written Opinion of the Interna-
tional Searching Authority, or the Declaration”, International appli-
cation No. PCT/US05/46149, dated Jul. 20, 2007, 9 pages.

(Continued)

Primary Examiner—Hassan Phillips
Assistant Examiner—Ebrahim Golabbakhsh

(74) Attorney, Agent, or Firm—Hickman Palermo Truong &
Becker LLP

(57) ABSTRACT

Custom or user-defined application program extensions may
be loaded into a network infrastructure element such as a
router or switch without restarting the device. For example, a
network element has program extensibility logic operable for
receiving one or more user program extensions that comprise
logic operable to interface with the application program and
perform message processing functions or protocol processing
functions that are not 1n the application program; installing
the one or more user program extensions without restarting
the apparatus; receiving one or more packets representing an
application message; selecting a particular one of the user
program extensions based on a protocol associated with the
message; loading the particular one of the user program
extensions; executing business logic of the application pro-
gram associated with the recerved message; and invoking a
function of the particular one of the user program extensions
in response to a call in the business logic.

24 Claims, 8 Drawing Sheets

AQONS Message Execution Controller (AMEC) Framework
(part of the Java process of an AONS blade)
@ 512 Biadelet Execution
610
Subsystem
Bladelet Dispatcher
Bladelet - 520
\.

c10 612 (BladeletQueus { | Bladelet ?13

Z 6814 6186 ‘ Thread Paol
Flow [@ Manager @D
Management @—" Bladelet Execution Controller
Subsystem B
)
Message Execution Controller 214
608
® - @
504 606 Thread Pool 622
N\ \ Manager \
[Inbox H@—* Message Dispatcher
o) 526
O o w Q \

Message Receiver Outb Message Sender

(TCP Based) (_outbox 19 (TCP Based)

502
506 -
@ AONS Message Processing . q‘ p
116 AONS Blade Infrastructure Subsystem

US 7,840,700 B2

Page 2
U.S. PATENT DOCUMENTS 2004/0267933 Al* 12/2004 Przybylski etal. 709/227
2005/0005031 Al 1/2005 Gordy et al.
7,421,695 B2 9/2008 Murray et al. 2005/0025091 A1 2/2005 Patel et al.
2001/0047422 Al 11/2001 McTernan et al. 2005/0102393 Al 5/2005 Murray et al.
2002/0069279 Al 6/2002 Romero et al. 2005/0148314 Al 7/2005 Taglienti et al.
2002/0105911 Al 8/2002 Pruthi et al. 2005/0213591 Al* 9/2005 Nakazawaetal. 370/401
2002/0107951 Al* 82002 Teagueetal. 709/223 2005/0228893 Al 10/2005 Devarapalli et al.
2002/0114274 Al* 82002 Sturges et al. 370/229 2005/0252970 Al 11/2005 Howarth et al.
2002/0143981 Al* 10/2002 Delimaetal.oooon.... 709/233 2005/0286461 Al 12/2005 Zhang et al.
2002/0163933 Al* 11/2002 Benveniste 370/465 2005/0289538 Al* 12/2005 Black-Ziegelbein et al. . 717/177
2002/0191622 Al* 12/2002 Zdancooovevveeeeevvinnnn, 370/401 2006/0015699 A 1 1/2006 Fujiwara et al.
2002/0194342 Al 12/2002 Lu et al. 2006/0123226 Al 6/2006 Kumar et al.
2003/0004672 Al* 1/2003 Thurman 702/123 2006/0129680 Al 6/2006 Ho et al.
2003/0005117 ALl* 1/2003 Kangetal. 709/225 2006/0155862 Al* 7/2006 Kathietal. ...ooovuennn..... 709/229
2003/0009571 Al 1/2003 Bavadekar 2006/0155969 Al 7/2006 Yoda et al.
2003/0036897 Al* 2/2003 Floresetal. .oooovvveennn.... 703/22 2006/0236062 Al 10/2006 BRoss et al.
2003/0046429 Al 3/2003 Sonksen 2006/0256768 Al 11/2006 Chan
2003/0078031 Al 4/2003 Masuda 2007/0011223 Al* 1/2007 Calvignac etal. 709/200
2003/0112809 Al* 6/2003 Bharalietal. .ooovvennn. 370/400 2007/0055864 Al 3/2007 Tock et al.
2003/0177183 Al 9/2003 Cabrera et al. 2008/0209413 Al* 82008 Kakumanietal. 717/172
2003/0182419 Al* 9/2003 Barretal. ...oooovvvvvvvnnn. 709/224
2003/0202535 Al 10/2003 Foster et al. OTHER PUBLICATIONS
2003/0217171 Al* 11/2003 Von Stuermer et al. 709/23 1 | | o
2004/0039940 Al* 2/2004 CoX etal. woeevoveevoenn.. 713/201 Claims, International application No. PCIT/US05/46149, 10 pages.
. - International Searching Authority, “Notification of Transmittal of the
2004/0088460 Al 5/2004 Poisner T e e R o S
2004/0128360 Al* 7/2004 Petrietal. ..oeooeeen..... 709/214 PLEIAIONAT SEATEA BEPOTL AN LA WITTEN LPIION O 1€ telid-
_ tional Searching Authority, or the Declaration,” PCT/US2006/
2004/0162871 Al* 82004 Pablaetal. .ooovvvveevnnn.. 709/201
| 024375, dated Oct. 17, 2006, 10 pages.
2004/0205336 Al* 10/2004 Kessleretal. .ooooovvvvnnn.. 713/160 Current Claims, PCT/US2006/024375, 6 pages
2004/0260760 Al 12/2004 Curnyn ’ |
2004/0267920 Al 12/2004 Hydrie et al. * cited by examiner

US 7,840,700 B2

Sheet 1 of 8

Nov. 23, 2010

U.S. Patent

13pIA0I4 99IAIG

uonezuoyiny ggi|

(S)}Janlag

buinigoay

Va0l

ope|g SNOV 911

19PINOI4 2IAIDS
uonesnuayiny Yail

21607

uoljezuoyne pue
uoneaiddy uoeauayiny o7

MOMION

JEWEL)Y

¥JOM]oULI9]U]

I8PINOI4 9IINBS
uonednusyiny vgli

YIOM)SN
1eo0] €01

18PIAOL4 82IMSS
uonezuoyiny garl

19puasg

cot

T T T s

US 7,840,700 B2

s_r .r..r.
J.-.,...,..,..,..,.._.H.H .u.

R AR P e e P TP TET LR

9)EeD

! P
. walady!

u.. o “...:_...._.u-.u...u 4 d

= - el

. = a . .."

N ...-. Fa'r

." - .-“ ...-... *

R

'
i
e d A

L EE

19zuoyny uoisuaixy 9i¢

R el

tASES

A

. Jo)epien uoisuaxg iz | —

‘.-..-.J..I.J.I.I.l.l—.llu.‘llllll.lnl-ll.._ll.l..l’.lr . W W Y Y N N e ey PR R EE P T s e Y o T o - BTSN ™ sl o "Wl el ek s i o ol O N O T AP O e N O . PR TN LA RS O o i

Sheet 2 of 8

TEEEE N EEEE SN FE EJEE NN NASRArSdE R AR

-a- RN N RN N A Ak A b BN ek ke mmmiamn- TLE
N = N N e N EE N N f N e e m NN EE NN NN NN RS WAL ALLEE L L L L] — - L 1 a-a1-aka

.-...._n._._f

A

Nov. 23, 2010

19lN0Y VOl |

U.S. Patent

US 7,840,700 B2

Sheet 3 of 8

Nov. 23, 2010

U.S. Patent

UoneanuayIne uoisuag

; uogeaiuayny

uoeaguayny 10 odh| T7E

uoIsuaX3 Z¢t

uogeguayny

uiing 778 |uoedguayne
uiing

LAeyo

gleaquayny 9¢t ON bujpuey Jou3 BIE

S3A

Juogezuoyny

poaN 0¢t ON
SdA
Juogezuogyny abesso
jo adA] 7€ UOEZLIOUINE UOISUS)XT piemioq 0T

OleZII0LNE UI4(INg

UOIBZLOYNY UOQeZIIoWNY

uoisusixy pgg

uiiing 9EE

A0
uogezuoymy 3ee

ON SJA

suogluyaq
uogeds07109|8s 71t

S3A

ON

)0
uojeayguap| 91

s|leguapal)
Jasn Auspl $TE

;suopuyag
uoqeaoq] I

¢ 9bessa
jo adA) 0T

abessajy Huiwooy|
Yde3 104 $0¢

uogezijegiu] 0t

US 7,840,700 B2

3a¥19 ¥3HLO
NoOy
@
" o
= o
S
g 3a¥19 ¥3HLO
7> Yo0F
—
= 3av19 SNOY
s oIl
>
S 901
3QY19 HOSIAYIANS
YOLY cOp
¥3LNOX
VOIT

U.S. Patent

d0l¥

vOlY

US 7,840,700 B2

llllllllllllllllllll

Sheet 5 of 8

Nov. 23, 2010

........

U.S. Patent

G Ol

WN3LSASENS
34N LONEG1SVHANI

......................... ONISS300dd
FOVSSA SNOV
908

d31T1041NOD
NOILNOIXd
FOVSSIN
2%

...........

NILSASENS W3LSASHNS

NOILNOIXd INJWNIOVNVIA
13130V14 MO14

cls 0l

MHYOMIWYHS (OFNV) YITIOHLNOD NOILNIAXI IDVYSSIW SNOV

NJ1SASENS
INJNFOVNVIA
AIINOd
1204

waysAsqng ainjoniisesu) SPEIg SNOV 9t 1
ﬁ@ buissaosold abessaspy SNOY .

(Peseq dOL)
12A1928Y abessaN

US 7,840,700 B2

(peseq dO1) D OTING

lopuag abessa

¥c9 209
| 929
by uj Q layoledsiq abesss\ o
o0 1abeuepy
> ¢ed |004 peaiy] 909
&
,_w e Q09 / 5 @
M\ﬂu e 13]|0JJUO0D UOIJNOaX3 9DEBSS3N
| wajsAsqng
_ 19]]0JjU0)) uoiNdax3 jajepe|q 8 | luswabeuey |
= @ jobeuepy Mo\
< 004 peaiyl 919 E‘mv
| |
o] 0LS
M 219 }19|spe|g onanpjisiepe|g ARe
-
029 slape
7z 5 _ }1s|epe|g
Jayojedsiq 19|9pe|g
walsAsqng @
uonno2ax3 Jojepe|g LG ___0is
(ape|q SNOV Ue jo ssadoid eaep oy} jo ued) | 9 'O

yiomawelq (DJNY) 18]|ciuo) uolynoaxy sbessapy SNOVY

U.S. Patent

U.S. Patent Nov. 23, 2010 Sheet 7 of 8 US 7,840,700 B2

T
T,
LY,

kol

Ny

2,
o

Y

X
. Wi

Y

, -
O
-
D
),

S o
N~ O

US 7,840,700 B2

Sheet 8 of 8

9¢8

Nov. 23, 2010

8C8

U.S. Patent

174]
1SOH

0¢8
44}
AHOMLIN
VOO0
6l8

biB

SRt BB

918 W3LSAS
ONIHOLIMS

il

018

J0IA3d
JOVd0lLS

818

JOV4431NI
NOILVIINNNWOD

¢l8
TVNINGAL

SNg

08
40553004d

908
ASOW3IN
NIVIA

US 7,840,700 B2

1

DYNAMICALLY ADDING APPLICATION
LOGIC AND PROTOCOL ADAPTERS TO A
PROGRAMMABLE NETWORK ELEMENT

PRIORITY CLAIM

This application claims the benefit under 35 U.S.C. 119(e)
of provisional Application No. 60/692,715, filed Jun. 21,
2003, the entire contents of which are hereby incorporated by
reference for all purposes as 11 fully set forth herein.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s related to U.S. patent application Ser.
No. 11/043,857, filed Jan. 25, 2005, entitled “APPLICATION
LAYER MESSAGE-BASED SERVER FAILOVER MAN-
AGEMENT BY A NETWORK ELEMENT.” by Sunil Potti
et al.; U.S. patent application Ser. No. 10/991,792, entitled
“PERFORMING MESSAGE AND TRANSFORMATION
ADAPTER FUNCTIONS INANETWORK ELEMENT ON
BEHALF OF AN APPLICATION”, by Pravin Singhal et al.,
filed on Nov. 17, 2004; U.S. patent application Ser. No.
10/997,616, entitled “CACHING CONTENT AND STATE
DATA AT A NETWORK ELEMENT™, by Alex Yiu-Man
Chan et al., filed on Nov. 23, 2004; U.S. patent application
Ser. No. 11/005 ,978, entitled “PERFORMING MESSAGE
PAYLOAD PROCESSING FUNCTIONS IN A NETWORK
ELEMENT ON BEHALF OF AN APPLICATION”, by
Tefcros Anthias et al., filed on Dec. 6, 2004; U.S. patent
application Ser. No. 11/007 421, entitled “PERFORMING
SECURITY FUNCTIONS ONA MESSAGE PAYLOAD IN
A NETWORK ELEMENT™, by Sandeep Kumar et al., filed
on Dec.7,2004; U.S. patent application Ser. No. 11/007,132,
entitled “NETWORK AND APPLICATION ATTACK PRO-
TECTION BASED ON APPLICATION LAYER MESSAGE
INSPECTION”, by Sandeep Kumar et al., filed on Dec. 7,
2004; U.S. patent application Ser. No. 11/009,127, entitled
“REDUCING THE SIZES OF APPLICATION LAYER
MESSAGES INANETWORK ELEMENT™, by Ricky Ho et
al., filed on Dec. 10, 2004; U.S. patent application Ser. No.
11/009 270, entitled “GUARANTEED DELIVERY OF
APPLICATION LAYER MESSAGES BY A NETWORK
ELEMENT™, by Teicros Anthias et al., filed on Dec. 10, 2004;
U.S. patent application Ser. No. 11/031 106, filed Jan. 3,
2005, entitled “INTERPRETING AN APPLICATION MES-
SAGE AT A NETWORK ELEMENT USING SAMPLING
AND HEURISTICS,” by Tefcros Anthias et al., filed on Jan.
5, 2005, and U.S. patent application Ser. No. 11/031,184,
filed on Jan. 6, 2005, entitled “DATA TRAFFIC LOAD BAL-
ANCING BASED ON APPLICATION LAYER MES-
SAGES,” by Har1 Kathi et al., filed on Jan. 6, 2005, the entire
contents of which are hereby incorporated by reference for all
purposes as 1i fully set forth herein.

FIELD OF THE INVENTION

The present mmvention generally relates to data processing
techniques performed within network infrastructure elements
such as routers and switches. The invention relates more
specifically to techmques for customizing the parsing of
transport protocols on which messages are received and per-

10

15

20

25

30

35

40

45

50

55

60

65

2

forming custom message processing functions on an applica-
tion message 1n a network infrastructure element.

BACKGROUND

The approaches described 1n this section could be pursued,
but are not necessarily approaches that have been previously
concetrved or pursued. Therefore, unless otherwise indicated
herein, the approaches described in this section are not prior
art to the claims 1n this application and are not admaitted to be
prior ait by inclusion in this section.

Software applications operating in a network environment
exchange application messages. An “application message,”
or simply “message”, as used herein, refers to a message
emitted or consumed by a software element that 1s logically
located at Layer S or higher of the OSI reference model.
Messages may be contained 1n more than one data frame,
packet or segment. For simplicity, the term “packet” 1s used to
refer to a unit of organization under an internetworking pro-
tocol, such as data frame, packet or segment, at Layer 2, 3 or
4 of the OSI reference model.

Application end points such as clients and servers in a
distributed system communicate over a network using many
different transport layer protocols such as HTTP, JMS,
SMTP, FTP, etc. Independent of the transport layer protocols,
messages themselves can have their own formats such as
XML, TEXT, BINARY, etc. In addition to standard formats,
applications sometimes use their own proprietary message
formats as well as proprietary transport protocols that are best
suited for their requirements.

Additionally, as applications need to interact with other
networked applications which use their own proprietary or
standard transport protocols and message formats, the mes-
sages that travel from one application to another may need
different custom processing for both transport level protocols
and custom business logic.

Application message formats are not static and may change
to support business needs. The business logic code that pro-
cesses these application messages must change to support the
new message formats. On the other hand, the same applica-
tion message may be transmitted using different protocols to
support business needs. Custom protocol handlers may need
to handle the processing of these messages over the new
transport protocol.

Generally, 1 past approaches, in order to handle any of
these changes, the implementation of the application has to be
changed, the application has to be reloaded into the network
device, and the network device has to be restarted. This 1s
time-consuming, requires significant resources 1n program-
ming labor, and 1s disruptive to network operations. Further,
in typical past approaches, the number of servers on which the
applications run 1s much higher than the number of network
clements that interconnect them. The custom business logic
for handling different message formats and transport proto-
cols must be provisioned and managed on all the servers,
which 1s time-consuming and labor-intensive.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings and in which like reference numerals refer to similar
clements and 1n which:

FIG. 1A 1s a block diagram that 1llustrates an overview of
a network arrangement that can be used to implement an
embodiment;

US 7,840,700 B2

3

FIG. 1B 1s a block diagram showing authentication and
authorization logic 1n a network infrastructure element such
as a router, 1n one embodiment:;

FI1G. 2 1s a block diagram of software elements that may be
used to implement the authentication and authorization logic,
1n one embodiment;

FIG. 3 1s a flow diagram of one embodiment of a process of
application message authentication and authorization;

FI1G. 4 15 a block diagram that 1llustrates one embodiment
of a router in which a supervisor blade directs some packet

flows to an AONS blade and/or other blades;

FIG. 5 1s a diagram that illustrates message-processing,
modules within an AONS node:

FIG. 6 1s a diagram that illustrates message processing,
within AONS node;:

FIG. 7 1s a flow diagram of how an authentication and/or
authentication package 1s created and provisioned to an
AONS blade, in one embodiment; and

FIG. 8 1s a block diagram that i1llustrates a computer system
upon which an embodiment may be implemented.

DETAILED DESCRIPTION

Dynamically adding application logic and protocol adapt-
ers to a programmable network element i1s described.
Approaches herein may allow for customizing the parsing of
transport protocols on which messages are received and also
custom message processing functions on an application mes-
sage 1n a network infrastructure device. In the following
description, for the purposes of explanation, numerous spe-
cific details are set forth 1n order to provide a thorough under-
standing of the present invention. It will be apparent, how-
ever, to one skilled 1n the art that the present invention may be
practiced without these specific details. In other instances,
well-known structures and devices are shown 1n block dia-
gram form in order to avoid unnecessarily obscuring the
present invention.

Embodiments are described herein according to the fol-
lowing outline:

1.0 General Overview

2.0 Structural and Functional Description
3.0 AONS Implementation Examples
3.1 AONS General Overview

3.2 Multi-Blade Architecture
3.3 AONS Blade Message Processing Framework

3.4 Extension Package Implementation
4.0 Implementation Mechamsms—Hardware Overview
5.0 Extensions and Alternatives

1.0 General Overview

In an embodiment, custom or user-defined application pro-
gram extensions may be loaded into a network infrastructure
clement such as a router or switch without restarting the
device. For example, a network element has program exten-
s1ibility logic operable for receiving one or more user program
extensions that comprise logic operable to interface with the
application program and perform message processing func-
tions or protocol processing functions that are not in the
application program; installing the one or more user program
extensions without restarting the apparatus; receiving one or
more packets representing an application message; selecting,
a particular one of the user program extensions based on a
protocol associated with the message; loading the particular
one of the user program extensions; executing business logic
ol the application program associated with the recerved mes-
sage; and mvoking a function of the particular one of the user
program extensions i response to a call in the business logic.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

According to one aspect, the mvention provides a data
processing apparatus, comprising a plurality of network inter-
faces that are coupled to a data network for recerving one or
more packets therelrom and sending one or more packets
thereto; one or more processors; a switching system coupled
to the one or more processors and packet forwarding logic,
wherein the switching system and packet forwarding logic
are conligured to receive packets on a first network 1nterface,
determine a second network interface on which to send the
packets, and to send the packets on the second network inter-
face; a computer-readable storage medium having an appli-
cation program stored thereon; program extensibility logic
which when executed by the one or more processors 1s oper-
able to cause: recerving one or more user program extensions,
wherein the user program extensions comprise logic operable
to 1intertace with the application program and perform any of
message processing functions and protocol processing func-
tions that are not 1n the application program; installing the one
Or more user program extensions without restarting the appa-
ratus; recerving one or more packets representing an applica-
tion message; selecting a particular one of the user program
extensions based on a protocol associated with the message;
loading the particular one of the user program extensions;
executing business logic of the application program associ-
ated with the recerved message; invoking a function of the
particular one of the user program extensions in response to a
call in the business logic.

In one feature, the application message comprises one or
more transport protocol headers, and the program extensibil-
ity logic comprises logic which when executed by the one or
more processors 1s operable to select and invoke the particular
one of the user program extensions based on values located 1n
the one or more transport protocol headers.

In another feature, the application message comprises one
or more application message headers, and the program exten-
s1ibility logic comprises logic which when executed by the one
or more processors 1s operable to select and 1mnvoke the par-
ticular one of the user program extensions based on values
located 1n the application message headers.

In a further feature, the one or more user program exten-
s10nS comprise one or more extension functions, and the
program extensibility logic comprises logic which when
executed by the one or more processors 1s operable to select
and 1nvoke a particular extension function from among the
plurality of extension functions based upon values in the
application message.

In still another feature, the one or more user program
extensions comprise one or more protocol handling func-
tions, and the program extensibility logic comprises logic
which when executed by the one or more processors 1s oper-
able to select and imvoke one of the protocol handling func-
tions from among the plurality of protocol handling functions
based upon values 1n the application message.

In yet another feature, the apparatus comprises any of a
packet data router and a packet data switch 1n a packet-
switched network.

In a further feature, the program extensibility logic com-
prises logic which when executed by the one or more proces-
sors 15 operable to: identily 1n the application message any of
a transport protocol and an application protocol; select a
particular user-defined custom protocol handler, from among
a plurality of stored user-defined protocol handlers, based
upon the identified transport protocol; use the particular user-
defined custom protocol handler to transtorm the application
message into a modified outbound application message.

In yet another feature, the program extensibility logic com-
prises logic which when executed by the one or more proces-

US 7,840,700 B2

S

sors 1s operable to: 1dentity a custom user function based on
values 1n any of the transport protocol of the message, appli-
cation protocol of the message, and message body; load and
invoke the user defined extension function based on the 1den-
tified custom user function.

In other aspects, the invention encompasses a machine-
implemented method and a computer-readable medium con-
figured to carry out the foregoing steps.

2.0 Structural and Functional Overview

FIG. 1A 1s a block diagram of network elements involved
in an extensible authentication approach according to an
embodiment. FIG. 1B 1s a block diagram showing authenti-
cation and authorization logic 1n a network infrastructure
element such as a router, 1n one embodiment.

Referring first to FIG. 1A, a sender 102 1s coupled through
a network 104 to a receiver 106. The network 104 comprises
one or more network infrastructure elements 110, such as
routers or switches. Each of the network elements 110 com-
prises one or more blades, bladelets, or other software ele-
ments, alone or in combination with hardware or firmware
clements, that implement inspection, at various OSI layers, of
packets received 1n association with an application message
and related authentication and authorization functions as
described herein.

A commercial embodiment of network elements 110A
may comprise routers or switches from Cisco Systems, Inc.,
San Jose, Calif., with blades having Application-Oriented
Networking Services (AONS) capabilities. In some embodi-
ments, network elements 110A are termed “AONS nodes” or
“AONS endpoints.” Other network elements 110B may be
non-AONS nodes. Further, network elements 110A need not
use Cisco AONS technology; the network elements can com-
prise routers or switches that comprise other internal ele-
ments to perform extensible authentication and authorization
functions as described herein. Thus, the use of AONS 1n an
embodiment 1s not required, and all references herein to
AONS elements are provided merely to illustrate a clear
example, and not as limitations.

In an embodiment, the validation of an application mes-
sage by network elements 110A 1nvolves accessing an
authentication service provider 118A and an authorization
service provider 118B.

The authentication service provider 118 A may implement
either standard-based or proprietary technology-based
authentication services. Similarly, the authorization service
118B may implement either standard-based or proprietary
technology-based authorization services. Examples of the

standard-based authentication or authorization service pro-
viders include those based on LDAP, Kerberos, X509, or

SAML. In some embodiments, authentication or authoriza-
tion service providers such as 118A or 118B may comprise
database access routines and a database storing user creden-
tial and privilege information. Furthermore, 1n some embodi-
ments, an authentication service provider and an authoriza-
tion service provider can comprise a single authentication and
authorization server.

As seen 1n FIG. 1B, sender 102 1s coupled through a local
network 103 to an internetwork 120 that 1s coupled to another
local network 112. Either of the local networks 103 and 112
may have network elements 110 that implement the tech-
niques herein. As an example, router 110A 1n local network
112 i1s equipped with an AONS blade 116, available from
Cisco Systems, Inc. San Jose, Calif. The AONS blade 116
comprises one or more bladelets that form authentication and
authorization logic 108. In certain embodiments all the net-
work elements 110 1include authentication and authorization
logic 108, which comprises one or more computer programs,

10

15

20

25

30

35

40

45

50

55

60

65

6

programmatic objects, or other software elements that imple-
ment the functions described herein.

Generally, the authentication and authorization logic 108

identifies user credentials 1 an application message.
Examples of user credentials are peer SSL certificates, HTTP
basic authentication scheme and parameters, or HI'TP nego-
tiate authentication data from message headers, and user/
password token, SAML token, SPNEGO token or X509
token from a message body.
The authentication and authorization logic 108 performs
authentication and authorization based on the user credentials
that were 1dentified. If the authentication and authorization of
the application message succeeds, the application message 1s
processed according to a policy. For example, the message 1s
forwarded to a recerving application server 106 A. Thus, inthe
arrangement of FIG. 1B, router 110 1s proximate to the receiv-
ing application servers 106 A, and can perform authentication
and authorization for all the application servers. For example,
sender 102, and other senders at different locations 1n net-
works 103, 120, might send different requests to different
instances of applications on different application servers
106 A. The authentication and authorization logic 108 can
perform application message authentication and authoriza-
tion for all such requests, relieving the application instances
and application servers 106A from the processing burden of
authentication and authorization for each request.

Alternatively, if router 110 1s located 1n local network 103,
the router can perform application message authentication
and authorization when sender 102 emits messages and
betore the messages reach the application servers 106 A. In all
such cases, the data processing efficiency of the application
servers 106 A 1s greatly improved because router 110 1s
responsible for message authentication and authorization,
and the application servers are responsible only for perform-
ing substantive application functions.

When an application message authentication and authori-
zation operation 1s performed in a network device, the opera-
tion can be performed on a device that is closer to the appli-
cation that 1s sending the message or the application that 1s
receiving the message. As a result, 1f there are multiple
instances ol an application running, possibly on different
hosts, then a single device through which all the messages are
passing can perform the needed authentication and authori-
zation. Accordingly, efficiency of the overall network 1is
improved.

In some embodiments, extensible authentication and
authorization 1s provided by using a user configurable policy.
In this approach, the user configurable policy specifies how an
incoming message should be authenticated or authorized.

In one embodiment, through a user interface, a user 1s
enabled in the user configurable policy to define a plurality of
message types and associations each of which associates
between a particular authentication method with a corre-
sponding message type. In one embodiment, the policy 1s
created at design time 1n advance ol message processing,
based on known characteristics of incoming messages and
outgoing messages. The policy associates authentication
methods or authorization methods with respective message
types. The policy can also associate user credential location
definitions that specily locations of user credentials with
respective message types. For example, the policy can be

created using AONS Design Studio (ADS), and downloaded
to an AONS node via AONS Management Console (AMC).
An ADS designer can select an authentication method for a
message type among LDAP and Kerberos SPNEGO, X509
Certificate based authentication methods and extension

authentication methods provided by extension packages, as

US 7,840,700 B2

7

turther explained herein. Similarly, the ADS designer can
select an authorization method for the message type among
LDAP Group-, SAML Assertion-, and Rule-based methods
and extension authorization methods provided by extension
packages. During runtime, the authentication and authoriza-
tion logic 108 retrieves the policy and an incoming message.
The authentication and authorization logic 108 determines
the application message type, identifies user credentials 1n the
message, validates the incoming message by applying asso-
ciated authentication and authorization methods, and, if suc-
cessful, directs other elements of the network element 110A
to process the message according to a success policy, €.g., to
forward the message on a path to a receiving application
server 106A.

FIG. 2 1s a block diagram of software elements that can be
used to implement the authentication and authorization logic
108 1n an AONS blade 116 of a router, 1n one embodiment.
The authentication and authorization logic 108 comprises
logic for credential extraction 206, credential validation 208,
and credential authorization 210. In one embodiment, the
logic can take the form of one or more AONS bladelets. For
example, credential extraction 206, credential validation 208,
and credential authorization 210 can be implemented as
“1dentity”, “authenticate”, and “authorize™ bladelets, respec-
tively.

Upon recerving an incoming message 112 on any network
interface of the router, the credential extraction 206 inspects
the message. Credential extraction 206 has access to user
credential location definitions for various application mes-
sage types. In a preferred embodiment, credential extraction
206 makes use of existing components 1n the network 1nfra-
structure element 110A that allow extraction or identification
in packets associated with an application message of fields 1n
various OSI layers. The search of user credential fields may
be conducted on headers, data, or payloads at standard loca-
tions or non-standard locations, and additionally or alterna-
tively, using name-value pairs or regular expressions. In one
embodiment, credential extraction 206 1dentifies user creden-
tials or a subset thereof 1n locations specified by standards. In
another embodiment, the credential extraction identifies the
user credentials or a subset thereot based on user credential
location definitions for the message type. In yet another
embodiment, credential extraction 206 1dentifies the user cre-
dentials from both locations identified by the standards and
by the user credential location defimitions.

Credential validation 208 authenticates an 1dentity associ-
ated with the user credentials. In a preferred embodiment,
credential validation 208 comprises a validator 212 for built-
in authentication methods and an extension validator 218 for
non built-1in authentication methods, which may be developed
before or after the network infrastructure element 110A 1s
deployed. For the built-in authentication methods, a user or
policy specifies which one 1s to be used for a particular appli-
cation message type. For example, the authenticate bladelet
embodiment of credential validation 208 in an AONS bladelet
has built-1n authentication methods based on LDAP, Kerberos
SPNEGO or X509 Certificate.

The extension validator 218 can be configured to invoke an
extension authentication 224 1n extension packages 220 for
authentication methods that do not have built-in support. The
extension packages 220 for non built-in authentication meth-
ods may be deployed before or after the installation of the
router 110A 1n a network. In a preferred embodiment, the
authentication and authorization logic 108 does not require
the presence of a particular extension package 220 unless a
corresponding non built-in authentication method 1s to be
supported. However, when a non built-in authentication

10

15

20

25

30

35

40

45

50

55

60

65

8

method 1s to be supported at runtime, the extension validator
218 1s configured accordingly and the extension authentica-

tion 224 1s provisioned to the network infrastructure element
110A.

An extension authentication 224 can be developed 1n a
programming language that makes use of application pro-
gramming intertaces (APIs) to support a particular authenti-
cation method. For example, an extension authentication can
be developed 1n JAVA that makes use of SiteMinder JAVA
Agent APIs, available from Computer Associates, Inc.
(“CA”), to support the SiteMinder Authentication. In a pre-
terred embodiment, the configuration that directs the exten-
sion validator 218 to use the extension authentication thus
developed can be specified in AONS Design Studio. Both the
configuration and the extension authentication can be provi-
sioned to the network infrastructure element 110A to form an
extension package 220 belore its use by the extension vali-
dator 218 at runtime. In a preferred embodiment, the configu-
ration and the extension package can be pre-packaged into a
downloadable file in AONS Design Studio, and subsequently
downloaded to an AONS node.

When the extension authentication 224 1s invoked, it 1s
made available all the required and optional parameters by the
authentication and authorization logic 108. The extension
authentication 224 reads configuration parameters relevant to
accessing an authentication service provider or a database
that stores necessary information for authentication. In some
embodiments, the parameter list, values, and access routines
for parameters are configured for a particular authentication
method and authentication service provider 1n authentication
and authorization logic 108. In a preferred embodiment, the
parameter list, values, and access routines for parameters can
be pre-packaged into a downloadable file in AONS Design
Studio, and subsequently downloaded to an AONS node. For
example, as a part of extension configuration in AMC, a user
configures necessary and optional parameters including those
required for connecting to an authentication service provider
such as SiteMinder Policy Server from CA.

At runtime, the extension authentication 224 uses the
parameters, performs the authentication method, and returns
the result to its caller.

The credential authorization 210 can be invoked to autho-
rize privileges to an 1dentity associated with the user creden-
tials. In a preferred embodiment, the credential authorization
210 comprises an authorizer 214 for built-in authorization
methods and an extension authorizer 216 for non built-in
authorization methods, which may be developed later. For the
built-in authentication methods, a user or policy specifies
which one 1s to be used for a particular application message
type. For example, the authorize bladelet embodiment of
credential authorization 210 1n an AONS bladelet has built-in
authorization methods based on LDAP Groups, SAML

Assertions or rules.

The extension authorizer 216 can be configured to invoke
an extension authorization 226 1n extension packages 220 for
authorization methods that do not have built-in support. The
extension packages 220 for non built-in authorization meth-
ods may be deployed before or after the installation of the
router 110A 1n a network. In a preferred embodiment, the
authentication and authorization logic 108 does not require a
particular extension package 220 unless a corresponding non
built-in authorization method is to be supported. However,
when a non built-in authorization method 1s to be supported at
runtime, the extension authorizer 216 1s configured accord-
ingly and the extension authorization 226 1s transierred to the
network infrastructure element 110A.

US 7,840,700 B2

9

An extension authorization 226 can be developed m a
programming language that makes use of application pro-
gramming interfaces (hereinaiter APIs) to support a particu-
lar authorization method. For example, an extension authori-

zation can be developed in JAVA that makes use of °

SiteMinder JAVA Agent APIs to support SiteMinder Autho-

rization. In a preferred embodiment, the configuration that
directs the extension authorizer 216 to use the extension
authorization thus developed can be specified 11 AONS
Design Studio. Both the configuration and the extension
authorization can be provisioned to the network infrastruc-
ture element 110A to form an extension package 220 before
its use by the extension authorizer 216 at runtime. In a pre-
terred embodiment, the configuration and the extension pack-
age can be pre-packaged mto a downloadable file in AONS
Design Studio, and subsequently downloaded to an AONS
node.

When the extension authorization 226 1s invoked, it 1s
made available all the required and optional parameters by the
authentication and authorization logic 108. The extension
authorization 226 reads configuration parameters relevant to
accessing an authorization service provider or a database that
stores necessary information for authorization. In some
embodiments, the parameter list, values, and access routines
for parameters are configured for a particular authorization
method and authorization service provider in authentication
and authorization logic 108. In a preferred embodiment, the
parameter list, values, and access routines for parameters can
be pre-packaged into a downloadable file in AONS Design
Studio, and subsequently downloaded to an AONS node. For
example, as a part of extension configuration in AMC, a user
configures necessary and optional parameters including those
required for connecting to an authorization service provider
such as SiteMinder Policy Server from CA.

At runtime, the extension authorization 226 uses the
parameters, performs the authorization method, and returns
the result.

If the authentication and authorization tasks complete suc-
cessiully, the authentication and authorization logic 108

directs the application message to a recerving application
server 1006A.

Thus, the extension validator 218, extension authorizer
216, extension package 220, which may include extension
authentication 224 or extension authorization 226, represent
an extensibility mechanism for the authentication and autho-
rization logic 108.

There may be multiple extension packages 220 deployed in
a network infrastructure element 110A. In various embodi-
ments, an extension package 220 may provide support for
authentication only, or for authorization only, or both. Thus,
the SiteMinder extension package, discussed above, which
supports both authentication and authorization, 1s described
solely to present a clear example and not as a limitation.
Furthermore, an extension package 220 may provide support
for authentication and/or authorization using service provid-
ers other than SiteMinder as discussed. In one embodiment,
authentication and/or authorization service 1s provided by
Tivoli Access Manager from International Business Machine
Corp., Armonk, N.Y. Thus, network elements 110A need not
depend on a particular authentication and/or authorization
service provider such as SiteMinder. Any authentication and/
or authorization provider that 1s capable of performing
authentication and authorization service upon a request by an
extension package described herein 1s within the scope of the
present invention. Thus, the use of SiteMinder 1n an embodi-

10

15

20

25

30

35

40

45

50

55

60

65

10

ment 1s not required, and all references herein to SiteMinder
are provided merely to 1llustrate a clear example, and not as
limitations.

In an embodiment, support for a new authentication or
authorization method by the network infrastructure element
110A can be disabled or enabled without requiring changes 1n
implementation or re-building of the network infrastructure
clement code. In this embodiment, a user can easily enable or
disable a method for business reasons, such as a change 1n a
business partner relationship mvolving an authentication or
authorization service provider. Also, a supplier for network
infrastructure element 110A may need to enable or disable
support for a specific method based on a licensing agreement
or possibly different product bundling needs.

FIG. 3 1s a flow diagram of one embodiment of a process of
application message authentication and authorization. In step
302, imtialization 1s performed, for example, by the authen-
tication and authorization logic 108. In one embodiment,
iitialization comprises reading configuration parameters,
including a message type list, authentication method list,
authorization method list, user credentials location defini-
tions, and associations between a message type and its respec-
tive authentication and authorization methods and user cre-
dential location definitions.

At step 304, for each mncoming message received from a
data network coupled to the network infrastructure element
110A, certain other steps are performed. In step 306, the type
of the application message 1s determined by the network
infrastructure element 110A. The type of an application mes-
sage may be determined on a number of attributes carried by
the application message or the underlying packets associated
with the application message. Attributes capable of 1dentify-
ing application message types include endpoints’ addresses
or ports, universal resource locations (URL) at HT'TP level,
special fields in the message, or regular expression patterns.
Additionally or alternatively, attributes capable of identifying,
application 1include any standard or proprietary tokens
embedded 1in a message or underlying packet that identifies a
particular type for an application message. For example, a
string constant denoting an application name may be embed-
ded in an application message i a proprictary manner to
identify a particular application type.

If the incoming message 1s not a type that has been config-
ured for authentication and authornization, i step 308, the
authentication and authorization logic passes the message to
logic 1n the network infrastructure element 110A for further
processing such as forwarding the message towards its
intended destination. I the incoming message 1s a type of an
application message that has been configured for authentica-
tion and authorization, in step 310, the credential extraction
206 determines whether user credential location definitions
should be consulted. For a plurality of application message
types, the user credentials may be located 1n standard loca-
tions. In step 314, the credential extraction 206 1dentifies the
user credentials 1n those standard locations. For some appli-
cation message types, on the other hand, the user credentials
may be located 1n a proprietary locations or non-standard
locations. In step 312, a user credential location 1s selected for
definitions corresponding to one such application message
type as appropriate and, 1n step 314, the user credentials in
those locations are 1dentified.

If step 316 determines that the identification of user cre-
dential has failed, then error handling 1s invoked at step 318.
The error handling may include logging the error and sup-
pressing the erroneous message from being further forwarded
to 1ts intended destination. It the 1dentification of use creden-
t1al 1s successiul as determined at step 316, then the credential

US 7,840,700 B2

11

validation 208 1s invoked, and at step 320, the process deter-
mines whether a built-in or extension authentication method
1s associated with the message type. If the incoming message
1s of a type that associates with an extension authentication
method, then at step 322, processing 1s passed to the extension
validator 218, which handles invocation of the extension
authentication method provided by extension authentication
224 1n extension package 220, and which passes all the
parameters necessary or optional for the imvocation of the
extension authentication method. If the incoming message 1s
of a type that associates with a built-in authentication method,
at step 324, then processing 1s passed to the validator 212 for
executing the specified built-in authentication method.

At step 326, the credential validation 208 determines the
result of the authentication method, whether 1t 1s built-in or
extension. If the authentication method has failed to authen-
ticate the 1dentity, processing 1s passed to step 318 for error
handling. If the user 1dentity associated with user credentials
has been successtully authenticated, then credential authori-
zation 210 1s invoked, and at step 330 determines whether an
authorization method has been specified for the message type.
I1 not, the authentication and authorization logic passes the
message at step 308 to logic in the network infrastructure
clement 110A for further processing such as forwarding the
message towards its intended destination.

If the incoming message 1s of a type that associates with an
extension authorization method, at step 334, processing 1s
passed to the extension authorizer 216, which handles mvo-
cation of the extension authorization method provided by
extension authorization 226 1n extension package 220, and
which passes all the parameters necessary or optional for the
invocation of the extension authorization method. IT the
incoming message 1s of a type that associates with a built-in
authorization method, at step 336, processing 1s passed to the
authorizer 214 for executing the specified built-in authoriza-
tion method.

At step 338, the credential authorization 210 determines
the result of the authorization method, whether 1t 1s built-in or
extension. If the authorization has failed to authorize privi-
leges required for the application message type for the 1den-
tity for whatever reason, processing 1s passed to step 318 for
error handling. Else 11 the user 1dentity associated with user
credentials has been successiully authorized for the privileges
required for the application message type, the authentication
and authorization logic passes the message at step 308 to a
logic 1n the network infrastructure element 110A for further
processing such as forwarding the message towards its
intended destination.

3.0 Aons Implementation Examples

3.1 Aons General Overview

In an embodiment, AONS comprises a set of software
modules hosted on a network infrastructure element, such as
a router or switch, that can identify application messages
from packet flows, perform operations on the applications
messages, and perform application functions on behalf of
applications, clients and servers. Examples of operations and
functions include format transformation; payload changes
based on policy; performing load-balancing decisions; send-
ing messages to monitoring stations; and creating log entries,
notifications and alerts according to rules. AONS comple-
ments existing networking technologies by providing a
greater degree ol awareness ol what information 1s flowing
within the network and helping users to integrate disparate
applications by routing information to the appropriate desti-
nation, in the format expected by that destination; enforce
policies for information access and exchange; optimize the
flow of application traflic, both 1n terms of network band-

10

15

20

25

30

35

40

45

50

55

60

65

12

width and processing overheads; provide increased manage-
ability of information flow, including monitoring and meter-
ing ol information flow for both business and infrastructure
purposes; and provide enhanced business continuity by trans-
parently backing up or re-routing critical business data.

AONS integrates with network-layer support to provide a
more holistic approach to information tlow and management,
mapping required features at the application layer mto low-
level networking features implemented by routers, switches,
firewalls and other networking systems. In an embodiment, a
data processing unit (“blade”) in a router or switch hosts and
executes one or more AONS software modules (“bladelets™)
to implement the functions herein.

3.2 Multi-Blade Architecture

According to one embodiment, an AONS blade 1n a router
or a switch performs the actions discussed herein.

FIG. 4 1s a block diagram that illustrates one embodiment

of arouter 110A 1n which a supervisor blade 402 directs some
of packet flows 410A-B to an AONS blade and/or other blades

406 A-N. Router 110A comprises supervisor blade 402,
AONS blade 116, and other blades 406 A-N. Each of blades
402,116, and 406A-N 1s a single circuit board populated with
components such as processors, memory, and network con-
nections that are usually found on multiple boards. Blades
402, 116, and 406A-N are designed to be addable to and
removable from router 110A. The functionality of router
110A 1s determined by the functionality of the blades therein.
Adding blades to router 110A can augment the functionality
ofrouter 110 A, but router 110A can provide a lesser degree of
functionality with fewer blades at a lesser cost 1f desired. One
or more of the blades may be optional.

Router 110A receives packet tlows such as packet tlows
410A-B. More specifically, packet tlows 410A-B recerved by
router 110A are recerved by supervisor blade 402. Supervisor
blade 402 may comprise a forwarding engine and/or a route
processor such as those commercially available from Cisco
Systems, Inc.

In one embodiment, supervisor blade 402 classifies packet
flows 410A-B based on one or more parameters contained 1n
the packets of those packet flows. If the parameters match
specified parameters, then supervisor blade 402 sends the
packets to a specified one of AONS blade 116 and/or other
blades 406 A-N. Alternatively, 1f the parameters do not match
any specified parameters, then supervisor blade 402 performs
routing functions relative to the particular packet and for-
wards the particular packet on toward the particular packet’s
destination.

For example, supervisor blade 402 may determine that
packets in packet tlow 410B match specified parameters.
Consequently, supervisor blade 402 may send packets 1n
packet flow 4108 to AONS blade 116. Supervisor blade 402
may receive packets back from AONS blade 116 and/or other
blades 406 A-N and send the packets on to the next hop 1n a
network path that leads to those packets’ destination. For
another example, supervisor blade 402 may determine that
packets 1n packet flow 410A do not match any specified
parameters. Consequently, without sending any packets in
packet flow 410A to AONS blade 116 or other blades 406 A -
N, supervisor blade 402 may send packets in packet flow
410A on to the next hop 1n a network path that leads to those
packets’ destination.

AONS blade 116 and other blades 406 A-N receive packets
from supervisor blade 402, perform operations relative to the
packets, and return the packets to supervisor blade 402.
Supervisor blade 402 may send packets to and receive packets
from multiple blades before sending those packets out of
router 110A. For example, supervisor blade 402 may send a

US 7,840,700 B2

13

particular group of packets to other blade 406A. Other blade
406 A may perform firewall functions relative to the packets
and send the packets back to supervisor blade 402. Supervisor
blade 402 may receive the packet from other blade 406A and
send the packets to AONS blade 116. AONS blade 116 may

perform one or more message payload-based operations rela-

tive to the packets and send the packets back to supervisor
blade 402.

3.3 Aons Blade Message Processing Framework

FIG. 5 1s a diagram that illustrates message-processing,
modules within an AONS blade 116. AONS blade 116 com-

prises an AONS message execution controller (AMEC)
framework 502, a policy management subsystem 504, an
AONS message processing infrastructure subsystem 506, and
an AOSS 508. AMEC framework 502 comprises a flow man-
agement subsystem 510, a bladelet execution subsystem 512,
and a message execution controller 514. Policy management
subsystem 3504 communicates with flow management sub-
system 310. AOSS 508 communicates with bladelet execu-
tion subsystem 512 and AONS message processing inira-
structure subsystem 506. AONS message processing
infrastructure subsystem 306 communicates with message
execution controller 514. Flow management subsystem 510,
bladelet execution subsystem, and message execution con-
troller 514 all communicate with each other.

FIG. 6 1s a diagram that 1llustrates message processing,
within AONS blade 116. AMEC framework 602 is an event-
based multi-threaded mechanism to maximize throughput
while minimizing latency for messages in the AONS blade.
According to one embodiment, received packets are re-di-
rected, TCP termination 1s performed, SSL termination 1s
performed 11 needed, Layer 5 protocol adapter and access
method processing 1s performed (using access methods such
as HT'TP, SMTP, FTP, IMS/MQ, IMS/RV, IDBC, etc.),
AONS messages (normalized message format for internal
AONS processing) are formed, messages are queued, mes-
sages are dequeued based on processing thread availability, a
flow (or rule) 1s selected, the selected flow 1s executed, the
message 1s forwarded to the message’s destination, and for
request/response-based semantics, responses are handled via

connection/session state maintained within AMEC frame-
work 602.

In one embodiment, executing the flow comprises execut-
ing each step (i.e., bladelet/action) of the flow. If a bladelet 1s
to be run within a separate context, then AMEC framework
602 may enqueue 1nto bladelet-specific queues, and, based on
thread availability, dequeue appropriate bladelet states from
cach bladelet queue.

3.4 Extension Package Implementation

Conventional network elements are primarily static, and
any configuration or change 1s done via policies. Any changes
1n an operating system or applications running on the network
clement are performed 1n a controlled manner using standard
upgrade approaches. According to an embodiment, using a
true extensibility framework, a network element can allow
customers and partners to dynamically change the runtime
behavior of application message processing rules by allowing,
the user to write code 1n any language, deploy 1t a hot manner
and update the runtime to load this new code—all during
normal processing of the network element.

In an embodiment, custom bladelets allow for software
code to be modified and loaded by customers dynamically
into network elements for changing the processing logic
applied on messages as they flow through the network. Cus-
tom protocol adapters allow for software code to modified

10

15

20

25

30

35

40

45

50

55

60

65

14

and loaded by customers dynamically 1into network elements
for changing which protocols are understood and managed 1n
intermediate network nodes.

Today network elements generally do not have or have
limited support for extensibility where customers can define
their own software programs and upload 1nto the network
clement. However, an Application Oriented Network (AON)
as disclosed herein provides an environment in which cus-
tomers can create programs that can be dynamaically loaded
and executed on the network device. In order to ensure that
such dynamically loaded code 1s well behaved and do not
accidentally or deliberately hamper the functioning of the
network device, a sandboxed environment may be provided
that protects the network element from such harm.

Currently network elements do not allow custom code to be
uploaded onto the device to provide a programmable envi-
ronment. IT custom code 1s required to be installed on the
device, typically a new operating system image containing
the new functionality 1s created. The access control and secu-
rity of such code 1s controlled largely at build time or by
providing options to control behavior of the module via a
command line interface. Hence the problem of code behavior
1s addressed 1n a static manner and does not change dynami-
cally other than 1n a predictable manner by defining how the
behavior can be controlled.

The problem of runtime program behavior is currently only
addressed 1n a static manner. This was adequate because
network devices do not allow custom code to be dynamically
uploaded into a device without altering the running 1mage.
The method and apparatus presented herein solves the prob-
lem of securing and controlling the behavior of such dynami-
cally uploaded code in a network device (a feature introduced
by AON and covered 1n another patent application) by:

1. Providing a mechanism to specily permissions on the
executing code that cannot be overridden and controlled by
the network device itsell. Permissions can be specified that
either allow or deny access to resources;

2. Providing a mechanism to specily permissions that a
user can override and can control whether or not particular
operations are allowed. Permissions can be specified that
either allow or deny access to resources;

3. Providing a mechanism to customize permissions so that
the user or administrator can determine which permissions to
override. Permissions can be specified that either allow or
deny access to resources;

4. Provide an imnheritance scheme that allows these permis-
s10ms to be extended or inherited by custom code extensions.

At runtime, the network element verifies the permissions
associated with the resource before permitting or denying
execution.

This method and apparatus allows a network administrator
or user to provision custom programs 1nto the network device
and provides a secure sandboxed environment in which they
can execute without harming the network device. Unlike prior
approaches, the approach herein:

1. Provides a secure environment in which custom pro-
grams that are deployed 1n a network device can execute.

2. Provides a data driven approach to easily customize and
extend the security capabilities of the device.

3. Provides a language independent mechanism to express
security permissions so that the security can be leveraged
regardless of the implementing language.

4. Provides a secure container in which custom code
executes regardless of the implementing language.

In one embodiment, the following tools are provided for
creating extension package in an AONS node: a custom
bladelet software development kit (heremaifter “Custom

US 7,840,700 B2

15

Bladelet SDK™), a design studio, or ADS, and an admin tool,
or AMC, all commercially available from Cisco Systems, Inc.
A designer uses Cisco Custom Bladelet SDK, java editor, or
other third party tools to write Java code that will provide
bladelet functionality. ADS 1s a visual tool for designing
flows and applying message classification and mapping poli-
cies. AMC 1s a web-based interface to perform all adminis-
tration and configuration functions.

FIG. 7 1s a flow diagram of how an extension package 1s
created and provisioned to an AONS blade, 1n one embodi-
ment. In one embodiment, designer 702 develops new custom
bladelet classes to support an extension function by extending,
bladelet classes provided in Cisco Custom Bladelet SDK and
implementing custom APIs to perform desired functions.
Table 1 identifies example JAVA classes and methods that can
be used 1n an implementation.

TABL.

L1

1

CUSTOM BLADELET API
AbstractCustomBladelet
This interface defines an abstract custom bladelet class. Developers
intending to provide a custom bladelet function extend this class by
implementing the abstract methods and overriding any of the public
or protected methods in this class.

Method Description Return Type
getlLogger Returns a handle to the logging object that Log
the custom bladelet implementor can use
to log messages
getlLogger Retumns a handle to the logging object that Log
the custom bladelet implementor can use
to log messages
setLogger(Log Uses the input logger as the logger object NONE
logger) for this custom bladelet
OnCreate() Called by the loader just before an NONE
instance of this bladelet 1s created.
Optional method - default
implementation does nothing.
OnLoad Called by the loader just before this class NONE

is loaded into the virtual machine.

- <bladelet-info>
<)

10

15

20

25

30

35

16

TABLE 1-continued

CUSTOM BLADELET API
AbstractCustomBladelet
This interface defines an abstract custom bladelet class. Developers
intending to provide a custom bladelet function extend this class by
implementing the abstract methods and overriding any of the public
or protected methods in this class.

Method

Description Return Type

Optional method - default
implementation does nothing.

Called by the loader just before the
instance of this bladelet i1s garbage
collected. Optional method - default
implementation does nothing.

Called by the loader when an instance of
the bladelet throws an exception that is
not caught.

Called by the loader just before the class
object 1s unloaded from the VM.
Optional method - default
implementation does nothing.

OnDestroy NONE

OnException NONE

OnUnload() NONE

At step 712-1, the designer 702 interacts with ADS 704 and
creates a custom bladelet or adapter extension package. As a
part of creating the package, the designer 702 provides a
number of artifacts. First, the designer 702 provides one or
more JAVA * jar files implementing an extended authentica-
tion method and necessary libraries. For example, incase of a
custom bladelet extension, the designer 702 provides the jar
files which contain the class that extend the AbstractCustom-
Bladelet class and any other supporting class files that are
needed to execute the business logic implemented by the
custom bladelet.

Additionally, the designer 702 provides bladelet extension
info XML files for the custom bladelets, using bladelet exten-
sion mfo schema defined 1n Cisco Custom Bladelet SDK.
Table 2 shows an example bladelet extension info XML file
that can be used 1n an implementation.

TABLE 2

EXAMPLE BLADELET EXTENSION INFO XML FILE

Manage Aggregates

-

- <bladelet name="ManageAggregates™ displayNameKey="ManageAggregates.name”
versionld="1" bladeletClass="com.cisco.aons.visibility. Manage AggregatesBladelet”
categoryKey="general.category.key” bundle="com.cisco.aons.visibility.visibility”
validatorClass="com.cisco.aons.visibility. Statistics BladeletValidator” validatorRules=""">

- <icon-ref>

<palette-icon href="com/cisco/aons/visibility/261__dataaggregatorsetup.png” />
<document-icon href="com/cisco/aons/visibility/i__dataaggregatorsetup.png™ />

</1con-ref>

- <bladelet-design>
- <bladelet-parameters>

- <configuration-group name="Statistics” key="manage.aggregates.configuration.group”
valueKey="manage.aggregates.configuration.group.create” value="create’” type="radio”>

- <configuration-subgroup name="manage-aggregates-create-basic”
key="manage.aggregates.configuration.group.create.csg.basic™>

<parameter name="1d"’ designName="createld” type="string” optional="tfalse™

allowVarBinding="false” tooltipKey="1d.param.tooltipkey” key="1d.param.key™ />

- <parameter name="definition” designName="createDefinition” allow VarBinding="false”
key="definition.param.key” tooltipKey="createDefinition.param.tooltipKey”
optional="false” type="list”">

<column-imnfo name="column’ allowVarBinding="false™ allowUserInput="true” type="string’

2

key="“column.param.key” tooltipKey="create.column.param.tooltipKey” />
<column-info name="type” allowVarBinding="false” allowUserInput="true” type="string”™
key="“type.param.key” tooltipKey="create.type.param.tooltipKey” />

</parameter>

US 7,840,700 B2
17 18

TABLE 2-continued

EXAMPLE BLADELET EXTENSION INFO XML FILE

</configuration-subgroup>
- <conflguration-subgroup name="manage-aggregates-create-advanced”
key="manage.aggregates.configuration.group.create.csg.advanced’>
<parameter name="maxWindow” designName="manage-aggregates-create-advanced-
maxWindow”
key="manage.aggregates.configuration.group.create.csg.advanced.maxWindow”’
type="string” optional="true” editor="textbox”
tooltipKey="manage.aggregates.configuration.group.create.csg.advanced.maxWindow.display
2
</configuration-subgroup=>
</configuration-group>
- <configuration-group name="Statistics” key="manage.aggregates.configuration.group”
valueKey="manage.aggregates.configuration.group.delete” value="delete” type="radio’>
- <conflguration-subgroup=>
<parameter name="1d" designName="deleteld” type="string” optional="false™
allowVarBinding="false” tooltipKey="1dDelete.param.tooltipkey” key="1d.param.key” />
</conflguration-subgroup=>
</configuration-group>
- <conflguration-group name="Statistics” key="manage.aggregates.configuration.group”
valueKey="manage.aggregates.configuration.group.clear” value="clear” type="radio’>
- <configuration-subgroup>
<parameter name="1d" designName="clearld” type="string” optional="false™
allowVarBinding="false” tooltipKey="1dClear.param.tooltipkey” key="1d.param.key” />
</configuration-subgroup=
</configuration-group>
</bladelet-parameters>
</bladelet-design>
- <bladelet-deployment>
<gystem-params />
</bladelet-deployment>
<bladelet-runtime />
</bladelet>
- <)
End Manage Aggregates
>
<)o

Compute Aggregates
>
- <bladelet name="ComputeAggregates” displayNameKey="Compute Aggregates.name”
versionld="1" bladeletClass="com.cisco.aons.visibility. Compute AggregatesBladelet”
categoryKey="general.category.key” bundle="com.cisco.aons.visibility.visibility™
validatorClass="‘com.cisco.aons.visibility. StatisticsBladeletValidator” validatorRules=""">
- <icon-ref>
<palette-1con href="com/cisco/aons/visibility/261__dataaggregator.png” />
<document-icon href="com/cisco/aons/visibility/i_dataaggregator.png” />
</1con-ref>
- <exceptions>
<gxception 1d="Missing- Aggregate-Exception” key="exception.missing.aggregate.label™
desc="Aggregate not defined” descKey="exception.missing.aggregate.desc” />
</exceptions>
- <bladelet-design>
- <bladelet-parameters>
- <conflguration-group name="Statistics™ key="compute.aggregates.configuration.group”
valueKey="compute.aggregates.configuration.group.update” value="update™ type="“radio”>
- <confliguration-subgroup>
<parameter name="1d" designName="updateld” type="string” optional="false”
allowVarBinding="false” tooltipKey="1dUpdate.param.tooltipkey” key="1d.param.key” />
- <parameter name="data” designName="updateDefinition” allowVarBinding="false”
key="definition.update.param.key” tooltipKey="updateDefinition.param.tooltipKey”
optional="false” type="list”>
<column-info name="“column” allowVarBinding="false™ allowUserInput="“true” type="string”
key="column.param.key” tooltipKey="update.column.param.tooltipKey™ />
<column-info name="value” allowVarBinding="true” allowUserInput="true” type="“object”
key="value.param.key” tooltipKey="update.value.param.tooltipKey” />
</parameter>
</configuration-subgroup>
</configuration-group>
- <configuration-group name="Statistics™ key="compute.aggregates.configuration.group™
valueKey="compute.aggregates.configuration.group.extract” value="compute”
type="‘radio”>
- <conflguration-subgroup>
<parameter name="query” cdatalype="true” key="query.param.key” type="string”
optional="false” editor="textarea” tooltipKey="query.param.tooltipKey” />
<)o
<parameter name="result” allowVarBinding="false” key="result.param.key”
optional="false” type="list">
<column-info name="“value”

US 7,840,700 B2
19

TABLE 2-continued

EXAMPLE BLADELET EXTENSION INFO XML FILE

allowVarBinding="false”
allowUserInput="true”
type="string”
key="result.value.param.key”
tooltipKey="result.value.param.tooltipKey™>
</column-info>
</parameter>
>
</configuration-subgroup>
</configuration-group=>
- <configuration-group name="Statistics™ key="compute.aggregates.configuration.group™
valueKey="compute.aggregates.configuration.group.report’ value="report” type="radio’>
- <conflguration-subgroup>
- <parameter-group name="CounterInput™
key="compute.aggregates.configuration.group.key.report.pg.ree”>
<parameter name="reportQuery” cdatalType="true” type="string”’ optional="false”
editor="textarea” key="reportQuery.param.key”
tooltipKey="reportQuery.param.tooltipKey” />
</parameter-group>
<parameter name="reportResult” optional="false’ allowVarBinding="false”
allowUserInput="true” type="string” key="reportResult.param.key”
tooltipKey="reportResult.param.tooltipKey™ />
</configuration-subgroup=>
</configuration-group>
</bladelet-parameters>
</bladelet-design>
- <bladelet-deployment>
<gsystem-params />
</bladelet-deployment>
<bladelet-runtime />

</bladelet>
<)

End Compute Aggregates
>
- <bladelet name="Compute” displayNameKey="Compute.name” versionld="1"
bladeletClass="com.cisco.aons.visibility. ComputeBladelet™
categoryKey="general.category.key” bundle="“com.cisco.aons.visibility.visibility”
validatorClass="‘com.cisco.aons.visibility. ComputeBladeletValidator” validatorRules=""">
- <icon-ref>
<palette-icon href="com/cisco/aons/visibility/261__computation.png™ />
<document-icon href="com/cisco/aons/visibility/i_ computation.png” />
</1con-ref>
- <exceptions>
<gxception 1d="Invalid-Operation-Exception” key="exception.invalid.operation.label™
desc="An 1nvalid operation has occurred.” descKey="exception.invalid.operation.desc” />
</exceptions>
- <bladelet-design>
- <bladelet-parameters>
- <configuration-group name="Compute” key="expression.configuration.group.key’>
- <conflguration-subgroup>
- <parameter name="expressions” allowVarBinding="1alse” key="expressions.param.key”
tooltipKey="expressions.param.tooltipKey” optional="false” type="list™>
<column-info name="variable” allowVarBinding="false’ allowUserInput="true” type="string”™
key="variable.param.key” tooltipKey="variable.param.tooltipKey” />
<column-info name="expression’” allowVarBinding="false’ allowUserlnput="true” type="string’
key="expression.param.key” tooltipKey="expression.param.tooltipKey™ />
</parameter>
</configuration-subgroup=>
</configuration-group>
</bladelet-parameters>
</bladelet-design>
- <bladelet-deployment>
<gsystem-params />
</bladelet-deployment>
<bladelet-runtime />
</bladelet>
- <bladelet name="ContentBuilder” versionld="1"
displayNameKey="contentbuilder.display.name.key” categoryKey="general.category.key”
bladeletClass="com.cisco.aons.visibility.ContentBuilderBladelet”
bundle="com.cisco.aons.visibility.visibility”
validatorClass="com.cisco.aons.visibility.ContentBuilderBladeletValidator™
validatorRules=""">
- <1con-ref>
<palette-icon href="com/cisco/aons/visibility/261_ dynamiccontent.png™ />
<document-icon href="com/cisco/aons/visibility/i__dynamiccontent.png” />
</1con-ref>
- <bladelet-design>

2

20

US 7,840,700 B2
21 22

TABLE 2-continued

EXAMPLE BLADELET EXTENSION INFO XML FILE

- <bladelet-parameters>
- <configuration-group name="ContentDefinition” key="content.defintion.group.key’’>
- <configuration-subgroup>
<parameter name="template” allowVarBinding="false” optional="false”
key="template.param.key” tooltipKey="template.param.tooltipKey” cdataType="true”
type="string” editor="textarea” />
</conflguration-subgroup=>
</configuration-group>
</bladelet-parameters>
</bladelet-design=>
<bladelet-deployment />
- <bladelet-runtime>
- <exported-params>
<param name="‘contents” scope="global” key="contents.export.key” type="string™ />
</exported-params>
</bladelet-runtime>
</bladelet>

</bladelet-into>

25
The designer 702 {further provides the capability domain. Table 3 shows an example attribute domain
to define custom parameters for configuring this custom for SiteMinder authentication that can be used 1n an 1mple-
bladelet. The parameters may be defined by an attribute mentation.
TABLE 3
EXAMPLE AI'TRIBUTE DOMAIN
No Parameter/Property Description

1 Access Server Specifies IP Address of SiteMinder Policy Server.

2 Agent Name Name of Web Agent configured 1n the Policy Server.

3 Agent Secret Password or secret for the agent. This 1s needed to connect

to the agent object in Policy Server.

4 Minimum no of connection Agent API object 1s imitialized with mmimum no of
connections. It creates these connections to SM Policy
Server when 1t 1s nitialized.

5 Maximum no of connection Indicates the maximum no of connections Agent API will
create.

6 Connection Step Indicates the number by which connections are increased if
Agent API needs to increase number of connections to SM
Policy Server. Total number of connections does not
exceed the value specified in 5.

7 Connection Timeout 1n This value 1s used as a timeout when any authentication or
seconds authorization call 1s made on Agent API object.
8 Authentication Port Indicates the value of authentication port configured on

SM Policy Server. SM 5.5 Policy Server can configure a
specific port value to use for authentication service. For
SM 6.0 default can be used.

9 Authorization Port Indicates the value of authorization port configured on SM
Policy Server. SM 5.5 Policy Server can configure a
specific port value to use for authorization service. For SM
6.0 default can be used.

10 Accounting Port Indicates the value of accounting port configured on SM
Policy Server. SM 5.5 Policy Server can configure a
specific port value to use for accounting service. For SM
6.0 default can be used.

11 Failover SM Policy Server Specifies IP Address of Failover SM Policy Server to use.
Address

Note:

Properties in rows 4, 5, 6, 7, 8, 9, 10 are provided for Failover SM Policy Server also.

US 7,840,700 B2

23

In one embodiment, the custom extension (bladelet or
adapter) package created with the above artifacts 1s saved as a
bar file on a disk.

At step 712-2, an administrator 710 uploads and registers
the extension package to AMC 706. Once loaded and regis-
tered, the extension package 1s available for use in ADS.

At step 712-3, the designer 702 causes ADS 704 to syn-

chronize with AMC 706 to retrieve the extension package
which has been enabled and made available by the AMC
uploading and registering step 712-2.

Atstep 712-4, the designer 702 continues his or her design-
ing tasks of defining message tlows between bladelets, mes-

sage types.
At step 712-35, the administrator 710 causes AMC 706 to

synchronize with ADS 704 to retrieve the flows, message
types, user credential location definitions, and associations
defined 1n step 712-4.

At step 712-6, the administrator 710 deploys to an AON
blade 106 the extension package, and a policy. In one embodi-
ment, the policy comprises an identification of the message
flows, message types, user credential location definitions and
associations of the user credential location definitions with
the message types, and enable the AON blade 106 to use the
authentication/authorization method available 1n the exten-
sion package. In other embodiments, the policy may specity
other custom or user-defined methods that perform any other
desired functions.

Thus, 1n the approach herein, custom or user-defined appli-
cation program extensions may be loaded into a network
infrastructure element such as a router or switch without
restarting the device. At a high level, the approach herein
provides program extensibility logic operable for recerving
one or more user program extensions that comprise logic
operable to mterface with the application program and per-
form message processing functions or protocol processing
functions that are not 1n the application program; installing
the one or more user program extensions without restarting,
the apparatus; receiving one or more packets representing an
application message; selecting a particular one of the user
program extensions based on a protocol associated with the
message; loading the particular one of the user program
extensions; executing business logic of the application pro-
gram associated with the recerved message; and invoking a
function of the particular one of the user program extensions
in response to a call 1 the business logic.

In an embodiment, the application message comprises one
or more transport protocol headers, and the program extensi-
bility logic 1s operable to select and invoke the particular one
of the user program extensions based on values located in the
one or more transport protocol headers. In an embodiment,
the application message comprises application message
headers, and the program extensibility logic 1s operable to
select and invoke the particular one of the user program
extensions based on values located 1n the application message
headers.

In an embodiment, the user program extensions comprise
extension functions, and the program extensibility logic 1s
operable to select and invoke a particular extension function
from among the plurality of extension functions based upon
values 1n the application message.

In an embodiment, the user program extensions comprise
protocol handling functions, and the program extensibility
logic 1s operable to select and imvoke one of the protocol
handling functions from among the plurality of protocol han-
dling functions based upon values 1n the application message.

In an embodiment, the program extensibility logic 1s oper-
able to: identily 1n the application message any of a transport

10

15

20

25

30

35

40

45

50

55

60

65

24

protocol and an application protocol; select a particular user-
defined custom protocol handler, from among a plurality of
stored user-defined protocol handlers, based upon the 1denti-
fied transport protocol; use the particular user-defined custom
protocol handler to transform the application message 1nto a
modified outbound application message.

In an embodiment, the program extensibility logic 1s oper-
able to: 1dentily a custom user function based on values 1n any
of the transport protocol of the message, application protocol
of the message, and message body; load and invoke the user
defined extension function based on the identified custom
user function.

4.0 Implementation Mechanisms—Hardware Overview

FIG. 8 1s a block diagram that illustrates a computer system
800 upon which an embodiment of the invention may be
implemented. The preferred embodiment 1s implemented
using one or more computer programs running on a network
element such as arouter device. Thus, 1n this embodiment, the
computer system 800 1s a router.

Computer system 800 includes a bus 802 or other commu-
nication mechanism for communicating information, and a
processor 804 coupled with bus 802 for processing informa-
tion. Computer system 800 also includes a main memory 806,
such as a random access memory (RAM), tlash memory, or
other dynamic storage device, coupled to bus 802 for storing
information and instructions to be executed by processor 804.
Main memory 806 also may be used for storing temporary
variables or other intermediate information during execution
ol 1nstructions to be executed by processor 804. Computer
system 800 further includes a read only memory (ROM) 808
or other static storage device coupled to bus 802 for storing
static information and instructions for processor 804. A stor-
age device 810, such as a magnetic disk, flash memory or
optical disk, 1s provided and coupled to bus 802 for storing
information and instructions.

A communication interface 818 may be coupled to bus 802
for communicating information and command selections to
processor 804. Interface 818 15 a conventional serial interface
such as an RS-232 or RS-422 interface. An external terminal
812 or other computer system connects to the computer sys-
tem 800 and provides commands to it using the interface 814.
Firmware or software running in the computer system 800
provides a terminal interface or character-based command
interface so that external commands can be given to the com-
puter system.

A switching system 816 1s coupled to bus 802 and has an
input interface 814 and an output interface 819 to one or more
external network elements. The external network elements
may include a local network 822 coupled to one or more hosts
824, or a global network such as Internet 828 having one or
more servers 830. The switching system 816 switches infor-
mation traffic arriving on mput interface 814 to output inter-
face 819 according to pre-determined protocols and conven-
tions that are well known. For example, switching system
816, 1n cooperation with processor 804, can determine a
destination of a packet of data arriving on 1input interface 814
and send it to the correct destination using output interface
819. The destinations may include host 824, server 830, other
end stations, or other routing and switching devices in local
network 822 or Internet 828.

The invention 1s related to the use of computer system 800
for extensible authentication and authorization in a network
infrastructure element. According to one embodiment of the
invention, extensible authentication and authorization in a
network infrastructure element 1s provided by computer sys-
tem 800 1n response to processor 804 executing one or more
sequences ol one or more instructions contained in main

US 7,840,700 B2

25

memory 806. Such instructions may be read into main
memory 806 from another computer-readable medium, such
as storage device 810. Execution of the sequences of mstruc-
tions contained 1n main memory 806 causes processor 804 to
perform the process steps described herein. One or more
processors 1n a multi-processing arrangement may also be
employed to execute the sequences of instructions contained
in main memory 806. In alternative embodiments, hard-wired
circuitry may be used in place of or 1n combination with
software 1nstructions to implement the invention. Thus,
embodiments of the mnvention are not limited to any specific
combination of hardware circuitry and software.

The term “computer-readable medium” as used herein
refers to any medium that participates in providing instruc-
tions to processor 804 for execution. Such amedium may take
many forms, including but not limited to, non-volatile media,
and volatile media. Non-volatile media includes, for
example, optical or magnetic disks, such as storage device
810. Volatile media includes dynamic memory, such as main
memory 806.

Common forms of computer-readable media include, for
example, a tloppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other

optical medium, punch cards, paper tape, any other physical
medium with patterns of holes, a RAM, a PROM, and

EPROM, a FLASH-EPROM, any other memory chip or car-
tridge, or any other medium from which a computer can read.

Various forms of computer readable media may be
involved 1n carrying one or more sequences of one or more
instructions to processor 804 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the 1nstruc-
tions 1nto 1ts dynamic memory and send the istructions over
a telephone line using a modem. A modem local to computer
system 800 can recerve the data on the telephone line and use
an inirared transmitter to convert the data to an infrared sig-
nal. An infrared detector coupled to bus 802 can recerve the
data carried 1n the infrared signal and place the data on bus
802. Bus 802 carries the data to main memory 806, from
which processor 804 retrieves and executes the instructions.
The 1nstructions recerved by main memory 806 may option-
ally be stored on storage device 810 eirther before or after
execution by processor 804.

Communication interface 818 also provides a two-way
data communication coupling to a network link 820 that 1s
connected to a local network 822. For example, communica-
tion interface 818 may be an integrated services digital net-
work (ISDN) card or a modem to provide a data communi-
cation connection to a corresponding type of telephone line.
As another example, communication interface 818 may be a
local area network (LAN) card to provide a data communi-
cation connection to a compatible LAN. Wireless links may
also be implemented. In any such implementation, commu-
nication interface 818 sends and receives electrical, electro-
magnetic or optical signals that carry digital data streams
representing various types of information.

Network link 820 typically provides data communication
through one or more networks to other data devices. For
example, network link 820 may provide a connection through
local network 822 to a host computer 824 or to data equip-
ment operated by an Internet Service Provider (ISP) 826. ISP
826 1n turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet” 828. Local network 822
and Internet 828 both use electrical, electromagnetic or opti-
cal signals that carry digital data streams.

10

15

20

25

30

35

40

45

50

55

60

65

26

Computer system 800 can send messages and receive data,
including program code, through the network(s), network
link 820 and communication interface 818. In the Internet
example, a server 830 might transmit a requested code for an
application program through Internet 828, ISP 826, local
network 822 and communication interface 818. In accor-
dance with the mvention, one such downloaded application
provides for extensible authentication and authorization 1n a
network inirastructure element as described herein.
The received code may be executed by processor 804 as it
1s recerved, and/or stored in storage device 810, or other
non-volatile storage for later execution.
5.0 Extensions And Alternatives
In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the mvention. The specification
and drawings are, accordingly, to be regarded 1n an 1llustrative
rather than a restrictive sense.
The preceding description has disclosed an approach for
performing extensible authentication and authorization 1n a
network device. The approach herein provides an improved
authentication and authorization approach because a network
device 1s more efficient in performing extended authentica-
tion or authorization methods, which may be deployed even
alter the network device has been installed.
The approach herein has numerous benefits over prior
approaches. For example, the approach reduces the number of
processing locations at which a message 1s authenticated or
authorized. Application endpoints are not required to perform
authentication or authorization. As a result, application
resources can focus on core application functions, rather than
implementing authentication and authorization logic 1 a
fragmented manner.
The approach herein 1s useful for any network gear vendor
that needs mechanisms to provide authentication and autho-
rization capability in a networking device to enable better
security.
What 1s claimed 1s:
1. A data processing apparatus, comprising:
a plurality of network interfaces that are coupled to a data
network for receiving one or more packets therefrom
and sending one or more packets thereto;
OnNe Or MOre Processors;
a switching system coupled to the one or more processors
and packet forwarding logic, wherein the switching sys-
tem and packet forwarding logic are configured to
receive packets on a first network interface, determine a
second network interface on which to send the packets,
and to send the packets on the second network interface;
a non-transitory computer-readable volatile or non-volatile
storage medium having an application program stored
thereon;
program extensibility logic which when executed by the
one or more processors 1s operable to cause:
receiving one or more user software application pro-
gram extensions,

using the one or more user software application program
extensions, changing a runtime behavior of the packet
forwarding logic during a normal processing of the
switching system,

wherein the user software application program exten-
sions comprise logic operable to interface with the
application program and perform any ol message pro-
cessing functions and protocol processing functions
that are not 1n the application program, and which

US 7,840,700 B2

27

emit and consume messages exchanged at a Layer
Five or higher of the Open Systems Interconnection
(OS]) reference model;

installing the one or more user soitware application pro-
gram extensions without restarting the apparatus;

receiving one or more packets representing an applica-
tion message;

selecting a particular one of the user software applica-
tion program extensions based on a protocol associ-
ated with the message;

loading the particular one of the user software applica-
tion program extensions;

executing business logic of the application program
associated with the received message;

invoking a function of the particular one of the user
soltware application program extensions 1n response
to a call in the business logic.

2. The apparatus of claim 1, wherein the application mes-
sage compnses one or more transport protocol headers, and
wherein the program extensibility logic Comprlses logic
which when executed by the one or more processors 1s oper-
able to select and ivoke the particular one of the user pro-
gram extensions based on values located in the one or more
transport protocol headers.

3. The apparatus of claim 1, wherein the application mes-
sage comprlses One or more apphcatlon message headers, and
wherein the program extensibility logic comprlses logic
which when executed by the one or more processors 1s oper-
able to select and 1invoke the particular one of the user pro-
gram extensions based on values located in the application
message headers.

4. The apparatus of claim 1, wherein the one or more user
program extensions comprise one or more extension func-
tions, wherein the program extensibility logic comprises
logic which when executed by the one or more processors 1s
operable to select and 1nvoke a particular extension function
from among the plurality of extension functions based upon
values 1n the application message.

5. The apparatus of claim 1, wherein the one or more user
program extensions comprise one or more protocol handling
functions, wherein the program extensibility logic comprises
logic which when executed by the one or more processors 1s
operable to select and ivoke one of the protocol handling
functions from among the plurality of protocol handling func-
tions based upon values in the application message.

6. The apparatus of claim 1, comprising any of a packet
data router and a packet data switch 1n a packet-switched
network.

7. The apparatus of claim 1, wherein the program extensi-
bility logic comprises logic which when executed by the one
Or more processors 1s operable to:

identily 1n the application message any of a transport pro-

tocol and an application protocol;

select a particular user-defined custom protocol handler,
from among a plurality of stored user-defined protocol
handlers, based upon the 1dentified transport protocol;

use the particular user-defined custom protocol handler to

transtform the application message into a modified out-
bound application message.

8. The apparatus of claim 1, wherein the program extensi-
bility logic comprises logic which when executed by the one
Or more processors 1s operable to:

identily a custom user function based on values in any of

the transport protocol of the message, application pro-
tocol of the message, and message body;

load and mvoke the user defined extension function based

on the identified custom user function.

10

15

20

25

30

35

40

45

50

55

60

65

28

9. A data processing apparatus, comprising:

a plurality of network interfaces that are coupled to a data
network for recerving one or more packets therefrom
and sending one or more packets thereto;

ONe Or MOre processors;

a switching system coupled to the one or more processors
and packet forwarding logic, wherein the switching sys-
tem and packet forwarding logic are configured to
receive packets on a first network interface, determine a
second network interface on which to send the packets,
and to send the packets on the second network interface;

a non-transitory computer-readable volatile or non-volatile
storage medium storing one or more sequences of
instructions, which when executed by the one or more
processors, cause the one or more processors to perform:

receving one or more user soltware application program
extensions, using the one or more user soltware appli-
cation program extensions, changing a a runtime behav-
1or of the packet forwarding logic during a normal pro-
cessing of the switching system,
wherein the user software application program exten-

sions comprise logic operable to interface with the
application program and perform any ol message pro-
cessing functions and protocol processing functions
that are not 1n the application program;

installing the one or more user software application pro-
gram extensions without restarting the apparatus;

receving one or more packets representing an application
message;

selecting a particular one of the user soitware application
program extensions based on a protocol associated with
the message;

loading the particular one of the user software application
program extensions;

executing business logic of the application program asso-
ciated with the recerved message;

means for invoking a function of the particular one of the
user software application program extensions 1n
response to a call 1n the business logic.

10. The apparatus of claim 9, wherein the application mes-
sage comprises one or more transport protocol headers,
wherein the computer-readable medium further stores
instructions, which cause: selecting and invoking the particu-
lar one of the user program extensions based on values
located 1n the one or more transport protocol headers.

11. The apparatus of claim 9, wherein the application mes-
sage comprises one or more application message headers,
wherein the computer-readable medium further stores
instructions, which cause: selecting and invoking the particu-
lar one of the user program extensions based on values
located 1n the application message headers.

12. The apparatus of claim 9, wherein the one or more user
program extensions comprise one or more extension func-
tions, wherein the computer-readable medium further stores
instructions, which cause: selecting and invoking a particular
extension function from among the plurality of extension
functions based upon values 1n the application message.

13. The apparatus of claim 9, wherein the one or more user
program extensions comprise one or more protocol handling
functions, wherein the computer-readable medium further
stores 1nstructions, which cause: selecting and 1nvoking one
of the protocol handling functions from among the plurality
of protocol handling functions based upon values 1n the appli-
cation message.

14. The apparatus of claim 9, wherein the computer-read-
able medium further stores instructions, which cause:

US 7,840,700 B2

29

identifying in the application message any of a transport

protocol and an application protocol;

selecting a particular user-defined custom protocol han-

dler, from among a plurality of stored user-defined pro-
tocol handlers, based upon the identified transport pro-
tocol;

using the particular user-defined custom protocol handler

to transform the application message mnto a modified
outbound application message.

15. The apparatus of claim 9, wherein the computer-read-
able medium further stores instructions, which cause:

identifying a custom user function based on values 1n any

of the transport protocol of the message, application
protocol of the message, and message body;

loading and invoking the user defined extension function

based on the 1dentified custom user function.

16. The apparatus of claim 9, comprising any of a packet
data router and a packet data switch 1n a packet-switched
network.

17. A computer-implemented method, comprising:

receiving one or more user software application program

extensions 1n a network infrastructure device that com-
prises an application program,

using the one or more user software application program

extensions, changing a runtime behavior of a packet

forwarding logic during a normal processing of the net-

work infrastructure device,

wherein the user solftware application program exten-
sions comprise logic operable to interface with the
application program and perform any ol message pro-
cessing functions and protocol processing functions
that are not 1n the application program;

installing the one or more user software application pro-

gram extensions without restarting the device;
receiving one or more packets representing an application
message;

selecting a particular one of the user software application

program extensions based on a protocol associated with
the message;

loading the particular one of the user software application

program extensions;

executing business logic of the application program asso-

ciated with the received message;

invoking a function of the particular one of the user soft-

ware application program extensions in response 1o a
call in the business logic.

18. The method of claim 17, wherein the application mes-
sage comprises one or more transport protocol headers, and
turther comprising selecting and imnvoking the particular one
of the user program extensions based on values located in the
one or more transport protocol headers.

19. The method of claim 17, wherein the application mes-
sage comprises one or more application message headers, and
turther comprising selecting and invoking the particular one
of the user program extensions based on values located 1n the
application message headers.

20. The method of claim 17, wherein the one or more user
program extensions comprise one or more extension func-

10

15

20

25

30

35

40

45

50

55

30

tions, and further comprising selecting and mvoking a par-
ticular extension function from among the plurality of exten-
s1on functions based upon values 1n the application message.

21. The method of claim 17, wherein the one or more user
program extensions comprise one or more protocol handling
functions, and further comprising selecting and invoking one
of the protocol handling functions from among the plurality
of protocol handling functions based upon values 1n the appli-
cation message.

22. The method of claim 17, further comprising:

identifying 1n the application message any of a transport

protocol and an application protocol;

selecting a particular user-defined custom protocol han-

dler, from among a plurality of stored user-defined pro-
tocol handlers, based upon the 1dentified transport pro-
tocol;

using the particular user-defined custom protocol handler

to transform the application message into a modified
outbound application message.

23. The method of claim 17, further comprising:

identilying a custom user function based on values 1n any

of the transport protocol of the message, application
protocol of the message, and message body;

loading and invoking the user defined extension function

based on the 1dentified custom user function.

24. A non-transitory computer-readable volatile or non-
volatile storage medium encoded with program extensibility
logic which when executed by one or more processors 1s
operable to cause:

receving one or more user soltware application program

extensions,

using the one or more user soitware application program

extensions, changing a runtime behavior of a packet

forwarding logic during a normal processing of the pro-

gram extensibility logic of a network device,

wherein the user software application program exten-
sions comprise logic operable to interface with an
application program of a computer system and per-
form any of message processing functions and proto-
col processing functions that are notin the application
program;

installing the one or more user software application pro-

gram extensions without restarting the computer sys-
tem;

receving one or more packets representing an application

message;

selecting a particular one of the user software application

program extensions based on a protocol associated with
the message;

loading the particular one of the user software application

program extensions;

executing business logic of the application program asso-

ciated with the recerved message;

invoking a function of the particular one of the user soft-

ware application program extensions in response to a
call in the business logic.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,840,700 B2 Page 1 of 1
APPLICATION NO. : 11/473194

DATED : November 23, 2010

INVENTOR(S) . Kollivakkam Raghavan et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Claim 9, column 28, line 18 Please delete an “a” between changing and runtime

Claim 9, column 28, line 37 Please delete “means for”

Signed and Sealed this
Ei1ghth Day of February, 2011

.......

- - .
% = 4 .
1 - PR . . - - -
- - - = = B - ... a
- . a - . . -
- - " a - . L] Y . -
. - oe ok - . B - =
PR [254
. . . -
e

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

