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METHODS FOR PERFORMING FAST
DISCRETE CURVELET TRANSFORMS OF
DATA

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. provisional
patent application Ser. No. 60/669,267, filed Apr. 7, 2005 for

a “Fast Digital Curvelet Transforms” by Emmanuel Candes,
Laurent Demanet, and David Donoho, the disclosure of
which 1s including the maternial presented 1n compact discs,
incorporated herein by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Subject matter disclosed in this specification was sup-
ported at least in part through governmental grants no.
DE-FG02-02ER25529 awarded by the Department of Energy
and no. DMS-0140540 awarded by the National Science
Foundation, and 1s subject to certain governmental rights and
interests.

BACKGROUND

1. Field

The subject matter disclosed and claimed in this specifica-
tion generally relates to methods and apparatus for signal
processing, data analysis, and scientific computing.

2. Description of the Art

The Annex incorporated as part of this specification 1s a
copy of a Techmical Report entitled “Fast Digital Curvelet
Transtorms™ published on-line 1 or about July 2005 and
modified in March 2006. The Annex will be referred to 1n the
specification that follows for tables, proofs, and detailed
mathematical explanations. The Annex forms an integral part
of the specification as a whole.

The last two decades have seen tremendous activity in the
development of new mathematical and computational tools
based on multiscale 1deas. Today, multiscale or multiresolu-
tion 1deas permeate many fields of contemporary science and
technology. In the information sciences and especially signal
processing, the development of wavelets and related 1deas led
to convenient tools to navigate through large datasets, to
transmit compressed data rapidly, to remove noise from sig-
nals and 1images, and to identify crucial transient features in
such datasets. In the field of scientific computing, wavelets
and related multiscale methods sometimes allow for the
speeding up of fundamental scientific computations such as
in the numerical evaluation of the solution of partial differ-
ential equations. See reference 2 (this and other references are
listed below at the end of the description of the preferred
embodiments). By now, multiscale thinking 1s associated
with an impressive and ever increasing list of success stories.

Despite considerable success, intense research in the last
few years has shown that classical multiresolution ideas are
far from being universally effective. Indeed, just as 1t was
recognized that Fourier methods were not good for all pur-
poses and consequently new systems such as wavelets were
introduced, alternatives to wavelet analysis have been sought.
In signal processing for example, an incentive for seeking an
alternative to wavelet analysis 1s the fact that interesting phe-
nomena occur along curves or sheets, e.g., edges 1n a two-
dimensional 1image.

While wavelets are certainly suitable for dealing with
objects where the interesting phenomena, e.g., singularities,
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are associated with exceptional points, they are 1ll-suited for
detecting, organizing, or providing a compact representation
of mtermediate dimensional structures. Given the signifi-
cance of such intermediate dimensional phenomena, a vigor-
ous research effort has developed to provide better adapted
alternatives by combining i1deas from geometry with 1deas
from traditional multiscale analysis. See references 17, 19, 4,
31, 14, and 16.

A special member of this emerging family of multiscale

geometric transforms 1s the curvelet transform, see references
8,12, and 10, which was developed by E

Emmanuel Candes and
David Donoho and others 1n the last few years 1n an attempt to
overcome inherent limitations of traditional multiscale rep-
resentations such as wavelets. Conceptually, the curvelet
transform 1s a multiscale pyramid with many directions and
positions at each length scale, and needle-shaped elements at
fine or small scales. This pyramid 1s nonstandard, however.
Indeed, curvelets have usetul geometric features that set them
apart from wavelets and the like. For instance, curvelets obey
a parabolic scaling relation which says that at scale 27, each
clement has an envelope which 1s aligned along a ‘ridge’ of
length 27 and width 2.

Curvelets are interesting because they efliciently address
very important problems where wavelet 1deas are far from
ideal. Three examples of such problems are:

1. Optimally sparse representation of objects with edges.
Curvelets provide optimally sparse representations of objects
or 1mages which display curve-punctuated smoothness, that
1s, smoothness except for discontinuity along a general curve
with bounded curvature. Such representations are nearly as
sparse as 1f the object were not singular and, as it turns out, far
sparser than the wavelet decomposition of the object.

This phenomenon has immediate applications in approxi-
mation theory and 1n statistical estimation. As shown 1n Sec-
tion 1.2 of the Annex, the representation 1s optimal in the
sense that no other representation can yield a smaller asymp-
totic error with the same number of terms. The implication in
statistics 1s that one can recover such objects from noisy data
by simple curvelet shrinkage and obtain a Mean Squared
Error (MSE) order of magnitude better than what 1s achieved
by more traditional methods. In fact, the recovery 1s provably
asymptotically near-optimal. The statistical optimality of the
curvelet shrinkage extends to other situations involving 1indi-
rect measurements as 1 a large class of ill-posed inverse
problems. See reference 9.

2. Optimally sparse representation of wave propagators.
Curvelets may also be a very significant tool for the analysis
and the computation of partial differential equations. For
example, a remarkable property 1s that curvelets faithiully
model the geometry of wave propagation. Indeed, the action
of the wave-group on a curvelet 1s well approximated by
simply translating the center of the curvelet along the Hamil-
tonian flows. A physical interpretation of this result 1s that
curvelets may be viewed as coherent wavetforms with enough
frequency localization so that they behave like waves but at
the same time, with enough spatial localization so that they
simultaneously behave like particles. See references 5 and 36.

This can be rigorously quantified, as alluded to 1n Section
1.2 of the Annex, in which the curvelet matrix i1s explained to
be sparse and well-organized. It 1s sparse 1n the sense that the
matrix entries 1n an arbitrary row or column decay nearly
exponentially fast (1.e., faster than any negative polynomaial).
And 1t 1s well-organized 1n the sense that the very few non-
negligible entries occur near a few shifted diagonals. Infor-
mally speaking, one can think of curvelets as near-eigen
functions of the solution operator to a large class of hyper-
bolic differential equations.
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On the one hand, the enhanced sparsity simplifies math-
ematical analysis and allows one to prove sharper inequali-
ties. On the other hand, the enhanced sparsity of the solution
operator 1n the curvelet domain allows the design of new
numerical algorithms with far better asymptotic properties in
terms of the number of computations required to achieve a
given accuracy. See reference [00127] 6.

3. Optimal image reconstruction 1n severely 1ll-posed prob-
lems. Curvelets also have special microlocal features which
make them especially adapted to certain reconstruction prob-
lems with missing data. For example, in many important
medical applications, the goal 1s to reconstruct an object
1(x,,X,) from noisy and incomplete tomographic data, 1.e., a
subset of line integrals of T corrupted by additive noise mod-
cling uncertainty in the measurements. See reference 33. This
1s especially challenging when one has incomplete data or 1n
other words, when one cannot observe projections along
every possible line but only along a given subset of such lines.

Because of 1ts relevance 1n biomedical imaging, this prob-
lem has been extensively studied (as may be seen 1n the vast
literature on computed tomography). Yet, curvelets ofler sur-
prisingly new quantitative insights. See reference 11. For
example, a beautiful application of the phase-space localiza-
tion of the curvelet transform allows a very precise descrip-
tion of those features of the object of T which can be recon-
structed accurately from such data and how well, and of those
teatures which cannot be recovered.

Roughly speaking, as shown 1n Section 1.2 of the Annex,
the data acquisition geometry separates the curvelet expan-
s10n of the object into two pieces 1n which the first part of the
expansion can be recovered accurately while the second part
cannot. What 1s interesting here i1s that one can provably
reconstruct the “recoverable” part with an accuracy similar to
that one would achieve even 11 one had complete data. A
quantitative theory exists showing that for some statistical
models that allow for discontinuities 1in the object to be recov-
ered, there are simple algorithms based on the shrinkage of
curvelet-biorthogonal decompositions, which achieve opti-
mal statistical rates of convergence; that 1s, such that there are
no other estimating procedures which, 1in an asymptotic
sense, give fTundamentally better MSEs. See reference 11.

To summarize, the curvelet transform 1s mathematically
valid and it has a very promising potential in traditional (and
perhaps less traditional) application areas for wavelet-like
ideas such as 1mage processing, data analysis, and scientific
computing.

Curvelets were first introduced by Emmanuel Candes and
David Donoho 1n reference 8 and have been around for a little
over six years by now. Soon after their introduction, research-
ers developed numerical algorithms for their implementation
(see references 37 and 18), and scientists have started to
report on a series of practical successes (see, for example,
references 39, 38, 27, 26, and 20. These implementations are
based on the original construction, see reference 8, which
uses a pre-processing step involving a special partitioning of
phase-space followed by the rnidgelet transform, see refer-
ences 4 and 7, which 1s applied to blocks of data that are well
localized 1n space and frequency.

In the last three or four years, however, curvelets have been
redesigned 1n an effort to make them easier to use and under-
stand. As a result, the new construction 1s considerably sim-
pler and totally transparent. The new mathematical architec-
ture suggests mnovative algorithmic strategies, and provides
the opportunmity to improve upon earlier implementations.

To realize this potential though, and deploy this technology
to a wide range of problems, fast and accurate discrete cur-
velet transforms operating on digital data are needed.
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SUMMARY

It1s an object of the subject matter disclosed and claimed 1n
this specification to provide fast and accurate discrete curve-
let transforms operating on digital data 1n order to realize the
potential of curvelets and deploy this technology to a wide
range of practical uses, such as 1mage processing, data analy-
s1s, and scientific computing. The fast digital transforms addi-
tionally may be employed to achieve the advantages dis-
cussed i connection with optimally sparse representation of
objects with edges, optimally sparse representation of wave
propagators, and optimal 1mage reconstruction in severely
111-posed problems.

This specification discloses new fast discrete curvelet
transforms (FDCT’s) that are simpler, faster, and less redun-
dant than existing transforms. The new FDCT’s are based on
the curvelet transform described 1n reference 10. The new
FDCT’s run in O(n” logn) flops (floating point operations) for
n by n Cartesian arrays, and are also mvertible, with rapid
inversion algorithms of about the same complexity.

Accordingly, an embodiment of the invention 1s directed to
a method for manipulating data 1n a data processor, compris-
ing performing a discrete curvelet transtform on the data. This
method may comprise the steps of (a) representing the data in
the frequency space or Fourier domain by means of a Fourier
transform; (b) dividing the Fourier transform of the data into
dyadic annuli based on concentric squares for two-dimen-
sional data or concentric cubes for three-dimensional data
and each annulus 1s subdivided 1nto trapezoidal regions for
two-dimensional data or prismoids for three-dimensional
data. The method for manipulating data 1n a data processor
may further comprise using a smooth partition of unity, or
square-root thereol, made of overlapping indicators. The
method for manipulating data 1n a data processor may be such
that each trapezoidal or prismoidal region corresponds to a
given scale/orientation combination.

The method for manipulating data 1n a data processor may
be such that the step of performing the transform further
comprises: () a step of resampling the array of the data within
cach trapezoidal or prismoidal region 1n the Fourier domain,
according to an equispaced grid tilted to be aligned with the
axes of the trapezoid or prismoid; (d) a step of shearing each
tilted gnid 1nto a Cartesian grid; (e) a step of applying the
inverse Fast Fourier Transform to the data array on each
Cartesian grid.

The step of resampling within each trapezoidal or prismoi-
dal region may further comprise the step of performing uneq-
uispaced Fast Fourier Transforms.

The method for manipulating data 1n a data processor,
comprising performing a discrete curvelet transform on the
data, may also be such that the step of performing a digital
curvelet transtform on the data further comprises: (¢') a step of
wrapping the array of the data within each trapezoidal or
prismoidal region 1n the Fourier domain into a rectangular or
parallelepipedal region near the origin; (d') a step of applying
the mverse Fast Fournier Transform to each wrapped data
array, within each rectangular or parallelepipedal region near
the origin.

The step of wrapping data within each trapezoidal or pris-
moidal region may comprise making use of periodization to
extend Fourier samples inside the rectangular or parallelepi-
pedal region. This method may be an 1sometry 1n exact arith-
metic.

The method for manipulating data 1n a data processor,
comprising performing a discrete curvelet transform on the
data may further comprise the step of performing the trans-
form runs in O(n"2 log n) floating point operations for n by n
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Cartesian arrays, wherein n 1s the number of discrete infor-
mation bits 1n a direction along an x or a y axis. In three

dimensions, the step of performing the transform runs in O(n’
log n) floating point operations for n by n by n Cartesian
arrays, wherein n 1s the number of discrete information bits 1n
a direction along an X, a y or a z axis.

The method for manipulating data 1n a data processor,
comprising performing a discrete curvelet transform on the
data may be one 1 which the step for performing the trans-
form further comprises returning a table of digital curvelet
coellicients indexed by a scale parameter, an orientation
parameter, and a spatial location parameter.

The method for manipulating data in a data processor may
be one 1n which the transform is mvertible by means of an
inverse transform. The step of performing the mverse trans-
form may comprise (a) taking as input the table of digital
curvelet coetficients; (b) performing a Fast Fourier transform
of the coelficients at each scale and angle.

The step of performing the mverse transform may further
comprise (¢) shearing the array of the Fourier-transformed
data at each scale and angle onto a trapezoidal or prismoidal
or1d; (d) resampling each sheared data onto a Cartesian grid;
(¢) windowing by the corresponding indicator; (1) summing
the contributing at each scale and angle; (g) performing an
inverse Fourier transform of the sum. The step of resampling
sheared data may comprise performing inverse unequispaced
Fast Fourier transforms.

The step of performing the inverse transform may further
comprise (¢') unwrapping the array of the Fourier-trans-
formed data at each scale and angle onto a trapezoidal or
prismoidal region; (d") windowing by the corresponding indi-
cator; (¢') summing the contribution from each scale and
angle; (1) performing an inverse Fourier transform of the
sum. The step of unwrapping data onto a trapezoidal or pris-
moidal region may comprise making use of periodization to
extend Fourier samples 1nside the trapezoidal or prismoidal
region.

The step of performing the inverse transform may be one in
which the inversion algorithm runs in about O(n® log n) float-
ing point operations for n by n Cartesian arrays, wherein n 1s
a number of discrete information bits in a direction along an
X or a y axis. In three dimensions, The method according to
claim 13 in which the inversion algorithm runs in about O(n’
log n) floating point operations for n by n by n Cartesian
arrays, wherein n 1s a number of discrete information bits 1n a
direction along an X, a y or a z axis.

The method for manipulating data 1n a data processor com-
prising performing a discrete curvelet transform on the data
may be used to compress data, 1dentily transients or salient
teatures 1n the data, conduct numerical simulations of partial
differential equations, remove noise from signals or images,
or restore otherwise degraded datasets, or solve mnverse prob-
lems 1n computerized tomography.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood and appreciated
more fully from the following detailed description taken in
conjunction with the drawings 1n which:

FIGS. 1A and 1B are schematics that show the curvelet
tiling of space and frequency. FIG. 1A schematically repre-
sents the induced tiling of the frequency plane and FIG. 1B
schematically represents the spatial Cartesian grid associate;

FIG. 2 shows a schematic that illustrates the basic digital
tiling of the frequency plane;

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 3 illustrates the sampling within each parallelogramal
region according to an equispaced grid aligned with the axes
of the parallelogram;

FIG. 4 1s a schematic that illustrates the interpolation step
of the USFFT transform;

FIG. 5 shows a schematic showing the wrapping of data in
a parallelogram by periodicity;

FIG. 6 A 1s a schematic showing the construction of “win-
dows” over corner quadrants at each scale;

FIG. 6B shows a detail of the contruction of a partition of
unity over the juncture between corner quadrants;

FIG. 7 shows a schematic 1llustrating the dyadic-parabolic
frequency tiling 1n three dimensions;

FIG. 8A shows curvelets at the coarsest scale 1n the spatial
domain, 1n which white 1s most negative and black 1s most
positive with zero corresponding to a tone of grey;

FIG. 8B shows curvelets at the coarsest scale 1n the fre-
quency side (modulus of the Fourier transform), the level of
grey indicatess values from zero (white) to one (black);

FIGS. 9A-9F show curvelets at increasingly fine scales 1n
which FIGS. 9A-9C show curvelets 1n the spatial domain as
functions of the spatial variable x and FIGS. 9D-9F show
curvelets 1n the frequency domain, the color maps being the
same as 1 FIG. 8A (for FIGS. 9A-9C) and 8B (for FIGS.
9D-9F);

FIGS. 10A-10F show wavelets and curvelets at the finest
scale 1n which FIG. 10A 1s a Meyer wavelet 1n space, FIG.
10B 1s a Meyer wavelet in frequency, FIG. 10C 1s an under-
sampled curvelet 1n space, FIG. 10D 1s an undersampled
curvelet 1n frequency, FIG. 10E 1s a zoom view of the Meyer
wavelet of FIG. 10A, and FIG. 10F 1s a zoom view of the
undersampled curvelet of FIG. 10C,;

FIGS. 11A-11C show a sparsity analysis of the curvelet
and wavelet representations of a singular object in which FIG.
11A 1s the input image (and scale), FIG. 11B 1s a graph of the
magnitude of the coellicients sorted in descending order for
curvelets and three kinds of wavelets (Daubechies 3,
Daubechies 5, and Meyer), and FIG. 11C 1s a graph of the
partial reconstruction error [[f-f_[|/||f]| for the four kinds of
representations;

FIGS. 12A-12C show a sparcity analysis of the curvelet
and wavelet representations of a seismogram 1n which FIG.
12A 1s a synthetic seismogram (and scale) corresponding to
the acoustic response of a one-dimensional layered medium
to a point source in which the x-axis 1s offset from the source
and the y-axis 1s time, FI1G. 12B 1s a graph showing the decay
of the coelficients sorted 1n descending order for curvelets
and three kinds of wavelets (Daubechies 3, Daubechies 5, and
Meyer), and FIG. 12C 1s a graph of the partial reconstruction
error for the four kinds of representations;

FIGS. 13A-13D 1llustrate image denoising using curvelets
as applied with FDCT’s. FIG. 13 A shows the original image,
a portion of the synthetic seismogram shown 1n FIG. 12A.
FIG. 13B shows a noisy version of FIG. 13A 1n which Gaus-
sian white noise has been applied. FIG. 13C 1s the denoised
image using curvelets. FIG. 13D 1s the denoised image using
wavelets; and

FIGS. 14A-14E illustrate compression of a delta function
wavelleld located at the center of the domain as the initial
condition and of the solution operator to the wave equation
with periodic boundary conditions.

DETAILED DESCRIPTION OF THE PR.
EMBODIMENTS

(L]
By

ERRED

The methods disclosed 1n this specification can be imple-
mented on any processing unit that 1s capable of executing
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instructions of algorithms corresponding to the transforms set
forth 1n this specification. Suitable processing units include,
without limitation, analog processing units, digital process-
ing units or mixtures or combinations thereol. These process-
ing units are generally components ol a computer of other
device including a processing unit and peripherals capable of
human interaction (keyboards and the like).

Suitable computers include those manufacture and sold
through out the industry based on chips from companies like
Intel, Motorla, IBM, HP, Sun Micosystems, Cirex AMD, or
others and sold 1n computers manufactured and/or sold by
company such as Dell, Apple, IBM, HP, Toshiba, Sony, or
similar computers. The processing units and computers 1ncor-
porating them are designed to execute software under the
control of an operating system. Suitable operating systems
include, without limitation, the WINDOWS operating sys-
tems from MicroSoit, the OS operating from Apple, the
LINUX operating systems available from a variety of ven-
dors, or other windowing operating systems. The algorithms
for the transforms set forth in this application can be con-
verted to software code 1 any number of convenient com-
puter languages such as Fortran, C, C+, C++, or the like or
newer programming languages geared to programming math-
ematical expressions, such as the Matlab® high-level lan-
guage and mteractive environment that enables users to per-
form computationally intensive tasks. The code may be stored
on any suitable memory media, such as compact disk, hard
drive, and the like.

The software package “Curvelab” implements the trans-
forms disclosed 1n this specification. A computer program
listing appendix for the “Curvelab” software package is
included in the compact disc filed with this specification and
1s incorporated by reference. The software contains the Mat-
lab® and C++ implementations of both the USFFT-based and
the wrapping-based transforms. Several Matlab® scripts are
provided to demonstrate how to use this software. Addition-
ally, implementations of the three-dimensional (3D) discrete
curvelet transform are also imncluded.

Continuous-time curvelets, curvelet coellicients (Equa-
tions 2.4 and 2.5), coarse scale curvelets, and curvelet trans-
forms are defined and described 1n Section 2 of the Annex. At
the stage of the discussion 1n Section 2 of the Annex, two
dimensions (2D) are assumed.

FIG. 1 summarizes the key components of the construction
by depicting the curvelet tiling of space and frequency. The
figure on the left in FIG. 1 represents the induced tiling of the
frequency plane. In Fourier space, curvelets are supported
near a “parabolic” wedge, and the shaded area mn FIG. 1
represents such a generic wedge. The figure on the night in
FIG. 1 schematically represents the spatial Cartesian grnid
associated with a given scale and orientation.

A few properties of the curvelet transform are listed below:

1. Tight-frame. Much like 1n an orthonormal basis, an
arbitrary function can be easily expanded as a series of cur-
velets (see Equations 2.6 and 2.7 in the Annex).

2. Parabolic scaling. The frequency localization ot ¢,
implies the following spatial structure: ¢,(x) 1s of rapid decay
away from a 27 by 272 rectangle with major axis pointing in
the vertical direction. In short, the effective length and width
obey the anisotropy scaling relation

length=27", width=27=>width~length”

3. Oscillatory behavior. As 1s apparent from its defimition,
(T)j(x) 1s actually supported away from the vertical axis w, but
near the horizontal w,=0 axis. In a nutshell, this says that ¢ (x)
1s oscillatory in the x,-direction and lowpass 1n the x,-direc-
tion. Hence, at scale 27, a curvelet is a little needle whose
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envelope is a specified “ridge” of effective length 27* and
width 27, and which displays an oscillatory behavior across
the main “ridge.”

Digital Curvelet Transforms

This specification discloses two distinct implementations
ol the curvelet transform which are faithiul to the mathemati-
cal transformation outlined 1n Section 2 of the Annex. These
digital transformations are linear and take as input Cartesian
arrays of the form 1]t,.t,], O=t,, t,<n. The output may be
thought of as a collection of coefficients ¢”(j,1.k) obtained by
Equation 3.1 in the Annex, the digital analog to Equation 2.4
in the Annex where each ¢, ; .7 is a digital curvelet waveform
(1n the annex, here, and below, the superscript D stands for
“digital”).

As 1s standard in scientific computations, these digital
wavelorms which are implicitly defined by the algorithms are
never actually built; formally, they are the rows of the matrix
representing the linear transformation and are also known as
Riesz representers. These wavelorms are introduced because
it will make the exposition clearer and because 1t provides a
useiul way to explain the relationship with the continuous-
time transformation. The two digital transformations share a
common architecture which 1s introduced first, before elabo-
rating on the main differences.

Digital Coronization

Coronae and rotations are not especially adapted to Carte-
s1an arrays. Instead, it 1s convenient to replace these concepts
by Cartesian equivalents; here, “Cartesian coronae” based on
concentric squares or cubes (instead of circles and spheres)

and shears. Section 3.1 of the Annex explains the digital
coronization.

FIG. 2 1s a schematic that 1llustrates the basic digital tiling
in two dimensions. The windows Ujﬂz smoothly localize the
Fourier transform near the sheared wedges obeying the para-
bolic scaling. The shaded region in FIG. 2 represents one such
typical wedge (or trapezoid).

Digital Curvelet Transform via Unequispaced Fast Fourier
Transforms

Section 3.2 of the Annex describes a first implementation
of a fast digital curvelet transform wvia unequispaced or
unequally spaced fast Fourier transforms (USFFT), whose
architecture or algorithm 1s generally as follows:

1. Apply the two dimensional fast Fourier transform (2D
FFT) and obtain Fourier samples

T n ], —n2=n m<n/2

2. For each scale/angle pair (3,1), resample (or interpolate)
f[n,,n,] to obtain sampled values f[n,,n,-n, tan 6,] for (n,,
n,)epP,.

3. Multiply the interpolated (or sheared) object T with the

parabolic window U, effectively localizing T near the paral-
lelogram with orientation 0,, and obtain

.E?E[Hl:nj:f[nl:nz_nl tan el]i;;[n IJHE]'

4. Apply the mverse 2D FFT to each 1, ;, hence collecting
the discrete coefficients ¢”(j,1.k).

Of all the steps, the interpolation step 1s the less standard
and 1s discussed 1n detail 1n Section 4.1 of the Annex. It 1s

possible to design an algorithm which, for practical purposes,
is exact and takes O(n® log n) flops for computation, and
requires O(n”)storage, where n” is the number of pixels.

Section 4 of the Annex describes the USFFT transform in
more detail. Section 4.1 describes the step of interpolation or
resampling.
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FIG. 3 shows the structure of the irregular grid (n,, n,-n,
tan 0,) at a fixed scale and for orientations in the “Eastern”™
quadrant. FIG. 3 illustrates the sampling within each paral-
lelogramal region according to an equispaced grid aligned
with the axes of the parallelogram. There as many parallelo-
grams as there are angles 0,e(-n/4,m/4).

FI1G. 4 illustrates a key property of the USFFT version of
the FDCT transform. The interpolation step 1s organized so
that 1t 1s obtained by solving a sequence of one-dimensional
problems. For a fixed column, a one-dimensional trigonomet-
ric polynomial 1s resampled on the mesh shown here.

Section 4.2 of the Annex discusses the appearance of digi-
tal curvelets and observes that, at a given scale, all digital
curvelets are essentially obtained by shearing and translating
a single reference element. Section 4.3 discusses the adjoint
transformation and notes that each step of the curvelet trans-
formation via USFFT has an evident adjoint, and the overall
adjoint transformation 1s computed by taking the adjoint of
cach step and applying them in reverse order. The adjoint
transformation shares all the basic properties of the forward
transform. In particular, the cost of applying the adjoint 1s
O(n” log n) flops, with n* being the number of pixels.

Section 4.4 discusses the mverse transformation of the
USFFT. Looking at the flow of the algorithm for the USFFT
set forth above, the first and the last steps may be seen to be
casily mvertible by means of FF1’s. Conjugate gradients
(CG’s) are used to mvert the combination of steps 2 and 3
(which 1n practice 1s effected scale by scale). Each CG itera-
tion 1s effected by a series of one dimensional processes
which, thanks to the special structure of the Gram matrix, can
be accelerated as we will see 1n the next section. In practice,
20 CG 1terations (at each scale) give about five digit accuracy.
The practical cost of this approximate mverse 1s about ten
times that of the forward transform. Section 8 of the Annex
sets forth actual central processing umt (CPU) times.

Section 5 of the Annex further discusses unequispaced fast
Fourier transforms. In particular, 1t discusses an algorithm for
computing fast Fourier transforms and the resulting accuracy
in terms of relative error (see Table 1 1n the Annex). Compu-
tation of the adjoint USFF'T and the use of a Toeplitz matrix
tor forward mapping are described 1 Sections 5.3 and 5.4 of

the Annex.

Digital Curvelet Transform via Wrapping,

Section 3.3 of the Annex describes the second implemen-
tation of a fast digital curvelet transform via wrapping.

The ‘wrapping’ approach assumes the same digital coro-
nization as 1n Section 3.1 of the Annex, but makes a different,
somewhat stmpler choice of spatial grid to translate curvelets
at each scale and angle. Instead of a tilted grid, a regular
rectangular grid 1s assumed and ‘Cartesian’ curvelets are
defined 1n essentially as,

c(i. L Ry=[lo) T(Sg " 0)e™ > do,

The SE,E_T b of formula 3.6 1n the Annex has been replaced
by b~(k, 27, k,27*) taking on values on a rectangular grid. As
betfore, this formula for b 1s understood when

(33? S:e'r)
or 7 )

otherwise the roles of L, ; and L, ; are to be exchanged.

The difficulty behind this approach 1s that, 1n the frequency
plane, the window U, ;[n;,n,]| does not fit in a rectangle of size
~Yx V2 aligned with the axes, 1n which the 2D mverse FF'T
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could be applied to compute the formula given 1n the above
paragraph. After discretization, the integral over m becomes a
sum over n,,n, which would extend beyond the bounds
allowed by the 2-D mverse FFT. The resemblance of the
formula given above 1n the above paragraph with a standard
2D mverse FFT 1s 1n that respect only formal.

To understand why respecting rectangle sizes 1s a concern,
we recall that U, ; 1s supported in the trapezoidal region

P, ~Se,P;
For most values of the angular variable 6,, P, ; 1s supported
inside a rectangle R, ; aligned with the axes, and with side-
lengths both on the order of 2. In principle, the 2D inverse
FFT could be used on this larger rectangle istead. This 1s
close 1n spirit to the discretization of the continuous direc-
tional wavelet transform proposed by Vandergheynst and
Gobbers 1n reference 41. This seems 1deal, but there 1s an
apparent downside to this approach: dramatic oversampling
of the coellicients. In other words, whereas the previous
approach showed that 1t was possible to design curvelets with
anisotropic spatial spacing of about n/2 in one direction and
n/2”? in the other, this approach would seem to require a naive
regular rectangular grid with sidelength about n/2’ in both
directions. In other words, one would need to compute on the
order of 2¥ coefficients per scale and angle as opposed to only
about 2’2 in the USFFT-based implementation. By looking
at fine scale curvelets such that 27~n, this approach would
require O(n*~) storage versus O(n*) for the USFFT version.

It 1s possible, however, to downsample the naive grid, and
obtain for each scale and angle a subgrid which has the same
cardinality as that 1n use 1n the USFFT implementation. The

idea 1s to periodize the frequency samples.

As betore, we let P, ; be a parallelogram containing the
support of the discrete localizing window U, [n,.n,]. We
suppose that at each scale j, there exist two constants L, ~2/
and L, ~2/ 2 such that, for every orientation 0,, one can tile the
two-dimensional plane with translates of P, ; by multiples of
L, ; in the horizontal direction and L, ; in the vertical direc-
tion. The corresponding periodization of the windowed data
d[n;,n,]=U, [n,.n,][f][n,,n,] reads

Wdln,, ny] = Z Z dlry +myLiLy i, ny +mply ;]
m|eLmrcs

The wrapped windowed data, around the origin, 1s then
defined as the restriction of Wd[n,,n,] to indices n,,n, inside
a rectangle with sides of length L, xL, ; near the origin:

= =
O=n,<L, ;, 0=n,<L, .

Given 1indices (n,;,n,) originally inside P, ; (possibly much
larger than L, ;, L,;), the correspondence between the
wrapped and the original indices 1s one-to-one. Hence, the
wrapping transformation 1s a simple re-indexing of the data.
It 1s possible to express the wrapping of the array d[n,,n,]
around the origin even more simply by using the ‘modulo’
function:

Wd[n; mod L ;n, mod L, ;]=d[n,,n,],

with (n,,n,)eP; ;. Intuitively, the modulo operation maps the
original (n,,n,) into their new position near the origin.

For those angles in the range Oe(n/4,3m/4), the wrapping 1s
similar, after exchanging the role of the coordinate axes. This
1s the situation shown 1n FIG. §.
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FIG. 5 1s a schematic showing the wrapping of data 1n a
parallelogram by periodicity. The angle 0 1s here 1n the range
(/4, 3t/4). The parallelogram 1s the tile P, ; which contains
the frequency support of the curvelet, whereas the gray par-
allelograms are the replicas resulting from periodization. The
rectangle 1s centered at the origin. The wrapped ellipse
appears “broken into pieces” but, as seen 1n section 3.3 in the
Annex, this 1s not an 1ssue 1n the periodic rectangle, where the
opposite edges are 1dentified.

Equipped with this definition, the architecture of the fast
digital curvelet transform by wrapping 1s generally as fol-
lows:

1. Apply the two dimensional fast Fourier transform and
obtain Fourier samples 1[n,,n,], -n/2=n,,n,<n/2.

2. For each scale j and angle 1, form the product fljjz[nljnﬂ
f[n,,n,].

3. Wrap this product around the origin and obtain

f;;[’?n”ﬂ: 4 i};zf) [72y,75],

where the range for n, and n, is now O=n,<L,; and
0=n,<L, ; (for 0 1n the range (-m/4,7/4).)

4. Apply the mverse two dimensional fast Fourier trans-
form to each T,,, hence collecting the discrete coefficients
c”(j,Lk)

This algorithm has computational complexity O(n” log n)
and 1n practice 1ts computational cost does not exceed that of
6 to 10 two-dimensional fast Fourier transforms. See Section
8 of the Annex for typical values of CPU times. Section 6 of
the Annex details some of the properties of this transform,
namely, (1) 1t 1s an 1sometry, hence the inverse transform can
simply be computed as the adjoint, and (2) 1t 1s faithiul to the
continuous transform.

The elements which are common to both the USFFT and
wrapping implementations are:

1. Frequency space 1s divided into dyadic annuli based on
concentric squares.

2. Each annulus 1s subdivided into trapezoidal regions.

3. In the USFFT wversion, the discrete Fourier transform,
viewed as a trigonometric polynomial, 1s sampled within each
parallelogramal region according an equispaced grid aligned
with the axes of the parallelogram. Hence, there 1s a different
sampling grid for each scale/orientation combination. The
wrapping version, instead of interpolation, uses periodization
to localize the Fourier samples 1n a rectangular region in
which the inverse fast Fourier transform can be applied. For a
given scale, this corresponds only to two Cartesian sampling
orids, one for all angles 1n the East-West quadrants, and one
for the North-South quadrants.

4. Both forward transforms are specified 1n closed form,
and are 1mvertible (with 1mverse 1n closed form for the wrap-
ping version).

5. The design of appropriate digital curvelets at the finest
scale, or outermost dyadic corona, 1s not straightforward
because of boundary/periodicity 1ssues. Possible solutions at
the finest scale are discussed 1n Section 7 of the Annex.

6. The transforms are cache-aware: all component steps
involve processing n items 1n the array 1n sequence, e.g., there
1s frequent use of one-dimensional FF1’s to compute n inter-
mediate results simultaneously.

The design of appropriate basis functions at the finest scale,

or outermost dyadic corona, 1s not as straightforward for
directional transforms like curvelets as 1t 1s for one-dimen-
sional or two dimensional tensor-based wavelets. This 1s a
sampling 1ssue in which, i a fine-scale curvelet 1s sampled
too coarsely, the pixelization will make 1t look like a check-
erboard and 1t will not be clear 1n which direction 1t oscillates
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anymore. In the frequency domain, the wedge-shaped sup-
port does not fit in the fundamental cell and 1its periodization
introduces energy at unwanted angles.

Section 7.1 of the Annex discusses the sampling of curve-
lets on the finest scale, or outermost dyadic corona by assign-

ing wavelets to the finest level as 1llustrated 1n FIGS. 10A and
10B.

Periodization 1n frequency amounts to sampling in space,
so finest-scale curvelets are just undersampled standard cur-
velets. This 1s 1llustrated 1n FIGS. 10C and 10D. What 1s lost
in terms of aliasing? Spilling over by periodicity is inevitable,
but here the aliased tail consists of essentially only one-third
of the frequency support. FIG. 10D shows that a large fraction
of the energy of the discrete curvelet still lies within the
fundamental cell. Numerically, the non-aliased part amounts
to about 92.4% of the total squared 1°-norm Hq)j!zf 2. The
“checkerboard™ look of undersampled curvelets, mentioned

above, 1s shown 1n FIG. 10F.

Section 7.2 of the Annex explains how to construct win-
dows over junctions between quadrants, namely the eight
“corner” wedges per scale calling for special treatment, and
corresponding to angles near £r/4 and +3m/4 (see FIG. 6A).

In FIG. 6 A (corresponds to the left of FIG. 7 in the Annex)
the corner wedges appear in grey. In FIG. 6B (corresponds to
the right of FIG. 7 1n the Annex) 1s shown a detail of the

construction of a partition of unity over the junction between
quadrants.

Section 7.3 of the Annex discusses alternative frequency
tilings. The construction of curvelets 1s based on a polar
dyadic-parabolic partition of the frequency plane, also called
FIO tiling, as explained in Section 2 of the Annex. However,
the approach 1s flexible, and can be used with a variety of
choices of parallelogramal tilings, for example, including
based on principles besides parabolic scaling.

Section 7.4 of the Annex discusses higher dimension fast
digital curvelet transforms. The algorithms for three dimen-
sional discrete curvelet transforms are similar to their two
dimensional analogs. The object 1s first decomposed nto
dyadic annuli based on concentric cubes. FIG. 7 shows the
dyadic-parabolic frequency tiling in three dimensions. Each
annulus 1s subdivided into prismoid regions (having two rect-
angular and four trapezoidal faces) obeying the usual fre-
quency parabolic scaling (one long and two short directions).
These are now s1x components corresponding to the six faces
of the cube. Curvelets are supported near the gray regions.

Section 7.5 discusses nonperiodic 1mage boundaries An
(unfortunate) consequence of using the digital Fourier trans-
form (DFT) to define the transform 1s that the image 1s implic-
itly considered as a periodic array. The leftmost and rnnghtmost
pixels 1n a given row, or the top and bottom pixels 1n a given
column, are considered immediate neighbors as much as ordi-
nary adjacent pixels are. By construction, a substantial num-
ber of basis functions appear to be supported on two (or more)
very distant regions of the image, because they overlap the
image boundary and get copied by periodicity. They may be
called “boundary curvelets.”” Periodization may result 1n
unwanted curvelet-looking artifacts near the image boundary,
for example 1n 1mage denoising experiments. A somewhat
naive solution 1s to pad the image with zeros.

The drawings show a few curvelets 1n both the spatial and
the frequency domain. FIGS. 8 A and 8B show coarsest scale
curvelets. At the coarsest level, curvelets are nondirectional
and are Meyer scaling functions. FIG. 8 A shows the spatial-
side, 1n which the color map i1s as follows: white 1s most
negative, zero corresponds to some tone of grey, and black 1s
most positive. FIG. 8B shows the frequency-side (modulus of
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the Fourier transform). The level of grey indicates values
from zero (white) to one (black).

FIG. 9 shows curvelets at increasingly fine scales in which
the left panels represent the real part of curvelets 1n the spatial
domain (as functions of the spatial variable x) and the right
panels show the modulus of the Fourier transform (as func-

tions of the frequency variable w). The color map 1s the same
as 1n FIG. 8.

FIGS. 10A-10F show curvelets at the finest level where one
can choose between wavelets and curvelets. Localization 1n
both space and frequency 1s apparent. The digital curvelets
appear to be faithiul to their continuous analog. In the spatial
domain, they are smooth along and oscillatory across the
ridge. In the frequency domain, they are sharply localized.

Tables 1 and 2 (Tables 2 and 3 in the Annex) report the
running time of both FDCT’s on a sequence of arrays of
increasing size. 1, 15, and T, are running times of the
forward, 1nverse and adjoint transforms respectively (only
T,  1s given for the FDCT via wrapping since the mnverse 1s
the same as the adjoint). The column T /1.~ gives the
rat1o between the running time of the FDCT and that of the
FFT on an array of the same size. The accuracy or 1*-error is
computedast— - Co Al 2, where C,  and C.. . are the
forward and inverse FDCT’s. The FDCT wvia wrapping
achieves machine accuracy because of the exact numerical
tightness of the digital transform. The FDCT via USFFT also
achieves high accuracy, i.e., of the order of 107°. Although
both transforms have low running times, the USFFT trans-
form 1s somewhat slower; this 1s due to the interpolation step
in the forward transform and to the Conjugate Gradient (CG)

iterations in the inverse transtorm.

TABLE 1
Running time and error for the wrapping-based transform.
Image size Tr,.7(8) T, (s) T,/ Terr [* error
128 x 128 0.040458 0.039520 11.23R83 4.5450e-16
256 x 256 0.174807 0.176519 R.8286 4.8230e-16
512 x 512 0.829820 0.868141 6.0793 4.8908e-16
1024 x 1024 4.394066 4.482452 7.7224 5.6303e-16
2048 x 2048 20.01692 23.02144 7.7567 6.3018e-16
TABLE 2

Running time and error for the USFFT-based transform.

TFwd’/
Image size Tz, (8) T 44 (s) T, (s) Tomr [* error
128 x 128  0.088832 0.091578 1.006522 24.6756 1.4430e-06
256 x 256 0.376838 0.390533 4.002353 19.0322 R.8154e-07
512 x 512 2487052 2579102  35.09599  18.2202 5.3195e-07
1024 x 1647702 16.87764  129.3631 28.9579  3.2390e-07
1024
2048 x 6242980  65.09365  566.1732 24.1920 3.4305e-06
2048

The potential of FDCT’s 1s illustrated with several
examples using the wrapping-based implementation. In the
first example, the decay of the coellicients of the curvelet and
various wavelet representations are compared on an 1mage
with curve-like singularities. The first input 1image, shown in
FIG. 11A, 1s singular along a smooth curve and 1s otherwise
perfectly smooth (this 1mage 1s de-aliased to remove the
artifacts due to pixelization). To compensate for the redun-
dancy of the curvelet transtorm and display a meaningtul
comparison, a fraction of the entries of the curvelet coetficient
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table are extracted so that the number of curvelet and wavelet
coefficients 1s i1dentical. The extracted curvelet entries are
renormalized to preserve the overall I norm.

FIG. 11B shows the values of the coelfficients sorted in
decreasing order of magnitude. The faster the decay, the bet-
ter. The sparsity analysis of the curvelet and wavelet
(Daubechies 3, Daubechies 5, and Meyer) representations 1s
complemented by the quantitative study of partial reconstruc-
tions of 1. FIG. 11C shows the peak signal to noise (PSNR) of
best m-term approximation where t_ 1s the partial reconstruc-
tion of 1 using the m-largest coelficient in the curvelet (or
wavelet) expansion (note that because of the redundancy of
the FDCT, there are better ways of obtaining partial recon-
structions).

The second 1nput image, shown 1n F1G. 12A, 1s a synthetic
seismogram corresponding to the acoustic response of a one-
dimensional layered medium to a pomt source. The x-axis 1s
the offset from the source and the y-axis 1s time. The decay of
the coetlicients and the partial reconstruction error for this
image are shown 1n FIGS. 12B and 12C, respectively. Experi-
ments suggest that FDCT’s outperform, by a significant mar-
gin, traditional wavelet representations on these types of
image data.

The second example 1s denoising. The original image 1s the
seismogram used 1n the previous example (FIG. 12A), a por-
tion of which 1s shown 1n FIG. 13 A. The noise-to-signal ratio
1s set to 10%, which corresponds to peak signal-to-noise
(PSNR)=20.0 dB (shown in FIG. 13B). A denoising algo-
rithm based on the curvelet transform results 1n an 1mage with
PSNR=37.6 dB. (see FIG. 13C) while a traditional wavelet
denoising algorithm (Symmlet 8 in WavelLab, shift-invariant
hard thresholding at 2.50) gives PSNR=30.8 dB (see FIG.
13D). The curvelet denoising algorithm used above 1s a
simple shift-invariant block-thresholding of the wrapping-
based curvelet transform (with curvelets at the finest scale)
and 1s available as Matlab code 1n the CurvelLab software
referred to above. (For an 1image of size 1024x512, the whole
procedure runs in less than 90 seconds on a standard desktop
computer.)

Curvelets are especially well-adapted to simultaneously
represent the solution operators to large classes of wave equa-
tions and the wavefields that are solutions to those equations.
In the third example, consider the constant coetlicient sec-
ond-order wave equation with periodic boundary condition

u-—Au=0 xe/0,1)x[0,1).

FIGS. 14A-14D illustrate compression of the wavetield
and of the solution operator to the wave equation with peri-
odic boundary conditions. The domain 1s discretized with a
512x512 Cartesian grid, and a delta function located at the
center of the domain 1s the wavefield that 1s provided as an
initial condition, as shown in FIG. 14A. The solution at a later
time 1s known analytically, and may therefore be computed
exactly. The FDCT 1s used to compress the wavefield at time
t=0.25 (F1G. 14B) and t=0.75 (FIG. 14C). FIGS. 14B and 14C

show the approximate wavefields reconstructed from only
1.25% of the curvelet coefficients. In both cases, the relative

12 error is about 107°.

The wavelield 1s well-approximated by just a few curve-
lets. Now consider the compressibility ol the wave propagator
E.. From a theoretical point of view, 1t 1s known that the
entries of E (n,n")=<¢_,E ¢ > taken from an arbitrary row or
column decay faster than any negative polynomial. FIG. 14D
plots the decay of the matrix coellicients in three columns of
the propagator matrix or solution operator

E. at t=0.75 while
FIG. 14E plots the relative truncation error for those same
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columns. A relative error of order 10~ for every column is
achieved by using about 1% of the largest curvelet coefli-
cients.

The transforms introduced in this specification were
designed with the goal of being as faithful to continuous 5
curvelets as possible. In both cases, the main step of the
transform 1s to window the data 1n frequency with prescribed
windows, sampled on the same grid as the data. This sampling
in frequency is the only distortion that curvelets incur 1n the
digital transforms. This 1ssue 1s mevitable but minor, since 1t
1s equivalent to periodization 1n space where curvelets decay
fast. Recall that the other potential source of error, spatial
sampling, 1s not an 1ssue here since curvelets are nearly band-
limited.

Both transforms are fast and the wrapping variant i1s to 15
believed to be the fastest curvelet transform currently avail-
able. Computing a direct or imnverse transiform in C++ takes
about the same time as 6 to 10 FF1’s using FFTW (“Fastest
Fourier Transform in the West,” a C subroutine library for
computing the discrete Fourier transform (DFT)) (available at
http://www.iltw.org), which can hardly be improved upon.

Just as the wavelet transform has been deployed a countless
number o times 1n many fields of science and technology, fast
digital curvelet transforms may be expected to be widely
applicable. This 1s especially the case 1n the field of image
processing and scientific computing.

In 1mage analysis for example, the fast digital curvelet
transform may be used for the compression of image data, for
the enhancement and restoration of 1images as acquired by
many common data acquisition devices (e.g., computerized
tomography (CT) scanners), and for post-processing applica-
tions such as extracting patterns from large digital images,
detecting features embedded 1n very noisy images, enhancing
low contrast images, or registering a series of images acquired
with very different types of sensors.

In scientific computing, the fast digital curvelet transtform
may be used for speeding up fundamental computations; the
numerical propagation of waves 1n inhomogeneous media 1s
of special interest. Other applications include seismic migra-
tion and velocity estimation 1n the field of seismics and com-
putational geophysics.

The FDCT may be used to solve problems 1in limited-angle
tomography. In this field, one tries to reconstruct an 1mage
from a limited range of projection angles but very dense
sampling within the range of observable angles and oflsets.
This problem arises 1n many important medical applications
but also i Synthetic Aperture Radar (SAR) imaging and
tomographic electron microscopy where data are collected in
a 70 degree cone, but with very densely sampled data inside
the cone. In these challenging setups, the FDCT may be used
to separate the image of interest from noise and clutters and
provide sharp reconstructions of selected image features.
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tion, either above or in the Annex:

1. C. R. Anderson and M. D. Dahleh. Rapid computation of
the discrete Fourier transtorm. SIAM J. Sci. Comput. 17
(1996), 913-919.

2. G. Beylkin, R. Coifman and V. Rokhlin. Fast wavelet
transforms and numerical algorithms. Comm. on Pure and
Appl. Math. 44 (1991), 141-183.

3. G. Beylkin. On the fast Fourier transiform of functions with
singularities. Appl. Comput. Harmon. Anal., 2-4 (1995),
363 -381.

4. E. J. Candes. Harmonic analysis of neural networks.
Apphed and Computational Harmonic Analysis 6 (1999),

197-218.

10

20

25

30

35

40

45

50

55

60

65

16
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References 1-42 are incorporated by reference for all pur-
poses allowed by law.

While several illustrative embodiments of the invention
have been shown and described in the above description,
numerous variations and alternative embodiments will occur
to those skilled 1n the art and it should be understood that,
within the scope of the appended claims, the invention may be
practiced otherwise than as specifically described. Such
variations and alternative embodiments are contemplated,
and can be made, without departing from the scope of the
invention as defined 1n the appended claims.

We claim:
1. A method for transforming an 1image for use with a data
Processor comprising:
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converting said 1image to a plurality of image pixel data;
and

performing a discrete curvelet transformation on the plu-
rality of 1image pixel data,
wherein the performing of the discrete curvelet transform
COMprises:
representing the plurality of 1mage pixel data in the
frequency space or Fourier domain by means of a
Fourier transform; and

dividing the Fourier transform of the plurality of image
pixel data into dyadic annuli based on concentric
squares for two-dimensional data or concentric cubes
for three-dimensional data and each annulus 1s subdi-
vided 1into trapezoidal regions for two-dimensional
data or prismoids for three-dimensional data.

2. The method for transforming an 1mage according to
claim 1, wherein the division of the frequency plane com-
prises using a smooth partition of unity, or square-root
thereol, made of overlapping indicators.

3. The method for transforming an 1mage according to
claim 1, wherein each trapezoidal or prismoidal region cor-
responds to a given scale/orientation combination.

4. The method for transforming an 1mage according to
claim 1, wherein which the performing of the discrete curve-
let transform further comprises:

resampling the array of the plurality of 1image pixel data
within each trapezoidal or prismoidal region 1n the Fou-
rier domain, according to an equispaced grid tilted to be
aligned with the axes of the trapezoid or prismoid;

shearing each tilted grid into a Cartesian grid; and

applying the inverse Fast Fourier Transform to the data
array on each Cartesian grid.

5. The method according to claim 4, wherein the resam-
pling within each trapezoidal or prismoidal region further
comprises performing unequispaced Fast Fourier Trans-
forms.

6. The method for transforming an image according to
claim 1, wherein the performing of the digital curvelet trans-
form on the plurality of image pixel data further comprises:

wrapping the array of the plurality of 1image pixel data
within each trapezoidal or prismoidal region 1n the Fou-
rier domain 1nto a rectangular or parallelepipedal region
near the origin; and

applying the imnverse Fast Fourier Transform to each
wrapped data array, within the rectangular or parallel-
epipedal region near the origin.

7. The method according to claim 6, wherein the wrapping
of the plurality of 1image pixel data within each trapezoidal or
prismoidal region comprises making use of periodization to
extend Fourier samples inside the rectangular or parallelepi-
pedal region.

8. The method according to claim 6 being an 1sometry n
exact arithmetic.

9. The method according to claim 1, wherein the perform-
ing of the discrete curvelet transform runs in O(n” log n)
floating point operations for n by n Cartesian arrays, wherein
n 1s the number of discrete information bits 1n a direction
along an x or a y axis.

10. The method according to claim 1, wherein the perform-
ing of the discrete curvelet transform runs in O(n’ log n)
floating point operations for n by n by n Cartesian arrays,
wherein n 1s the number of discrete information bits 1n a
direction along an X, a y, or a Z axis.

11. The method according to claim 1, wherein the perform-
ing of the discrete curvelet transform further comprises
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returning a table of digital curvelet coellicients indexed by a
scale parameter, an orientation parameter, and a spatial loca-
tion parameter.

12. The method according to claim 1, wherein the discrete
curvelet transform 1s 1nvertible by means of an mnverse dis-
crete curvelet transtform.

13. The method according to claim 12, wherein the per-
forming of the inverse discrete curvelet transform comprises:

taking as input the table of digital curvelet coetlicients; and

performing a Fast Fourier transform of the coelficients at
cach scale and angle.

14. The method according to claim 13, wherein the per-
forming of the inverse discrete curvelet transform further
COmMprises:

shearing the array of the Founier-transformed data at each

scale and angle onto a trapezoidal or prismoidal grid;
resampling each sheared data onto a Cartesian grid;
windowing by a corresponding indicator;

summing a contribution at each scale and angle to produce

a sum; and

performing an mverse Fourier transform of the sum.

15. The method according to claim 14, wherein the resa-
mpling of the sheared data comprises performing inverse
unequispaced Fast Fourier transforms.

16. The method according to claim 13, wherein the per-
forming of the inverse discrete curvelet transform further
COmMprises:

unwrapping the array of the Fourier-transformed data at

cach scale and angle onto a trapezoidal or prismoidal
region;

windowing by the corresponding indicator;

summing the contribution from each scale and angle; and

performing an inverse Fourier transform of the sum.

17. The method according to claim 16, wherein the
unwrapping of the array of the Founer-transformed data onto
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a trapezoidal or prismoidal region comprises making use of
periodization to extend Fourier samples inside the trapezoidal
or prismoidal region.

18. The method according to claim 13, wherein the imnverse
discrete curvelet transform runs in about O(n” log n) floating
point operations for n by n Cartesian arrays, wherein n 1s a
number of discrete information bits 1n a direction along an x
Or a 'y axis.

19. The method according to claim 13, wherein the imnverse
discrete curvelet transform runs in about O(n” log n) floating
point operations for n by n by n Cartesian arrays, whereinn 1s
a number of discrete information bits in a direction along an
X,ay Or a Z axis.

20. The method according to claim 1, wherein the trans-
forming of the image comprises compressing the plurality of
image pixel data.

21. The method according to claim 1, wherein the trans-
forming of the 1mage comprises identifying transients or
salient features 1n the plurality of image pixel data.

22. The method according to claim 1, wherein the trans-
forming of the image 1s used to conduct numerical simula-
tions of partial diflerential equations.

23. The method according to claim 1, wherein the trans-
forming of the image further comprises removing noise from
the plurality of image pixel data, or restore otherwise
degraded 1image pixel datasets.

24. The method according to claim 1, wherein the trans-
forming of the 1image 1s used to solve inverse problems.

25. The method according to claim 24, wherein the trans-
forming of the image 1s used to solve inverse problems 1n
computerized tomography.

26. The method according to claim 235, wherein the trans-
forming of the image 1s used to solve inverse problems 1n
limited-angle tomography.
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