12 United States Patent

Ban et al.

US007836282B2

US 7,836,282 B2
Nov. 16, 2010

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND APPARATUS FOR
PERFORMING OUT OF ORDER
INSTRUCTION FOLDING AND
RETIREMENT

(75) Inventors: Oliver Keren Ban, Austin, TX (US);
Neo Hock Keng, Singapore (SG); Wo
Heem Tan, Singapore (SG)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 455 days.

(21) Appl. No.: 11/961,091

(22) Filed: Dec. 20, 2007

(65) Prior Publication Data
US 2009/0164757 Al Jun. 25, 2009

(51) Int.Cl.
GOGF 7/38)
GOGF 9/00 (2006.01)
GOGF 9/44 (2006.01)
GOGF 15/00 (2006.01)

(52) US.Cl s 712/226

(58) Field of Classification Search 712/226
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
5,163,139 A

(2006.01

11/1992 Haigh et al.

INSTRUCTION
QUEUE

000

INSTRUCTION 3
INSTRUCTION 1
INSTRUCTION 6
INSTRUCTION 2

INSTRUCTION 7
INSTRUCTION 4 : STORE 5

'Y
(Y

5,878,242 A 3/1999 Olson et al.
6,026,485 A 2/2000 O’Connor et al.
6,125,439 A 9/2000 Tremblay et al.
6,237,086 Bl 5/2001 Kappala et al.
6,301,651 Bl 10/2001 Chang et al.
6,775,765 Bl 8/2004 Lee et al.
6,832,307 B2 12/2004 Richardson
OTHER PUBLICATIONS

Shen et al.; Modern Processor Design: Fundamentals of Superscalar
Processors; Beta Edition; 2003; pp. 173-179.*

McGhan et al., “PicoJava: A Direct Execution Engine for Java
Bytecode™, IEEE Computer, Oct. 1998, pp. 22-30.

* cited by examiner

Primary Examiner—Eddie P Chan

Assistant Examiner—Corey Faherty

(74) Attorney, Agent, or Firm—Yee & Associates, P.C.;
Steven L. Bennett

(57) ABSTRACT

The 1llustrative embodiments described herein provide a
computer implemented method, apparatus, and computer
program product for increasing a number of 1nstructions per
clock cycle associated with a processor. The illustrative
embodiments fold a plurality of non-sequential instructions
within the set of sequential order instructions to form a folded
instruction. The folded instruction 1s executed to form an
executed 1nstruction. The executed instruction 1s placed 1n a
reorder buffer. The 1nstructions within the reorder builer are
written to a register based on the sequential order of execution
within the set of sequential order mstructions.

17 Claims, 4 Drawing Sheets

REGISTER
FILE SEQUENCE

002

INSTRUCTION 1

INSTRUCTION 2

INSTRUCTION 3
INSTRUCTION 4 : STORE 5

INSTRUCTION 6
INSTRUCTION 7

U.S. Patent Nov. 16, 2010 Sheet 1 of 4 US 7,836,282 B2

104 106 108

PERSISTENT
PROCESSOR UNIT MEMORY STORAGE
:‘t 102 jt 1:

COMMUNICATIONS INPUT/QUTPUT
UNIT UNIT DISPLAY

110 112 114

FIG. 1

COMPUTER
READABLE

—————————

120

U.S. Patent Nov. 16, 2010 Sheet 2 of 4 US 7,836,282 B2

200
l PROCESSOR
—
INSTRUCTION 202
/
MULTIPLEXER r BRANCH PROCESSING UNIT
206 204 238
|
INSTRUCTION b~ 222
CLOCK »| REGISTER FILES RESERVATION
STATION
220 224
INSTRUCTION -OAD QUEUE
DISPATCH UNIT LOAD/STORE UNIT INTERNAL BUS
240 208 LOAD
BUFFER [216
FOLDED STORE EXECUTION
INSTRUCTION BUFFER [218 UNIT
210
214 226
_ ADDRESS _
TRANSLATION UNIT
CACHE
TRANGLATION REORDER
LOOKASIDE 232
2127 BUFFER
L L 1 —
228
LEVEL TWO COMPLETION
| INSTRUCTION UNIT
234 CACHE ENTRY

FIG. 2

U.S. Patent Nov. 16, 2010 Sheet 3 of 4 US 7,836,282 B2

302	304	306	308	310
INSTRUCTION	INSTRUCTION		MEMORY	WRITE
EXECUTION				
FETCH	DECODE		ACCESS	BACK
STAGE	STAGE	°WACE	‘s1aGE	STAGE
staGE1	stace2 ! sTAGE3 ! sTacE4	sTAGES		
300 FIG. 3
PIPELINE
INSTRUCTION INSTRUCTION
STREAM QUEUE
403‘ ’4/02
INSTRUCTION 1 INSTRUCTION 3
INSTRUCTION 2 - ‘ INSTRUCTION 1
INSTRUCTION 3 . INSTRUCTION 6
INSTRUCTION 4 INSTRUCTION 2
STORE 5 >
INSTRUCTION 6 ’ INSTRUCTION 7
INSTRUCTION 7 INSTRUCTION 4 FIG 4
INSTRUCTION REGISTER
QUEUE FILE SEQUENCE
500 502
INSTRUCTION 3 INSTRUCTION 1
INSTRUCTION 1 . INSTRUCTION 2
INSTRUCTION 6 » l' INSTRUCTION 3
INSTRUCTION 2 . INSTRUCTION 4 : STORE 5
INSTRUCTION 7 ' ‘ INSTRUCTION 6
INSTRUCTION 4 : STORE 5 INSTRUCTION 7 FIG. 5

U.S. Patent

Nov. 16, 2010 Sheet 4 of 4

600

602

604

006

608

610

612

614

616

618

DECODE A SET OF INSTRUCTIONS

TAG EACH DECODED
INSTRUCTION WITH AN IDENTIFIER

DETERMINE DATA

DEPENDENCIES BETWEEN
THE DECODED INSTRUCTIONS

SEPARATE STORE INSTRUCTIONS
FROM NON-STORE INSTRUCTIONS

FOLD INSTRUCTIONS BASED

ON DATA DEPENDENCIES TO
FORM FOLDED INSTRUCTIONS

DETERMINE SEQUENCE
FOR DISPATCHING

PLACE INSTRUCTION SEQUENCE
IN AN INSTRUCTION QUEUE

EXECUTE INSTRUCTIONS IN
THE INSTRUCTION QUEUE

PLACE EXECUTED INSTRUCTIONS
IN REORDER BUFFER

RETIRE EXECUTED INSTRUCTIONS
IN ORIGINAL SEQUENTIAL ORDER

US 7,836,282 B2

US 7,836,282 B2

1

METHOD AND APPARATUS FOR
PERFORMING OUT OF ORDER
INSTRUCTION FOLDING AND
RETIREMENT

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to the data process-
ing field. Still more particularly, the present invention relates
to a computer implemented method, apparatus, and computer
program product for performing out of order instruction fold-
ing and out of order instruction retirement.

2. Description of the Related Art

A processor’s performance 1s measured by the number of
instructions performed per clock cycle (IPC). An 1nstruction
1s an order given to a computer processor by a computer
program. At the lowest level, each instruction 1s a sequence of
Os and 1s that describes a physical operation the computer 1s
to perform, such as “Add”. In addition, the instruction may
specily the storage areas called registers that may contain data
used 1n carrying out the instruction, or the location 1n com-
puter memory of data. The clock cycle 1s the time between
two adjacent pulses of the oscillator that sets the tempo of the
computer processor. The number of pulses per second 1is
known as the clock speed, which 1s generally measured in
MHz (megahertz, or millions of pulses per second) and 1n
GHz (g1gahertz, or billions of pulses per second).

Pipelining 1s an implementation technique for increasing,
the number of instructions performed per cycle. Pipeliming
can be thought of as an assembly line for computer mnstruc-
tions. The pipeline 1s divided into segments called stages,
whereby multiple 1instructions are overlapped 1n execution. A
typical pipeline consists of five stages: an instruction fetch
stage, an instruction decode stage, an execution stage, a
memory access stage, and a write back stage.

In the case of a simple processor architecture, such as a
scalar processor, one istruction per clock cycle 1s executed.
In other words, only one instruction at a time can enter the
pipeline. The instructions inside the pipeline move to the next
stage alter the slowest instruction completes its stage. The
optimal performance increase for a pipelined instruction set
over an unpipelined 1nstruction set would be equal to a mul-
tiplicity factor of the number of stages employed 1n the pipe-
line. However, most mstruction sets have data dependencies
that do not allow for full pipelining. Therefore, the optimal
performance of the pipelined nstruction set 1s generally not
achieved. In addition, other factors limit the performance
increase associated with the pipeline, such as, limitations
arising irom pipeline latency, an imbalance among the pipe
stages, pipeline hazards, and pipelimng overhead.

Another method of increasing the number of instructions
performed per clock cycle 1s to fold mstructions. Instruction
folding occurs when two more 1nstructions are executed 1n the
same clock cycle. Instruction folding may be performed 1n a
superscalar processor having multiple versions of each func-
tional unit to enable execution of more than one 1nstruction in
parallel. However, instruction folding 1s costly because addi-
tional logic gates are required to implement data dependency
checks and time delays for depending instruction.

SUMMARY OF THE INVENTION

The illustrative embodiments provide a computer 1mple-
mented method, apparatus, and computer program product
for increasing a number of mnstructions per clock cycle asso-
ciated with a processor. The 1llustrative embodiments fold a

10

15

20

25

30

35

40

45

50

55

60

65

2

plurality of non-sequential instructions within the set of
sequential order instructions to form a folded mnstruction. The
folded instruction 1s executed to form an executed instruction.
The executed instruction 1s placed in a reorder buffer. The
instructions within the reorder bulfer are written to a register
based on the sequential order of execution within the set of
sequential order 1nstructions.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth i the appended claims. The ivention itself,
however, as well as a preferred mode of use, further objectives
and advantages thereot, will best be understood by reference
to the following detailed description of an exemplary embodi-
ment when read 1n conjunction with the accompanying draw-
ings, wherein:

FIG. 1 1s a diagram of a data processing system in accor-
dance with an i1llustrative embodiment;

FIG. 2 1s a diagram of a processor 1n accordance with an
illustrative embodiment;

FIG. 3 1s a diagram of a pipeline process for executing
instructions 1n accordance with an i1llustrative embodiment:

FIG. 4 1s a diagram of an out of order instruction queue for
dispatching instructions in accordance with an illustrative
embodiment;

FIG. 5 1s a diagram of an out of order instruction queue for
writing back instructions 1n accordance with an illustrative

embodiment; and

FIG. 6 1s a flowchart of a process for increasing the number
of instructions performed per clock cycle 1n accordance with
an 1llustrative embodiment.

DETAILED DESCRIPTION OF THE
EMBODIMENT

PR.

L1
=]

ERRED

FIG. 1 1s a diagram of a data processing system in accor-
dance with an illustrative embodiment of the present mven-
tion. In this illustrative example, data processing system 100
includes communications fabric 102, which provides com-
munications between processor unit 104, memory 106, per-
sistent storage 108, communications unit 110, input/output

(I/0) unit 112, and display 114.

Processor unit 104 serves to execute instructions for soft-
ware that may be loaded into memory 106. Processor unit 104
may be a set of one or more processors or may be a multi-
processor core, depending on the particular implementation.
Further, processor unit 104 may be implemented using one or
more heterogeneous processor systems in which a main pro-
cessor 1s present with secondary processors on a single chip.
As another 1llustrative example, processor unit 104 may be a
symmetric multi-processor system containing multiple pro-
cessors of the same type.

The illustrative embodiments may be implemented 1n a
processor, such as a processor in processor unit 104. The
processor may be, but 1s not limited to, a superscalar proces-
sor having multiple versions of each functional unit to enable
execution of many 1instructions in parallel. The illustrative
embodiments provide a method for increasing the number of
instructions per clock cycle associated with processor.

Currently, only sequential instructions are folded to avoid
data contlicts/hazards among the instructions within the
instruction set. An instruction may be folded with a following
sequential instruction 11 a determination 1s made that there 1s
no data hazard or other types of contlicts. If there 1s a contlict
between the instruction and the sequential instruction, then

US 7,836,282 B2

3

the 1nstruction 1s not folded with the sequential instruction
and 1s executed independently.

The illustrative embodiments recognize that a mechanism
for folding of non-sequential order instructions would
increase the number of instructions per clock cycle. In an
illustrative example, 1nstruction 1 and 1nstruction 2 may not
be folded due to conflicts, but because instruction 6 has no
conflicts with 1nstruction 1, the i1llustrative embodiments rec-
ognize that instruction 1 and instruction 6 may be folded and
executed in parallel. The results associated with executing the
instructions are placed 1n a reorder butler. The results within
the reorder butler are retired/written back to a register based
on the sequential order of execution within the original
instruction set.

In addition, the illustrative embodiments recognize that
store instructions do not require the use of an arithmetic logic
unit and logic/arithmetic instructions do not write back
results during the write back cycle of a pipelined process, as
will be further described below. Accordingly, 1n one illustra-
tive embodiment a computer implemented method 1s pro-
vided for folding a store instruction and a logic/arithmetic
instruction 1into one instruction for execution. Thus, the 1llus-
trative embodiment increases the number of instructions per-
tormed per clock cycle associated with process 104.

Memory 106, 1n these examples, may be, for example, a
random access memory or any other suitable volatile or non-
volatile storage device. Persistent storage 108 may take vari-
ous forms depending on the particular implementation. For
example, persistent storage 108 may contain one or more
components or devices. For example, persistent storage 108
may be a hard drive, a flash memory, a rewritable optical disk,
a rewritable magnetic tape, or some combination of the
above. The media used by persistent storage 108 also may be
removable. For example, aremovable hard drive may be used
for persistent storage 108.

Communications unit 110, in these examples, provides for
communications with other data processing systems or
devices. In these examples, communications unit 110 1s a
network interface card. Communications unit 110 may pro-
vide communications through the use of either or both physi-
cal and wireless communications links.

Input/output unit 112 allows for input and output of data
with other devices that may be connected to data processing
system 100. For example, input/output unit 112 may provide
a connection for user mput through a keyboard and mouse.
Further, input/output unit 112 may send output to a printer.
Display 114 provides a mechanism to display information to
a user.

Instructions for the operating system and applications or
programs are located on persistent storage 108. These instruc-
tions may be loaded mto memory 106 for execution by pro-
cessor unit 104. The processes of the different embodiments
may be performed by processor unit 104 using computer
implemented 1instructions, which may be located i a
memory, such as memory 106. These instructions are referred
to as program code, computer usable program code, or com-
puter readable program code that may be read and executed
by a processor in processor unit 104. The program code in the
different embodiments may be embodied on different physi-
cal or tangible computer readable media, such as memory 106
or persistent storage 108.

Program code 116 1s located 1n a functional form on com-
puter readable media 118 that 1s selectively removable and
may be loaded onto or transferred to data processing system
100 for execution by processor unit 104. Program code 116
and computer readable media 118 form computer program
product 120 1n these examples. In one example, computer

10

15

20

25

30

35

40

45

50

55

60

65

4

readable media 118 may be 1n a tangible form, such as, for
example, an optical or magnetic disc that 1s inserted or placed
into a drive or other device that 1s part of persistent storage
108 for transfer onto a storage device, such as a hard drive that
1s part of persistent storage 108. In a tangible form, computer
readable media 118 also may take the form of a persistent
storage, such as a hard drive, a thumb drive, or a flash memory
that 1s connected to data processing system 100. The tangible
form of computer readable media 118 1s also referred to as
computer recordable storage media. In some mstances, com-
puter readable media 118 may not be removable.

Alternatively, program code 116 may be transierred to data
processing system 100 from computer readable media 118
through a communications link to communications unit 110
and/or through a connection to mput/output umt 112. The
communications link and/or the connection may be physical
or wireless 1n the 1llustrative examples. The computer read-
able media also may take the form of non-tangible media,
such as communications links or wireless transmissions con-
taining the program code.

The different components 1llustrated for data processing
system 100 are not meant to provide architectural limitations
to the manner 1n which different embodiments may be imple-
mented. The different illustrative embodiments may be
implemented 1n a data processing system including compo-
nents 1 addition to or in place of those 1illustrated for data
processing system 100. Other components shown in FIG. 1
can be varied from the 1llustrative examples shown.

As one example, a storage device in data processing system
100 1s any hardware apparatus that may store data. Memory
106, persistent storage 108 and computer readable media 118
are examples of storage devices 1n a tangible form.

In another example, a bus system may be used to 1mple-
ment communications fabric 102 and may be comprised of
one or more buses, such as a system bus or an input/output
bus. Of course, the bus system may be implemented using any
suitable type of architecture that provides for a transfer of data
between different components or devices attached to the bus
system. Additionally, a communications unit may include one
or more devices used to transmit and receive data, such as a
modem or a network adapter. Further, a memory may be, for
example, memory 106 or a cache such as found 1n an interface
and memory controller hub that may be present 1n communi-
cations fabric 102.

With reference now to FIG. 2, components of a processor
are depicted i accordance with the illustrative embodiments.
Processor 200 may be a superscalar processor, such as a
processor 1 processor unit 104 shown 1n FIG. 1, 1n which
illustrative embodiments may be implemented. Processor
200 may comprise of other components not depicted 1in FIG.
2, such as, but not limited to, additional logic circuitry, reg-
isters, and execution units for executing computer mstruc-
tions. In addition, depicted components of processor 200 may
be omitted, combined, or replaced 1n accordance with other
illustrative embodiments.

In the depicted illustrative example, processor 200 com-
prises of instruction fetcher 202, multiplexer 204, clock 206,
instruction dispatch unit 208, address translation unit 210,
translation look aside bufter 212, load/store unit 214, load
builer 216, store buffer 218, load queue 220, 1nstruction res-
ervation station 222, internal bus 224, execution unit 226,
reorder bulfer 228, and completion unit entry 230.

Instruction fetcher 202 fetches a sequence of instructions
from main memory. Instruction fetcher 202 increases a
counter that indicates the next address to fetch after fetching
an instruction. In addition, mstruction fetcher 202 tags each
instruction with a group 1dentifier (GID) and a target identifier

US 7,836,282 B2

S

(TID). The target 1dentifier and group 1dentifier assignment 1s
associated with the order in which the instruction fetched.
The target identifier and group 1dentifier assignment 1s also
associated with pre-decoded information related to the
istruction type and data dependency. The target 1dentifier
and group 1dentifier are appended to the instruction to 1dentily
the associated groups and the target groups. The target iden-
tifier 1s generated according to the destination register num-
ber associated with the instruction. The group 1dentifier 1s
generated according to 1struction type, such as, but not lim-
ited to, load, store, and arnthmetic type instructions.

Instruction fetcher 202 passes the instructions to multi-
plexer 204. Multiplexer 204 combines multiple streams of
information/signals 1into a single complex signal.

Clock 206 controls the clock cycle of processor 200. The
clock cycle 1s the time between two adjacent pulses of the
oscillator that sets the tempo of the computer processor. The
number of pulses per second 1s known as the clock speed,
which may be measured 1n gigahertz (GHz) or billions of
pulses per second.

In one 1llustrative embodiment, processor 200 1s a super-
scalar processor having multiple versions of each functional
unit to enable execution of more than one nstruction in par-
allel. As a result, processor 200 may perform more than one
instruction per clock cycle.

Instruction dispatch unit 208 uses clock 206 to dispatch
instructions to mternal bus 224 for execution by execution
unit 226. In addition, instruction dispatch unit 208 uses
address translation unit 210 for translating virtual addresses
associated with application code and data into a physical
memory address. Address translation unit 210 may employ a
translation look aside bufler 212 (TLB). Translation look
aside buffer 212 uses a page table for mapping virtual
addresses to physical memory addresses to improve the speed
of virtual address translation.

Instruction dispatch unit 208 dispatches load and store type
instruction to load/store unit 214 for execution. Load/store
unit 214 contains a load butier 216 and a store butler 218 for
storing the dispatched load and store type instructions until
execution. A buffer 1s a region of memory used to temporarily
hold data while 1t 1s being moved from one place to another.
Instructions within load buffer 216 are placed into an instruc-
tion queue, such as load queue 220 to await execution. A
queue 1s a data structure that maintains an order for items
within the queue. For example, load queue 220 may be, but 1s
not limited to, a first in first out (FIFO) queue in which
instructions are added to the bottom of the queue and removed
from the top of the queue.

In addition, instruction dispatch unit 208 dispatches folded
instructions, such as folded instruction 240. In one 1llustrative
embodiment, folded instruction 240 may consist of an arith-
metic mstruction folded with a store instruction. In another
illustrative embodiment, folded 1nstruction 240 may consist
of two or more out of order instructions. An out of order
instruction is an instruction that 1s not executed 1n the sequen-
t1al order of an unpipelined instruction set. Folded instruction
240 1s passed to mternal bus 224 for execution. Internal bus
224 passes folded instruction 240 execution unit 226 for
processing.

Instructions processed by execution unit 226 are placed in
reorder bulfer 228 for further processing by completion unit
entry 230. Completion unit entry 230 1s designed to further
reorder the out of order dispatched instruction sequence to
ensure that the mstructions are retired 1n order. Reordering of
the 1nstructions 1s based on the associated group 1dentifier.
Completion unit entry 230 writes instructions within the reor-
der butfer to register files 238 based on the original sequential

10

15

20

25

30

35

40

45

50

55

60

65

6

order of execution associated with the instruction set. For
example, instructions 1 and instruction 4 may be folded for
execution prior to executing instruction 2 and instruction 3.
The results associated with the executed instructions are
placed 1n the reorder buiier. Completion unit entry 230 wall
retire the instructions in the correct order of execution, such
that instruction 1 1s retired, then instruction 2, then instruction
3, and so forth. The term retire, as referenced herein, means
storing the results of the instruction and deallocating the
memory space 1n the reorder bulfer associated with the retired
instruction. The results of the retired instructions are stored to
a register file.

In addition, data associated with the executed instructions
may be stored 1n struction reservation station 222. Instruc-
tion reservation station 222 may contain data for each type of
instruction corresponding to an individual 1nstruction.
Instruction reservation station 222 may also update resources
relating to the completion of the execution of an instruction.

Additionally, data associated with the executed instruc-
tions may be monitored by branch processing unit 236.
Branch processing unit 236 monitors for an executed branch
instruction. A branch instruction 1s a conditional instruction
that may change the sequence of instruction execution and the
instruction queue. Branch processing unit 236 utilizes the
group 1dentifier and target identifier associated with each
instruction 1n processing the branch instruction.

Processor 200 may also comprise of a number of cache
memory, such as cache 232 and level two 1nstruction cache
234. A cache 1s a memory location that 1s used to speed up
certain computer operations by temporarily placing data, or a
copy ol 1t, 1n a location where it can be accessed more rapidly
than normal. Cache 232 may be a level one cache 1n which
data may be accessed at a higher rate than level two 1nstruc-
tion cache 234.

With reference now to F1G. 3, a diagram depicting stages of
a pipeline process for executing instructions 1s depicted 1n
accordance with an 1illustrative embodiment. Pipeline 300
depicts a five stage pipeline. Pipeline 300 consists of instruc-
tion fetch stage 302, instruction decode stage 304, execution
stage 306, memory access stage 308, and write back stage
310. Depending on the type of instruction being performed,
the instruction may complete within three to five clock cycles.

During instruction fetch stage 302, an instruction 1s fetched
from memory into the instruction register. The particular
memory location that 1s fetched in these examples 1s deter-
mined by a counter. The counter 1s incremented after each
instruction fetch to point to the next memory location. The
instruction register 1s used to hold the mstruction that will be
needed on subsequent clock cycles.

During mstruction decode stage 304, the instructions are
decoded when the registry files are accessed. The instruction
code 1s translated 1nto an address usable by the processor. The
output of the registers may be placed into other temporary
registers for use 1n later clock cycles.

During execution stage 306, the arithmetic logic unit oper-
ates on the operands prepared 1n the prior cycle. Types of
operations may include, but are not limited to, adding oper-
ands, performing a specified function, and computing the
address of a branch instruction.

During memory access stage 308, memory 1s accessed 11
needed. The only mstructions that are active during this cycle
are load, store, and branch instructions.

In the case of a load instruction, data returned from
memory 1s placed 1n a register. In the case of a store mnstruc-
tion, the data from a register 1s written mnto memory. For
branch struction that i1s taken, the memory referencing
counter 1s replaced with the branch destination address.

US 7,836,282 B2

7

During write back stage 310, the result of an executed
instruction 1s written into the register file. The result may
come from the memory system or the arithmetic logic unit
output.

With reference now to FIG. 4, a diagram of an out of order
instruction queue for dispatching instructions 1s depicted 1n
accordance with an illustrative embodiment. Instruction
stream 400 depicts a set of instructions. A set of instructions
comprises of two or more instructions. Instruction queue 402
depicts an out of order 1nstruction queue for dispatching the
instructions within instruction stream 400 1n and out of order
sequence.

The set of instructions in 1nstruction stream 400 are pre-
decoded during the instruction fetch stage, such as instruction
tetch stage 302 shown 1n FIG. 3. Dependencies between the
instructions within the instruction set, such as, but not limited
to, data dependencies are determined. In addition, store type
instructions are separated from non-store type instructions. A
non-store type istruction is any instruction that is not a store
instruction. Non-store type instructions may include, but are
not limited to, load instructions and arithmetic instructions,
such as add, subtract, multiply or divide.

Currently, the load and store instructions are dispatched
into a separate unit called a load and store unit to be processed
separately, such as load/store unit 214 shown 1n FIG. 2. The
illustrative embodiments recognize that because store
instructions do not require the use of an arithmetic logic unit,
the store 1nstructions could be folded with a logic/arithmetic
instruction and executed 1n parallel.

Accordingly, 1 one illustrative embodiment, a store
instruction that follows immediately after a logic or arith-
metic instruction 1s folded with the logic/arithmetic 1nstruc-
tion. The folded instruction 1s dispatched into the execution
unit together and the store instruction 1s executed in the same
write back as the logic/arithmetic instruction. Therefore, the
store mstruction is retired 1n the same cycle as a logic/arith-
metic instruction instead of during another clock cycle.
Accordingly, the 1llustrative embodiments increase the num-
ber of mstructions performed per clock cycle.

In another 1llustrative embodiment, a store instruction not
immediately following a logic/arithmetic instruction may be
folded out of order depending on the data dependencies
between the instructions. The data dependencies between the
instructions are determined 1n an earlier process during the
instruction fetch stage. Additionally, the nstructions within
the instruction set may be performed out of order based on the
prior determination of data dependencies between the
instructions.

In another illustrative embodiment, the processor can pro-
cess more store mstructions per cycle by dispatching multiple
store 1nstructions into both the load/store unit as well as
several execution unit. The potential number of 1nstructions
per cycle to increase would depend upon the number of inte-
ger and floating point execution units associated with the
Processor core.

With reference now to FIG. 5, a diagram of an out of order
instruction queue for writing back instructions 1s depicted 1n
accordance with an illustrative embodiment. Instruction
queue 500 depicts an executed out of order instruction set.
The 1nstructions within nstruction queue 300 are written
back to a register of the processor. The target identifier and
group 1dentifier associated with each instruction within
istruction queue 500 are used to reorder the completed
instructions within the reorder builer. The ordering process
may be monitored by a branching unit, such as branch pro-
cessing unit 236 shown in FIG. 2, to track and reorder the

10

15

20

25

30

35

40

45

50

55

60

65

8

dispatched 1instructions into the original sequence belore
writing the results back into the register files, as depicted in
register file sequence 502.

With reference now to FIG. 6, a flowchart of a process for
increasing the number of instructions performed per clock
cycle 1s depicted 1n accordance with an 1llustrative embodi-
ment. The process of FIG. 6 may be implemented 1n a pro-
cessor, such as processor 200 shown 1n FIG. 2.

The process begins by decoding a set of instructions (step
600). The instruction type and other data associated with the
instruction are determined by decoding the instruction. The
process tags each decoded nstruction with an 1identifier (step
602). The 1dentifier indicates the sequential order of execu-
tion associated with each instruction. In addition, the identi-
fler may also comprise of a group identifier and a target
identifier. The group 1dentifier 1s used by the completion unit,
such as completion unit entry 230 shown in FIG. 2, 1n retiring
the out of order dispatched instructions. The target 1dentifier
1s used to assist the dispatch unit, such as instruction dispatch
unit 208 shown 1 FIG. 2, in dispatching the out of order
instructions. Both the group identifier and target identifier are
labeled after pre-decoding stage 1nside the instruction fetcher
unit, such as instruction fetcher 202 shown in FIG. 2. The
group 1dentifier indicates the relationship/sequence order
between the fetched instructions. The target identifier 1s
assigned to label the target execution unit that the instruction
1s to be dispatched.

The process determines data dependencies between the
ecoded 1nstructions within the set instructions (step 604). A
ata dependency exists when a subsequent instruction
epends on results produced by an earlier 1nstruction. Data
ependencies may result in a data hazard. For example, a data
hazard occurs when the pipeline changes the order of read/
write accesses 1o operands so that the order differs from the
order performed by sequentially executing instructions per-
formed on an unpipelined processor.

In addition, the process separates store mnstructions from
non-store instructions within the set of instructions (step
606). The store instructions may be folded, depending on data
dependencies, with non-store instructions, such as, but not
limited to, arithmetic 1nstructions or logic instructions. The
folded mstruction 1s executed as one instruction in parallel.
The folded non-store instruction, such as, the arithmetic
instruction would be executed in the execution clock cycle.
The folded store 1nstruction 1s executed during the write back
clock cycle of the instruction pipeline. Thus, two instructions
are performed instead one, thereby increasing the number of
istructions per cycle that 1s processed by the processor.

The process folds instructions within the set of instructions
based on the determined data dependencies between nstruc-
tions (step 608). For example, the process may fold a store
instruction immediately following a logic/arithmetic imstruc-
tion to be executed in parallel. Alternatively, the folded
instructions may be performed 1n an out of order fashion and
retired using the 1dentifiers associated with each instruction.

In addition to out of order folding, the process may deter-
mine an elficient out of order instruction sequence for dis-
patching the instructions within the set of instructions (step
610). The process places the instruction sequence in an
istruction queue for execution (step 612). The process
executes the instructions 1n the mstruction queue (step 614).
The folded nstruction comprising of a store and logic/arith-
metic mnstruction 1s executed 1n parallel. The logic/arithmetic
instruction 1s executed during the execution stage and the
store 1nstruction 1s executed during the write back cycle.
Thus, the folded instruction results 1n one additional instruc-
tion being performed per clock cycle.

C
C
C
C

US 7,836,282 B2

9

The process places the executed mstructions 1n a reorder
butlfer, such as reorder buifer 228 shown 1n FIG. 2 (step 616).
The process uses the 1dentifiers associated with each mstruc-
tion to retire the executed instructions 1n the original sequen-
t1al order (step 618), with the process terminating thereatter.

Accordingly, the illustrative embodiments described
herein provide a computer implemented method, apparatus,
and computer program product for increasing a number of
istructions per clock cycle associated with a processor. The
illustrative embodiments fold a plurality of non-sequential
instructions within the set of sequential order 1nstructions to
form a folded instruction. The folded 1nstruction 1s executed
to form an executed istruction. The executed nstruction 1s
placed 1n a reorder butfer. The instructions within the reorder
builer are written to a register based on the sequential order of
execution within the set of sequential order instructions. As a
result, the 1llustrative embodiments increase the number of
instructions performed per clock cycle associated with a pro-
cessor using out of order instruction folding and retirement.

The mvention can take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In a
preferred embodiment, the invention 1s implemented 1n soft-
ware, which includes but 1s not limited to firmware, resident
software, microcode, etc.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer-
usable or computer readable medium can be any tangible
apparatus that can contain, store, communicate, propagate, or
transport the program for use by or in connection with the
instruction execution system, apparatus, or device.

The medium can be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
or device) or a propagation medium. Examples of a computer-
readable medium 1include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
a rigid magnetic disk and an optical disk. Current examples of
optical disks include compact disk-read only memory (CD-
ROM), compact disk-read/write (CD-R/W) and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code 1n order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/0 control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and FEthernet cards are just a few of the currently
available types of network adapters.

The description of the present invention has been presented
for purposes of 1illustration and description, and i1s not
intended to be exhaustive or limited to the mvention 1n the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill 1n the art. The embodiment

5

10

15

20

25

30

35

40

45

50

55

60

65

10

was chosen and described in order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill 1n the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

What 1s claimed 1s:

1. A computer implemented method for increasing a num-
ber of mstructions per clock cycle associated with a proces-
sor, the computer implemented method comprising:

decoding a set of instructions to form a set of decoded

instructions;

separating within the set of decoded instructions a set of

store type instructions from a set of non-store type
instructions;

folding a store type 1nstruction within the set of store type

instructions with a non-store type instruction within the
set of non-store type instructions to form a folded
instruction, wherein folding the store type instruction
within the set of store type instructions with the non-
store type instruction within the set of non-store type
instructions to form the folded 1nstruction comprises:
placing the store type 1nstruction and the non-store type
instruction 1n a single line within an mnstruction queue
of the execution unit to form the folded instruction;
dispatching the folded instruction to an execution unit for
processing;
executing the non-store type instruction in the folded
instruction during an execution stage of the execution
unit to form an executed instruction;

performing a store function of the store type instruction

during a write back stage of the execution unit; and
placing the executed 1nstruction 1n a reorder buiier.

2. The computer implemented method of claim 1, further
comprising;

determining data dependencies between instructions

within the set of decoded nstructions to form a set of
data dependencies wherein the store type instruction to
be folded with the non-store type instruction 1s selected
to not contlict with the set of data dependencies.

3. The computer implemented method of claim 2, turther
comprising:

generating an out of order sequence instruction set from the

set of decoded instructions using the set of the data
dependencies;

placing the out of order sequence instruction set in the

instruction queue;

executing mstructions 1n the mstruction queue sequentially

to form executed instructions, wherein the store type
instruction and the non-store type instruction folded
within the folded instruction are executed in parallel
and, wherein the store type instruction 1s executed dur-
ing the write back cycle of the non-store mstruction; and
placing the executed 1nstructions in the reorder butfer.

4. The computer implemented method of claim 1, turther
comprising:

tagging each instruction within the set of decoded instruc-

tions with an identifier, wherein the 1dentifier indicates
the sequential order of execution associated with each
instruction within the set of instructions, wherein the
identifier comprises a unique group 1dentification num-
ber that 1s used during the step of writing instructions
within the reorder buller to a register based on the
sequential order.

5. The computer implemented method of claim 4, wherein
the 1dentifier further comprises a unique target identification
number that 1s used for dispatching the out of order sequence
instruction set 1n the mstruction queue.

US 7,836,282 B2

11

6. The computer implemented method of claim 3, further
comprising:
dispatching non-folded store instructions within the set of
decoded instructions to a separate store unit for execu-
tion 1n addition to dispatching the folded instruction to 5
an execution unit.
7. A computer program product comprising:

a computer recordable storage medium including com-
puter usable program code for increasing a number of
instructions per clock cycle associated with a processor, 10
the computer program product comprising:

computer usable program code for decoding a set of
instructions to form a set of decoded instructions;

computer usable program code for separating within the set
of decoded instructions a set of store type instructions 1°
from a set of non-store type mstructions;
computer usable program code for folding a store type
instruction within the set of store type instructions with
a non-store type 1nstruction within the set of non-store
type instructions to form a folded instruction wherein
the computer usable program code for folding the store
type 1nstruction within the set of store type mnstructions
with the non-store type instruction within the set of
non-store type mstructions to form the folded instruction
CoOmprises:
computer usable program code for placing the store type
instruction and the non-store type instruction in a
single line within an instruction queue of the execu-
tion unit to form the folded instruction:
computer usable program code for dispatching the folded
instruction to an execution unit for processing;
computer usable program code for executing the non-store
type nstruction in the folded instruction during an
execution stage of the execution unit to form an executed
instruction;
computer usable program code for performing a store func-
tion of the store type instruction during a write back
stage of the execution unit; and
computer usable program code for placing the executed
instruction 1n a reorder butfer.
8. The computer program product of claim 7, further com-
prising;:
computer usable program code for determining data
dependencies between instructions within the set of
decoded instructions to form a set of data dependencies;
wherein the store type instruction to be folded with the
non-store type mstruction is selected to not contlict with
the set of data dependencies.
‘9: The computer program product of claim 8, further com-
prising:
computer usable program code for generating an out of
order sequence 1nstruction set from the set of decoded
instructions using the set of the data dependencies;
computer usable program code for placing the out of order 55
sequence 1nstruction set in the instruction queue;
computer usable program code for executing instructions
in the mstruction queue sequentially to form executed
instructions, wherein the store type instruction and the
non-store type instruction folded within the folded g
istruction are executed in parallel and, wherein the
store type instruction 1s executed during the write back
cycle of the non-store mstruction; and

computer usable program code for placing the executed

il

instructions 1n the reorder butffer. 65

10. The computer program product of claim 7, further
comprising;

20

25

30

35

40

45

12

computer usable program code for tagging each instruction
within the set of decoded 1nstructions with an 1dentifier,
wherein the 1dentifier indicates the sequential order of
execution associated with each mstruction within the set
of instructions, wherein the identifier comprises a
unique group 1dentification number that 1s used during
the step of writing 1nstructions within the reorder butfer
to a register based on the sequential order the computer
implemented method of claim.

11. The computer program product of claim 10, wherein
the 1dentifier further comprises a unique target identification
number that 1s used for dispatching the out of order sequence
instruction set 1n the instruction queue.

12. The computer program product of claim 9, further
comprising;
computer usable program code for dispatching non-folded
store 1nstructions within the set of decoded instructions
to a separate store unit for execution 1n addition to dis-
patching the folded 1nstruction to an execution unit.

13. An apparatus comprising;:
a bus system;
a communications system connected to the bus system:;

a memory connected to the bus system, wheremn the
memory includes computer usable program code; and

a hardware processing unit connected to the bus system,
wherein the hardware processing unit executes the com-
puter usable program code to decode a set of instructions
to form a set of decoded 1nstructions; separate within the
set of decoded 1nstructions a set of store type instruc-
tions from a set of non-store type instructions; fold a
store type mstruction within the set of store type instruc-
tions with a non-store type instruction within the set of
non-store type instructions to form a folded instruction,
wherein 1n executing the computer usable program code
to fold the store type instruction within the set of store
type instructions with the non-store type instruction
within the set of non-store type instructions to form the
folded instruction the hardware processing unit further
executes the computer usable program code to place the
store type instruction and the non-store type struction
in a single line within an nstruction queue of the execu-
tion unit to form the folded instruction; dispatch the
folded instruction to an execution unit for processing;
execute the non-store type instruction in the folded
instruction during an execution stage of the execution
unit to form an executed instruction; perform a store
function of the store type instruction during a write back
stage of the execution unit; and place the executed
instruction 1n a reorder butler.

14. The apparatus of claim 13, wherein the processing unit
turther executes the computer usable program code to deter-
mine data dependencies between instructions within the set of
decoded 1nstructions to form a set of data dependencies
wherein the store type instruction to be folded with the non-
store type mstruction 1s selected to not contlict with the set of
data dependencies.

15. The apparatus of claim 14, wherein the processing unit
further executes the computer usable program code to gener-
ate an out of order sequence 1nstruction set from the set of
decoded nstructions using the set of the data dependencies;
place the out of order sequence 1nstruction set in the mstruc-
tion queue; execute instructions in the instruction queue
sequentially to form executed instructions, wherein the store
type instruction and the non-store type instruction folded
within the folded mstruction are executed in parallel and,
wherein the store type instruction 1s executed during the write

US 7,836,282 B2

13 14
back cycle of the non-store instruction; and place the identification number that 1s used during the step of writing
executed instructions in the reorder buffer. instructions within the reorder butfer to a register based on the

sequential order.
17. The apparatus of claim 16, wherein the i1dentifier fur-
ther comprises a unique target 1dentification number that 1s

used for dispatching the out of order sequence instruction set
in the instruction queue.

16. The apparatus of claim 13, wherein the processing unit
turther executes the computer usable program code to tag
cach mstruction within the set of decoded 1nstructions with an
identifier, wherein the identifier indicates the sequential order
ol execution associated with each instruction within the set of
instructions wherein the identifier comprises a unique group I I

	Front Page
	Drawings
	Specification
	Claims

