US007836454B1

12y United States Patent (10) Patent No.: US 7.836,454 B1

Coleman et al. 45) Date of Patent: Nov. 16, 2010
(54) INFORMATION APPLIANCE OTHER PUBLICATIONS
ARCHITECTURE
Wine (Windows Emulator) Frequently Asked Questions & Answers
(75) Inventors: Patrick J. Coleman, Burlingame, CA Version 3.11 by P. David Gardner URL: http://www.1biblio.org/pub/
(US); Thomas E. Whittaker, San historic-linux/ftp-archives/sunsite.unc.edu/Sept-29-1996/ALPHA/
Mateo, CA (US); David C. W. Yip, wine/Wine FAQ.*

Sunnyvale, CA (US); Mark A. Moore,
San Francisco, CA (US)

(73) Assignee: Oracle America, Inc., Redwood City, Primary Examiner—Andy Ho | |
CA (US) (74) Attorney, Agent, or Firm—Marsh Fischmann &

Breyiogle LLP; Kent A. Lembke; Jonathon A. Szumny

(Continued)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 (57) ABSTRACT
U.S.C. 154(b) by O days.

(21) Appl. No.: 11/341,275 An architecture for an information appliance adapted for a
specific application supports a variety ol appliance person-
(22) Filed: Mar. 19, 1999 alities, relying on a single core technology. The information
appliance comprises an application-optimized hardware plat-
Related U.S. Application Data form, including a processor, a display coupled to the proces-
(63) Continuation of application No. 08/743,803, filed on sor, an mput/output device coupled to an information source
Nov. 5, 1996, now Pat. No. 5,889,990 and to the processor, a user input device, and working
memory coupled to the processor. Non-volatile memory 1s
(51) Int.Cl. coupled to the processor and stores appliance operating sofit-
GO6F 13/00 (2006.01) ware and application software. The appliance operating soft-
(52) UuSuCle oo, 719/312 Ware includes logic executed by the processor, which man-
(58) Field of Classification Search 717/163; @ges information flow from the information source through

719/312 the working memory to the display, and the application soft-
ware 1includes logic executed by the processor and responsive
to the user iput to manage selection of information from the
(56) References Cited information source. The appliance operating soiftware

U.S PATENT DOCUMENTS includes an operating, system kerne} that 1s adapted fqr j[he
processor, and a system library that includes logic providing

See application file for complete search history.

4,768,150 A 8/1988 Chang et al. an interface to the application software. An operating system
5,432,935 A 7/1995 Kato et al. service layer provides an abstraction function between the
5,521,849 A 3/1996 Adelson et al. system library and the appliance operating system kernel and
2,333,286 A 9/1996 Lee hardware, so that the logic 1 the system library and above,
2 ’g 2 ;%gg i g//{ iggg (S_“,Elvert teglal* such as in the application itself, is executable with a develop-
’] CCIl C© _
5,742,825 A * 4/1998 Mathuretal. 719/329 m‘?[nft platfﬁrm Opeiatmg SfStemf‘fthCh li.completdy differ
5,784,613 A * 7/1998 Tamirisa 718/100 S ATOULERC OPErdilyg 5y5tEi 0L HHIE dppldice.
(Continued) 18 Claims, 7 Drawing Sheets
_ : ' .
Application Graphics Programmer’s Wﬂhl
Library Library
(AGL) - (PWL)
Opaque Device '
- |
Foundation So. Lommiod 1
' Memory Management -
System
Efror Handliqg & Library
Error Reporting 53.) (SL) -
BSP &
HARDWARE

1 15 Hardware Board Platform

US 7,836,454 B1
Page 2

U.S. PATENT DOCUMENTS

5,987,517 A * 11/1999 Futhetal. 709/230
6,684,261 B1* 1/2004 Ortonetal. 719/328
OTHER PUBLICATIONS

Levendel Y., “Software Assembly Workbench: how to construct soft-
ware like hardware”, Proceedings. International Computer Perfor-

mance and Dependability Symposium. IEEE Comput. Soc. Press. pp.
4-12, 1995.

“Microsoft Windows CE: The New Choice for Dedicated Systems”,
Microsoft Corp. (May 1997): Online. MSDN CD, 1997.

Gardner, P. David, “Wine (Windows Emulator) Frequently Asked
Questions & Answers,” Version 3.11, Apr. 1996, online, http://www.
ibiblio.org/pub/historic-linux/ftp-archives/sunsite.unc.edu/Sep-29-
1996/ ALPHA/wine/ Wine.FAQ (retrieved Oct. 28, 2005).
Supplemental European Search Report, Nov. 14, 2005 (2 pages).

Communication from the European Patent Office, Feb. 14, 2006 (6
pages).

* cited by examiner

U.S. Patent Nov. 16, 2010 Sheet 1 of 7 US 7.836,454 B1

10

_ Plastic Enclosure
Personality: —

11

Application

Core Technology: Application Foundation

1 emmonrommen
Hardware Modules
13

FIG. 1

Micro-Kernel Operating System with External Device Drivers

= = P AT = AT

DRIVER| [DRIVER
17 L4188 |19 20 {421 |

Hardware Platform

FIG. 2

¢ Dld

US 7,836,454 B1

9¢

a{npowy Wapow

m S|NPON S|NPON pasdg Mo

3 sA9)] uonound aoeyiaju| 1asn pue

3 9 pedAa)] j0ssao0:doJoIp

7

: i H

= 02

)

T g
=

g <<

’ .“
M
WdN
] P

sseippy Ele@ lonuod

T4 ve

U.S. Patent

. ¥ "OId

ACOEQOV 0¢
ISINPON
|HE/NASH

8t

US 7,836,454 B1

8|NPON Wapo
suonedNuNWWo) .
pajelbiau) . paedg ybi4
vYai M
5¢ 10559901d0oIOIN

- 9|NpoN
- sAay| uoloun4
e, .
2 2 pedia) “
pe
u—._auzo oipny II
= oipny o R
N 0opIA «—1 (euondo)
= Buipnjoul . HSV14
2 SINPON L€ o
z elpawniniy
nno T | P
o L
N
ce N "

1€
ssaippy Eleg [0Auod

U.S. Patent

¢ DI

US 7,836,454 B1

€C
(7S) | Gurpoday Jou3
Areiqi H9 "% Buipuey Jou3
weishs Y S
09
- - ,
= — juswabeuepy AiowN
: NS/~ s
=
(7Q0)
= Areiqry
S aoinag anbedp
<
2
rd
(1Md) (1oV)
Aeiqi Aeiqr
gaM SJowwesbord soiydeso uonestddy

uonepuno4 uonesljddy

U.S. Patent

US 7,836,454 B1

Sheet S of 7

Nov. 16, 2010

U.S. Patent

9 "DId

uLoje)d preog alempieH

‘ 1 ¥4 | ¥ ~ ~ ..I_‘
JANQA JAING YOA aon '
O/l O/l

(15) €S Buiuoday Jou]
Aeign 9 Bunpuey Joug
waishs —
juawabeuepy Asowsiy

-

(Ygo)Aeiar] 05
aniaa(] anbedQ

(IMd) (ToV)
Areiqi Aeiqi
qap sJowwesbolid soiydess) uonesijddy

uoneolddy

NN

JUVMAYVYH
? 4S9

|

uonepuno
uonjedlddy

—
NOLLYOINddY

- Y

U.S. Patent Nov. 16, 2010 Sheet 6 of 7 US 7.836,454 B1

00 101 102
WEB GRAPHICS
LIBRARY APPLN LIBRARY

PRINTER AUDIO NETWORK EVENT
104 105 108 107

i
L]
L

REGISTRATION
OPAQUE DEVICE LIBRARY
108 ‘ |
109

FIG. 7

1

100 101 102 103
WEB GRAPHICS |
LIBRARY APPLN LIBRARY ODL

QUEUE AND
THREAD STRING

MGMT FUNCTIONS
112 113

MISC.
115 -
SYSTEM LIBRARY
0SS LAYER
(OS DEPENDENT) 110

| 121

NATIVE OS (OR DEVEL. 0S)

FIG. 8

120

U.S. Patent Nov. 16, 2010 Sheet 7 of 7 US 7,836,454 B1

200\(

: | g s | 3
LL) V) - - o
7 = LY o D
> < O - O
T s Q= o
72 3 Q-
201 205 202 203

FIG. 9

US 7,836,454 Bl

1

INFORMATION APPLIANCE
ARCHITECTURE

This 1s a continuation of application Ser. No. 08/743,803,
filed Nov. 5, 1996, now U.S. Pat. No. 5,889,990 now
allowed.—all of which are incorporated herein by reference.

LIMITED COPYRIGHT WAIVER

A portion of the disclosure of this patent document con-
tains material to which the claim of copyright protection 1s
made. The copyright owner has no objection to the facsimile
reproduction by any person of the patent document or the
patent disclosure, as 1t appears 1n the U.S. Patent and Trade-
mark Office file or records, but reserves all other rights what-
soever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an architecture for devel-
opment and implementation of easy-to-use, low cost appli-
ances, targeted at connecting average consumers to emerging
on-line information services and other information sources.

2. Description of Related Art

Using computers, individuals are able to access a tremen-
dous amount of information. With the emergence of informa-
tion sources accessible through the Internet, such as web sites
in the World Wide Web, and of local information sources,
such as CD-ROMS, which are capable of storing entire librar-
ies of information, more and more people are relying on their
personal computers as a technique for gathering information.
However, personal computers have been designed with gen-
eral purpose architectures. Therefore, they have a wide vari-
ety of resources available 1n the architecture, which may not
be necessary for a given application of the personal computer.
The general purpose nature of personal computers keeps the
cost of these systems high. Thus, iI an individual uses a
personal computer only for the purpose of gathering informa-
tion from a CD-ROM, without taking advantage of a wide
variety of other applications for which the personal computer
1s intended to work, then resources in the personal computer
will be wasted.

Thus, 1t 1s desirable to provide special purpose platiorms
for data processing applications, such as retrieving informa-
tion. However, the development of applications for special
purpose platforms 1s often an intensive design effort. On the
other hand, general purpose platiorms support mature devel-
opment tools to make application design elficient.

Thus, 1t 1s desirable to provide technology that enables the
development and implementation of function-specific soit-
ware applications that are matched to application optimized
hardware platforms.

SUMMARY OF INVENTION

According to the present mvention, a new class ol con-
sumer appliances for homes, schools, and offices 1s developed
which blend the intuitive ease of use, convenience and afford-
ability of consumer appliances with the power of computers
having special purpose hardware platforms, in order to make
clectronic information far more accessible to consumers.
Thus, the present invention can be characterized as an archi-
tecture for an information appliance adapted for a specific
application. The architecture supports a variety of appliance
personalities, relying on a single core technology. The core
technology 1s designed to enable development of the appli-

10

15

20

25

30

35

40

45

50

55

60

65

2

ance architecture software on a general purpose computer,
relying on the vast store of software development tools and
techniques available for general purpose platforms. A com-
pleted function-specific application matched to the applica-
tion optimized hardware platiform for the appliance 1s thereby
provided.

The present invention can also be characterized as an infor-
mation appliance which comprises an application optimized
hardware platform, including a processor, a display coupled
to the processor, an mput/output device coupled to an 1nfor-
mation source and to the processor, a user iput device, and
working memory coupled to the processor. Memory 1s
coupled to the processor and stores appliance operating sofit-
ware and application software. The appliance operating soft-
ware includes logic executed by the processor, which man-
ages mformation tlow from the information source through
the working memory to the display, and the application soft-
ware 1includes logic executed by the processor and responsive
to the user input to manage selection of information from the
information source. The information source comprises 1none
aspect Internet accessible information, the appliance operat-
ing software includes Internet access logic, and the applica-
tion software includes an Internet browser. In an alternative
embodiment, the information source comprises a mass stor-
age device, such as a CD-ROM. In this aspect, the application
solftware comprises a CD-ROM interactive program for
retrieving and presenting information on the display to the
user. In another embodiment, the information source com-
prises Internet accessible electronic mail, and the application
software 1ncludes electronic mail logic.

The display, according to the application optimized hard-
ware, includes one of a variety of monitor technologies, such
as standard television monitors (NTSC or PAL), liquid crystal
displays (LCDs), and bitmap monitor displays, such as VGA.

The appliance operating software includes an operating,
system kernel that 1s adapted for the processor and a system
library that includes logic providing an interface to the appli-
cation software. An operating system service layer provides
an application-to-platiorm abstraction function so that the
logic 1n the system library and above, such as 1n the applica-
tion 1tseld, 1s executable with both the operating system kernel
and a development platform operating system which 1s com-
pletely different from the operating system kernel of the
appliance. In this way, the application 1s developed using an
application foundation based on the system library, 1n a devel-
opment platform, and automatically transferred to an appli-
ance architecture with modification only 1n the operating
system service layer. The only change needed in the code for
it to run on a development platiform is 1n the appliance oper-
ating system service layer module. The operating system
service layer module for the appliance architecture 1s
replaced by a development platform operating system service
layer module so that any dissimilarities between the appli-
ance and the development platform are localized at a single
module in the code. Accordingly, an application development
platiorm 1s provided by which a variety of information appli-
ances can be designed on general purpose hardware and
implemented on application-specific hardware. This vastly
reduces the development time, and the hardware cost for
special purpose information appliances, such as web brows-
ers, CD-ROM library browsers, electronic mail appliances,
and the like.

In one embodiment, the present invention 1s characterized
as an information appliance which has an appliance hardware
architecture that includes at least one input/output device by
which information from an information source 1s provided to
the information appliance, a display, a processor, and

US 7,836,454 Bl

3

memory. An appliance operating system software 1s provided
according to the hardware architecture. An appliance pro-
gram 1ncludes logic responsive to user input which manages
retrieval of information from the information source and dis-
play of the retrieved information. A system library module 5
includes an application interface, memory management
resources, process control resources and input/output device
call resources. The memory management resources are acces-
sible by the application program through the application
interface, and provide management of the memory in the 10
hardware appliance. The memory management resources
include information caching logic for information retrieved
from the information source. The process control resources
are accessible by the application program through the appli-
cation interface and provide for control of processes used by 15
the application program through the appliance operating sys-
tem. The input/output call resources are also accessible by the
application program through the application interface and
provide for communication with input/output devices in the
hardware appliance architecture. A device driver library 1s 20
coupled with the system library module and provides device
independent interface logic to the application program which
makes iput/output calls. An appliance operating system ser-
vice module 1s coupled with the system library module and
provides an abstraction function between the system library 25
module and the appliance operating system on the appliance
hardware architecture, so that the application program, sys-
tem library module, and device driver library are operable on

a variety of operating systems. Thus, the code 1n the applica-
tion program that relies on these modules, runs on a develop- 30
ment platform 1n essentially the same way as 1t runs on the
appliance architecture.

The memory management resources, according to another
aspect of the present invention, are implemented at the system
library level, 1n order to take advantage of the nature of the 35
special purpose information appliance architecture. Thus, at
the system library level, a memory caching algorithm 1s
implemented with least recently used (LRU) memory that
allows for management of system memory in the special
purpose appliance architecture by software 1n the application 40
foundation. The caching at the application foundation level
takes advantage of the nature of the appliance as a source of
information. Because the information sets accessible at web
sites and through CD-ROMSs and other types of information
sources, are generally replaceable, LRU algorithms can be 45
used which discard incoming information to the appliance,
without complex management of such information in the
application layer code. Again, this greatly reduces the com-
plexity of the application development process, and opti-
mizes the utilization of the hardware resources 1n the appli- 50
ance architecture.

The present mvention can also be characterized as a
method for developing an application program for an infor-
mation appliance which manages retrieval of information
from an information source and display of the retrieved infor- 55
mation on the information appliance. The information appli-
ance has an application optimized appliance hardware archi-
tecture as described above. The method comprises the steps of
providing on a development workstation, a system library
module, a device driver library, and an operating system 60
service module of the format discussed above. The operating
system service module provides an abstraction function
between the system library module and higher layer modules
and the development workstation. Next, the method includes
developing the application program on the development 65
workstation, using the system library module and the device
driver library. Next, the method comprises replacing the oper-

4

ating system service module on the development workstation
with an appliance operating system service module, which
provides an abstraction function between the system library
and the appliance operating system on the appliance hard-
ware architecture. Finally, an executable version of the appli-
cation program 1s generated for the appliance operating sys-
tem on the appliance hardware architecture using the
appliance operating system service module.

Accordingly, the appliance architecture of the present
invention provides a complete solution to the problem of
development of special purpose, low-cost information appli-
ances encompassing hardware, system software, and appli-
cations. The technology enables the creation of a new gen-
cration of easy to use low cost appliances targeted at
connecting average consumers to emerging information ser-
VICES.

Other aspects and advantages of the present invention can
be seen upon review of the figures, the detailed description,
and the claims which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a conceptual diagram of the mformation appli-
ance architecture according to the present invention.

FIG. 2 15 a schematic diagram of an appliance board sup-
port package, including a client operating system kernel,
according to the present invention.

FIG. 3 1s an example of a hardware platform for an elec-
tronic mail appliance.

FIG. 4 1s an example of a hardware platform for an Internet
appliance.

FIG. 5 15 a simplified diagram of application foundation
soltware for use with the board support package of FIG. 2.

FIG. 6 1s a simplified diagram of a complete information
appliance architecture according to the present invention.

FIG. 7 1s a diagram of the opaque device library (ODL)
layer of the application foundation of the present invention.

FIG. 8 1s a simplified diagram of the system library layer of
the application foundation of the present invention.

FI1G. 9 1s a simplified memory organization diagram for the
memory management software according to the present
ivention.

DETAILED DESCRIPTION

A detailed description of embodiments of the present
invention 1s provided with respect to the figures.

FIG. 1 1illustrates the concept of a information appliance
architecture, according to the present invention. The architec-
ture provides function-specific software applications that are
matched to application-optimized hardware platiorms.
Rather than focusing on “general purpose”, each information
appliance 1s a single purpose computer-like appliance created
to deliver a specific application. Because the information
appliances are function-specific, each category of a device
requires a different combination of hardware and software
capabilities as illustrated 1n FI1G. 1. Thus, the personality of
the mformation appliance includes an enclosure, such as a
plastic ornamental design appliance enclosure 10, and an
application software module 11. The core technology of all
information appliances 1s based on an application foundation
12 and hardware modules 13, which are coupled with the
application foundation according to a specific hardware plat-
form.

For example, while one mformation appliance requires a
processor with a high MIPS (million instructions per second)
rating, an ISDN connection, and a television output, another

US 7,836,454 Bl

S

appliance requires less computational power, an LCD screen,
and a touchpad. Every appliance has the application founda-
tion 12, a central processor, and some amount of memory at
the core. However, each individual application varies in the
connectivity, output, and user interface appropriate for the
application.

In order to easily match different processors with different
memory arrangements, different connectivity and different
output options, a set of hardware modules 1s provided. Each
appliance 1s constructed using the hardware modules from the
basic design platform. The hardware components used in
cach design are provided by semiconductor manufacturers in
typical systems, to provide I/O devices, processors, memory,
and other glue logic necessary for the particular hardware
appliance architecture. Hardware logic interface modules are
based on a ‘busless’ design. Rather than create a bus archi-
tecture which adds complexity and cost, and inevitably
becomes a design bottleneck, low level logic designs are used
for mterfacing different combinations of microprocessors,
memory and 1I/0 devices.

Key to making the modules fit together are external device
drivers (EDD) which allow the hardware modules to be
directly interfaced with one another. The EDDs are controlled
and managed by the operating system, and interface with the
hardware to the application foundation software. The integra-
tion of the EDDs with an operating system forms a complete
board support package (BSP), as illustrated 1n FI1G. 2. Thus,
the BSP includes a hardware platform, and a microkernel
operating system with external device drivers, such as a tele-
vision driver 17, a liquid crystal display (LCD) driver 18, a
VGA graphics driver for a computer monitor 19, and generic
I/0 drivers 20 and 21, such as used for accessing the Internet,
CD-ROM drives, or other sources of information.

FIGS. 3 and 4 provide examples of hardware architectures
for information appliances according to the present invention.
In FIG. 3, an example platiorm for an electronic mail appli-
ance 1s shown. The platform implements a fully functional
email application on a low cost, small footprint device. It
incorporates a moderate performance processor, in the micro-
processor and user iterface module 20, coupled with a black
and white LCD display and display module 21. A keypad and
tfunction keys module 22 1s coupled with the microprocessor
20 to provide user mput. Control, address, and data lines 23
are coupled to a memory 24, such as SRAM or a flash
memory, a working memory 23, such as DRAM memory, and
an 110 module, such as a low speed modem module 26.

FIG. 4 provides an example Internet platform bwlt to
implement a fully functional web browser application on a
moderate cost, small footprint device. The platiorm provides
a high performance processor 1n a microprocessor with inte-
grated communications module 30. A NTSC television out-
put 1s generated 1n a multimedia module that includes video
and audio support hardware 31. Thus, the multimedia module
31 generates NTSC output on line 32 and audio output on line
33. A keypad and function key module 34 1s used to provide
user input. Also, an infrared remote control device adapter 35
allows user input across an IR handheld remote. An optional
high speed networking protocol module, such as an ISDN/
BRI module 36, may be included with the system. Control,
data, and address lines 37 are coupled to the multimedia
module 31 and the microprocessor 30. These provide connec-
tion to a high speed modem module 38, working memory 39,
optionally non-volatile memory 40, and high speed dynamic
random access memory (DRAM) 41, for use 1n the browsing,
application.

Additional platforms can be assembled readily using dif-
ferent combinations of hardware modules and processors.

il

10

15

20

25

30

35

40

45

50

55

60

65

6

The application foundation architecture, according to the
present invention, 1s completely hardware independent, so
any change to the hardware requires only simple changes to
the board support package that do not propagate up through
the application software.

FIG. 5 1llustrates the application foundation, the first plat-
form designed for the creation of information appliances. The
application foundation 1s small, 1n the neighborhood of 300K
bytes, and has been optimized to be both high performance
and robust enough to support any information appliance sofit-
ware application. Further, since each application will require
its own optimized hardware, the environment 1s portable, to
allow the developer to move from one platform to another.

The application foundation 1s primarily composed of the
opaque device library (ODL) 50, the application graphics
library (AGL) 51, the programmer’s web library (PWL) 52,
and the system library (SL) 53, and supported by an operating
system services layer that provides an application foundation
to platform abstraction function.

Opaque Device Library (ODL) 50

The opaque device library (ODL) 50 1s the interface used
for interacting with external device drivers. ODL 30 15 a
single ‘file-like’ interface which provides a powerful mecha-
nism for dealing with any communications, input or storage
device. All devices are accessed using the same interface and
therefore can be swapped without any need to alter the appli-
cation code, allowing ODL 50 programmers to substitute
devices scamlessly.

The preferred implementation of the ODL 50 supports the
following devices, with more used 1n alternative embodi-
ments:

Network connections (POTS, ISDN, TI, El1, Ethernet,

broadband, wireless)

Input devices (keyboard, mouse, IR remote control, touch-

screen)

Storage devices (CD-ROM, Hard Drive, Floppy Drive,
Flash memory devices, IrDA, PCMCIA)

Application Graphics Library (AGL) 51

The application graphics library (AGL) 51 1s the interface
used for drawing and displaying images. The AGL 51 1s
designed to support a variety of display devices including
VGA, LCD, TV (NTSC and PAL) and even aspects of other
display peripherals such as LCD touchscreens. The primary
components of the AGL are a 2D drawing package, an image
drawing package, support for GIF and JPEG 1mages (progres-
stve and non-progressive), plus windowing and cursor con-
trol.

AGL 51 can be configured to support any display type
when the application 1s linked. The link-time configuring of
AGL 51 exchanges information with the low level graphics
EDD for the display device selected. The EDD gives AGL 51
added mformation about the display environment, allowing
AGL 51 to optimize the output for the best possible appear-
ance. All enhancements delivered by AGL 51 appear without
changes to the application graphics or programmable 1nter-
faces. Only the screen size and font size need to be adjusted 1n
the application.

Programmer’s Web Library (PWL) 52

Almost every application developed can benefit from
access to World Wide Web content. The programmer’s web
library (PWL) 52 gives the application programmer a tool kat
for parsing URLs and making HT'TP requests. PWL 352 will
also parse HITML content and return the ‘marks’ back to the
application program. The application program 1s only respon-
sible for properly formatting and displaying the content.

US 7,836,454 Bl

7

Note, all HT'TP requests are made via ODL 50, so content can
be accessed whether 1t 1s stored locally ({or example on a
CD-ROM) or on remote server (via a network connection).

System Library (SL) 53

The System Library (SL) 53 provides the application pro-
gram with system infrastructure support. Two primary sup-
port functions provided by SL 53 are memory management
60 and error handling 61.

Memory Management 60: Typical appliances are required
to operate with tight memory since most devices will have
limited physical memory and no virtual paging. SL 53
handles memory fragmentation, removes items from memory
that are no longer needed, and enables the application to
recreate or reload segments.

The memory management component 60 of the application
foundation 1s constructed around 3 categories of memory:

System memory, which 1s for data which 1s permanent or
data that has a long lifetime.

Program memory, which can be categorized as relocatable
or non-relocatable and 1s data that may come and go as
the application executes.

LRU memory, which i1s data that can be recreated or
reloaded at any time.

By classitying memory according to these categories, dif-
terent algorithms can be applied to keep memory compact,
allowing for full optimization ol memory resources. (See
FIG. 9) All elements 1n the application environment (AGL,
PWL, ODL, etc.) utilize the memory management compo-
nent.

Error Handling 61: There are two basic error mechanisms
included in the development environment—user errors and
system exceptions.

User errors are handled by a ‘catch and throw” error mecha-
nism and allow the application to display an error message
using Unicode error messages.

System exceptions are unexpected program errors. Pro-
gram errors are specified using a number and can be displayed
using special error formatting routines. The error formatting
routines use a Unicode version of the error messages.

All error messages can be translated to any language, and
are loaded into the application at build time.

FIG. 6 provides a summary view of the complete informa-
tion appliance architecture including hardware, system soft-
ware, and applications. The reference numbers used 1n FIG. 6
are the same as those used in FIGS. 2 and 5. An information
appliance application 65 sits on top of the foundation to
provide a completed information appliance.

FIG. 7 provides a simplified diagram of the ODL 50 layer
of the present mvention. The ODL 1s coupled to the web
library 100, the application program 101 for this specific
appliance and the graphics library 102. The ODL 103
includes printer functions, 104 audio functions, 1035 network
functions, 106 event functions 107 and other device-type
modules to provide a unified interface to the application pro-
gram for the devices. Also the ODL 103 includes dynamic
registration Tunctions 108 so that the application layer 101 1s
provided an interface to any device, like a network interface,
a display, a sound chip, or a touch screen through a common
interface. The ODL 103 1s coupled as indicated at 109 to
operating system-specific functions 1n the operating system
service layer, as discussed below, and to the operating system,
as suits the particular function being executed. Also, 1t 1s
supported by the system library, shown in FIG. 8.

The event component 107, for example, includes an event
directory that includes an event data file. Blocking or non-
blocking functions are utilized for reading the event file. The

10

15

20

25

30

35

40

45

50

55

60

65

8

application layer 101 1s able to read the event data file, either
with a blocking or non-blocking function. If the application,
for example, has nothing to do except wait for an event, then
it will do a blocking read and wait for the event. Otherwise,
non-blocking reads can be utilized. The blocking read to the
event data file 1s based on an operating system service layer
queue function in order to save processing cycles and provide
eificient blocking functions.

The network component 106 1s based on a network direc-
tory which the application 1s capable of reading and writing
to. Through the network block 106, the application program 1s
provided an mterface to the actual I/O device driver at lower
layers of the design.

Similarly, the audio component 105 provides a unified
interface for the application program 101 for various types of
audio files, such as “wave files” and other standard files, such

as .aiff files and the like.

A printer component 104 and other files, such as scanners,
touch-screens, and the like, can be added to the ODL 103, as
suits the particular implementation of the invention. The ODL
103 provides a unmified set of functions by which the applica-
tion 101 1s capable of opening the file and performing read
and write operations to the devices on the appliance hardware
platform, while being 1solated from the actual device drivers
by means of the unified ODL layer 103. For the network
module 106, for example, ODL functions include a command
for opening a network connection, and providing a pipe from
the application to the network interface driver. For the audio

file 105, the ODL 103 includes functions which detect file
type for the audio data, and to play the file.

Thus, the ODL provides an interface for interacting with
I/O devices. The ODL 1s a single file-like interface which

provides a poweriul mechanism for dealing with devices. All
devices are accessed using the same paradigm and therefore,
can be swapped without application code requiring signifi-
cant change. For instance, a modem can exchanged with a
CD-ROM device and the application would not have to
change. Normally, this would require code being changed for
a protocol, like TCP/IP, to a series of system calls.

The standard interface to all these devices 1s file-like. There
1s directory hierarchy that represents all the available
resources to an application. At run time, an application can
traverse through the directory tree to see what resources 1t has
available to 1t. Using simple file open read, read/write, and
close calls, an application can accomplish all 1ts I/O require-
ments. The information that 1s written or read from the files 1s
device-type independent, in order to meet the requirements of
supporting a wide range of devices.

The ODL 1s also integrated with application’s graphics
library, to provide asynchronous image display, that 1s dis-
playing of an image while 1t’s being downloaded.

In one embodiment, the ODL system i1s based on a file
descriptor table that stores all file-specific data types and state
information. Read, write, open, close, and flush operations
are performed by file-type specific routines, for which there 1s
a function pointer to the file descriptor table. Events are
handled 1n an event table 1n the ODL, providing one file where
user events are found. In order to recerve user input, an appli-
cation must open the data file 1n the events directory and
perform read operations on that file. The data file 1s a read-
only file containing user events ranging irom input from an
inirared remote to a standard keyboard input. This file 1s
read-only because user events are strictly an mput to the
system.

US 7,836,454 Bl
9

To access the ODL, the application program uses functions
including, for example, the following;:

OPEN

Syntax: sword odlOpen(char * sourcePath, ub4 access);

Function: This function is used to open an odl file. A call to odlOpen will perform the
following operations:

1. Verify that the file trying to be opened 1s a valid resource.

2. Verity that the resource 1s available.

3. Get the next free entry into the odIFDT.

4, Call the corresponding open routine for the device.

5. Store device specific function pointers, device 1d, and status info in FDT.

Input: sourcePath - User supplied path to file to open.
ub2 - Access privileges to file such as read, write, read and write, etc.

Output: None

Return: A positive number will indicate successiul completion of the call and will be the
file descriptor for accessing the open file. A negative number will indicate an
error code.

CLOSE

Syntax: sword odlClose (uword 1d);

Function: This function 1s used to close an odl file. A call to od1Close will perform the
following operations:

1. Verify that the {d 1s valid.

2. Call the close function that is referenced 1n the FDT for this entry. The id
will be replaced with the id found in the main FDT for this instance of this
device.

3. Return the return code that was returned from call to device specific flush
operation.

Input: fd - File descriptor of file to be closed.

Output: None

Return: A 07 1s returned if successful. A negative error code 1s returned 1f not

successiul.

READ

Syntax: sword odlRead (uword 1d, void * buf, uword n, uword * flag);

Function: This function 1s used to read from an odl file. A call to odlRead will perform
the following operations:

1. Verify that the fd 1s valid.

Verify that the file 1s-readable.

Call the read function that is referenced in the FDT for this entry with the

buffer

and si1ze passed 1n by the calling procedure. The 1d will be replaced with the id

found in the main FDT for this instance of this device.

Input: fd - File descriptor of file to be read.
buf - User provided ptr to buifer for data to be transferred into.

n - Maximum number of bytes to be read.

flag- Set to null if caller function does not want this variable set to done when

operation 1s complete. Otherwise, points to valid uword indicating this
variable should be updated on job completion. Only supported by
certain file types.

Output: buf - Contains data read from file.

Return: Zero indicates that file i1s empty. A positive number represents number of bytes
put in buf. A negative number indicates an error and represents an odl error
code.

WRITE

Syntax: sward odlWrite (uword fd, const void * buf, uword n, uword * flag);

Function: Write to an odl file. A call to od1 Write will perform the following operations:

1. Verify that the fd 1s valid.

2. Verity that the file 1s writeable.

3. Call the write function that 1s referenced 1n the FDT for this entry with
the buffer and size passed in by the calling procedure. The 1d will be
replaced with the {d found in the main FDT for this instance of this
device.

4. Return the return code that was returned from call to device specific
write operation.

Input: fd - File descriptor of file to be written.
buf - User provided ptr to buffer of data to be written to file.

n - Number of bytes to be written to file.

flag - Set to null 1f caller function does not want this var set to done when

operation 1s complete. Otherwise, points to valid uword indicating this
var should be updated on job completion. Only supported by certain file
types

Output: None

Return: A positive number indicates number of bytes written to file. Negative numbers

indicate an error and represent an odl error code.

US 7,836,454 Bl

11

12

-continued
WAIT
Syntax: sword odlWait (uword 1d, const void * buf, uword n, uword timeOut);
Function: Wait for an IO access. This function provides a means for the calling process
to block on I/O read operations. A call to odIWait will perform the following
operations:

1. Verify that the fd 1s valid.

2. Verity that the file i1s readable.

3. Call the Wait function that is reference 1n the FDT for this entry.

The 1d will be replaced with the {d found in the main FDT {for this
instance of this device.

4. Return the return code that was returned from the call to device
specific wait operation.

Input: fd - File descriptor of file to be read.
buf - User provided ptr to buffer for data to be transferred into.
n - Maximum number of bytes to be read.
timeOut - Time out value specified 1n milliseconds. If set to O indicates to

block until read i1s complete.

Output: Buf - Contains read data unless function timed out.

Return: Positive number indicates data read in bytes. Zero indicates function timed-out.
Negative number indicates error.

FLUSH

Syntax: sword odlFlush (uword 1d);

Function: This function flushes any buffered input or output. A call to odlFlush will
perform the following operations:

1. Verify that the fd 1s valid.

2. Call the flush function that 1s referenced in the FDT for this entry with
the buffer and size passed 1n by the calling procedure. The 1d will be
replaced with the fd found in the main FDT for this instance of this
device.

3. Return the return code that was returned from call to device specific
flush operation.

Input: fd - File descriptor to be flushed.

Output: None

Return: Z.ero on success or a negative error code 1f unsuccessful.
INIT

Syntax: sword odlInit(void);

Function: Used to initialize library before applications start making calls to the odl.
Input: None

Output: None

Return: Zero on success or a negative error code 1f unsuccessiul.
SHUTDOWN

Syntax: sword oldShutdown(void);

Function: Used to clean up resources created 1 odlInit.

Input: None

Output: None

Return: Zero success or a negative error code 1f unsuccessiul.

FIG. 8 provides a simplified diagram of the system library
110, according to the present invention. System library 110 1s
used in conjunction with the web library 100, the application
101, the graphics library 102, and the ODL 103. The system
library 110 includes memory management functions 111,
queue and thread management functions 112, string functions
113, and error handling processes 114. Also, miscellaneous
items 115 are included 1n the system library 110. System
library 110 1s coupled with a native operating system 120 and
an operating system support layer 121. The native operating
system 120 may be replaced by a development operating
system, as mentioned above, for use during application devel-
opment on a general purpose workstation. The native operat-
ing system consists of a standard kernel system, like pSOS, or

alternatively a special purpose kernel for the hardware plat-
form being utilized. A development operating system can be
any one of a variety of systems, including UNIX-type sys-
tems, and windows-type systems.

The OSS layer 121 provides an abstraction function for
taking care of the operating system dependent operations for
the system library layer and layers above the operating system

45

50

55

60

65

120. The OSS layer 121 includes 1tems like data-type speci-
fications, network port functions, flash memory code, domain
name server (DNS) functions, and the like.

The system library 110 1s static from platform to platform.
It provides threading functions, such as functions used to
create and delete threads. It provides registration functions
that allow the higher layer modules, such as the AGL 51, to
register with system library 110 and keep pointers to regis-

tered applications.

The memory management function 111 provides for man-
agement ol the flow of data from the information source to the
application program. It includes caching functions and the
like, as mentioned above. The queue and threading manage-
ment functions 112 provide for registration of applications
with the threads, context registry, and a notification function.
The error handling functions 114 provide for exception han-
dling in a manner similar to the C++ exception handling
processes known 1n the art. Thus, catch and throw error han-
dling routines set up a try region and a catch region 1n
memory.

US 7,836,454 Bl

13

The string functions 113 are set up to handle classic string,
processes for development of computer programs. Other mis-
cellaneous functions are handled 1n the system library 110,
which are necessary to support a robust application founda-
tion.

As mentioned above, the system library includes memory
management functions. By consolidating memory manage-
ment functions at the system library level, development of
applications for special purpose platiorms 1s greatly facili-
tated. Furthermore, to manage small memory resources,
which the typical information appliance manages, an efficient
and unified memory management function 1s required.

The OSS layer 121 provides an abstraction function
between the system library, in the higher level modules, such
as the web library 100, application 101, graphics library 102,
and ODL 103, and the native operating system and platiorm
of the appliance. The abstraction layer localizes the operating
system and platform dependent parameters and functions 1n
the code, 1 order to move the application foundation from a
development platform, such as a high end workstation run-
ning a robust full-function operating system, to the applica-
tion-specific platiorm of the appliance. The only changes that
need to be made occur 1n the OSS layer 121.

An example OSS layer for a general purpose operating
system may be a LINUX UNIX. Other high function, general
purpose systems may be used, like Sun Solaris, UNIX, or
Windows NT. As can be seen, the system library, web library,
application, graphics library, opaque device library, and other
modules developed on the application foundation, can be
moved from a development platform to an application opti-
mized platform without modification, because of the abstrac-
tion function provided by the OSS layer.

FI1G. 9 illustrates a memory map for a section of memory
200, which 1s under the control of the memory management
tfunction. The memory 200 includes a system heap 201, a
program heap 203, and a least recently used (LRU) heap 202.
System heap 201 1s used for memory allocated once and
which must remain 1n existence for long periods of time.
Memory from system heap 201 1s considered permanent and
used for data to be freed under very rare circumstances. Allo-
cation of system heap memory 1s fast and efficient 1n packing
memory. To free or reallocate memory 1n system heap 201 1s
expensive and fragmentation may occur quickly 1if the
memory 1s often reallocated. The system heap 201 takes

SysAlloc

10

15

20

25

30

35

40

Syntax:
Function:

Input:
Output:

Return:
Syskree

14

priority over program heap 203 and LRU heap 202 and if
required, will grow by taking memory from the LRU heap
202 and program heap 203. Program heap 203 1s used for
memory needed for relatively short periods of time, which
may be reallocated and freed on a regular basis. Allocation of
memory in program heap 203 1s more expensive than in
system heap 201 and allocations will occupy more space for
bookkeeping purposes. Allocations to program heap 203 are

required to be moveable, and are based on a handled memory
technique. During the allocation and reallocation process,
only handles are returned and used by the application for
accessing the allocated memory. All accesses to the memory
are made via the handle, since the allocation can be relocated
at any time. Freeing memory and reallocating memory in this
space are not a problem and fragmentation 1s minimized.
Program heap 203 takes priority over LRU 202 heap, and will
grow by taking memory from LRU heap 202.

LRU heap 202 1s used for data which can be lost by the
application program without catastrophic results. Thus,
memory retrieved from the web or other information source,
which can be retrieved again, 1s suitable for use in LRU heap
202. In other words, things allocated to LRU heap 202 are
expendable and may be freed by the system at any time
independent of the application. Accesses to the memory
within LRU heap 202 are performed via a handle. The handle
contains the current address of the storage after the memory
has been pined. If allocation 1s pinned, then 1t 1s guaranteed
that the memory will not be freed or reallocated. Memory 1s
recycled based on a LRU basis for each priority of memory.
For instance, the oldest memory allocated with a priority low
1s generally freed before any memory allocated at priority
medium.

In the preferred embodiment, LRU heap 202 includes a
segment for small data elements, such as text, and a segment
for large data element, such as graphics pages from world
wide websites. These portions of the LRU heap 202 are sepa-
rated from a boundary 205. Boundary 2035 has a fixed position
relative to the width of LRU heap 202 1n one embodiment. In
an alternative embodiment, boundary 205 1s dynamically
altered depending on the dynamics of the traific using LRU

heap 202.

To use the memory manager 1in the system library, the
application calls functions include the following;

void * dslmemSysAlloc (ub4 size, ub4 flags, char *comment);

Allocate “permanent” memory from the System Heap. This will keep critical
memory sections separate from the application space.

size - size of allocation

flags - SLMEMCLR if memory should be cleared

comment - up to 8 chars, describing allocation (null term)

None

Pointer to memory allocated, null if out of memory.

Syntax:
Name:

Function:

Input:

Output:
Return:
PgmAlloc
Syntax:
Name:

sword slmemSysFree (void *mem,char *comment);
MEM System Heap Free

Free memory allocated by memSysAlloc. After this operation, *mem is no
longer accessible.
mem - pointer to the memory allocate

comment - should be same when allocated, can be null
None
O 1if no error, error code otherwise

simemPgmAlloc(ub4 size, ub4 flags, char *comment);
MEM Program Handled Allocate

US 7,836,454 Bl

15

-continued

Function: Allocate memory from the Program Heap, memory must be accessed via the
returned handle.

Input: size- of allocation
flags - see above
comment - up to 8 chars, describing allocation (null term)

Output: None

Return: Handle to memory allocated, null if out of memory.

PgmRealloc

Syntax: simemHandle silmemPgmRealloc(ub4 size, slmemHandle *h, char
*comment);

Name: MEM Program Handle’ed Reallocate

Function: Reallocate space that was previously allocated using PgrmAlloc. If size 1s O,
memory 1s freed. If size 1s larger than previously, the, contents are copied to
the new allocation with the added area nulled out. If the size 1s smaller, then
the contents are copied and truncated.

Input: size - new si1ze of allocation
h - handle to the current allocation
comment - should be same when allocated, can be null

Output: None

Return: Handle to memory allocated, null if out of memory

INOTE: If out of memory condition occurs, then the old memory location is still valid
with memory contents intact.]

Pgmklree

Syntax: sword slmemPgmPFree(slmemHandle *h, char *comment);

Name: MEM Program Handle’ed Free

Function: Free memory allocated by slmemPgmAlloc. After the free, **handle 1s no
longer accessible. The handle 1s also freed by this operation so no explicit free
is required on the handle and the handle can no longer be used.

Input: h - handle of the pointer to the memory allocated
comment - should be same when allocated, can be null

Output: None

Return: None

LruAlloc

Syntax: simemLruAlloc(ub4 size, slLruPriority priority, ub4 flags, char *comment);

Name: MEM LRU Heap Allocate

Function: Allocate memory from the LRU heap. Note, memory must be relocatable (i.e.
no pointers referencing the contents or self-referential pointers) and must be
free-able by the system when not pinned. The returned handle is for memory
already pinned and accessible.

Input: size - size of allocation
priority - one of slLruPriority
flags -
comment - up to 8 chars, describing allocation (null term)

Output: None

Return: Handle to pimned memory, null 1f out of memory.

LruPin

Syntax: sword slmemLruPin({ slmemHandle h);

Name: MEM LRU Pin 1n a memory allocation

Function: Pins memory previously allocated and if successful returns a valid pointer to
the memory in the handle. This operation can be performed more than once
without a LruRelease occurring and no harm 1s done.

Input:. valid pointer to a handle returned by LruAlloc

Output: None

Return: O 1f successtul, error 1f not

LruRelease

Syntax: sword slmemlLruRelease(slmemHandle *h);

Name: MEM LRU Release a memory allocation

Function: Unpins memory previously allocated by LruAlloc and if successful nulls out
the memory pointer within the handle. This operation can be performed more
than once without a LruPin occurring and no harm is done.

Input: handle - a valid pointer to a handle returned by LruAlloc

Output: None

Return: O 1f successtul, error if not

Lrukree

Syntax: sword slmemLruFree(slmemHandle *h, char *comment);

Name: MEM LRU Free

Function: Free memory and handle allocated by simemLruAlloc. After freeing, handle
pointer 1s no longer valid as well as the memory pointed to by the handle. The
handle may be pmned or unpinned.

Input: h- a valid pointer to handle returned by LruAlloc
comment - should be same when allocated, can be null

Output: None

Return:

O 1f successtul, error if not

16

US 7,836,454 Bl

17

-continued

Init

18

Syntax: sword slmemlInit(size_ t memAvail, ub4 handles, ub4 flags);

Name: MEM Initialize

Function: Initialize the memory manager. Must be called before any mem functions are
called.

Input: memAvail - 1f O use oss call to find amount of memory on device, otherwise

memAvail 1s number of K bytes available for use by mem.

Output: None

Return: 1 - fatal initialization error,
0 - otherwise

HeapDump

Syntax: vold slmemHeapDump(sword heap, sword level);

Name: MEM Dump Heaps

Function: Dumps information about heaps to stdout. This routine should be callable
from the debugger so don’t add any arguments that are hard to specify.

Input: heap - which heap to dump
level - level to dump (0 = minimal, 99 = all)

Output: None

Return: None

Thus, 1n the memory management module of the SL, the
memory allocated to the system 1s divided up into three heaps.
A heap 1s essentially a section of memory which 1s subdivided
into smaller allocation units which can be allocated and deal-
located in any order. The small allocation units are called
pages. The size of apage1s dependent on the operating system
and the underlying hardware and 1s defined by constant OSS-
MEMPAGSZ. In one particular example, OSSMEMPAGSZ
1s set to 4K (4096) bytes. The heaps are typically imple-
mented as a doubly-linked list of page records with additional
information in each page record indicating how much of the
page 1s allocated and an allocation list for the Memory con-
tained within the page. In addition, there are various pointers
that are used for traversing the list. The three heaps used are
the SYS heap, imtially set to 300 pages, the PGM heap,
mnitially setto 500 pages and the LRU heap, initially set to 300
pages. The LRU heap 1s treated by the system as two separate
heaps: the small LRU heap and the large LRU heap. Alloca-
tions of memory chunks exceeding one page size, in this case,
exceeding 4K, are done from the large LRU heap. Allocations
of memory sections smaller than or equal to 4K are satisfied
out of the small LRU heap. The two subheaps then grow
towards each other until the LRU heap 1s exhausted.

The SL. commands include extended service routines for
memory management. Using SL calls, pages can be allocated,
freed, or reallocated within any heap. Each heap has 1ts own
specific SL routines for allocating and freeing pages. The SL
page allocation routines return a handle to the calling pro-
gram which can be used to address that particular page.

System routines and application programs allocate
memory 1n a heap by calling the SL allocation routine for that
heap. For example, 1n the SYS heap, memory allocation 1s
handled by a routine called SYSALLOC. The calling pro-
gram provides SYSALLOC with the size of the memory
segment required and control flags. SYSALLOC deals with
allocating new pages, or using existing pages when appropri-
ate, and returns the address of a data structure located 1n the
requested heap and having the amount of storage requested by
the calling program. Note that the calling program 1s not
directly involved with managing pages. Other heaps have
similar routines for performing the same function. Additional
SL routines deal with scanning each heap for unused sections
of memory and performing garbage collection when neces-
sary to consolidate unused memory sections into larger sec-
tions, concatenating used memory sections, when possible,
and maintaining the data structure that indicate which section
of each page 1s 1n use.

25

30

35

40

45

50

55

60

65

The system 1s designed to work 1n both single and multi-
tasking environments. When working 1n a multi-tasking envi-
ronment, the memory routines lock the global context which
prevents other threads requesting memory allocation or deal-
location services while a request 1s being processed. Once the
memory operation 1s completed, the global context 1s

unlocked.

The application kernel also provides various SL routines
for scanning and validating the allocations to guard against
accidental corruption of the information stored in the various
memory locations addressed by the handles used by the appli-
cation program.

Each heap also has a SL reallocation routine that resizes an
existing allocation by either reducing or increasing the size of
the memory segment associated with the allocation. Reallo-
cation may be used to accommodate a smaller amount of
storage by freeing unused memory, or more challengingly, to
increase the size of an existing allocation. The reallocation
routines can allocate additional memory on the same page as
the existing allocation. IT sufficient free memory 1s not avail-
able on the current page, additional pages may be allocated to
accommodate the request for additional memory for a par-
ticular allocation. This allows the size of individual allocation
to be dynamically adjusted as the application program
requires without having to delete the contents, allocating a
new memory section and copying the values from the old
section to the new section.

The SL routines that provide page operations also provide
the ability to dynamically resize the heaps when the number
ol free pages in that heap falls below a threshold. This 1s called
“Stealing Pages™. The page stealing or dynamic reallocation
basically involves adjusting the starting point ot a heap that 1s
running low on free pages such that a certain number of free
pages from the end of one heap 1s transterred to the beginning
of the next. For example, when the SYS heap 1s running low,
pages can be stolen from the LRU heap. The routine that
performs this operation 1s PAGESTEAL and 1t performs the
appropriate checks to make sure that the pages that are being
stolen are not already 1n use and to make all the appropnate
adjustments to pointers such that the memory handles used by
the application programs will continue to point to the correct
data 1n the appropriate place in memory. Likewise, the PGM
heap can steal pages from the large LRU using the same
procedure and making the appropriate adjustments. The page
stealing operation for the PGM heap 1s also done by the above
mentioned routine.

US 7,836,454 Bl

19

In summary, the information appliance architecture of the
present ivention 1s based on a function-specific hardware
platform on which 1t 1s coupled with an application founda-
tion software and an information appliance application. The
present invention provides an application foundation which 1s
the first platform designed from the beginning for the creation
of information appliances. The primary purpose of the appli-
cation foundation 1s to provide an easy to use and portable
environment for information appliance application develop-
ment and deployment. The present mnvention enables a new
class of consumer appliances for home, schools, and offices
that provide access to mnformation sources 1n low cost, small
footprint, highly reliable appliances. The appliances blend
intuitive ease of use, convenience and affordability of con-
sumer appliances, with the power ol computers, to make
clectronic information far more accessible.

The foregoing description of a preferred embodiment of
the invention has been presented for purposes of 1llustration
and description. It 1s not intended to be exhaustive or to limait
the invention to the precise forms disclosed. Obviously, many
modifications and variations will be apparent to practitioners
skilled 1n this art. It 1s imntended that the scope of the invention
be defined by the following claims and their equivalents.

What 1s claimed 1s:

1. An information appliance, comprising:

a Processor;

working memory coupled to the processor; and

non-volatile memory coupled to the processor and storing

appliance operating soitware and application software,
wherein the appliance operating soitware includes logic
executed by the processor to manage mformation tlow
from an information source through the working
memory to a display, and the application software
includes logic executed by the processor that manages
selection of information from the information source:
wherein the appliance operating software further com-
Prises:
an operating system kernel that 1s adapted for the pro-
cessor; and
a system library including logic that provides an inter-
face to the application software and implements
memory management functions, wherein an operat-
ing system service layer provides an abstraction func-
tion between the system library and the appliance
operating system kernel and hardware.

2. The information appliance of claim 1, wherein the logic
in the system library 1s executable with a development plat-
form operating system that 1s separate from the operating
system of the appliance.

3. The information appliance of claim 1, wherein the sys-
tem library provides error handling functionality.

4. The information appliance of claim 3, wherein the error
handling functionality comprises classilying errors as user
errors or system exceptions.

5. The information appliance of claim 1, wherein the
memory management functions comprise classilying a por-
tion of the working memory according to a system memory
category, a program memory category, or at least recently
used memory category.

6. The information appliance of claim 1, wherein the sys-
tem library provides threading functions.

7. The information appliance of claim 1, wherein the sys-
tem library provides registration functions.

8. The information appliance of claim 1, wherein the
memory management functions manage flow of data from the
information source.

9. The mnformation appliance of claim 1, wherein the
memory management functions include data caching func-

tions.

10

15

20

25

30

35

40

45

50

55

60

65

20

10. The information appliance of claim 1, wherein the
information source comprises Internet accessible 1nforma-
tion, and wherein the appliance operating software includes
Internet access logic, and the application software includes an
Internet browser.

11. The information appliance of claim 1, wherein the
information source comprises a mass storage device.

12. The information appliance of claim 1, wherein the
information source comprises Internet accessible electronic
mail, and wherein the application software includes elec-
tronic mail logic.

13. The mnformation appliance of claim 1, wherein the
information appliance 1s a single purpose computer-like
application for delivering a specific application.

14. The mformation appliance of claim 1, wherein the

working memory comprises a system heap, a program heap,
and at least recently used heap.

15. An information appliance, comprising:

a Processor;
working memory coupled to the processor; and

non-volatile memory coupled to the processor and storing
appliance operating software and application software,
wherein the appliance operating soitware includes logic
executed by the processor to manage an information
flow from an information source through the informa-
tion appliance, and further wherein the application soft-
ware includes logic executed by the processor that man-
ages selection of information from the information
source, wherein the appliance operating software further
COMPrises:
an operating system kernel that 1s adapted for the pro-

cessor; and

a system library including logic that provides an inter-
face to the application software, wherein an operating,
system service layer provides an abstraction function
between the system library and the operating system
kernel.

16. An information appliance, comprising:

a Processor;
working memory coupled to the processor; and

non-volatile memory coupled to the processor and storing
appliance operating software and application software,
wherein the appliance operating soitware includes logic
executed by the processor to manage an information
flow from an information source through the informa-
tion appliance, and the application software includes
logic executed by the processor that manages selection
of information from the information source, wherein the
appliance operating software further comprises:

an operating system kernel that 1s adapted for the pro-
cessor; and

a system library including logic that provides an inter-
face to the application software and implements
memory management functions, wherein the logic 1n
the system library 1s executable with a development
platform operating system that i1s separate from the
operating system kernel.

17. The information appliance of claim 16, wherein the
memory management functions comprise classiiying a por-
tion of the working memory according to a system memory
category, a program memory category, or at least recently
used memory category.

18. The information appliance of claim 16, wherein the
memory management functions manage flow of data from the
information source.

	Front Page
	Drawings
	Specification
	Claims

