12 United States Patent
Yueh

US007831787B1

US 7,831,787 B1
*Nov. 9, 2010

(10) Patent No.:
45) Date of Patent:

(54) HIGH EFFICIENCY PORTABLE ARCHIVE
WITH VIRTUALIZATION

(75) Inventor: Jedidiah Yueh, Irvine, CA (US)

(73) Assignee: EMC Corporation, Hopkinton, MA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 201 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 11/968,040

(22) Filed: Dec. 31, 2007

Related U.S. Application Data

(63) Continuation-in-part of application No. 11/688,203,
filed on Mar. 19, 2007, now Pat. No. 7,747,831.

(60) Provisional application No. 60/784,022, filed on Mar.

20, 2006.
(51) Imt. CL
GO6F 13/00 (2006.01)
(52) US.CL ..., 711/161; 711/162; 711/6;
711/E12.016
(58) Field of Classification Search 711/6,

711/161, 162, E12.016; 365/149
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,642,505 A 6/1997 Fushimi

5,764,972 A 6/1998 Crouse et al.

6,275,953 Bl 8/2001 Vahalia et al.

6,732,293 Bl 5/2004 Schneider

6,795,966 B1* 9/2004 Limetal.ccoeveenain. 718/1

6,865,655 Bl 3/2005 Andersen

7,096,316 B1* 82006 Karretal. 711/114

7,149,858 B1* 12/2006 Kiselev ..ccoovivvinvinnnnnn. 711/162
fﬁﬁ“mak

7,277,905 B2 10/2007 Randal et al.

7,343,459 B2 3/2008 Prahlad et al.

7,346,263 B2 3/2008 Honda

7,346,623 B2 3/2008 Prahlad et al.

7,437,506 B1* 10/2008 Kumaretal. 711/114

(Continued)
FOREIGN PATENT DOCUMENTS

CN 200780009902.X 6/2010

(Continued)
OTHER PUBLICATIONS

U.S. Appl. No. 11/688,203, filed Mar. 19, 2007, Jedidiah Yueh.

(Continued)

Primary Examiner—Mardochee Chery
(74) Attorney, Agent, or Firm—Workman Nydegger

(57) ABSTRACT

A high efficiency portable archive (“HEPA”) implements a
storage system running 1n a computer architecture to generate
point-in-time versions of a raw data set. The HEPA can be
implemented 1n a variety of computer architectures with the
storage system being implemented as a conventional appli-
cation on a host operating system or as a virtual system on a
virtualization layer. In etther case, the point-in-time versions
and optionally the storage system itself can be archived on
archive media. Alternately, the point-in-time versions and
optionally the storage system itself can be replicated to a
virtualized storage system {first and then archived on archive
media. The storage system and point-in-time versions of the
raw data set can be restored into a virtual system on any
hardware subsystem that supports the virtual system.

20 Claims, 6 Drawing Sheets

Run 1st Storage Application In The

Computer Architeciure 5

'''

Operate The 1st Storage Application

...

I:Ra;}iiaz:atﬁ Foint-in-{ime Versions 1o } o
| e {58

A Znd Storage Application

Transter Point-in-Tima Versions To
An Archive Storags Mechanism

I“‘\/ £H8

Generaie Recoverad versions OF |
1he Raw Daia Set ;

US 7,831,787 B1

Page 2
U.S. PATENT DOCUMENTS WOPCT/US2007/0068661 8/2008
7,500,001 B2 3/2009 Tameshige et al. OTHER PUBLICATIONS

2002/0069335 Al 6/2002 TFlylnn, Jr. U.S. Appl. No. 11/739,311, filed Apr. 24, 2007, Jedidiah Yueh.
2004/0225659 A1l 11/2004 O’Brien et al. U.S. Appl. No. 11/746,399, filed May 7, 2007, Jedidiah Yueh et al.
2005/0125513 Al 6/2005 Sin-Ling Lam et al. U.S. Appl. No. 11/747,567, filed May 11, 2007, Scott Ogata et al.
2005/0160243 Al 7/2005 TLubbers et al. U.S. Appj.. No. 1;/772,183, filed Jun. 30, 2007, Jedidiah Yueh.
2005/0235788 Al 10/2005 Yamakabe et al. U.S. Appl. No. 11/688,203, Mail Date Sep. 10, 2009, Office Action.
2006/0059207 Al /7006 Hirsch et al. U.S. Appi. No. ;;§739,311, Mail Date Sep. 21, 2009, O:Ece Action.

| U.S. Appl. No. 11/746,399, Mail Date May 14, 2009, Office Action.
2007/0174566 AL 7/2007 Kaneda et al. U.S. AEE]. No. 11/747,567, Mail Date Sep}f 30, 2009, Office Action.
2008/0013365 Al 1/2008 Yueh | o _ .

| U.S. Appl. No. 11/772,183, Mail Date Sep. 15, 2009, Office Action.
2008/0215474 Al 9/2008 Graham U.S. Appl. No. 12/762,769, filed Apr. 19, 2010, Jedidiah Yueh.
2008/0215796 Al 9/2008 Lam et al. U.S. Appl. No. 11/688,203, Mail Date Mar. 3, 2010, Notice of Allow-
2008/0313371 A1 12/2008 Kedem et al. ance.
2009/0222496 Al 9/2009 Liu et al.

FOREIGN PATENT DOCUMENTS

EP 0774715 Al
EP 07758941 .4
WO 99/09480
WO 99/12098
WO 02/37689 Al
WO 2006/017584 A2
WOPCT/US2007/0064440

5/1997
6/2009
2/1999
3/1999
5/2002
2/2006
2/2008

U.S. Appl. No. 11/688,203, Mail Date Mar. 24, 2010, Notice of

Allowance.

U.S. Appl. No. 11/739,311, Mail Date Mar. 1, 2010, Final Office

Action.

U.S. Appl. No. 11/746,399, Mail Date Dec. 14, 2009, Final Office

Action.

U.S. Appl. No. 11/747,567, Mail Date Feb. 24, 2010, Final Office

Action.

U.S. Appl. No. 11/772,183, Mail Date Feb. 24, 2010, Final Office

Action.
U.S. Appl. No. 12/762,769, Mail Date Jun. 23, 2010, O

fice Action.

* cited by examiner

US 7,831,787 B1

Sheet 1 of 6

Nov. 9, 2010

U.S. Patent

iii
L]

Fr PR

r
a
.
4

11

Ggi e 00 38005893 Buindiuon

N, JO UoisIBA |
QUL -UU0d g5y

iiiiiiiiiii

3INDON AIBACTEN
Sl | -Ui- Uil

3INDOIN 8DBIGIS
Sl | ~U-UICd

_ (v gH) uoieoiddy ebieiog

EZ: %Q Eammhmxpw
Aousioyz ubl | 091

st | ~-Ul~-Uiod

ANCOIN AIBALOS

SUH | -U]-{UHO

. — 96
anpow bl -

AU LU0 BGL

N 30 UCESIBA

1 L] ¥ gin ¥ ,
" 1 L] -+ -
1 L) + -
5 1 L) - -
a - N -
1 L] -+ -
1 L -+ -
1 L) + n -
4 - El LBl F] N b g Nh - [|
' r yF N Y r F’i [
1 L] k] LBl ,
: . B) ! . m%h
1 L -+ -
1 L) g ,
4 . o 4 4
% . . - -
a - - -
J . sk SEARAEBERELEEEBEEBEBEEBERELEBEBEELEEBESEEBEEELEBERELEEENE]
biie3 mm mmh‘ . :
r . N N N N N N N N A A A T M N AT
.h 1 L)
L . r
- -
-
L
L

4

a -
* L] 1 .
1111111111111111111111111111111111
e 1 ’
[] n

1 L)
~ | . -
» N . r
. 1 L]
1 L]

r
L] L]

iii

SINPOINE AIBADOOM

m m sinpoin sbeiog
LN I o - U S e

S -UuIod | | 5l

LISILBUISIA

He0 SR (7S aH) Uoneatddy SBRIoTG

oo fousionT ybi

ala
L]
r
L]
r
,
L]
r
L] -
L] 4
1111111111111111111111111111111 o

Lw\mﬁ _csmmmm_ng A 08|

b oI

N

0L

IBAKRG AU

Ry

-
-

00 580IN038} Dupnd
JOAETT UOHBZIBNUIA

ST Wl uHUIDd P—ggy

iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

US 7,831,787 B1

mmw.}f

iiiiii

SINDON AIBACOSM 3Npon 8bBIoig

Sl | -U-Uiod | sUl] -UMUIO

\& N — — —

> Ny 4O UOISIBA (wSTH) uotieaddy ebring

e~ Sl | -Uj-1Ui0 SUBIDIT UDIH

= ¥ D T e
Qs

=

2 gee 24 Led

FNDOW AIBATDS YN
AUl ~Ui-LHO

967 OIN | Mowspy | NdD

00 S80IM08a% BUINGLION
wsisAs bunelado _m@m

(N 0 UCISION
Gl | -0

ANPOR sbRIOIS
S| -Ui=JU D6

Nov. 9, 2010

iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

SINDOIK AIBADOSM 3inpo sbeioig

iiiiiiiiiiiiii

USIUBLOAY BLUI | ~U|-Ui0 BUIE L ~U[-JUI0¢ N7
B1E(] SAIYY I “ N

iiiiiiiii

(7S 3H) uogedddy sbieio;
Asusii= ub

4D

00¢

2

U.S. Patent

US 7,831,787 B1

Sheet 3 of 6

Nov. 9, 2010

U.S. Patent

1124

S UG

Y9t

SINNOW AlaA0d8M |1 ainpop obeiols

.1Hl.-.lh

B L] suni-uRuIod {1 ewj-uued
:Zu .;W.Q EOthw\,# .

Bl | -Uj-JUio

a
a
Iy a
o .
a
a
R " T Tt Tt T T T PP PR P F P P P PR P P F R I P P PR P P R R P PR P P PR I P P PP I P P PP P F PR P PP PP R P PR L P P PP P P PR P P PR U PP PP L P P PR A PP FF
a4
iii

i,

SIROIN AJBACDSN
ol] ~ULEO

ii

Y

2{NpoYy ebRICIS
el | -U- U0

& N, 10 UOISiB,

GUlE | Uil

rr
iiiiiiiiiiiiiiiiiiiiii

A —— 6ee |11 onpopy Asmroosy |1 ainpoyy abeioig
- — i BUWH-URUIOA] SUWH-UUIOM

AISHIBUDSIA
1] SN

9ot

-

-

=

-

* '

-

L

: %

* -

* r
-

L
1.1.1.1.'L.1.1.1.'L.1.1.1.'1._.1.1.'1._.1.1.'iaiiiiniiiiniiiiiaiiiiai

rr r
iiiiiiiiiiiiiiiiiiiiii

SNDO AISADISM
gl | U}~ U0

piL

.M__.ZE *@ gemmh@\aﬁ
S | U iog

SNOOW 30
UM | -U U0

Cls

iii

0L

iii

U.S. Patent Nov. 9, 2010 Sheet 4 of 6 US 7,831,787 B1

‘?GQ ”\
4301 ¢ : |

High Efficiency High Efficiency
atorage Application Storage Application
437
Operating System Uperating System
SN1I B I N I S 437
Standardized standardized ‘
Hardwars Aardware |
42S ...

iiiiiiiiiiiiiiiiiiiiiiiiiiiii

Lisk

High Efficiency Py
rage Application
527 534
High Efticiency | | e
Starage Application | | Guest Operating Svstem
' 530
Virtualization Laver
520
Host Operating System
510 —

Computer Platiorm

CPU Memory NIC

U.S. Patent Nov. 9, 2010 Sheet 5 of 6 US 7,831,787 B1

600

oy
Al
L
oy
AN
3y
iy
Ay
.17

530 540 642 650

Storage N Storage NN Storage
Application | Applicaiion Appiicalion

| u . 602
Operating 1 Operating Uperating

System System System

Virtual Machine Virtual Machine

Virtual infrastructurs

610

U.S. Patent Nov. 9, 2010 Sheet 6 of 6 US 7,831,787 B1

700 \

Provide A Host Operating System

iii

Run A Storage Application

Cin The Host Operaling bystem — {04

Operate The Storage Application e 7O

aaa

Transter F_’oian-—Timﬁ \:’ersios:aa To
An Archive Storage Mechanism

iii

iii

Generate Recoversd Versions Of L 5.5
The Raw Data Set |

iii

Run 1st storage Application in the | o
computer Architeciure " s

754
Repiicate Point-In-Time versions 1o 7
A Znd storage Appiication 20
Transter Pointnmﬂme vearsions 1o >
An Archive Storage Mechanism 20
1 Gen@ra‘i; Remvred Versins Ot 1 760

The Raw Data Set

-
ii

US 7,831,787 Bl

1

HIGH EFFICIENCY PORTABLE ARCHIVE
WITH VIRTUALIZATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation-in-part of U.S. patent

application Ser. No. 11/688,203, filed Mar. 19, 2007 and
entitled HIGH EFFICIENCY PORTABLE ARCHIVE,
which claims the benefit of U.S. Provisional Application Ser.
No. 60/784,022, filed Mar. 20, 2006 and entitled HIGH EFFI-
CIENCY PORTABLE ARCHIVE. Both of the foregoing
applications are incorporated herein by reference in their
entirety.

BACKGROUND OF THE INVENTION

1. The Field of the Invention

The present invention relates to data storage and back-up
solutions for archiving data and recovering data. More par-
ticularly, embodiments of the invention relate to software,
hardware, systems, and methods for providing data protec-
tion 1n a manner that allows a user or customer to obtain a
copy of mformation or stored data from a selected point of
time and that provides for high efliciency data archiving and
data portability.

2. The Relevant Technology

The need for reliable backup and archiving of information
1s well known. Businesses are devoting large amounts of time
and money toward 1information system (“IS”) resources that
are devoted to providing backup and archive of information
resident 1n computers and servers within their organizations
that produce and rely upon digital information. The custom-
ers of the data storage industry are more frequently demand-
ing that not only 1s their data properly backed up but also that
when needed, such as after a system failure that causes a loss
of data, that the backed up data be accessible at a particular
point 1n time. In other words, there 1s an increasing demand
for almost continuous data protection that allows data to be
restored back to its state at a particular moment 1n time, which
1s most commonly a point 1n time just before theirr computer
or data storage system crashed or was lost. The demand for
point-in-time data protection, though, must also be balanced
against the demand for low data storage costs, and typically,
high speed optical and disk storage systems are more expen-
stve to use as archive storage than tape-based data storage
systems.

Driven by this demand for point-in-time archives and the
growth of data storage, new technologies have emerged that
store multiple versions or points in time of the primary dataon
disk storage using high efficiency techniques. These tech-
niques allow multiple copies of the data, 1.e., a data set “N”
having a particular size from different points 1n time (e.g.,
data sets N1, N2, N3—where the numbers 1, 2, 3 represent
different points in time at which changes may have been made
to data set N), to be stored 1n a way that consumes far less
capacity 1n a disk or optical data storage device or system than
simply storing the data 1n 1ts native state. For example, a high
elficiency disk storage system might store the data sets N, N1,
N2, and N3 1n less than the total size of the original data set,
N, or at least, using less storage capacity than the sum of the
s1zes of the data sets N+N1+N2+N3.

Today, there are multiple software or application-based
approaches to storing copies of data 1 a highly efficient
manner 1n order to provide point-in-time copies ol data for
backup, restore, and disaster recovery. These technologies
include, but are not limited to, snapshots, file differencing

10

15

20

25

30

35

40

45

50

55

60

65

2

techniques, content addressed storage systems, and systems
that eliminate redundant data components that may be vari-
able 1n size. While providing a more efficient method of
archiving data, all of these systems use disk storage as their
primary storage mechanism rather than less expensive tape
media or tape storage systems.

Also, despite the existence of these high efficiency storage
technologies, businesses still often need to store or move data
onto alternate archive systems that may utilize removable
tape media, optical storage, or other disk storage systems that
may be less expensive or have different management
attributes. In some cases, these archives are required to meet
regulatory or other requirements. A problem with such
archives 1s that they are often highly inefficient, e.g., with
archiving involving expanding the data back into 1ts original
state for archive purposes (IN+IN1+N2+N3). Another problem
with such archives 1s that the data 1s stored in such a fashion
that 1t cannot be easily ported, restored, or managed 1n the
tuture due to the proprietary nature of an implemented high
eificiency storage methodology. For example, copying all of
the volumes of a primary storage system using block-based
snapshots to tape will yield a high efficiency dataset, but one
that cannot be independently read or utilized without restor-

ing the data to a system that matches the physical character-
1stics of the original hardware platform.

The subject matter claimed herein 1s not limited to embodi-
ments that solve any disadvantages or that operate only in
environments such as those described above. Rather, this
background 1s only provided to illustrate one exemplary tech-
nology area where some embodiments described herein may
be practiced.

BRIEF DESCRIPTION OF THE DRAWINGS

To further clarity the above and other advantages and fea-
tures of the present invention, a more particular description of
the mvention will be rendered by reference to specific
embodiments thereof which are 1llustrated 1n the appended
drawings. It 1s appreciated that these drawings depict only
typical embodiments of the invention and are therefore not to
be considered limiting of 1ts scope. The invention will be
described and explained with additional specificity and detail
through the use of the accompanying drawings 1n which:

FIG. 1 illustrates in block diagram form a high efficiency
portable archive (“HEPA”) system according to one embodi-
ment of the invention;

FIG. 2 1llustrates 1n block diagram form another embodi-
ment of a HEPA system:;

FIG. 3 1llustrates 1n block diagram form an embodiment of
a HEPA system that includes a proxy;

FIG. 4 illustrates a HEPA system according to another
embodiment of the mvention using a virtualization layer to
separate a storage application and associated operating sys-
tem from a computer architecture;

FIG. 5 1s another HEPA system of the imvention that 1s
similar to that of FI1G. 2 but arranged as a hosted architecture;

FIG. 6 1s yet another HEPA system of the mnvention 1llus-
trating the use of the virtual infrastructure or layer to allow
multiple virtual machines to access a computer resources
pool mcluding devices used for providing archives of data
sets; and

US 7,831,787 Bl

3

FIGS. 7A and 7B depict two example methods for provid-
ing data protection according to embodiments of the mven-
tion.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Reference will now be made to the drawings to describe
various aspects of exemplary embodiments of the mvention.
It should be understood that the drawings are diagrammatic
and schematic representations of such exemplary embodi-
ments and, accordingly, are not limiting of the scope of the
present invention, nor are the drawings necessarily drawn to
scale.

Embodiments of the present invention are directed to meth-
ods and systems for providing high efficiency portable
archives, 1.e., archival data protection. One embodiment of a
high efliciency portable archive (“HEPA”) system may
include or use a high efficiency storage system implemented
as an application 1n a host system. Second, the HEPA system
may use or include an external archive mechanism, such as a
tape-based data storage system. According to another
embodiment of the invention, a HEPA system may include or
use a first high efficiency storage system implemented as an
application or as a virtual system. Second, 1t may include a
second high efliciency storage system implemented as a vir-
tual system that acts as an archive proxy. Third, the HEPA
system may use or include an external archive mechanism,
such as a tape-based data storage system.

Alternately or additionally, embodiments of the invention
may include the HEPA system tracking the files and/or clients
backed up 1n a given point-in-time version of a primary data
set, enabling seamless recovery from an external archive
mechanism by an end user.

Advantageously, the high efficiency storage system can be
archived as a system onto archive media such as tape storage.
This archive can then be restored as a virtual machine or
system to any hardware subsystem that supports the virtual
system, and all of the versions of the data stored in the high
elficiency storage system can be recovered or accessed from
the high efficiency storage system 1tself.

Using the terminology provided above, one embodiment of

a HEPA system includes a high efficiency storage system that
can store multiple point-in-time versions of a dataset N, 1.e.,

10

15

20

25

30

35

40

N, N1, N2, N3, etc., 1n less space than the sum of the sizes of 45

the datasets, 1.e., the sum of the sizes of N+N1+N2+N3. The
high efficiency storage system may be run upon a virtualiza-
tion layer, such as 1n a virtual machine (“VM?”), that 1s pro-
vided 1n a standard computer architecture (such as a x86
architecture or the like). The virtualization layer virtualizes
the hardware devices from the high etficiency storage system.
Alternately, the high efficiency storage system may be run
upon the operating system of the computer architecture.

In either case, the point-in-time versions and optionally the
storage system itself can be archived as a checkpoint or vir-
tual system (e.g., virtual appliance) onto archive media of the
HEPA system, such as tape, optical, or disk storage. Alter-
nately or additionally, the point-in-time versions and option-
ally the storage application 1tself can be replicated to a virtu-
alized storage application prior to being archived onto archive
media as a checkpoint or virtual system. In both cases, the
archived storage application can then be ported as a virtual
system onto any hardware subsystem that supports the virtual
system. This allows the recovery of the stored datasets

50

55

60

(N+N1+N2+N3) according to the recovery methodology of 65

the original high efliciency storage system. A practical
example of this mvention would be to use a first instance

4

soltware (running on a standard OS or on a VM) to replicate
to a second 1nstance software running on a VM and archiving
a copy of the VMguest instance to a tape archive.

Advantageously, embodiments of the mmvention dramati-
cally reduce the amount of data and the costs of archiving on
many media, including disk, optical, and tape devices. In
particular, by preserving data de-duplication in archives,
archive media/storage costs can be reduced by as much as
90% or more.

To practice the mnvention, the computer and network
devices may be any devices useful for providing the described
functions, including well-known data processing and storage
and communication devices and systems such as computer
devices typically used as hosts 1n user systems with process-
ing, memory, and input/output components, and server
devices configured to maintain and then transmit digital data
over a communications network. Data typically 1s communi-
cated 1n digital format following standard communication
and transier protocols. The data storage resources are gener-
ally described as disk, optical, and tape devices that imple-
ment RAID and other storage techniques and that may use
SCSI and other 1/O, data transfer, and storage protocols, but
the mvention 1s not intended to be limited to the exemplary
embodiments or to specific hardware and storage mecha-
nisms as 1t 1s useful for nearly any data storage arrangement in
which archives of digital data, such as data volumes, are
generated and maintained.

FIG. 1 1llustrates in simplified block form an example
HEPA system 100 according to the invention. The system 100
includes one or more primary servers 104 that are storing a
data set N 106 for which 1t 1s desired to provide archival back
up or data protection. As shown, the HEPA system 100
includes a high efficiency storage application (or system) 110
that 1s generally any software-based or implemented tech-
nique for processing data, 1.e., raw data sets, and to create data
sets of reduced size for storage or back ups.

The storage application 110 includes a point-in-time stor-
age function or module 114 that 1s used to generate com-
pressed or otherwise more storage efficient versions for data
sets, such as point-in-time versions of data sets that are sig-
nificantly smaller in size than the original set being backed up
or copied. Also, the storage application includes a data recov-
ery methodology or module 116 that allows a set of point-1n-
time data sets to be restored or recovered aiter they have been
stored 1n an efficient manner using the storage application 110
(e.g., using the module 114 or the like). For example, the
storage application 110, 1n the point-in-time storage module
114 or other modules not shown, may employ one or more of
the following technologies: snapshots, file differencing tech-
niques, content addressed storage systems, continuous data
protection (“CDP”), and systems that eliminate redundant
data components that may be variable 1n size. In one embodi-
ment, the storage application 110 implements commonality
factoring technology, described 1n more detail in U.S. Pat.
No. 6,810,398, which 1s herein incorporated by reference in
its entirety.

Si1gnificantly, the HEPA system 100 includes a computing
resources pool 130 that includes all computer resources for
the system 100 such as processors/CPUs, memory, network
devices (including NICs), servers, and memory/storage
devices. The particular arrangement of the computer
resources 1in pool 130 1s not limiting to the invention with the
storage application 110 using the resources for storing pro-
cessed data (e.g., compressed or otherwise reduced-in-size
data sets), recovered or restored data sets, and information/
data used by the storage application 110 (such as by point-
in-time data storage module 114 and recovery module 116) 1n

US 7,831,787 Bl

S

eificiently storing and/or recovering the archived data. In this
regard, the pool 130 includes a CPU 132, memory 134, NIC

136, and disk 138. The memory 134 and/or disk 138 may be
used to store processing information for the storage applica-
tion 110.

As shown at 108, the high efficiency storage application
110 functions to process the data set 106 to generate high
elliciency point-in-time versions of N 118. The data set N 106
may be data of a host or client of the storage application 110,
and the host/client may utilize the high efficiency storage
application 110 to store or archive the raw data 106 to comply
with 1ts iside (or outside) regulatory agencies 1n an external
data mechanism or system 140, which typically includes
point-in-time versions of the data set N (as shown 1n FIG. 1).
The processed data 118 may take numerous forms to practice
the mvention but preferably is stored 1n a manner that 1s
reduced 1n size relative to the number of versions when the
virtualized system including the point-in-time versions 1s
later stored in archive 140 (e.g., the archived data 1s not
simply the size of the data set N 106 multiplied by the number
of versions but instead 1s some smaller size as the point-in-
time versions 118 are typically smaller or more efficient ver-
s10ms), with the s1ze and form of the versions 118 varying with
the particular implementation of the storage application 110.

To provide an archived or protected version of the data set
N at various points-in-time, as shown at 139, the high effi-
ciency storage application 110 including the point-in-time
versions of N 118 are stored in an archive data mechanism
140 as virtualized system 150. The virtualized system 150
includes a high efficiency storage application 152 with 1ts
storage module 154 and recovery module 156 as well as
point-in-time versions of N 158. By storing the entire virtu-
alized machine 150 1n the archive mechanism 140 (which
typically 1s an external device or system relative to the pool
130), a request to recover or restore the data set 106 at a
particular point-in-time can be responded to as shown at 159
by providing a new virtual machine on a different virtualiza-
tion layer 170, the virtual machine including a high efficiency
storage application 160 generated based on the archived ver-
sion 152.

The storage application 160 typically includes a point-in-
time storage module 162 and a datarecovery module 164. The
recovery module 164 may be used to respond to a host/client
request to recover or restore a raw set of data N 106 to a
particular point in time (or to otherwise recover from a loss of
data, a data corruption, or the like). To this end, the system
100 1s adapted such that the storage application 160 can port
to the archive data mechanism 140 to access the point-in-time
versions of N 158 so as to recover the data 168 on a hardware
subsystem of the pool 180, which may include a CPU 182,
memory 184, NIC 186, and disk 188 or other devices. Such a
recovery 1s performed using the data recovery tool or module
164 of the storage application 160 and can be performed on
any hardware system, such as pool 180, that supports virtu-
alization of application 110 even though the components of
pool 180 may differ from pool 130.

More specifically, the storage applications 110, 180 use
virtualization layers 120, 170 to shield the high efficiency
storage application 110, 180 from the actual hardware
devices 1n the pools 130, 160. The use of virtualization layers
120, 170 to run the storage applications 110, 180 (e¢.g., as a
guest or virtual machine with 1ts own operating system or
with a host operating system) allows the virtual system 150 to
be archived onto the archive data mechanism 140. Then, the
high efficiency archive 150 can be ported onto a new hard-
ware subsystem (which can be one or more hardware devices
within pool 180 that i1s capable of supporting the virtual

10

15

20

25

30

35

40

45

50

55

60

65

6

system 150), and the stored data sets can be recovered as
shown at 168 (e.g., as N+NI1+N2+ . . . +Nx) according to the
recovery methodology 164 of the original high efficiency
storage system 110. The hardware subsystem within pool 180
does not have to match the physical characteristics of the
hardware platform/components used to create the archived
data 158 (as was the case with prior archival systems).

The virtualization layers 120, 170 may take a number of
forms to practice the invention. Generally, the virtualization
layers 120, 170 are selected to act as an abstraction layer that
decouples the physical hardware from the operating system
associated with storage applications 110, 160 to deliver
greater IS resource utilization and flexibility.

Virtualization by layers 120, 170 allows multiple virtual
machines or guest machines (such as may be used to run
applications 110, 180), with heterogeneous operating sys-
tems, to run 1n 1solation but side-by-side on the same or a
different physical machine Each virtual machine typically
has 1ts own set of virtual hardware (e.g., RAM, CPU, NIC,
ctc. within the pools 130, 160) upon which an operating
system and applications including the storage applications
110, 180 are loaded. The operating system sees a consistent,
normalized set of hardware regardless of the actual physical
hardware components.

In general, virtual machines are encapsulated into files,
making 1t possible to rapidly save, copy and provision a
virtual machine. Full systems (fully configured applications,
operating systems, BIOS and virtual hardware) can be
moved, within seconds, from one physical server to another
for zero-downtime maintenance and continuous workload
consolidation. The portable or moved virtual machine with
the storage application 110, 160 can be used to recover the
point-in-time data set N 168 from the archive data mechanism
140 using recovery module 164. The virtualization layer 120,
170 may provide partitioning such that multiple applications,
such as more than one version or instance of storage applica-
tion 110, 180, and operating systems can be supported within
a single physical system. Servers 1n the pools 130, 160 can be
consolidated into virtual machines on either a scale-up or
scale-out architecture, and computing resources are treated as
a uniform pool 130, 160 to be allocated to virtual machines 1n
a controlled manner, such as a guest machine (not shown)
running the storage applications 110, 180 on virtualization
layers 120, 170.

The virtualization layers 120, 170 also provide 1solation.
Virtual machines are completely isolated from the host
machine and other virtual machines. If a virtual machine
crashes, all others are unaftected. Data does not leak across
virtual machines and applications can only communicate
over configured network connections. The virtualization lay-
ers 120, 170 can also be configured or selected to provide
encapsulation. In these embodiments, a complete virtual
machine environment, €.g., a guest machine with storage
application 110 or 180, 1s saved as a single file that 1s easy to
back up, move, and copy 1n the system 100 as shown at 139 to
archive data mechanism 140. The virtualization layers 120,
170 provide standardized virtualized hardware to the appli-
cations 110, 180, which guarantees compatibility or portabil-
ity of the application 110 and the archives 168 that can be
recovered via the storage application 180.

FIG. 2 illustrates 1n simplified block form another example
HEPA system 200 according to the invention. The system 200
1s similar 1n many respects to the system 100 of FIG. 1.
Brietly, the system 200 includes one or more primary servers
204 that are storing a data set N 206 for which 1t 1s desired to
provide archival back up or data protection. The HEPA sys-
tem 200 includes a high efficiency storage application (or

US 7,831,787 Bl

7

system) 210 that includes a point-in-time storage module 214,
a data recovery module 216, and point 1n time versions 218 of
the data set N. Except where noted, the high efficiency storage
system 210 and 1ts components and data are configured and/
or operate similar to the high efficiency storage system 110
and i1ts components and data, as illustrated 1n FIG. 1 and
explained above.

Additionally, the HEPA system 200 includes a computing
resources pool 230, configured similar to the computing
resources pool 130 of FIG. 1. In one embodiment of the
invention, the computing resources pool 230 comprises a host
system or server machine. The storage application 210 uses
the resources in the pool 230 for storing processed data,
recovered or restored data sets, and information/data used by
the storage application 210 1n efficiently storing and/or recov-
ering the archived data. As shown at 208, the storage appli-
cation 210 functions to process the data set 206 to generate the
high efficiency point-in-time versions of N 218. In the
embodiment of FIG. 2, the high efficiency storage application
210 1s mstalled and run on the computing resources pool 230
as a conventional application, relying on a host operating
system 220 for device support and physical resource manage-
ment of the pool 230.

To provide an archived or protected version of the data set
N at various points-in-time, as shown at 239, the high effi-
ciency storage application 210 including the point-in-time
versions of N 218 are stored in an archive data mechanism
240. A copy (e.g., a “checkpoint™) 252 of the high efficiency
storage application 210 1s stored 1n the archive data mecha-
nism 240, the checkpoint 252 including storage module 254,
recovery module 256, and point-in-time versions of N 258.
By storing the storage application checkpoint 252 1n the
archive mechanism 240 (which typically 1s an external device
or system relative to the pool 230), a request to recover or
restore the data set 206 at a particular point-in-time can be
responded to as shown at 259 by providing a virtual machine
(or system) on a virtualization layer 270 that includes a high
elficiency storage application 260 generated based on the
archived version 2352.

Similar to the storage application 180 of FIG. 1, the storage
application 260 typically includes a point-in-time storage
module 262 and a data recovery module 264. The recovery
module 264 may be used to respond to a host/client request to
recover or restore a raw set of data N 206 to a particular point
in time (or to otherwise recover from a loss of data, a data
corruption, or the like). To this end, the system 200 1s adapted
such that the storage application 280 can port to the archive
data mechanmism 240 to access the point-in-time versions of N
2358 so as to recover the data 268 on a hardware subsystem of

the pool 280, which may include a CPU 282, memory 284,
NIC 286, and disk 288 or other devices. Such a recovery 1s
performed using the data recovery tool or module 264 of the
storage application 260 and can be performed on any hard-
ware system, such as pool 280, that supports virtualization of
application 210 even though the components of pool 280 may
differ from pool 230.

More specifically, the virtualization layer 270 shields the
high efliciency storage application 260 from the actual hard-
ware devices 1n the pool 280. The use of virtualization layer
270 to run the storage application 280 (e.g., as a guest or
virtual machine with its own operating system or with a host
operating system) allows the high efficiency storage applica-
tion 252 to be archived onto the archive data mechanism 240.
Then, the high efficiency archive 252 can be ported onto a new
hardware subsystem (which can be one or more hardware
devices within pool 260 that are capable of supporting the
storage application 2352), and the stored data sets can be

5

10

15

20

25

30

35

40

45

50

55

60

65

8

recovered as shown at 268 (e.g., as N+NI+N2+ . . . +Nx)
according to the recovery methodology 264 of the original
high efficiency storage system 210. The hardware subsystem
within pool 260 does not have to match the physical charac-
teristics of the hardware platform/components of pool 230
used to create the archived data 258 (as was the case with prior
archival systems).

FIG. 3 illustrates 1n simplified block form another example
HEPA system 300 according to the invention. The system 300
includes one or more primary servers 304 that are storing a
data set N 306 for which 1t 1s desired to provide archival back
up or data protection. Embodiments of the invention
described herein thus relate to backup and/or archive data.

The HEPA system 300 includes at least two high efficiency
storage applications (or systems) 310 and 326 that are gener-
ally any software-based or implemented technique for pro-
cessing data, 1.e., raw data sets, and to create and/or store data
sets of reduced size for storage or back ups or archive. The
storage applications 310, 326 include, respectively, point-in-
time storage modules 312, 328, data recovery modules 314,
330, and point-in-time versions 316, 332 of the data set N 306.
Typically, the storage applications 310, 326, corresponding
storage modules 312, 328, and corresponding recovery mod-
ules 314, 330, are identical to each other. Except where noted,
the storage applications 310, 326 and their components and
data are configured and/or operate just as the high efficiency
storage system 110 and its components and data, as illustrated
in FIG. 1 and explained above.

A first computing resources pool 320 provides the
resources used by storage application 310 to store processed
data, recovered or restored data sets, and information/data
used by the storage application 310 1n efliciently storing
and/or recovering the archived data. The computing resources
pool 320 may be configured similar to the computing
resources pool 130 of FIG. 1 and may comprise, for example,
a first host system or server machine. As shown at 308, the
storage application 310 functions to process the data set 306

to generate the high efficiency point-in-time versions of N
316.

The high efficiency storage application 310 1s installed and
run on the soitware platform 318. In one embodiment, the
platform 318 comprises a host operating system, and the
storage application 310 is installed and run as a conventional
application, relying on the operating system 318 for device
support and physical resource management. In another
embodiment of the invention, the platform 318 comprises a
virtualization layer, and the storage application 310 1s
installed and run on the virtualization layer 318 to shield the
storage application 310 from the underlying resources 1n the
computing pool 320.

As shown at step 321, the storage application 310 repli-
cates data, such as the point-in-time versions of N 316, to the
second storage application 326. The second storage applica-
tion 326 uses the resources 1n a second computing resources
pool 336 to store processed data, recovered or restored data
sets, and information/data used by the second storage appli-
cation 326 1n efliciently storing and/or recovering the
archived data. The second computing resources pool 336 may
be configured similar to the computing resources pool 130 of
FIG. 1 and may comprise, for instance, a second host system
or server machine. Although the first pool 320 and second
pool 336 are illustrated as separate pools, 1n some embodi-
ments they may be the same pool, in which case the first and
second storage applications 310, 326 may be configured as
illustrated 1n FIG. 4 or § to share resources from a common
pool.

US 7,831,787 Bl

9

Returning to FIG. 3, the second storage application 326 1s
installed and run on virtualization layer 334, which shields
the storage application 326 from the underlying resources in
the computing resources pool 336. Consequently, the com-
ponents of pool 336 may be 1dentical to or different than the
components of pool 320.

To provide an archived or protected version of the data set
N at various points-in-time, as shown at 339, the high effi-
ciency storage application 326—including the replicated
point-in-time versions of N 332—is stored 1n an archive data
mechanism 340 as virtualized system 350. The virtualized
system 350 includes a high efficiency storage application 352
with its storage module 354 and recovery module 356 as well
as the point-in-time versions of N 358. By storing the entire
virtualized machine 350 in the archive mechanism 340
(which typically 1s an external device or system relative to the
pools 320,336), arequest to recover or restore the data set 306
at a particular point 1n time can be responded to as shown at
359 by providing a virtual machine on a virtualization layer
370 that includes a high efficiency storage application 360
generated from or based on the archived version 352.

Alternately or additionally, a checkpoint of the storage
application 326, rather than a virtualized system 330, 1s stored
in the archive mechanism 340, the checkpoint including a
storage module, recovery module, and point-in-time versions
of N. In this case, a request to restore the checkpoint can be
responded to by restoring the checkpoint into a virtual
machine, such as either of the virtual machines comprising
storage applications 326 or 360.

Similar to the storage application 160 of FIG. 1, the storage
application 360 typically includes a point-in-time storage
module 362 and a data recovery module 364. The recovery
module 364 may be used to respond to a host/client request to
recover or restore a raw set of data N 306 to a particular point
in time (or to otherwise recover from a loss of data, a data
corruption, or the like). To this end, the system 300 1s adapted
such that the storage application 360 can port to the archive
data mechanism 340 to access the point-in-time versions of N
358 so as to recover the data 366 on a hardware subsystem of
the pool 380, which may include a CPU 382, memory 384,
NIC 386, and disk 388 or other devices. Such a recovery 1s
performed using the data recovery tool or module 364 of the
storage application 360 and can be performed on any hard-
ware system, such as pool 380, that supports virtualization of
application 326 even though the components of pool 380 may
differ from pool 336.

More specifically, the storage applications 326, 360 use
virtualization layers 334, 370 to shield the high efficiency
storage application 326, 360 from the actual hardware
devices 1n the pools 336, 380. The use of virtualization layers
336, 370 to run the storage applications 326, 360 (e.g., as a
guest or virtual machine with 1ts own operating system or
with a host operating system) allows the virtual system 350 to
be archived onto the archive data mechanism 340. Then, the
high efliciency archive 350 can be ported onto a new hard-
ware subsystem (which can be one or more hardware devices
within pool 380 that are capable of supporting the virtual
system 350), and the stored data sets can be recovered as
shown at 366 (e.g., as N+N1+N2+ . . . +NXx) according to the
recovery methodology 364 of the original high efficiency
storage system 310. The hardware subsystem within pool 380
does not have to match the physical characteristics of the
hardware platform/components of either of pools 320 or 336.

Although the high efliciency storage application 360 1s
shown as separate from high efliciency storage application
326, 1n one embodiment of the invention, the storage appli-
cations 360 and 326 (and their corresponding modules) are

10

15

20

25

30

35

40

45

50

55

60

65

10

the same storage application (and corresponding modules).
According to this embodiment, the storage application 326 1s
a replication target at step 321 as well as a restoration/recov-
ery target at step 359, rather than having separate replication
and restoration targets as illustrated 1n FIG. 3.

Advantageously, in the embodiment of FIG. 3, the storage
application 326 becomes a proxy for archiving the storage
application 310 and/or the point 1n term versions of N 316.
This enables the storage application 310 to offload archive
processing to the virtualized storage application 326. This 1s
because the step 321 of replicating to the virtualized storage
application 326 can typically be performed much more
quickly than actually archiving to the archive data mechanism
340. As another benefit, the virtualized storage application
326 can service data received from a plurality of high effi-
ciency storage applications, becoming a proxy that can be
shared across multiple systems.

In some embodiments of the invention, the high efficiency
storage application (e.g., applications 110, 210, or 326 of
FIGS. 1, 2 and 3) tracks the clients and files serviced by the
storage application. For instance, the storage application may
keep track of which files from a primary server are backed up
by the storage application and which archives the files are
archived to. This information 1s made available to the recov-
ery module of the storage application.

Advantageously, this enables a seamless recovery process.
For example, when recovery 1s desired, a user can access the
recovery module. The user selects a date range and a client
(e.g., the primary server) and the recovery module presents a
file system view of available backups (e.g., point-in-time
versions) for the client. Once the user has identified and
selected a desired backup file from a particular date, the
recovery module can automatically restore the backup file
from wherever 1t 1s stored. In particular, because the storage
application has tracked which files for which clients have
been archuved to which archives, the recovery module can
initiate a command line restore from the appropriate archive
to restore the desired backup file. Alternately or additionally,
the recovery module may restore the desired backup file to
one location, open up a management iterface, and then allow
the user to completely restore the desired backup file.

Turning to FIG. 4, one embodiment of an HEPA system
400 according to the invention 1s depicted. As shown, a com-
puter architecture or platiorm 410 (such as the x86 architec-
ture, or the like) imncludes a number of resources such as
CPUs, memory, network devices, disk, and tape mechanisms.
A virtualization layer 420 1s provided to manage access to or
“virtualize” the architecture 410 nto a uniform pool and
separate the hardware of this pool from one or more virtual
machines (1.e., the system 400 1s shown with 2 such virtual or
guest machines running on the virtualization layer 420—but
more such machines may be run). The virtualization layer 420
presents a virtualized representation 436, 437 to an operating
system 432, 433 of each virtual or guest machine. The oper-
ating systems 432, 433 may also vary and may include for
example, Windows, Linux, Novell, Solaris, and other operat-
ing systems such as FreeBSD and the like. High efficiency
storage applications 430, 431 are provided and associated
with the 1nstances of operating systems 432, 433 and use the
virtual systems 436, 437 to process raw data to create more
space efficient versions (e.g., compressed versions compared
to the size of the raw data set) that are stored to an archive
mechanism 1n the architecture 410 (such as a tape device or a
disk or optical device).

The HEPA system 400 1llustrates aspects of one embodi-
ment of the HEPA system 300 of FIG. 3. In particular, the
HEPA system 400 may correspond to portions of the HEPA

US 7,831,787 Bl

11

system 300, provided the storage application 310 1s 1nstalled
and run on a virtualization layer 318 and the computing
resources pool 320, 336 are the same pool. According to this
embodiment, the storage applications 430, 431 correspond to
the storage applications 310, 326, while the virtualization
layer 420 corresponds to the virtualization layers 318, 334

and the computer platform 410 corresponds to the computing
resources pools 320, 336.

FIG. 5 illustrates an alternative arrangement for a HEPA
system 500 according to the invention. As with system 400,
the system 500 includes a set of computer hardware or a
particular architecture 510 that 1s pooled by a virtualization
layer 530 and 1s shielded from one high efficiency storage
application 538. However, in this case, the virtual machine
includes the virtualization layer 530 and the virtual machine
1s installed and run as an application, e.g., similar to a second
high efficiency storage application 522. The virtualization
layer 530 relies on a host OS 520 for device support and
physical resource management of the architecture 510 and
presents a guest operating system 534 to the storage applica-

tion 538.

The HEPA system 500 illustrates aspects of another
embodiment of the HEPA system 300 of FIG. 3. In particular,
the HEPA system 500 may correspond to portions of the
HEPA system 300 where the storage application 310 1is
installed and run on a host operating system 318 and the
computing resources pool 320, 336 are the same pool.
According to this embodiment, the storage applications 522,
538 correspond respectively to the storage applications 310,
326, while the operating system 3520 corresponds to the oper-
ating system 318, the virtualization layer 330 corresponds to
the virtualization layer 334, and the computer platform 510
corresponds to the computing resources pools 320, 336.

FIG. 6 illustrates yet another HEPA system 600 according
to the present invention. The HEPA system 600 includes a
computer resources pool or computer architecture/platiorm
610 that includes the hardware and associated software avail-
able 1n the system 600. The pool 610 includes storage 611,
618 that may include nearly any type of storage device for
digital data such as tape-based storage devices and systems
and disk and optical devices. The pool 610 also includes
networks/network devices 612, 614 and a number of servers
or other computing devices 613, 615, 616 (which may also be
used as data storage 1in some cases with storage 611, 618
being used for archive or back up storage).

Upon the platiorm 610, a virtualization infrastructure 620
1s provided for connecting the resources 1 pool 610 to users
(or to a business/enterprise) 633, 645, 635. The virtual inira-
structure 620 provides a dynamic mapping of the resources 1n
pool 610 to one or more virtual machines 630, 640, 650. Each
of the virtual machines 630, 640, 650 runs an operating sys-
tem 632, 642, 652 and a high efficiency storage application
634, 644, 654. The storage applications 634, 644, 654 may be
the same applications or different applications, and each stor-
age application 634, 644, 654 may be ported to data that has
been archived according to 1ts high efficiency storing methods
and may use 1ts recovery functionality to recover or restore
such data on a hardware subsystem within pool 610 provided
by virtual infrastructure 620 as being capable of supporting
the virtual machine 630, 640, 650 and 1ts associated virtual
storage system. For example, point-in-time versions of a data
set stored 1n storage 611 or 618 may be accessed by a virtual
machine 630, 640, 650 via one or more of the servers 613,
615, 616 (and/or other resources 1n pool 610) to recover a
desired set of data (e.g., N+N1+Nx or the like), such as based
on a recovery request from a user 6335, 645, 655.

10

15

20

25

30

35

40

45

50

55

60

65

12

With reference now to FIG. 7A, a first method 700 1s
illustrated for providing data protection. A typical computer
architecture 1n which the method 700 may be implemented
includes a storage device on which a raw data set 1s stored, an
archive storage mechanism and one or more hardware com-
ponents. The process 700 begins by providing 702 a host
operating system on the computer architecture and running
704 a high elliciency storage application on the operating
system. One of skill 1n the art can appreciate that the operating
system may already be present and embodiments of the
invention may begin by running 704 or executing 706 a high
elficiency storage application on the operating system. The
operating system provides device support and physical
resource management of the computer architecture. In other
words, the high efficiency storage application 1s installed
and/or run in the computer architecture as a conventional
application that 1s not virtualized.

One purpose of the storage application 1s to generate and
store point-1n-time versions of the raw data set 1n the event the
raw data set 1s lost, corrupted, or otherwise damaged. Thus,
the storage application 1s operated 706, as already described
above, to generate and store versions of the raw data set.

The poimnt-in-time versions of the raw data set may be
transferred (e.g., moved or copied) 708 to the archive storage
mechanism by the storage application. They may be trans-
terred to the archive storage mechanism along with the stor-
age application itself as a complete virtual machine environ-
ment. Later, the entire virtual machine environment may be
transferred or copied into a hardware subsystem where a
point-in-time recovery module of the storage application can
beused to generate 710 a recovered version of the raw data set
in the hardware subsystem. The recovery process may begin
in response to a recovery request recerved by the recovery
module from a user.

With reference now to FIG. 7B, a method 750 1s 1llustrated
for providing data protection using a proxy. A typical com-
puter architecture in which the method 750 may be 1imple-
mented 1ncludes a storage device on which a raw data set 1s
stored, an archive storage mechanism and one or more hard-
ware components. The process 750 typically begins by run-
ning 752 a first high efficiency storage application in the
computer architecture. The first storage application can be
run as a conventional application on a host operating system
or as a virtual machine on a virtualization layer. In either case,
the first storage application 1s operated 754, as already
described above, to generate and store versions of the raw
data set.

The point-in-time versions of the raw data set are replicated
756 to a second high efficiency storage application. As
described above, the second high efficiency storage applica-
tion 1s run on a virtualization layer and can be more accurately
described as a virtualized high efficiency storage application.
Optionally, at step 756 the entire first storage application,
including storage module, recovery module, and point-in-
time versions of the raw data set, can be replicated onto the
virtualization layer to create the virtualized storage applica-
tion.

The point-in-time versions of the raw data set replicated to
the virtualized storage application may be transierred (e.g.,
moved or copied) 758 to the archive storage mechanism by
the virtualized storage application. In one embodiment, they
may be transferred to the archive storage mechanism along
with the virtualized storage application 1itself as a complete
virtual machine environment. Later, the entire virtual
machine environment may be transierred or copied nto a
hardware subsystem where a point-in-time recovery module
for the virtualized storage application can be used to generate

US 7,831,787 Bl

13

760 a recovered version of the raw data set in the hardware
subsystem. The hardware subsystem may be the same as or
different from a hardware subsystem used by the second high
eificiency storage application. The recovery process may

begin 1n response to a recovery request received by the recov-
ery module from a user.

As discussed above, the virtualization layer or infrastruc-
ture (such as those shown 1n FIGS. 1-6) may take a number of
forms to practice the invention. As discussed above, high
cificiency storage applications of the HEPA systems of FIGS.
1-4 may vary to practice the invention. Embodiments of the
high efficiency storage and data recovery methodologies
implemented in this software suite are described 1n U.S. Pat.
No. 6,810,398, imncorporated herein by reference. One of skall
in the art can appreciate that other HESA applications can be
used 1n embodiments of the mvention. Additionally, the fol-
lowing description 1s an overview of a system that may be
used as part of a high efficiency storage application of the
invention.

Embodiments of the invention address the need for enter-
prise data protection and are designed to more elfectively
address data backup and recovery. In one example, the chal-
lenge of data compression and redundancy of backup data at
the source, 1s addressed using commonality factoring tech-
nology, which reduces or even eliminates redundant data.
Agents 1dentity and filter repeated data sequences stored in
files within a single system, across systems, and over time at
cach client so that each unique data sequence 1s only backed
up once within the enterprise, greatly reducing the overall
data that must be transmitted over the network and stored
within the system. As a result of this approach, copied or
edited files, shared applications, embedded attachments, and
even a daily changing database only generate a small amount
of incremental storage for an example system.

The commonality factoring technique allows a changed
file to efficiently be analyzed and split into variable sized
blocks averaging 12 KB 1n size, which are then assigned a
20-byte content address based on the contents of the infor-
mation. An assessment 1s then made to determine whether
that information has already been stored within the system
(e.g., has already been backed up on this system or another
system at some point in the past) and 11 so, does not backup the
data again but stores only the content address pointing to the
existing information. By performing this analysis at the cli-
ent, embodiments of the invention, including the HESA, can
elfectively deliver a 600-1 reduction (20 bytes sent to repre-
sent a 12 KB block of data) for data that 1s already stored, and
on average provides greater than 100-1 reduction in backup
data when performing daily full backups.

As this description of the HESA product and technology
implies, 1t 1s usetul 1n understanding how one embodiment of
HESA acts to find changed files and then break these files into
blocks or atomics, e.g., how breakpoints are selected 1n data
sequences to better determine what has been changed and
requires backup. This technique may be described as follows:
One of the key factors for performing reduction of redundant
data at a sub-file level 1s a method to effectively determine
common sequences of data when analyzing large volumes of
data. Most techniques for assessing sub-file level changes
utilize a simplistic method for analyzing files using fixed
block boundaries, which are typically 512 bytes in size. These
techniques, however, perform poorly under many circum-
stances. If a slight change 1s introduced at the beginning of a
file or document, the contents of the entire file get shifted
resulting 1n a fixed block size analysis detecting the entire file
as being modified.

10

15

20

25

30

35

40

45

50

55

60

65

14

Embodiments of the invention analyze sequences of data
and divide the data such that common elements may be found
on multiple related and unrelated computer systems without
the need for communication between the computers and with-
out regard to the data content of the files. This method deter-
mines logical or “sticky byte” breakpoints within data
sequences to elficiently and effectively divide a data set into
pieces that yields optimal commonality. If a document or file
1s edited such that new information 1s placed at the beginning
of the file and existing data 1s deleted from the middle of the
file, the ‘sticky byte’ factoring of the file ensures that only a
small percentage of the total file 1s actually detected as having
been modified. This technique 1s also extremely effective
when performing delta analysis of large database dump files,
resulting 1n only a small percentage of the total data being
detected as modified (and subsequently backed up over the
network) despite changes in tables throughout the database.

The embodiments described herein may include the use of
a special purpose or general-purpose computer including
various computer hardware or soltware modules, as dis-
cussed 1n greater detail below.

Embodiments within the scope of the present mvention
also include computer-readable media for carrying or having
computer-executable instructions or data structures stored
thereon. Such computer-readable media can be any available
media that can be accessed by a general purpose or special
purpose computer. By way of example, and not limitation,
such computer-readable media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other
medium which can be used to carry or store desired program
code means 1n the form of computer-executable instructions
or data structures and which can be accessed by a general
purpose or special purpose computer. When mformation 1s
transierred or provided over a network or another communi-
cations connection (either hardwired, wireless, or a combina-
tion of hardwired and wireless) to a computer, the computer
properly views the connection as a computer-readable
medium. Thus, any such connection 1s properly termed a
computer-readable medium. Combinations of the above
should also be included within the scope of computer-read-
able media.

Computer-executable istructions comprise, for example,
instructions and data which cause a general purpose com-
puter, special purpose computer, or special purpose process-
ing device to perform a certain function or group of functions.
Although the subject matter has been described 1n language
specific to structural features and/or methodological acts, 1t 1s
to be understood that the subject matter defined in the
appended claims 1s not necessarily limited to the specific
teatures or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

As used herein, the term “module” or “component” can
refer to soltware objects or routines that execute on the com-
puting system. The different components, modules, engines,
and services described herein may be implemented as objects
or processes that execute on the computing system (e.g., as
separate threads). While the system and methods described
herein are preferably implemented in software, implementa-
tions in hardware or a combination of software and hardware
are also possible and contemplated. In this description, a
“computing entity” may be any computing system as previ-
ously defined herein, or any module or combination of modu-
lates runming on a computing system.

The present invention may be embodied 1n other specific
forms without departing from 1ts spirit or essential character-

US 7,831,787 Bl

15

istics. The described embodiments are to be considered 1n all
respects only as 1llustrative and not restrictive. The scope of
the invention 1s, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What is claimed 1s:

1. A method for providing data protection, comprising:

running a first storage application on a host operating sys-

tem on a computer architecture that includes a storage
device storing a raw data set, an archive storage mecha-
nism and a first hardware subsystem;

storing, by the first storage application a plurality of ver-

stons of the raw data set 1n the archive storage mecha-
nism;
running a second storage application on a virtualization
layer on a second hardware subsystem of the computer
architecture, wherein the virtualization layer operates on
the second hardware subsystem and presents a represen-
tation of a the first hardware subsystem of the computer
architecture to the second storage application; and

generating, by a recovery module of the second storage
application, arecovered version of the raw data set based
on the plurality of versions of the raw data set stored 1n
the archive storage mechamism, wherein the virtualiza-
tion layer shields the second storage application from
the second hardware subsystem and allows the second
hardware subsystem to be different from the hardware
subsystem associated with the first storage application,
wherein the recovered version 1s recovered on the rep-
resentation of the first hardware subsystem presented by
the virtualization layer operating 1n the second hardware
subsystem.

2. The method of claam 1, wherein the second storage
application comprises a copy of the first storage application.

3. The method of claim 1, wherein the raw data set has a
s1ze and wherein a size of the plurality of versions of the raw
data set 1s less than the size of the raw data set multiplied by
the number of versions stored 1n the archive storage mecha-
nism.

4. The method of claim 1, wherein the hardware subsystem
differs at least partially from hardware components of the
computer architecture used 1n the operating of the first storage
application to store the plurality of versions of the raw data set
in the archive storage mechanism.

5. The method of claim 1, wherein the first storage appli-
cation tracks where the plurality of versions of the raw data set
are archived to such that when a particular file within the
plurality of versions of the raw data 1s requested for restora-
tion, 1t can be quickly located.

6. The method of claim 1, further comprising, prior to using
the recovery module of the second storage application to
generate a recovered version of the raw data set, receving a
recovery request from a user.

7. The method of claim 1, wherein at least one of the first or
second storage application includes commonality factoring.

8. A method for providing data protection and archiving,
using a proxy, comprising:

running a {irst storage application in a {irst computer archi-

tecture that includes a storage device storing a raw data
set, an archive storage mechanism, a first hardware sub-
system, and a second hardware subsystem;

generating and storing, by the first storage application, a

plurality of versions of the raw data set;

replicating the plurality of versions of the raw data setto a

second storage application, the second storage applica-
tion being run on a second virtualization layer, wherein

10

15

20

25

30

35

40

45

50

55

60

65

16

the second virtualization layer presents a representation
of the first hardware subsystem to the second storage
application;

storing, by the second storage application, the plurality of

versions of the raw data set to the archive storage mecha-
nism;

running a third storage application on a third virtualization

layer, wherein the third virtualization layer presents a
representation of the second hardware subsystem to the
third storage application; and

generating, by a recovery module of the third storage appli-

cation, a recovered version on the second hardware sub-
system of the raw data set based on the plurality of
versions of the raw data set stored 1n the archive storage
mechanism, wherein the second virtualization layer
shields the second storage application from the first
hardware subsystem and the third virtualization layer
shields the third storage application from the second
hardware subsystem to allow the recovery module to
generate the recovered version on the second hardware
subsystem, wherein the recovered version 1s recovered
on the representation of the first hardware subsystem
presented 1n the second hardware subsystem.

9. The method of claim 8, wherein running the first storage
application 1n a computer architecture comprises running the
first storage application on a first virtualization layer, the first
virtualization layer presenting a representation of a set of
hardware based on components of the computer architecture
to the first storage application.

10. The method of claim 8, wherein running the first stor-
age application 1n a computer architecture comprises running
the first storage application on a host operating system pro-
vided 1n the computer architecture, the host operating system
providing device support and physical resource management
of components of the computer architecture for the first stor-
age application.

11. The method of claim 8, wherein the third storage appli-
cation 1s the second storage application, the third virtualiza-
tion layer 1s the second virtualization layer, and the second
hardware subsystem 1s the first hardware subsystem, such that
the second storage application 1s used as a replication target
and a recovery target.

12. The method of claim 8, wherein the third storage appli-
cation 1s a copy of the second storage application.

13. The method of claim 8, further comprising, replicating
a plurality of versions of a plurality of raw data sets from a
plurality of first storage applications to the second storage
application, the second storage application being configured
as an archive proxy.

14. The method of claim 8, wherein the raw data set has a
s1ze and wherein a size of the plurality of versions of the raw
data set 1s less than the size of the raw data set multiplied by
the number of versions stored 1n the archive storage mecha-
nism.

15. The method of claim 8, wherein the first hardware
subsystem, second hardware system, or both hardware sys-
tems, differ at least partially from hardware components of
the computer architecture used 1n the operating of the first
storage application.

16. In an environment including at least one server storing
a raw data set, a method for storing and archiving point-in-
time versions of the raw data set, the method comprising:

operating a {irst storage application on an operating system

on a computing resources pool, the host operating sys-
tem providing device support and physical resource
management ol components of the computing resources
pool for the first storage application;

US 7,831,787 Bl

17

generating storage efficient versions of araw data set that1s
stored on one or more servers, wherein the storage elli-
cient versions include point-in-time versions of the raw
data set that are smaller 1n size than the raw data set;
storing the storage efficient versions of a raw data set on an
archive data mechanism; and
recovering the raw data set at a particular point-in-time
using a virtualized storage application on a virtualiza-
tion layer, wherein the virtualization layer decouples the
virtualized storage application from the computing
resources pool and wherein the virtualized storage appli-
cation recovers the raw data set at the particular point-
in-time independently of the computing resources pool.
17. The method of claim 16, further comprising archiving
the first storage application onto the archive data mechanism.
18. The method of claim 17, further comprising porting the
first storage application onto a new hardware subsystem,

10

15

18

wherein the new hardware subsystem does not match a hard-
ware system of the computing resources pool.

19. The method of claim 18, further comprising providing
the virtualization layer on the new hardware subsystem,
wherein the first storage application becomes the virtualized
storage application upon being ported onto the new hardware
subsystem, and wherein the virtualization layer presents a
representation of a set of hardware based on components of
the new hardware system to the virtualized storage applica-
tion.

20. The method of claim 16, wherein the second storage
application tracks where the plurality of versions of the raw
data set are archived to such that when a particular file within
the plurality of versions of the raw data 1s requested for
restoration, 1t can be quickly located.

	Front Page
	Drawings
	Specification
	Claims

