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PIPELINING D STATES FOR MRU
STEERAGE DURING MRU-LRU MEMBER
ALLOCATION

PRIORITY CLAIM

The present application 1s a continuation of U.S. patent

application Ser. No. 11/054,067, filed on Feb. 9, 2005 now
U.S. Pat. No. 7,401,189. Applicants claim benefit of priority
under 35 U.S.C. §120 to United States patent application Ser.
No. 11/054,067, which 1s incorporated by reference herein in
its entirety and for all purposes.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates generally to an improved data
processing system, and 1n particular, to an improved method
and apparatus for caching data in a memory. Still more par-
ticularly, the present invention relates to a method and com-
puter system design for updating the LRU and MRU states of
a cache.

2. Description of Related Art

Most early data processing systems consisted basically of
a central processing unit, a main memory, and some sort of
secondary mput/output (“I/O”) capability. In these earlier
systems, the main memory was the limiting element. Typi-
cally, the main memory was designed first and the CPU was
then created to match the speed of the memory. This matching,
was performed to optimize the processing speed and 1s nec-
essary even with today’s high speed computers. Over time,
logic circuit speeds increased along with the capacity require-
ments of main memory. With the need for increasing capacity
in the main memory, the speed of the main memory could not
keep up with the increasing speed of the CPU. Consequently,
a gap developed between the main memory and the processor
cycle time, which resulted 1 un-optimized processing
speeds. As aresult, a cache memory was developed to bridge
the gap between the memory and the processor cycle time.

Using a cache to bridge the performance gap between a
processor and main memory has become important in data
processing systems of various designs, from personal com-
puters to work stations to data processing systems with high
performance processors. A cache memory 1s an auxiliary
memory that provides a buifering capability through which a
relatively slow main memory can interface with a processor at
the processor’s cycle time to optimize the performance of the
data processing system. Requests are first sent to the cache to
determine whether the data or instructions requested are
present in the cache memory. A “hit” occurs when the desired
information 1s found in the cache. A “miss™ occurs when a
request or access to the cache does not produce the desired
information. In response to a miss, one of the cache “lines™ 1s
replaced with anew one. The method to select aline toreplace
1s called a replacement policy.

A number of different schemes for organizing a cache
memory exist. For example, a fully associative mapping orga-
nization may be employed whereby a data address may exist
in any location 1n the cache, or a direct mapping scheme may
be employed 1n a cache memory whereby a data address may
exist 1 only one location in the cache. A set associative
scheme may be employed by partitioning the cache into dis-
tinct classes of lines, wherein each class contains a small fixed
number of lines. This approach i1s somewhere between a
direct mapped and a full associative cache. The classes of
lines are usually referred to as “congruence classes.” The lines
in a congruence class are usually referred to as sets (which
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2

indicate the number of locations an address can reside) 1n a
congruence class 1n a set associative cache.

One generally used type of replacement policy 1s the least
recently used (LRU) policy. An LRU policy 1s built upon the
premise that the leastrecently used cache line 1n a congruence
class 1s the least worthy of being retained. So, when 1t
becomes necessary to evict a cache line to make room for a
new one, an LRU policy chooses as a victim a cache line
which 1s the least recently accessed set (or member) within a
congruence class.

For an LRU policy, two types of operations must be carried
out against the LRU state (which 1s maintained for each
congruence class 1n a cache).

A most recently used-update (MRU-update) operation
typically occurs due to a cache hit. It adjusts the LRU state
such that the “hit” member 1s ordered ahead of all other
members 1n that congruence class, establishing the cache line
in that member position as the most worthy member 1n the
congruence class.

A least recently used-victim-selection (LRU-victim-selec-
tion) operation typically occurs when a cache miss requires
that a member be allocated to hold a cache line arrniving from
clsewhere 1n the storage hierarchy. The operation determines
which cache line 1s the least worthy of being retained 1n the
congruence class, evicts that cache line, and places the newly
arriving cache line 1n its member position.

Often, favorable operating characteristics and reduced
complexity implementations for a cache can be achieved
when the victim selection and state update portions of a cache
allocation policy are tightly integrated with a common pipe-
line for accessing the cache arrays, directory arrays, and
allocation policy (e.g. LRU) state arrays.

Further, in such implementations, further benefits are typi-
cally derived when the victim selection occurs as early as
possible 1n the common pipeline, and when for each opera-
tional use of the pipeline, at most one cache allocation policy
state update 1s performed.

As microprocessor chip fabrication technology advances
toward smaller and smaller feature sizes, defect tolerance
becomes more and more of a primary concern. Often, much of
the area of a chip 1s covered by cache memory cells (often
SRAM cells). Occasionally, the physical structure of chip at
which a cache line 1s located becomes corrupted and 1s not
able to be allocated to an incoming cache line.

One method for tolerating defects 1n these cells 1s to 1den-
tify cache line compartments in the cache that have manufac-
turing defects, and mark those compartments as “deleted”, so
they will not be used, and hence, will not introduce errors mnto
the data that would have been stored therein.

One technique for marking compartments as “deleted” 1s to
define a cache state (which 1s called “D”, meaning deleted)
that will be stored 1n the cache directory entry corresponding
to a given defective compartment. Unlike normal cache
states, such as those included 1n standard MESI or similar
protocols, which describe the coherence attributes of the
cache line contained 1n a given compartment, the D-state
indicates that any data contained in the compartment is
invalid, and further indicates to the cache replacement policy
logic that the compartment 1s unavailable for allocation.

During typical LRU allocation, however, cache lines 1n the
D state are still represented within the LRU state array and
may easily be selected as the LRU victim since the line 1s not
being used and thus appears to be stale (or LRU). However,
selection of a Deleted line causes a fault condition at the cache
and may result 1n a crash of the entire processing system.

A few methods/mechanisms have therefore been proposed
to prevent the selection of a line 1n the D state during LRU
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victim selection. Typically the cache replacement policy
logic 1incorporates this per-member-deletion information
from the cache directory directly into 1ts victim selection
logic, 1n a manner similar to the way 1n which 1t might have
implemented an 1mvalid-member-selection-bias prior to the
techniques taught 1n Ser. No. 10/425,459. However, similar
1ssues as those motivating the techniques presented 1n Ser.
No. 10/4235,459 drive the need for improvements to the cache
replacement policy’s incorporation of a per-member-deletion
mechanism.

Therelore, 1t would be advantageous to have an improved
method, apparatus, and computer for effectively preventing a
cache member 1n the D state from ever being selected as the
LRU victim member.

SUMMARY OF THE INVENTION

Disclosed 1s an improved method and apparatus for pre-
venting selection of Deleted (D) members as an LRU victim
during pipelined operations for LRU victim selection. During
cach cache access targeting the particular congruence class,
the deleted cache line 1s identified from information in the
cache directory. A location of a deleted cache line 1s pipelined
through the cache architecture during LRU victim selection.
The information 1s first latched and then passed to MRU
vector generation logic, which generates a D member MRU
vector. The MRU vector 1s passed to the MRU update logic,
which tags the deleted member to be treated as a MRU mem-
ber.

The tagging of the deleted cache line as MRU may occur
contemporaneously with other members of the congruence
class also being tagged MRU. In one embodiment, MRU
selection of a D cache line occurs contemporaneously with
member protection ol other cache lines and while biasing
[-states for LRU victim selection.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as a preferred mode of use, Turther objectives
and advantages thereotf, will best be understood by reference
to the following detailed description of an illustrative
embodiment when read 1n conjunction with the accompany-
ing drawings, wherein:

FIG. 1 1s a block diagram of a data processing system in
which a preferred embodiment of the present invention may
be implemented;

FIG. 2 1s a diagram of another data processing system in
which the present invention may be implemented;

FIG. 3 1s a diagram of components used in ordering enti-
ties;
FIG. 4A 15 a diagram of constant patterns;

FIG. 4B 1s a circuit diagram of a known MRU-update
function;

FIG. 5A 1s a diagram of constant patterns;

FIG. 3B 1s a circuit diagram of a known LRU-victim-
selection function;

FIG. 6 1s a diagram of an 8-way associative cache;

FI1G. 7 1s a diagram of several examples of tree based LRU
structures;

FIG. 8 15 a circuit diagram of an MRU-update function;

FIG. 9A and FIG. 9B provide a circuit diagram of an LRU
victim selection function;

FI1G. 10 1s a diagram of a known cache architecture;
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FIGS. 11A and 11B respectively 1illustrate a convention
LRU state array with 13 state bits and the extended LRU state
array with added member protection bits according to one
embodiment of the invention;

FIG. 12 1s a cache architecture including LRU augmenta-
tions for biasing Invalid members for LRU victim selection;

FIGS. 13A, 13B and 13C represent a circuit diagram of an
exemplary MRU update function, which has been augmented
by member protection and D-state steerage capabilities in
accordance with embodiments of the present invention;

FI1G. 14 1s a cache architecture including an expanded LRU
array with member protection bits and D-state vectors pipe-
lined to the MRU update logic to respectively protect a pre-
selected member and prevent selection of a member 1n the D
state during victim selection 1n accordance with illustrative
embodiments of the present invention; and

FIG. 15 1s ablock diagram illustrating logic components of
the MRU update logic, configured to support both MRU
allocation for valid, protected members and D state steerage
to MRU 1n accordance with 1llustrative embodiments of the
present invention.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

With reference now to the figures and 1n particular with
reference to FIG. 1, a block diagram of a data processing
system 1s depicted 1n which a preferred embodiment of the
present invention may be implemented. As 1llustrated, Data
processing system 100 1s an example of a conventional multi-
processor computer system. Data processing system 100 has
several processing units, two of which, processing unit 102
and processing unit 104 are depicted. These processing units
are connected to various peripheral devices, including mput/
output (I/O) devices 106 used to communicate with a user,
memory 108 used by the processing units to carry out pro-
gram 1nstructions, and firmware 110 whose primary purpose
1s to seek out and load an operating system from one of the
peripherals whenever the computer 1s first turned on. I/O
devices 106 may take various forms, such as a display moni-
tor, keyboard, and permanent storage device.

Processing units 102 and 104 communicate with the
peripheral devices by various means, including, for example,
a generalized interconnect or bus 112. Data processing sys-
tem 100 may have many additional components which are not
shown, such as serial and parallel ports for connection to
devices, such as modems or printers. Those of ordinary skill
in the art will further appreciate that there are other compo-
nents that might be used in conjunction with those shown in
the block diagram of FIG. 1. For example, a display adapter
might be used to control a video display monitor, and a
memory controller may be used to access memory 108. The
data processing system also can have more than two process-
Ing units.

In a symmetric multi-processor (SMP) computer, all of the
processing units are generally identical. In other words, the
processors all use a common set or subset of 1nstructions and
protocols to operate, and generally have the same architec-
ture. A typical architecture 1s shown i FIG. 1. In these
examples, a processing unit 102 includes integrated chip 114,
which contains processor core 116, and processing unit 104
contains integrated circuit 118, which contains processing
core 120, instruction cache 126, and data cache 128. Proces-
sor cores 116 and 120 include registers and execution units.
These components are used to carry out program instructions
to operate data processing system 100.




US 7,831,774 B2

S

As 1llustrated, processing unit 102 and processing unit 104
also 1nclude caches, such as instruction cache 122, data cache
124, instruction cache 126, and data cache 128, within inte-
grated circuits 114 and 118 in FIG. 1. These caches are
implemented using high speed memory devices. Caches are
commonly used to temporarily store values that might be
repeatedly accessed by a processor, to speed up processing by
avoilding the longer latency of loading the values from
memory 108. These caches also are referred to as “on-board”
when they are integrally packaged with the processor core on
a single integrated chip. In these examples, the caches located
within integrated circuit 114 and integrated circuit 118 are
level 1 (1) caches. Each cache 1s associated with a cache
controller (not shown) that manages the transfer of data
between the processor core and the cache memory.

A processing unit can include additional caches. For
example, processing unit 102 mcludes cache 130 and pro-
cessing unit 104 includes cache 132, which are referred to as
level 2 (LL2) caches because these memories support the on-
board or L1 caches. In other words, cache 130 and cache 132
act as intermediaries between memory 108 and the on-board
[.1 caches: instruction cache 122, data cache 124, instruction
cache 126, and data cache 128. These [.2 caches can store a
much larger amount of information, such as instructions and
data, than the on-board caches can, but with a longer access
penalty. For example, cache 130 and cache 132 may be inte-
grated 1n chips having a storage capacity of 256 or 512 kilo-
bytes, while instruction cache 122 and data cache 124 in
processing unit 102 and instruction cache 126 and data cache
128 1n processing unit 104 may have 64 kilobytes of total
storage.

As 1llustrated, both cache 130 and 132 are connected to bus
112. All loading of information from memory 108 into pro-
cessor core 116 passes through cache 130, while all loading of
information 1nto processor core 120 passes through cache
132. Although FIG. 1 depicts only a two-level cache hierar-
chy, multi-level cache hierarchies can be provided where
there are many levels of serially connected caches. For
example, L3, L4, and L5 caches may be used.

Inan SMT computer, providing a coherent memory system
1s 1important. In other words, it 1s 1mportant to cause write
operations to each individual memory location to be seral-
1zed 1n some order for all processors. For example, assume a
location in memory 1s modified by a sequence of write opera-
tions to take on the values: 1, 2, 3, 4. In a cache coherent
system, all processors will observe the writes to a given
location to take place in the order shown. However, it is
possible for a processing element to miss a write to the
memory location. A given processing element reading the
memory location could see the sequence 1, 3, 4, missing the
update to the value 2. A system that implements these prop-
erties 1s said to be “coherent”. Virtually all coherency proto-
cols operate only to the granularity of the size of a cache
block. That 1s to say, the coherency protocol controls the
movement of and write permissions for data on a cache block
basis and not separately for each individual memory location.

A number of protocols and techniques for achieving cache
coherence are known. At the heart of all these mechanisms for
maintaining coherency 1s the requirement that the protocols
allow only one processor to have a “permission” that allows a
write to a given memory location (cache block) at any given
point 1n time. As a consequence of this requirement, when-
ever a processor attempts to write to a memory location, the
processor must first inform all other processors of 1ts desire to
write the location and receive permission from all other pro-
cessors to carry out the write. The key 1ssue 1s that all other
processors 1n the system must be informed of the write by the
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initiating processor before the write occurs. Furthermore, 1f a
block is present in the L1 cache of a given processing unit, this
block 1s also present 1n the 1.2 and 1.3 caches of that process-
ing unit. This property 1s known as inclusion and 1s well
known to those skilled in the art.

To implement cache coherency in a system, the processors
communicate over a common generalized interconnect, such
as bus 112. The processors pass messages over the intercon-
nect indicating their desire to read or write memory locations.
When an operation 1s placed on the interconnect, all of the
other processors “snoop’” (monitor) this operation and decide
if the state of their caches can allow the requested operation to
proceed and 1f so, under what conditions. There are several
bus transactions that require snooping and follow-up action to
honor the bus transactions and maintain memory coherency.
The snooping operation 1s triggered by the receipt of a quali-
fied snoop request, generated by the assertion of certain bus
signals. Instruction processing 1s interrupted only when a
snoop hit occurs and the snoop state machine determines that
an additional cache snoop 1s required to resolve the coherency
of the offended sector.

With reference now to FIG. 2, a diagram of another data
processing system 1s depicted 1n accordance with a preferred
embodiment of the present invention. The processes and
apparatus of the present invention may also be implemented
within data processing system 200. This particular example,
illustrated a shared L2 cache, while data processing system
100 1n FIG. 1 illustrated unshared caches.

In this example, data processing system 200 includes two
processors, processor 202 and processor 204. Cache memory
206 and cache memory 208 are cache memories located
within processor 202 and processor 204, respectively. In this
example, cache memory 210 1s a level 2 cache memory that 1s
shared by both processors. Access to this cache memory 1s
provided by bus 212. Cache control 214 contains the logic for
handling cache lines within memory 210 1n response to
requests from processors 202 and 204. Cache control 214 1s
connected to other components through bus 216. For
example, firmware 218, I/O devices 220 and memory 222 are
connected to bus 216.

Data processing system 100 and data processing system
200 1nclude mechanisms for handling cache lines. A cache
line 1s a unit of data that 1s retrieved from memory to a cache.
A cache line 1s typically the smallest unit of data that may be
sent from a memory to a cache. The present invention pro-
vides a method, apparatus, and computer instructions for
supplementing least recently used (LRU) policies applied to
handling cache lines 1n a cache.

An LRU policy, by definition, must maintain an ordered list
of all members within each congruence class. A vector of
“chronology bits” provides a mechanism for indicating an
order amongst multiple entities. The vector consists of one bit
for each possible pair of entities. The bit indicates the relative
ordering within the pair. That 1s, for a given pair (1, 1) the bat
might be set to a “one™ value 11 entity | precedes entity 1, and
the bit might be cleared to a “zero” value 11 entity 1 precedes
entity j.

For example, referring now to FIG. 3, components used 1n
ordering entities are illustrated. Chronology vector 301 1ndi-
cates an ordering between four entities (a, b, ¢, d) and consists
ol s1x bits. Referring to table 302, bit 0 indicates the ordering
between entities a and b, bit 1 indicates the ordering between
entities a and c, bit 2 indicates ordering between a and d, bit 3
indicates ordering for b and ¢, bit 4 1s used 1n ordering b and
d, and bit 5 indicates ordering between ¢ and d.

To specily the ordering of members 1n ordering 303 as
follows: b, d, ¢, a, the vector 304 would have the value:
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“111001”, indicating an order specified by the rules 305 for
cach chronology bit. In general, a vector of chronology bits
for determining the ordering amongst n entities requires (nx
(n—1))/2 bats.

Applying this technique to implement a “true” LRU policy
for a 2-way associative cache requires a 1-bit vector; or for a
3-way cache requires a 3-bit vector; or 4-way: 6-bits; or
S-way: 10-bits; or 8-way: 28-bits; or 16-way: 120-bits. While
chronology bits do not provide the most efficient possible
bit-encoding (e.g., an encoding requiring the smallest number
of bits), they do possess attributes 1deally suited to a fast and
inexpensive circuit implementation.

With a chronology vector implementation, an MRU-up-
date operation 1s accomplished by setting a subset of the bits
in the vector to a constant pattern (associated with the updated
member) while leaving the other bits 1n the vector unchanged.
The subset 1s comprised of the n—1 bits (where n 15 the
associativity of the cache) which define the ordering between
the updated member and each of the other members 1n the
congruence class.

For example, referring now to FIG. 4A, the constant pat-
terns are shown for a 401, b 402, ¢ 403, and d 404. Turning,
next to FIG. 4B, circuit diagram 403 illustrates the MRU-
update function 1n a manner familiar to those skilled 1n the art.
Constant patterns 401, 402, 403, and 404, from FIG. 4A are
used to annotate the control lines in circuit diagram 405 in
FIG. 4B to associate each constant pattern with the set of
control lines that establish that pattern into the LRU state.

With a chronology vector implementation, an LRU-victim-
selection operation 1s accomplished by implementing an
equation for each member position. The equation for a given
member tests the same subset of n—1 bits (described above)
associated with that member in the MRU-update operation,
1.¢€., those bits which define the ordering between the member
and each of the other members 1n the congruence class. The
equation compares the tested bits against a constant pattern,
returning “true” if there 1s a match, and returning “false” 1t
there 1s not a match. As 1llustrated, one and only one of the
equations will return a *“true” value. The member position
associated with that equation 1s the victim member position.

For example, referring now to FIG. 5A, the constant pat-
terns are shown for a 501, b 502, ¢ 503, and d 504. With
reference to FIG. 5B, circuit diagram 5035 1llustrates the LRU-
victim-selection function 1n a manner familiar to those skilled
in the art. Constant patterns 501, 502, 503, and 504 from FIG.
5A are used to annotate the information lines 1n circuit dia-
gram 5035 1n FIG. 5B to associate each constant pattern with
the set of information lines that feeds the constant comparator
equation for that pattern.

As associativity increases, the chronology vector tech-
nique can become prohibitively expensive. Those skilled in
the art will recognize that less expensive “pseudo-LRU” poli-
cies are possible, which policies are roughly equal to “true”
LRU behavioral value, but may be implemented in hardware
with fewer bits required to track LRU state.

One such policy, well known 1n the art, 1s the tree-based
pseudo-LRU approach. In this hierarchical approach, a set of
multiple chronology vectors are organized as a tree of arbi-
trary depth. For non-leaf nodes of the tree, the number of
branches from the node 1s equal to the number of entities
ordered by the vector. Each leal node of the tree defines the
order amongst a subset of the members 1n a congruence class
equal in number to the ordering capacity of the vector.

To illustrate this, referring now to FIG. 6, an 8-way asso-
ciative cache 601 1s shown. Cache 601 1s comprised ol mul-
tiple congruence classes 602 and 603, which are typically
selected by a subset of the address of the cache line being
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referenced. Each congruence class 1s comprised of eight
members, member A 604, member B 605, member C 606,
member D 607, member E 608, member F 609, member G
610, and member H 611.

Often, tree-based LRU implementations are comprised of
single bit (2-entity) chronology vectors. For example, refer-
ring now to FIG. 7, examples of tree based LRU structures are
illustrated. In thus example, vector 700 forms the basis for
cach node 1n a binary tree 702, which 1s 3 levels deep 1n this
example. Binary tree 702 contains nodes 704, 706, 708, 710,
712,714, and 716. Seven single bit vectors, vectors 718, 720,
722,724,726, 728, and 730, are provided to track the state for
a binary-tree LRU scheme governing the 8-way associative
cache with member positions A 732, B 734, C 736, D 738, E
740, F 742, G 744, and H 746.

In another example, still referring to FI1G. 7, a combination
of (2-entity) and (4-enftity) vectors are used to construct a
different tree-based LRU scheme, as illustrated by tree struc-
ture 750 for an 8-way associative cache. In this example, tree
structure 750 1ncludes nodes 752, 754, and 756. Node 752
includes one bit chronology vector 758, while node 754 con-
tains six bit chronology vector 760, and node 756 contains six
bit chronology vector 762. These vectors are used to point to

member positions A 764, B 766, C768, D770, E 772, F 774,
G 776, and H 778.

The present invention refers to a chronology vector within
a tree-structure, such as that of tree structure 750, although
multiple different tree configurations are possible. Within the
exemplary tree structure, highest level node 752 includes one
bit chronology vector 758 that i1s referred to as the root/
control/pointer of the tree, which includes two additional
nodes 752 and 754, each having a six bit chronology vector,
representing the position of each member within a group
relative to each other. Those skilled in the art will appreciate
that the functionality of the one bit root/control/pointer vector
within the LRU victim selection process, as described below,
1s further applicable to other configurations with other
defined root/control pointer vectors.

Referring now to FIG. 8, a circuit diagram 801 1illustrates
the combination of varying size chronology vectors with a
tree-based scheme embodied in an MRU-update function for
the tree structure 750 shown 1n FIG. 7.

Referring now to FIG. 9A and FIG. 9B, a circuit diagram
901 illustrates the combination of varying size chronology
vectors with a tree-based scheme embodied in an LRU victim
selection function for the LRU tree 750 shown 1n FIG. 7.

Often, least recently used victim selection may be aug-
mented 1 various ways. One such way 1s with an mvalid
member select override policy. The coherency state ofa given
cache line occupying a member 1n the cache can be usetul 1n
determining whether or not that member should be replaced.
If the cache line 1s not valid, 1t 1s an ideal candidate for
replacement, since nothing i1s lost when the cache line 1s
over-written by a newly allocated cache line. The invalid
member select override policy determines whether an invalid
member exists 1n the congruence class from which a victim
must be selected. If one or more such members exist, the
policy chooses one of them as a victim, overriding the victim
selected by the primary selection policy.

Often, favorable operating characteristics and reduced
complexity implementations for a cache can be achieved
when the victim selection and state update portions of a cache
allocation policy are tightly integrated with a common pipe-
line for accessing the cache arrays, directory arrays, and
allocation policy (e.g. LRU) state arrays.

Further, in such implementations, further benefits are typi-
cally derived when the victim selection occurs as early as
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possible 1n the common pipeline, and when for each opera-
tional use of the pipeline, at most one cache allocation policy
state update 1s performed.

Referring now to FIG. 10, a cache architecture 1s 1llus-
trated. The cache congruence class index (or address) 1s held
in latch 1001. From there, the address i1s simultaneously
routed to the directory array 1002, the LRU state array 1003,
and, for operations which speculatively read the cache, to the
data array 1004.

From LRU state array 1003, the state information for the
accessed congruence class 1s read and deposited into latch
1005. The state bits 0 through 12 of LRU tree 750, found 1n
FIG. 7 are an example of such state information.

From staging latch 1005, the LRU state information 1s
routed to least recently used (LRU) victim selection logic
1006, which 1s comprised largely of LRU victim selection
logic such as that shown in circuit diagram 901, found 1n FIG.
9A and FIG. 9B. This logic always chooses a potential victim,
whether one 1s needed or not. The selected victim member
position 1s deposited 1n latch 1009. It selected victim was not
needed, the LRU state will not be changed accordingly. This
tunction will be described with the MRU update logic.

In addition to speculatively selecting a victim, victim
selection logic 1006 also passes along some or all of the LRU
state information to MRU update logic 1012, via pipelined
latches 1010 and 1011. For implementations which cannot
selectively write some bits to a given entry 1n LRU state array
1003, while leaving other bits 1n that entry unchanged, latches
1010 and 1011 must convey all the LRU state information
(since all bits will be written when the array 1s updated). For
implementations which can selectively write some bits to an
entry 1n array 1003, while leaving other bits 1n that entry
unchanged, latches 1010 and 1011 need only an indication of
which member was selected as a victim.

A subset of the attributes of an operation and/or static mode
switch settings 1s placed in latch 1007. From there, 1t 1s routed
to LRU victim select logic 1006, which may be augmented by
a set ol operational modes and possibly by one or more
congruence class partitioning policies, well known to those of
ordinary skill in the art.

Referring once again to FIG. 10, the least recently used
victim selection logic 1006 may also be augmented by an
invalid member select override policy. The invalid member
select override policy makes use of cache member state infor-
mation typically found 1n the cache directory 1002. A subset
of the coherency state information (e.g., the valid bit) for all
the members 1n the congruence class (indexed by 1001) 1s
read from the directory 1002 and placed in latch 1008. From
there, 1t 1s routed to the LRU victim select logic 1006, which
may be augmented by an invalid member select override
policy.

Referring once again to FIG. 10, the MRU update logic
1012 recerves a pipelined indication of which member was
speculatively selected as a potential victim from staging latch
1011. Meanwhile, the contents of the associated congruence
class lookup 1n the directory 1002 were latched 1013 and
routed to the compare and decode logic 1014.

The compare and decode logic 1014 determines whether
the operation 1s a cache hit, and if so, which member 1n the
congruence class 1s the hit member. This logic also deter-
mines whether or not the operation must be aborted due to a
collision with a protected resource, or due to a permission
conilict between the operation type and the coherence state of
the cache line.

The “hit member” information indicates one of the follow-
ing: no operation occurred (either there was no operation at
that time or the operation was aborted), a cache miss
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occurred, or a cache hit occurred against a given member
position. The “hit member” information i1s deposited into
latch 1015, and pipelined forward to latch 1016, from which
it 1s routed to the MRU update logic 1012.

In the MRU update logic 1012, the following information
1s collected for a given operation: whether or not an operation
occurred (from latch 1016); 11 1t occurred, whether the opera-
tion was a hit or miss ({from latch 1016); 11 1t was a hit, which
member position contained the cache line that was hit (from
latch 1016); 11 1t was a miss, which member position was
chosen to allocate the new cache line (from latch 1011).

If no operation occurred, the LRU state will remain
unchanged. It a hit operation occurred, the LRU state will be
updated such that the hit member position 1s established as
MRU. If a miss operation occurred, the LRU state will be
updated such that the allocated member position 1s estab-
lished as MRU. Circuit diagram 801 1in FIG. 8 shows an
example implementation of this MRU update function.

The updated LRU state information 1s deposited in latch
1017, poised for writeback into the LRU state array 1003. For
implementations which cannot selectively write some bits to
a given entry 1n the LRU state array 1003, while leaving other
bits 1n that entry unchanged, latch 1017 holds the entire
contents of the entry to be written 1nto the array. It must
convey all the LRU state information (since all bits will be
written when the array 1s updated). For implementations
which can selectively write some bits to an entry 1n array
1003, while leaving other bits in that entry unchanged, latch
1017 consists of a write enable mask (indicating which bits of
the entry will be written), as well as a vector of update bit
values (for bits that will be written according to the mask).

Those of ordinary skill 1n the art will recognize the follow-
ing properties. The state information for the mvalid member
selection override exists in the directory 1002. As caches
ogrow larger (aifecting size of data array 1004, directory array
1002, and LRU state array 1003), the latency through a direc-
tory 1002 and to the victim selection logic 1006 grows rela-
tive to the latency through the LRU state array 1003 to the
victim selection logic 1006. Also, the circuit complexity (and
latency) grows beyond what 1s shown 1n circuit diagram 901
of FIG. 9A and FIG. 9B. Increases 1n the aggressiveness of
processor operating frequencies compound this latency dif-
ference, making 1t more and more difficult to balance the
desire to select a victim early with difference in latency
between early arriving LRU state info (from latch 1005) and
ever-later arriving invalid cache state info (from latch 1008).

Referring now to FIG. 12, a cache architecture including
LRU augmentations 1s depicted. In this example, the cache
congruence class index (or address) 1s held in latch 1201.
From there, the address 1s simultaneously routed to the direc-
tory array 1202, the LRU state array 1203, and, for operations
which speculatively read the cache, to the data array 1204.

From LRU state array 1203, the state information for the
accessed congruence class 1s read and deposited into latch
1205. The state bits 0 through 12 of LRU tree 750, found 1n
FIG. 7 are an example of such state information.

From staging latch 1205, the LRU state information 1s
routed to least recently used (LRU) victim selection logic
1206, which 1s comprised largely of LRU victim selection
logic such as that shown 1n circuit diagram 901, found 1n FIG.
9A and FIG. 9B. This logic always chooses a potential victim,
whether one 1s needed or not. The selected victim member
position 1s deposited 1 latch 1209. If selected victim was not
needed, the LRU state will not be changed accordingly. This
function will be described with the MRU update logic.

In addition to speculatively selecting a victim, victim
selection logic 1206 also passes along some or all of the LRU
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state information to MRU update logic 1212, via pipelined
latches 1210 and 1211. For implementations which cannot
selectively write some bits to a given entry 1n LRU state array
1203, while leaving other bits 1n that entry unchanged, latches
1210 and 1211 must convey all the LRU state information
(since all bits will be written when the array 1s updated). For
implementations which can selectively write some bits to an
entry 1n array 1203, while leaving other bits 1n that entry
unchanged, latches 1210 and 1211 need only an indication of
which member was selected as a victim.

A subset of the attributes of an operation and/or static mode
switch settings are placed in latch 1207. From there, it 1s
routed to LRU victim select logic 1206, which may be aug-
mented by a set of operational modes and possibly by one or
more congruence class partitioning policies.

To avoid the circuit timing challenges imposed by the
invalid member select override policy described n FIG. 10,
the mechanism utilizes 1invalid member information to bias
the LRU state when an LRU state update occurs, not during,
victim selection. This process was the focus of related patent
application, Ser. No. 10/425,459, which has previously been
incorporated herein.

To thus purpose, the cache line valid information read from
the directory 1202 and placed in latch 1208, 1s no longer
routed to the victim select logic 1206. Rather the invalid
member select override policy 1s removed altogether from
victim select logic 1206.

Instead, the information from latch 1208 1s pipelined
through latch 1220 to the anti-MRU vector generation logic
1221. This information consists of a vector (from latch 1220)
comprised of one bit per member 1n the congruence class. For
each member, the bit indicates whether or not the member 1s
valid, with a “1” value indicating that the cache line 1n a given
member position 1s valid, and a “0” value indicating that the
cache line 1n a given member position 1s not valid (1.e., desir-
able for replacement).

The LRU state vector ({rom latch 1210)1s also routed to the
anti-MRU vector generation logic 1221. From this state vec-
tor, the victim member selected by logic 1206 1s determined.

An anti-MRU vector 1s generated by altering the informa-

tional vector from latch 1220 1n the following manner: All of

the bits 1n the informational vector from latch 1220 are passed
unchanged to the anti-MRU vector, with the exception of the
bit corresponding to the victim member (as indicated in the
[LLRU state vector information from latch 1210). Thas particu-
lar bit 1n the anti-MRU vector 1s set to a “1” value. This will
prevent the update logic from biasing the allocated member
(which should be marked as MRU ) with an anti-MRU update.

The anti-MRU vector 1s deposited in latch 1222, from
which 1t 1s routed to the augmented MRU update logic 1212.
In addition, the augmented MRU update logic 1212 receives
a pipelined indication of which member was speculatively
selected as a potential victim from staging latch 1211. Mean-
while, the contents of the associated congruence class lookup
in the directory 1202 were latched 1213 and routed to the
compare and decode logic 1214.

The compare and decode logic 1214 determines whether
the operation 1s a cache hit, and if so, which member in the
congruence class 1s the hit member. It also determines
whether or not the operation must be aborted due to a collision
with a protected resource, or due to a permission contlict
between the operation type and the coherence state of the
cache line.

The “hit member” information indicates one of the follow-
ing: no operation occurred (either there was no operation at
that time or the operation was aborted), a cache miss
occurred, or a cache hit occurred against a given member
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position. The “hit member” information i1s deposited into
latch 1215, and pipelined forward to latch 1216, from which
it 1s routed to MRU update logic 1212.

In augmented MRU update logic 1212, the following infor-
mation 1s collected for a given operation: whether or not an
operation occurred (from latch 1216); 11 1t occurred, the anti-
MRU vector (from latch 1222); 1f 1t occurred, whether the
operation was a hit or miss (from latch 1216); 11 it was a hat,
which member position contained the cache line that was hit
(from latch 1216); i 1t was a miss, which member position
was chosen to allocate the new cache line ({from latch 1211).

If no operation occurred, the LRU state will remain
unchanged. It a hit operation occurred, the LRU state will be
updated such that the hit member position 1s established as
MRU. If a miss operation occurred, the LRU state will be
updated such that the allocated member position 1s estab-
lished as MRU.

In addition, 1f any operation occurred, an “anti-MR
update occurs for each member 1n the congruence class indi-
cated by the anti-MRU vector. The anti-MRU update per-
forms the opposite function as an MRU update. While an
MRU-update reorders one member with respect to all other
members, establishing that one member as the most favored,
an ant1i-MRU update reorders one member with respect to all
other members, establishing that one member as the least
favored.

MRU update logic 1212 takes advantage of a property of
chronology vectors, which property allows multiple update
operations to be carried out upon a chronology vector simul-
taneously. Utilizing this property, the MRU update function
performs one MRU-update and multiple “anti-MRU” updates
simultaneously.

Of course, given the definition of these operations, their
behavior can only be defined as occurring in some particular
order relative to one another. When taking advantage of chro-
nology vectors to perform multiple updates simultaneously,
the ordering 1s biased either toward “1” encodings (set-domi-
nant) or “0” encodings (reset-dominant).

In these examples, cache directory 1202 1s read for both
hits and misses. An MRU update by augmented MRU update
logic 1212 occurs 1n both cases. As aresult, an anti-MRU bias
for a given congruence class may be performed for any hit or
miss to that congruence class.

Referring once again to FIG. 12 the updated LRU state
information 1s deposited 1n latch 1217, poised for writeback
into the LRU state array 1203. For implementations which
cannot selectively write some bits to a given entry in the LRU
state array 1203, while leaving other bits in that entry
unchanged, latch 1217 holds the entire contents of the entry to
be written 1nto the array. It must convey all of the LRU state
information (since all bits will be written when the array 1s
updated). For implementations which can selectively write
some bits to an entry 1in array 1203, while leaving other bits 1n
that entry unchanged, latch 1217 consists of a write enable
mask (1indicating which bits of the entry will be written), as
well as a vector of update bit values (for bits that will be
written according to the mask).

As described 1n greater details 1n co-pending and related
patent application, Ser. No. 11/054,390, certain operations
are occasionally desired to be protected from being selected
as victims during LRU victim selection, such as when unbal-
anced caching behavior occurs. Thus, the related application
provides a method and apparatus for enabling protection of a
particular member of a congruence class of a cache during
LRU victim selection. Some of that description 1s repeated
herein for completeness, though some details have been
removed.

22
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[LRU state array within the cache architecture 1s expanded
to include additional “protection’ bits 1n addition to the state
bits utilized for LRU victim determination and selection. The
protection bits serve as a pointer to identify the particular
member of the congruence class that 1s to be protected. A
protected member 1s not removed from the cache during
standard LRU victim selection, unless that member 1s 1nvalid.

The MRU update logic includes logic for overrniding the
default make MRU handling of the protected member when
that member 1s determined to be Invalid. To prevent the make
MRU process for a protected member from biasing the nor-
mal victim selection mechanism to always point away from

the group with the protected member 1n a tree-based scheme,
a separate make MRU operation, called make root MRU, 1s
introduced for determining when to toggle/update the con-
trol/host/root bit (LRU state bit 0) in the chronology tree
structure The make MRU operation thus atfects only the other
LRU state bits (e.g., bits 1-12 for an 8 member congruence
class represented by two levels 1n the tree structure). The
make MRU generated by the protection bits thus only protects
the specific member and does not affect the normal operation
of LRU victim selection logic for all other members.

The LRU state array 1s expanded to include three additional
LRU state bits per entry, referred to herein as “protection bits™
(or member protection bits). Internal views of the number and
allocation of the state bits for one entry within a conventional
LRU state array and within an expanded LRU state array are

respectively provided by FIGS. 11A and 11B, described in
the related patent application.

As now described, the addition of the member protection
bits directly affects MRU allocation within the augmented
MRU update logic (1512). As described below, augmented
MRU update logic (1512) 1s expanded to include several logic
components required to support the member protection func-
tionality associated with the protection bits.

FI1G. 14 1llustrates an expanded block diagram representa-
tion of a cache architecture 1n which the member protection
bits are pipelined from LRU state array to MRU update logic.
As 1llustrated, the protection bits are latched through a series
of latches, while LRU victim selection with I-state biasing
and D-state steerage to MRU 1s being carried out. The biasing
of I states 1s described above, accompanying the description
of FIG. 12. An analysis of the path of the protection bits
through the cache 1s now provided to more completely
described the mechanisms involved. D-state steerage to
MRU, which 1s the focus of the present invention, 1s described
below and occurs independent of the pipelining and process-
ing of the member protection bits.

Since some of the logic blocks and associated processes of
FIG. 14 have previously been described in FI1G. 12, only these
logic blocks and processes relevant to the enhancements 1llus-
trated within FIG. 14 are given detailed coverage in the fol-
lowing description. That 1s, the description of FIG. 14 focuses
on the pipeliming of the member protection bits and associ-
ated functionality. Additional logic required to complete the
actual determination and final selection of the protected

member for MRU protection are provided in the circuit dia-
gram ol FIGS. 13A-13C and logic diagram of FIG. 15.

Similar to the above description of FIG. 12, the cache
congruence class index (or address) 1s held in latch 1401.
From there, the address 1s simultaneously routed to the direc-
tory array 1402, the LRU state array 1403, and, for operations
which speculatively read the cache, to the data array 1404.

From LRU state array 1403, the 13 state bits for the
accessed congruence class 1s read and deposited into latch
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1405. Contemporaneously with forwarding the 13 state bits to
latch 1405, the member protection bits are placed 1nto a first
latch 1430.

Victim selection logic 1406 selects a victim (via mecha-
nisms/processes described above) and the selected victim
member position 1s deposited 1n latch 1409. Victim selection
logic 1406 then passes along some or all of the LRU state
information to MRU update logic 1412, via pipelined latches
1410 and 1411. As described above, the “hit member’” infor-
mation 1s deposited into latch 1415, and pipelined forward to
latch 1416, from which 1t1s routed to MRU update logic 1412.
Further, anti-MRU logic generates an anti-MRU vector,
which 1s also routed from latch 1422 to MRU update logic
1412.

Contemporaneously with the above processes, member
protection bits are also passed to MRU update logic 1412 via
pipelined latches 1435 and 1440. The use of pipelined latches
1435 and 1440 enables member protection bits to arrive at
augmented MRU update logic 1212 at substantially the same
time as the LRU state information, hit member vector (from
latch 1416) and anti-MRU vector (from latch 1422).

Also, as the member protection bits are being passed
through the cache circuitry, attributes of the operation are
latched at operation attribute latch 1407 and these attributes
are pipelined to MRU update logic 1412 via latches 1418 and
1428. The attributes are utilized 1n the selection process for
determining when a new member (or different instruction) 1s
to be selected for protection. In one embodiment, the
attributes indicate whether or not the operation 1s an instruc-
tion fetch (I-fetch) operation, and the protection bits are
updated so that they point to the member hosting the fetched
instruction.

The logic flow associated with hit member, LRU state
information, and anti-MRU vector inputs were previously
discussed with reference to FIG. 12. Features related to each
other input are addressed above, and the current description
references those mputs only where they impact the process-
ing of the member protection bits as related to the present
invention. Most important for the present invention(s) 1s the
information related to the processing of the Deleted vector
iput (from latch 14350), as described 1n the titled section
below.

Also, according to the invention, augmented MRU update
logic 1412 takes advantage of a property of chronology vec-
tors, which property allows multiple update operations to be
carried out upon a chronology vector simultaneously. Utiliz-
ing this property, the MRU update function 1s able to perform
multiple make MRU updates and multiple “anti-MRU”
updates simultaneously. When taking advantage of chronol-
ogy vectors to perform multiple updates simultaneously, the
ordering 1s biased either toward “1” encodings (set-domi-
nant) or “0” encodings (reset-dominant).

Turming now to FI1G. 15, there 1s 1llustrated a block diagram
representation of the augmented MRU updated logic 1512,
which includes additional logic components required to sup-
port the additional inputs of member protection bits and
D-state MRU vector. MRU update logic 1212 increases 1n
complexity because of the addition of the protected bits and
functionality associated therewith. Most importantly, the less
complex configuration requires a single make MRU 1nput
vector (from hit member vector and anti-MRU vector) sent to
amake MRU/LRU logic. This single make MRU 1nput vector
1s utilized to toggle all of the 13 chronology vectors (LRU
state bits 0-12). An exemplary circuit illustrating the single
inputs to the make MRU/LRU logic to support FIG. 12 1s
provided as FIGS. 13A-13B of co-pending application, Ser.
No. 10/425,459, previously incorporated herein by reference.
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The 1llustrative embodiment of the ivention refers to the
chronology tree structure of FIG. 7, which defines a specific
2-level chronology relationship between the 8 members of the
congruence class using 13 bits. As explained above, bit 0 of
the LRU state bits 1s a pointer that takes on one of two values, 5
a first value “0” pointing to the chronology vectors of the first
group of members (bits 1-6, which indicates the precise
ordering of cache lines A, B, C, and D) and a second value “1”
pointing to the right set of lower level bits (bits 7-12, which
indicates the precise ordering of cache lines E, F,G, and H). 10

Because the 0 bit serves as the control bit 1n a tree-like
configuration of bits (as illustrated by FIG. 7), the O bit 1s
hereinafter referred to as the root bit for the chronology tree.
The term “‘root” 1s utilized to refer more generally to the
pointer position 1n a tree of chronology vectors. 15

Within the context of a protected member and/or a D-state
non-victim selection, the logic of the conventional victim
selection using the 13 state bits breaks down, unless adequate
consideration 1s given to the biasing features of the protected
member and/or D-state member being made MRU during 20
every iteration of the LRU victim selection process. With
previous configurations of MRU update logic 1212, when
statically set states (such as the D state and member protected
state) are introduced 1nto the make MRU process, these static
states cause the root (0) bit to always point the LRU victim 25
selection logic away from the sub-group that contains the
static state member. The static state member 1s made MRU
during each 1teration, and thus the root bit 1s biased to always
point to the other sub-group, away from the recently estab-
lished MRU member. 30

Thus, for example, 1f member F (of sub-group EFGH) 1s
deleted, then for every iteration, state bit 0 will be always set
to point away from group EFGH and towards group ABCD),
clfectively disabling one half of the cache from victim selec-
tion and negatively impacting correct operation of the cache. 35
Rather than protecting the protected member or hiding the
Deleted member, the conventional MRU update logic 1212
protects every member of an entire sub-group of cache lines
(e.g., EFGH) from ever being selected as a victim. This 1s an
unintended and undesirable consequence. 40

The invention thus implements a new configuration of
MRU update logic (1512) that supports/provides separate
handling for updating the root bit and the other state bits. The
separate handling 1s required so that a static state member
does not prevent the LRU victim selection process from hav- 45
ing access to both groups of members (via the chronology
bits) within the congruence class. Thus, the invention intro-
duces a make root MRU input, by which the root bit is
updated. Make root MRU provides a separate set of mputs
from the make MRU inputs, which now only affect the 50
remaining 12 LRU state bits (chronology vectors). The new
make MRU vectors thus update only the LRU state bits 1-12,
and a separate set of vectors to make root MRU input are
utilized to set/toggle the root bit 0.

While aspects of the invention are described with reference 55
to a particular LRU scheme of chronology vectors, e.g., a 2
level LRU scheme, those skilled in the art will appreciate that
the invention 1s applicable to any multi-level (1.e., not just a
two-level) tree LRU scheme. The invention requires a multi-
entity chronology vector (e.g., a 4-entity vector as provided in 60
the 1llustrated embodiment) 1n the leat (or bottom) level of the
tree. The mvention restricts non-root MRU updates to atfect
the leal (or bottom) level only, leaving the root and any
intermediate levels unchanged. While intermediate levels are
not 1llustrated or described in the above embodiment, those 65
skilled 1n the art will further appreciate that the technique
provided 1s applicable to such multi-level schemes.
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The circuitry provided in FIG. 13A-13C and specifically
13B allows for this features. FIGS. 13A-13C 1illustrate an
internalized view of the circuitry within make MRU/LRU
logic 1526. Specifically, FIG. 13B illustrates the new set of
inputs to the circuit, make root MRU, which determine
whether the root bit 1s to be toggled during a make MRU
process. The general functionality associated with the gen-
cration of these mputs as well as other features of the mven-
tion are now described. As will be clear with the below
description of FIG. 15, the make root MRU 1nput 1s triggered
only when a make MRU function 1s triggered that results from
a hit or victim member selection.

Returning now to FIG. 15, augmented MRU updated logic
1512 recerves as mput (1) LRU state vector 1508 (a 13 bait
wide mput vector representing the current LRU states), (2)
ant1-MRU vector 1506 (an 8 bit wide vector that feeds nto
AND/NOT gate 1554, which feeds the make MRU 1nput to
make MRU/LRU logic 1526), (3) hit member vector 1504
(also an 8 bit vector that feeds into MUX 1516, whose func-
tionality 1s described below), and (4) member protection bits
(LRU state bits 13-15 1dentitying a pre-selected member that
1s to be protected).

In addition to the above mputs, an MRU vector 1550 (an 8
bit vector representing Delete state member(s)) 1s 1llustrated.
However, the functionality associated with MRU vector 1550
1s described 1n the section below titled “D-State Steerage to
MRU.”

MRU update logic 1512 includes make MRU/LRU logic
1526, which receives four sets of inputs. These inputs are: (1)
13 bit LRU state vector 1508; (2) 8 bit make LRU vector
1558; (3) 8 bit make MRU vector 1557; and (4) 8 bit make
root MRU vector 1556. The 13 bit LRU state vector, recetved
directly from staging latch 1411, has been previously
described. Each of the other inputs are derived from a selec-
tion process/pipeline, including one or more logic compo-
nents and multiple permutations of the above mputs to MRU
update logic 1512. For example, with the addition of the
member protection bits and D-state vector, three sets of inputs
are ORed together to provide the single “make MRU” mnput
vector.

Member protection bits 1502 are routed to decode block
1522, which converts the 3 bit mnput into an 8 bit vector
(member protection vector 1503), each bit representing a
member within the congruence class with the bit correspond-
ing to the protected member set to logic 1, while all other bits

are set to logic 0. This member protection vector 1503 1s then
routed to AND/NOT gate 1552, which also receives anti-

MRU vector 1506 as an input from latch 1422. AND/NOT
gate 1552 mverts the anti-MRU vector, and the combination
of both allows an MRU update for the member when the
member 1s not Invalid. The anti-MRU vector 1s used to find an
Invalid cache line and make 1t LRU. Making the cache line
LRU conftlicts with any attempts to make the protected mem-
ber MRU, and the conflict 1s resolved 1n favor of the inverted
ant1-MRU input overriding the “default” make MRU status of
the previously protected member.

Protection of members 1n the mvalid state may occur
because, during mitial start up of the cache, the protection bits
defaults to one of the members (e.g., the member at location
000), before the cache becomes populated. The selected
member becomes the 1mitial protected member before that
member has valid information stored therein. This condition
1s treated as a “don’t care” condition, since the protection bits
point to a stale or invalid member, which may eventually be
selected as an LRU victim with the above described logic.

A 0 output of the AND/NOT gate 1552 disables/turns off
the make MRU function for that member and thus makes the




US 7,831,774 B2

17

member eligible for victim selection as an Invalid member. A
1 output, however, results 1n the member being made MRU,
indicating the member 1s valid and 1s protected from victim
selection.

The output of AND/NOT gate 1552 represents one input to
OR logic 1518, which receives two additional mputs, MRU
vector 1550 and the output 1505 from MUX 1516. MRU
vector 15350 or “delete” MRU vector 1s described below. The
three mputs are all ORed together to provide a single make
MRU vector 1557 that 1s inputted to make MRU/LRU logic
1526.

MUX 1516 recerves as its inputs hit member vector 1504
and select victim member vector 1511 (from infer victim
member logic 1510). MUX 1516 also receives a (single bit)
select input from hit determining logic 1514. Hit determining
logic 1514 indicates when a hit occurs within the cache,
which also indicates that hit member vector 1504 should be
selected as the output at MUX 1516. When the request misses
at the cache, however, and a victim member 1s selected, the
select signal forwards the victim member vector 1511 as the
output at MUX 1516. Otherwise, when there 1s no operation
or the operation was aborted, a 0 vector 1s outputted.

The output of MUX 1516 i1s routed to encode logic 1520.
Encode logic 1520 takes the 8 bit vector and generates a 3 bit
pointer corresponding to the vector (1.e., pointing to the loca-
tion of the member 1dentified by the vector selected at MUX
1516), and the pointer 1s provided as one of two inputs to
protect selection MUX 1524. Protect selection MUX 1524
receives the member protection bits as 1ts second mput. Select
input 1528 selects one of the two 3-bit inputs as the output of
MUX 1524. Select input 1528 1s received from select latch
1428 and 1indicates whether the operation exhibaits the particu-
lar attribute that causes member protection to be extended to
the member recerving the new nstruction. The select input
1528 updates the protected bits to point to the member allo-
cated to the hit/victim member.

When the operation’s attribute indicates the operation 1s an
istruction (1.e., the operation exhibits the predetermined
attribute for selecting a member to be protected), the select
input 1528 triggers selection of the mput from the encode
logic 1520 as the output from protect selection MUX 1524.
This output represents new LRU state bits 13-15 1530, and
points to the member to be protected. Otherwise, member
protection bits 1502 are selected and the LRU state bits 13-15
1530 remains the same.

Hit/miss MUX 1516 also provides three output I

lines uti-
lized 1n generation of the three inputs to make MRU/LRU
logic 1526. The first output 1s to make root MRU 1556, which
1s an 8 bit vector that triggers when the root bit (LRU state bit
0) 1s updated. The functionality associated with make root
MRU 1556 1s described above. As shown, the make root MRU
1556 receives an mput vector only when a hit member vector
or a victim select vector 1s selected at MUX 1516. When
neither condition occurs, make root MRU 1556 recetves anull

input and the root bit 1s not updated/toggled.
The second output from Hit/Miss MUX 1516 1s to OR logic

1518, which has been described above. The hit member and/
or selected victim member 1s made MRU (LRU bits 1-12) via
this input, which triggers input 1556. Finally, the third output
1s provided as mput to a second AND/NOT gate 1552. The
second mput to AND/NOT gate 1552 1s anti-MRU vector
1506, which selects the member 1n the I states as the member
to make LRU. AND/NOT gate 1554 provides a make LRU
output vector which serves as the third input to make MRU/
LRU logic 1526. Accordingly, a member that is the anti-MRU
member 1s only made LRU when that member 1s not also the
hit member or the selected victim member. If the anti-MRU
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member 1s the current hit member of selected victim member,
then the make LRU function/operation for that member 1s
overridden, because the member cannot be both LRU and
MRU at the same time. This override occurs because the
selected victim 1s being replaced by a new valid entry, which
becomes a MRU member and thus should not be tagged for
LRU victim selection.

Output from augmented MRU update logic 1512 thus
includes all components of the new LRU state vector. These
are LRU state bits 0, 1-12 1532, indicating which member to
select as LRU victim during the next victim selection process,
as well as LRU state bits 13-15 1530, pointing to/indicating
the member within the congruence class to be protected.
These output bits are then routed to and stored within the LRU
state array 1403, replacing the previous LRU states within the
LRU state array 1403.

D-State Steerage to MRU

In addition to the above described protection for select
members, special pipelining and processing is also provided
for members that are 1dentified with D states within the cache
directory. This added feature runs in parallel to the above
described processes, but provides direct MRU steerage for all
delete (D) states within a set. Special handling of members
tagged with the D state 1s required because of the potential for
the D state to be selected as a victim and crash the system.
References to this special handling of D states have been
made above. A more detailed analysis of that process 1s now
provided.

The invention provides an improved method and apparatus
for preventing selection of Deleted (D) members as an LRU
victim during pipelined operations for LRU victim selection.
During each cache access targeting the particular congruence
class, the deleted cache line 1s 1dentified from information in
the cache directory. A location of a deleted cache line 1s
pipelined through the cache architecture during LRU victim
selection. The information 1s first latched and then passed to
MRU vector generation logic, which generates a D member
MRU vector. The MRU vector 1s passed to the MRU update
logic, which tags the deleted member to be treated as a MRU
member.

The tagging of the deleted cache line as MRU may occur
contemporaneously with other members of the congruence
class also being tagged MRU. In one embodiment, MRU
selection of a D cache line occurs contemporanecously with
member protection of other cache lines and while biasing
I-states Tor LRU victim selection.

The hardware/logic by which this additional make MRU
function 1s supported 1s illustrated within FIG. 14 and FIG.
15. The invention thus further expands the cache architecture
to enable steering the victim selection process away from ever
selecting any member in the D state. This 1s achieved while
still biasing the MRU steerage for I-states, and while protect-
ing members 1dentified by the protection bits, as described
above.

As shown by FIGS. 14 and 15, additional logic components
(latches, vector generation logic etc.) are provided to avoid
the selection of a member tagged with a D state by marking as
MRU all members 1n D state. Once made MRU, the member
(s) in the D state 1s not selected during victim selection.

With reference to FIG. 14, a separate D-state pipeline 1s
provided through the cache circuitryj overlapping in some
places with the I-state pipeline, described above. The D-state
pipeline avoids the circuit timing challenges imposed by the
selection process for the deleted member by utilizing deleted
member mformation to bias the MRU state when an MRU
state update occurs. The D-state biasing 1s different from the
I state biasing since the I-state biases the LRU victim selec-
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tion to select the member 1n the I-state during the next victim
selection. The D state, 1n contrast forces the MRU selection to
always tag as MRU the member in the D state and prevent
selection of the member during each subsequent victim mem-
ber selection.

To 1nsure that the impact of a compartment deletion 1s
accounted for during the mnitial victim selection process, the
logic that writes the D-state to the cache directory 1402 1ni-
tiates at least one cycling of the victim selection logic shown
in FIG. 14 so that the D-state 1s read from directory 1402, and
a corresponding MRU vector passed mto augmented MRU
update logic 1412, so as to impact the new LRU state 1417
that 1s written back to LRU array 1403. The 1nitial cycling 1s
performed prior to any subsequent cycling of the logic for the
same congruence class address, so that the subsequent
cycling of the logic (for a victim selection) will observe the
new LRU state (aflected by the deletion) when 1t reads the
state from LRU array 1403 to forward to LRU victim selec-
tion logic 1406.

During each subsequent cycle, cache directory 1402 1s read
for deletions 1n addition to hits, misses and 1nvalid states,
since MRU update 1s triggered in each case at augmented
MRU update logic 1412 occurs in all cases. A deleted member
1s 1dentified within the cache directory 1202 and the member
identifying information 1s pipelined through set state latch
1408 and latch 1420 to MRU vector generation logic 1445.
The pipelining of D-state information and generation of
D-state MRU vector 1s completed contemporaneously with
the I-state pipelining and anti-MRU vector generation and
LRU victim selection. The information provided within set
state information latches 1408 and 1420 indicates/provides
all information about a set, including both whether the mem-
ber 1s tagged with an I state or whether the member 1s tagged
with a D state, etc. All set state information 1s then pipelined
together 1n single set state information latches 1408 and 1420.
The MRU and anti-MRU split for D-states and I-states,
respectively, then occurs once the set state information 1s
torwarded past the latch 1420.

Vector generation logic 1445 takes the information
received from latch 1420 and generates a D-state MRU vec-
tor, which 1s placed 1n latch 1450. D-state MRU vector com-
prises one bit per member 1n the congruence class. For each
member, the bit indicates whether or not the member 1s
deleted, with a “0” value indicating that the cache line 1n a
grven member position 1s operational (not deleted), and a “1”
value indicating that the cache line 1n the given member
position 1s deleted.

The D-state MRU vector 1s deposited 1n latch 1450, from
which the vector 1s sent/forwarded to augmented MRU
update logic 1412. As described above, 1n addition to this
MRU vector, augmented MRU update logic 1412 receives a
pipelined indication of which member was speculatively
selected as a potential victim from staging latch 1411, which
member 1s protected from member protection latch 1440,
information on the attributes of the operation from attribute
latch 1428, the contents of anti-MRU vector latch 1422, and
a hit member vector, 11 any, from hit member latch 1416.

Referring again to FIG. 15, when a D-state MRU vector 1s
pipelined through the logic of FIG. 14 to MRU update logic
1512, D-state MRU vector 1s sent as one of multiple inputs to
OR gate 1518. This 8-bit D state MRU vector 1550 adds to the
list of members that are eventually made/tagged as MRU.

In one embodiment, a restriction 1s built into the process-
ing/handling of the D-state members. I1 the leal nodes 1n the
LRU tree are comprised of k-entity chronology vectors, then
only (k-1) compartments (cache lines) may be deleted per
congruence class subset ordered by a given chronology vec-
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tor. Deletion of k cache lines would result 1n a crash of the
system as the cache 1s faulty. Thus, the features of the inven-
tion/application are applicable for only caches with at least
one valid, undeleted member/cache line.

Thus, the present imvention also provides an improved
method, apparatus, and computer for augmenting the make
MRU process during selection of victims (LRU members).
The mechanism of the present invention uses data from the
cache directory to 1identity deleted cache lines. In response to
detecting a deleted line, the deleted line 1s selected/biased to
be made MRU, thus preventing the line from being marked or
biased to be a victim. In this manner, this deleted cache line 1s
marked as MRU when the subsequent victim selection pro-
cess occurs (whether due to a cache hit or during a cache
miss). In the depicted examples, if multiple deleted cache
lines are present, each of those cache lines are selected to be

the made MRU.

As a final matter, 1t 1s 1mportant to note that while an
illustrative embodiment of the present mvention has been,
and will continue to be, described 1n the context of a fully
functional computer system with installed management sofit-
ware, those skilled 1n the art will appreciate that the software
aspects of an 1llustrative embodiment of the present invention
are capable of being distributed as a program product 1n a
variety of forms, and that an 1llustrative embodiment of the
present mnvention applies equally regardless of the particular
type of signal bearing media used to actually carry out the
distribution. Examples of signal bearing media include
recordable type media such as tfloppy disks, hard disk drives,
CD ROMs, and transmission type media such as digital and
analogue communication links.

The description of the present invention has been presented
for purposes of 1illustration and description, but 1s not
intended to be exhaustive or limited to the invention 1n the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill 1n the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

What 1s claimed 1s:
1. A memory component comprising:

a first pipeline path for selecting a least recently used
(LRU) victim member from a congruence class;

a mechanism for biasing a faulty member of the memory
component against being selected as the victim member
by the first pipeline path, said faulty member corre-
sponding to a cache line that is unable to provide proper
caching operation, wherein the mechanism includes a
second pipeline path, separate from the first pipeline
path, for routing information about which member 1s a
faulty member;

an MRU update logic that includes logic for separately
making the faulty member MRU without affecting a
directional pointer of LRU selection chronology vectors
for a multi-level chronology vector LRU selection
mechanism; and

logic for generating a make MRU vector from an index
indicating one or more locations of faulty member(s)
and forwarding the make MRU vector to the MRU
update logic independent of pipelining and processing
of member protection bits for generating a final make
MRU wvector.

2. The memory component of claim 1, wherein said mecha-

nism includes:
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logic for concurrently pipelimng an index indicating a
location within the congruence class of the faulty mem-
ber that 1s unable to provide proper caching operation;
and

logic for tagging the faulty member as a most recently used
(MRU) member to prevent the selection of the faulty
member as the LRU victim member;

wherein the faulty member 1s tagged as one MRU member
contemporancously with other members of the congru-
ence class also being tagged MRU.

3. The memory component of claim 1, wherein said cache
line that 1s unable to provide proper caching operation 1s a
deleted line and said member 1s a D-state member, said
mechanism further comprising:

logic for determining which member among the congru-
ence class 1s a D-state member from per set state infor-
mation within a directory of the memory component;

an MRU vector generation logic, which generates a D
member MRU vector and passes the D member MRU
vector to MRU update logic, which tags the deleted
member to be treated as a MRU member; and

wherein said logic for tagging the faulty member includes
logic for tagging the D-state member as MRU, while
tagging other non-faulty members as MRU and biasing
I-states for LRU victim selection.

4. The memory component of claim 1, further comprising:

a cache directory; and

logic for responding to an operation at the cache directory
by 1ssuing per set state information to a pipeline process,
said per set state information utilized to determine which
member of the congruence class 1s unable to provide
proper caching operation.

5. The memory component of claim 1, wherein said mecha-
nism a for biasing a faulty member of the memory component
against being selected as the victim member by the first pipe-
line path includes logic for concurrently biasing multiple
faulty members against selection as a victim member.

6. A computer system comprising:

a processor; and

amemory component coupled to the processor and having:
a first pipeline path for selecting a least recently used

(LRU) victim member from a congruence class;

a mechanmism for biasing a faulty member of the memory
component against being selected as the victim mem-
ber by the first pipeline path, said faulty member
corresponding to a cache line that 1s unable to provide
proper caching operation, wherein the mechanism
includes a second pipeline path, separate from the first
pipeline path, for routing information about which
member 1s a faulty member;

an MRU update logic that includes logic for separately
making the faulty member MRU without affecting a
directional pointer of the LRU selection chronology
vectors for a multi-level chronology vector LRU
selection mechanism; and

10

15

20

25

30

35

40

45

50

22

logic for generating a make MRU vector from an index
indicating one or more locations of faulty member(s)
and forwarding the make MRU vector to the MRU
update logic independent of pipelining and process-
ing of member protection bits for generating a {inal
make MRU vector.

7. The computer system of claim 6, wherein said mecha-
nism includes:

logic for concurrently pipelining an index indicating a

location within the congruence class of the faulty mem-
ber that 1s unable to provide proper caching operation;
and

logic for tagging the faulty member as an most recently

used (MRU) member to prevent the selection of the
faulty member as the LRU victim member;

wherein the faulty member 1s tagged as one MRU member

contemporaneously with other members of the congru-
ence class also being tagged MRU.

8. The computer system of claim 6, wherein said cache line
that 1s unable to provide proper caching operation 1s a deleted
line and said member 1s a D-state member, said mechanism
turther comprising:

logic for determining which member among the congru-

ence class 1s a D-state member from per set state infor-
mation within a directory of the memory component;
and

said logic for tagging the faulty member includes logic for

tagging the D-state member as MRU, while tagging
other non-faulty members as MRU and biasing I-states
for LRU victim selection.

9. The computer system of claim 6, said memory compo-
nent further comprising:

a cache directory; and

logic for responding to an operation at the cache directory
by 1ssuing per set state information to a pipeline process,
said per set state information utilized to determine which
member of the congruence class 1s unable to provide
proper caching operation.

10. The computer system of claim 6, wherein said mecha-
nism for biasing a faulty member of the memory component
against being selected as the victim member by the first pipe-
line path, mcludes:

an MRU vector generation logic, which generates a D
member MRU vector and passes the D member MRU
vector to MRU update logic, which tags the deleted

member to be treated as a MRU member;

wherein said logic for tagging the faulty member includes
logic for tagging the D-state member as MRU, while
tagging other non-faulty members as MRU and biasing
[-states for LRU victim selection; and

logic for concurrently biasing multiple faulty members
against selection as a victim member.
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