US007830905B2
a2 United States Patent (10) Patent No.: US 7.830.905 B2
Scott et al. 45) Date of Patent: Nov. 9, 2010

(54) SPECULATIVE FORWARDING IN A (56) References Cited

HIGH-RADIX ROUTER U.S. PATENT DOCUMENTS

(75) Inventors: Steven L. Scott, Chippewa Falls, W1 6,115373 A * 9/2000 Lea ..oceovvevrererenennan. 370/355
(US); Gregory Hubbard, Chippewa 6,990,096 B2* 1/2006 Normanetal. 370/386

Falls, WI (US): Kelly Marquardt. 2005/0259696 Al* 11/2005 Steinman etal. 370/535

2008/0126620 Al* 5/2008 Vashisthetal. 710/52

Chippewa Falls, WI (US); Roger A.
Bethard, Chippewa Falls, WI (US);

| * cited by examiner
Dennis C. Abts, Eleva, WI (US)

Primary Examiner—Thong H Vu

(73) Assignee: Cray Inc., Seattle, WA (US) (74) Attorney, Agent, or Firm—Schwegman, Lundberg &
Woessner, P.A.

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 (57) ABSTRACT

U.S.C. 154(b) by 268 days.
A system and method for speculative forwarding of packets

(21) Appl. No.: 12/107,036 recerved by a router, wherein each packet includes phits and
wherein one or more phits include a cyclic redundancy code
(22) Filed: Apr. 21, 2008 (CRC). A packet 1s recerved and phits of the packet are for-
warded to router logic. A cyclic redundancy code for the
(65) Prior Publication Data packet 1s calculated and compared to the packet’s cyclic

redundancy code. An error 1s generated 11 the cyclic redun-
dancy codes don’t match. If the cyclic redundancy codes
don’t match, a phit of the packet 1s modified to retlect the
error, the CRC 1s corrected and the corrected CRC 1s for-
(60) Provisional application No. 60/925,470, filed on Apr. warded to the router logic along with the phit reflecting the

US 2009/0028172 Al Jan. 29, 2009

Related U.S. Application Data

20, 2007. CRC error. At the router logic, a check 1s made to see if the
packet 1s still within the router logic. If the packet 1s still
(51) Int.Cl. within the router logic and there was a CRC error, the packet
HO4L 12/56 (2006.01) 1s discarded. If, however, the packet 1s no longer within the
(52) US.CL oo, 370/419;370/386 router logic and there was a CRC error, the packet is modified
(58) Field of Classification Search 370/386, so that the next router discards the packet.
370/355, 535; 710/52
See application file for complete search history. 13 Claims, 9 Drawing Sheets

1021 J 1o
(\ 104

oiigé .
0‘\‘&\ |
o 31 R
® 0
O 31 L

102.N

US 7,830,905 B2

Sheet 1 0of 9

Nov. 9, 2010

U.S. Patent

[OId

S0}

US 7,830,905 B2

Sheet 2 0of 9

Nov. 9, 2010

U.S. Patent

¢ 9lid

0Cl

s\liil‘!l‘i‘ll‘. N WEW e W e Ny

....
el
r;
R

[EoINPOW J9INnoY

?mw%

e = war e

Comvi B F e Rt il A g By P ke 2 T TR L S A

et VI bk it ok e aEEs e [Skt e aer el s g o

g b N N Y

oamr
b

I ¥ -

Tl R v T TRtk AN

et)
T
R
Sl
P Ty
...“.mm.“ﬁ”

. B SLF
T P
A 83,
: _. @ o w
- s ek -
. b .
R i oy e

| juey

e e I T B B R .

US 7,830,905 B2

$1055300:0 $9 Yim XJOomjau G'| yjuey (e)

Sheet 3 of 9

mﬁg ._Q_EI

Filrilllrrkli!-

” “ SHUI, DPIE

Nov. 9, 2010

P e el R u ..-L_ _ e e A e e e :w.-r.........
H.l..l._l..i_rm..t._.—.__n.-.r..l.- llm“ - = e - u

111111111111 1&‘.11*"11-!.

l._l.....'l"_"-.. - O F 2 B B B F W E 8" F 0

901}
801

U.S. Patent

U.S. Patent Nov. 9, 2010 Sheet 4 of 9 US 7,830,905 B2

ooy ooy eopop o . |

- = W = oW

IIIIIIII

side links

108

' E
R - s
b BBk oA B % b dodoE ks - L R I '.
| :.
[] -:;
1 Y14 i Y15 | |
. . !
-., & . ' i .i _ :r
] 4
" a." = W " g 53 @ » - - p 4 v o o - - -

: |

(b) Rank 1.5 network with 96 processors
FIG. 3b

106

_ Fiouior Moﬂi.&-a H'Eulm ﬂdadum ' """

US 7,830,905 B2

Sheet S of 9

Nov. 9, 2010

U.S. Patent

$1055820.d YL 0) dn YIIm HIOMISU 2 HueY (2)

S e e U] s T - .) . - 1 T T S T R TR o e IR T s P ..._;_...__.? G e . s ..
j . oa - ...w . g i - L 3 . H_ .
| or PO /BINCH | . m_@.os E
L | . .1..
4 [] . R P T YWY R Y T RPN b
— e L) - - - * . - - - -—“ -I

g” laa

- -—e . ¥ " o My e - el

. [Ry o Lo ..|||1.|.1.I.- - Iy T - 1 . T TR e e ey ' P < W e ||||.|||..n..l..._. .
i - -

2 H i

- . . ¥ K I #8.m82 88 L4 S NS LLESALIEN 1l
" “_m N) .. 0 - -. - — ..1.. il .. r .- A) -_ —_m.

e ' H N . - : .w

- ‘ . 1 .“.. £

: - . ’ ¥ B w

"SIIN02 [EMPIA ZL-XIDBJ OM) OJUl Eum — | S S |

(R 12 Jay) AP DYVA #9-XpR)
IN0) SBY BINPOW JBINOI H/ZH VY

. m._._n_oE Eﬁom EN uEm_ﬂ_

chi

US 7,830,905 B2

Sheet 6 of 9

Nov. 9, 2010

U.S. Patent

06}

¥0C

I | G SN N AN E— 1 § | S S—— 1 ST i 51 e—— i -1

(LA anoy _
SiNI

I___.I-II:_II-I___I- MO
..01Z
I-n_ll.%i--lill-— Q@gn
__.II-|I_=II-I___| indu)
@ N ,.)_ U - M ¥
g s b2
rk& | m MOl
S—_p—
90Z fouueyo 02 iz N 902 1
uwn|od Silayngq uwnjod 80¢

901

US 7,830,905 B2

G "Old

&N

I~

&

I

E

=

72

~

Y

—

&

=

2 (807) Johe;
7 Bull-elep ayl

o) indino

U.S. Patent

(b2x01L)
R_)UNQq 102

5

uoneRiqie DA
OB MOS

g

indut
indno

Jng uwinjo) | aim

CSYO0|D SYO0|D

3
3
5 3
«©)]
= £ (eexol) (v2x 952)
=3 o4 JAPNG MO buynoy ananb jndui
3 ..m \I.ll.l\zfl.l'/_ ,-,IIII\.,.,II.IIJ .,....Ilnla..(. ™y
V] f V] [V 7| [V ;
Ieel |71 S [V [T
—mv mﬂ O _ 1=
== 15 115
\N / - ol
1 — T (gD) Jahe
yoymsgnsg DJIM anany jnduj YUll-Bjep aul
_ woJj ndul
SHO0|0 SYO0|0 SYO0|D
L ¢ 6

9 OId

US 7,830,905 B2

puegapis

odA} nyd
¢J0JIS
pasnun

9 __ Als|e] S.E:won p|Aed

0 1 ¢ ¢ U/@ L 8 6 0F L1 ZL €1 L GL 91 LI BL 61 OC LC cC E¢C
\ c0¢
O F
o 00¢

U.S. Patent
(04JU0D

SOIOBW S9(}J8S
aue)-g Jo sJied A2J/puas ¢

S —

- "_Ll..fi.. '
3
iy

i) T .) ;

[.) . L _ _ .)

.. ¥ - b__ -, ' n_-.. . 5 E
. \ ' il AZAmS

US 7,830,905 B2
™
M

Sheet 9 of 9

N N O -
o N
©r=

Q
S

......
el gk Il

Nov. 9, 2010

N

NI

c0L

U.S. Patent

©)

L

=
e
-

AT st - .
T, Ta - - K3
: M
. A . .
i L .
= . PO Fa i
> L) " " R
HH.. nar N e T W..“..
S o P P -

-...u... Tn..u_. _.....”.m.. RELE

PR
. L .o
e N P "
. & B .o
v
« T
T
. w o
. . -

R T

.wf. e

w. . D A
S17ADls
O I

3

US 7,830,905 B2

1

SPECULATIVE FORWARDING IN A
HIGH-RADIX ROUTER

RELATED APPLICATIONS

This application claims the priority benefit of U.S. Provi-
sional Application Ser. No. 60/925,470 filed Apr. 20, 2007,

the contents of which 1s incorporated herein by reference in its
entirety.

FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

The U.S. Government has a paid-up license 1n this mven-
tion and the right in limited circumstances to require the
patent owner to license others on reasonable terms as pro-
vided for by the terms of contract No. MDA904-02-3-0052,

awarded by the Maryland Procurement Office.

This application 1s related to U.S. patent application Ser.
No. 12/107,011, entitled “HIGH-RADIX INTERPROCES-

SOR COMMUNICATIONS SYSTEM AND METHOD?”,
filed Apr. 21, 2008; to U.S. patent application Ser. No. 12/352,
443, enftitled “HIGH-RADIX INTERPROCESSOR COM-
MUNICATIONS SYSTEM AND METHOD,” filed Jan. 12,
2009; to U.S. patent application Ser. No. 12/107,016, entitled
“FLEXIBLE ROUTING TABLES FOR A HIGH-RADIX
ROUTER?”, filed Apr. 21, 2008; and to U.S. patent application
Ser. No. 12/107,019, entitled “LOAD BALANCING FOR
COMMUNICATIONS WITHIN A MULTIPROCESSOR
COMPUTER SYSTEM?”, filed Apr. 21, 2008; each of which

1s 1ncorporated herein by reference 1n its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention 1s related to multiprocessor com-
puter systems, and more particularly to a system and method
for routing packets 1n a multiprocessor computer system.

2. Background Information

BACKGROUND INFORMATION

The mterconnection network plays a critical role 1n the cost
and performance of a scalable multiprocessor. It determines
the point-to-point and global bandwidth of the system, as well
as the latency for remote communication. Latency 1s particu-
larly important for shared-memory multiprocessors, in which
memory access and synchronization latencies can signifi-
cantly impact application scalability, and 1s becoming a
greater concern as system sizes grow and clock cycles shrink.

It 1s common practice to protect a packet recerved at a
router from an incoming link with a cyclic redundancy check-
sum (CRC). The CRC ensures reliable delivery of the packet
over the link. Checking the CRC takes time; 1n order to
guarantee that the packet 1s correct, the packet 1s delayed until
the CRC 1s checked before the packet 1s allowed to proceed
through the router and out the next link in the path through the
network. This store-and-forward approach adds latency to
every hop. This latency 1s higher in high-radix routers, which
have narrower links and thus higher latency to receive a given
packet over a single link.

There are two existing approaches to reducing this store-
and-forward latency. The first 1s to break packets up into

smaller pieces (micropackets), each protected by 1its own
CRC. The downside to this 1s that it increases the CRC over-
head (relative number of transmitted bits spent on CRCs). It

10

15

20

25

30

35

40

45

50

55

60

65

2

also only partially solves the problem, as there 1s still store-
and-forward latency of the micropackets.

The other solution 1s to not check packets for errors on each
hop. This requires either giving up on reliable transmission at
high speed, or else using an end-to-end reliable delivery pro-
tocol. End-to-end protocols, however, are very complex and
require O(N"2) state for N nodes, so are not scalable to large
system sizes. They also can have performance 1ssues 1n large
systems, as the probability of an error on an end-to-end path
1s much higher than the probability of an error on a single link.

What 1s needed 1s a system and method for reducing
packet-forwarding latency 1n a router, while maintaining reli-
able communication.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a computer system with a high-radix
routing system;

FIG. 2 illustrates the computer system of FIG. 1 with
uplinks to higher rank routers;

FIG. 3 (a)-(c) i1llustrate network topologies for computer
systems;

FIG. 4 illustrates one embodiment of a router for systems
of FIGS. 1-3;

FIG. 5 illustrates latency in transfer of a packet through the
router of FIG. 4;

FIG. 6 illustrates one example embodiment of a packet
format that can be used in the router of FIG. 4; and

FIG. 7 illustrates packet traversal through the router of
FIG. 4.

DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description of the preferred
embodiments, reference 1s made to the accompanying draw-
ings which form a part hereof, and in which 1s shown by way
of illustration specific embodiments 1n which the mvention
may be practiced. It 1s to be understood that other embodi-
ments may be utilized and structural changes may be made
without departing from the scope of the present invention.

A computer system 1s shown in FIG. 1. In the computer
system 100 of FIG. 1, processor nodes 102.1 through 102.N
are connected by links 104 to routers 106. In the embodiment
shown, each processor node 102 includes four mnjection ports,
wherein each connection port 1s connected to a different
router 106. In addition, each processor node 102 includes
local memory and one or more processors. Each router 106 1s
a high-radix router as will be described below.

In one embodiment, computer system 100 1s designed to
run demanding applications with high communication
requirements. It 1s a distributed shared memory multiproces-
sor built with high performance, high bandwidth custom pro-
cessors. The processors support latency hiding, addressing
and synchronization features that facilitate scaling to large
system s1zes.

It provides a globally shared memory with direct global
load/store access. In one such embodiment, system 100 is
globally cache coherent, but each processor only caches data
from memory 112 within 1ts four-processor node 102. This
provides natural support for SMP applications on a single
node, and hierarchical (e.g.: shmem or MPI on top of
OpenMP) applications across the entire machine. Pure dis-
tributed memory applications (MPI, shmem, CAF, UPC) are
supported as well.

In one such embodiment, each processor 1s implemented
on a single chip and includes a 4-way-dispatch scalar core, 8
vector pipes, two levels of cache and a set of ports to the local

US 7,830,905 B2

3

memory system. Each processor 1n system 100 can support
thousands of outstanding global memory references.

For such embodiments, the network should be designed to
provide very high global bandwidth, while also providing low
latency for efficient synchronization and scalability. To
accomplish this, 1n one embodiment, routers 106 are inter-
connected 1n a high-radix folded Clos or fat-tree topology
with sidelinks. By providing sidelinks, one can statically
partition the global network bandwidth among the peer sub-
trees, reducing the cost and the latency of the network.

In the embodiment shown 1n FIG. 2, computer system 120
uses high-radix routers 106, each of which has 64 ports that
are three bits wide 1n each direction. In the embodiment
shown, each processor node 102 has four injection ports into
the network, with each port connecting to a different network
slice. Each slice 1s a completely separate network with its own
set of routers 106. The following discussion will focus on a
single slice of the network.

By using a high-radix router with many narrow channels
we are able to take advantage of the higher pin density and
faster signaling rates available 1n modern ASIC technology.
In one embodiment, router 106 1s an 800 MHz ASIC with 64
18.75 Gb/s bidirectional ports for an aggregate ofichip band-
width of 2.4 Tb/s. Each port consists of three 6.25 Gb/s
differential signals 1n each direction. The router supports
deterministic and adaptive packet routing with separate buil-
ering for request and reply virtual channels. The router 1s
organized hierarchically as an 8x8 array of tiles which sim-
plifies arbitration by avoiding long wires 1n the arbiters. Each
tile ol the array contains a router port, 1ts associated butiering,
and an 8x8 router subswitch.

In one embodiment, computer system 120 scales up to 32K
processors using a variation on a folded-Clos or fat-tree net-
work topology that can be incrementally scaled. In one such
embodiment, computer system 120 1s packaged in modules,
chassis, and cabinets. Each compute module contains eight
processors with four network ports each.

In one embodiment, a chassis holds eight compute modules
organized as two 32-processor rank 1 (R1) subtrees, and up to
four R1 router modules (each of which provides two network
slices for one of the subtrees). Each R1 router module con-
tains two 64-port YARC router chips (see FIG. 2) providing
64 downlinks that are routed to the processor ports via a
mid-plane, and 64 uplinks (or sidelinks) that are routed to
cight 96-pin cable connectors that carry eight links each.
(“YARC” stands for “Yet Another Routing Chip.”)

In one such embodiment, each cabinet holds two chassis
(128 processors) organized as four 32-processors R1 sub-
trees. Machines with up to 288 processors, nine R1 subtrees,
can be connected by directly cabling the R1 subtrees to one
another using sidelinks 108 as shown 1n FIGS. 3(a) and (b) to
create a rank 1.5 (R1.5) network.

To scale beyond 288 processors, uplink cables 110 from
cach R1 subtree are connected to rank 2 (R2) routers 112. A
rank 2/3 router module (FIG. 3(c)) packages four routers 106
on an R2/R3 module.

In one embodiment, the four radix-64 routers 106 on the
R2/R3 module are each split into two radix-32 virtual routers.
Logically, each R2/R3 module has eight radix-32 routers
providing 256 network links on 32 cable connectors. Up to 16
R2/R3 router modules are packaged into a stand-alone router
cabinet.

Machines of up to 1024 processors can be constructed by
connecting up to thirty-two 32-processor R1 subtrees to R2
routers. Machines of up to 4.5K processors can be con-
structed by connecting up to nine 512-processor R2 subtrees
via side links 108. Up to 16K processors may be connected by

10

15

20

25

30

35

40

45

50

55

60

65

4

a rank 3 (R3) network where up to thurty-two 512-processor
R2 subtrees are connected by R3 routers. Networks having up
to 72K processors could be constructed by connecting nine
R3 subtrees via side links 108.

The above topology and packaging scheme enables very
flexible provisioning of network bandwidth, For instance, by
only using a single rank 1 router module (instead of two as
shown 1n FIG. 2), the port bandwidth of each processor 1s
reduced 1n hali-halving both the cost of the network and its
global bandwidth. An additional bandwidth taper can be
achieved by connecting only a subset of the rank 1 to rank 2
network cables, reducing cabling cost and R2 router cost at
the expense of the bandwidth taper.

The Router

The mput-queued crossbar organization often used 1n low-
radix routers does not scale efficiently to high radices because
the arbitration logic and wiring complexity both grow qua-
dratically with the number of 1nputs. To overcome this com-
plexity, 1n one embodiment, router 106 1s organized using a
hierarchical organization 1n a manner similar to that proposed
by Kim et al. above.

As shown 1n FIG. 4, in one embodiment router 106 1is
organized as an 8x8 array of tiles 200 within a single YARC
chip 201. Each tile 200 contains all of the logic and buffering
associated with one mnput port 190 and one output port 192.
Each tile 200 also contains an 8x8 switch 202 and associated
butlers (212, 214). Each tile’s switch 202 accepts inputs from
cight row buses 204 that are driven by the input ports 190 1n
its row, and drives separate output channels 206 to the eight
output ports 192 1n its column. Using a tile-based microar-
chitecture facilitates implementation, since each tile 1s 1den-
tical and produces a very regular structure for replication and
physical implementation 1n silicon.

In one embodiment, computer systems 100 and 120 use
two virtual channels (VCs), designated request (v=0) and
response (v=1) to avoid request-response deadlocks in the
network. Theretore, all buffer resources are allocated accord-
ing to the virtual channel bit in the head phit. Each input buifer
1s 256 phits and 1s s1zed to cover the round-trip latency across
the network channel. Virtual cut-through tlow control 1s used
across the network links. In one such embodiment, each VC
drives its own row bus 204. This provides some row bus
speedup since you can tlow request and response flits onto
row busses simultaneously. It also eliminates the need for
arbitration for the row busses 204.

The router 106 microarchitecture 1s best understood by
following a packet through the router. A packet (such as
packet 300 shown 1n FIG. 6) arrives 1n the input buifer 210 of

a tile 200 (fed from the incoming link control block (LCB).)

When the packet reaches the head of the bulfer a routing
decision 1s made at route selector 218 to select the output
column 208 for the packet. The packet 1s then driven onto the
row bus 204 associated with the input port 190 and buffered in
a row bulfer 212 at the mput of the 8x8 switch 202 at the
junction of the packet’s input row and output column. At this
point the routing decision must be refined to select a particular
output port 192 within the output column 208. The switch 202
then routes the packet to the column channel 206 associated
with the selected output port 192. The column channel deliv-
ers the packet to an output buller 214 (associated with the
input row) at the output port multiplexer 216. Packets 1n the
per-input-row output buflers 214 arbitrate for access to the
output port 192 and, when granted access, are switched onto
output port 192 via the multiplexer 216.

In the embodiment shown 1n FIG. 4, router 106 includes

three types of butlers: input butfers 210, row butifers 212, and

US 7,830,905 B2

S

column bufiers 214. Each butler 1s partitioned into two virtual
channels. One mput buifer 210 and 8 row bullers 212 are
associated with each mput port 190. Thus, no arbitration 1s
needed to allocate these butiers—only flow control. Eight
column buiffers 214 are associated with each subswitch 202.
Allocation of the column buifers 214 takes place at the same
time the packet 1s switched.

Output arbitration 1s performed 1n two stages. The first
stage of arbitration 1s done to gain access to the output of the
subswitch 202. A packet then competes with packets from
other tiles 200 1n the same column 208 in the second stage of
arbitration for access to the output port 192. Unlike the hier-
archical crossbar in Kim, however, router 106 takes advan-
tage of the abundant on-chip wiring resources to run separate
channels 206 from each output of each subswitch 202 to the
corresponding output port 192. This organization places the
column butiers 214 in the output tiles 200 rather than at the
output of the subswitches 202. Co-locating the eight column
butilers 214 associated with a given output 1n a single tile 200
simplifies global output arbitration. With column builers 214
at the outputs of the subswitch 202, the requests/grants
to/from the global arbiters would need to be pipelined to
account for wire delay, which would complicate the arbitra-
tion logic.

In one embodiment of the router 106 of FIG. 4, a packet
traversing router 106 passes through 25 pipeline stages,
resulting 1n a zero-load latency of 31.25 ns. A pipeline dia-
gram 1llustrating passage through such a router 106 1s shown
in FIG. 5. In one embodiment, each major block: input queue
(210, 212), subswitch 202, and column buffers 214 1s
designed with both input and output registers. This approach
simplified system timing and design at the expense of latency.
During the design, additional pipeline stages were iserted to
pipeline the wire delay associated with the row busses and the
column channels.

The Communication Stack

The communication stack in computer systems 100 and
120 can be considered as three layers: network layer, data-
link layer, and physical layer. We discuss the packet format,
flow control across the network links, the link control block
(LCB) which implements the data-link layer, and the serial-
1zer/deserializer (SerDes) at the physical layer.

One embodiment of a packet that can be used in computer
systems 100 and 120 1s shown 1n FIG. 6. In one embodiment,
packets are divided into 24-bit phits for transmission over
internal datapaths. These phits are further serialized for trans-
mission over 3-bit wide network channels. A minimum
packet contains 4 phits carrying 32 payload bits.

Longer packets are constructed by inserting additional
payload phits (like the third phit 1n the figure) betfore the tail
phit. Two-bits of each phit, as well as all of the tail phit are
used by the data-link layer.

The head phit of the packet controls routing. In addition to
specilying the destination, this phit contains a v bit that speci-
fies which virtual channel to use, and three bits, h, a, and r, that

control routing.

If the r bit 1s set, the packet will employ source routing.
That 1s, the packet header will be accompanied by a routing
vector that indicates the path through the network as a list of
ports used to select the output port 192 at each hop. Source
routed packets are normally used only for maintenance opera-
tions such as reading and writing configuration registers on
router 106.

If the a bit 1s set, the packet will route adaptively, otherwise
it will route deterministically.

10

15

20

25

30

35

40

45

50

55

60

65

6

If the h bit 1s set, the deterministic routing algorithm
employs the hash bits 1n the second phit to select the output
port 192.

Network flow control will be discussed next. The alloca-
tion unit for flow control 1s a 24-bit phut—thus, the phit 1s
really the tlit (flow control unit). In one embodiment, as noted
above, computer systems 100 and 120 use two virtual chan-
nels (VCs), designated request (v=0) and response (v=1) to
avold request-response deadlocks 1n the network. Therefore,
all bufler resources are allocated according to the virtual
channel bit 1n the head phit. Each input buifer 1s 256 phits and
1s s1zed to cover the round-trip latency across the network
channel. Virtual cut-through flow control 1s used across the
network links. In one embodiment, each VC drives its own

row bus 204.

The data-link layer will be discussed next. In one embodi-
ment, the data-link layer protocol 1s implemented by the link
control block. The LCB recerves phits from router 106 and
injects them into the serializer logic where they are transmiut-
ted over the physical medium. The mcoming LCB feeds
directly to the input butfers 210.

The primary function of the LCB 1is to reliably transmit
packets over the network links using a sliding window go-
back-N protocol. The send buifer storage and retry 1s on a
packet granularity. The link control block 1s described in
greater detail 1n “Inter-ASIC Data Transport Using Link Con-
trol Block Manager,” U.S. patent application Ser. No. 11/780,
258, filed Jul. 19, 2007, the description of which 1s incorpo-

rated by reference.

In the embodiment shown 1n FIG. 6, the 24-bit phit uses
2-bits of sideband dedicated as a control channel for the LCB
to carry sequence numbers and status information. The virtual
channel acknowledgment status bits travel 1in the LCB side-
band. These VC acks are used to increment the pervce credit
counters 1n the output port logic. The ok field in the EOP phait
indicates 11 the packet 1s healthy, encountered a transmission
error on the current link (transmit_error), or was corrupted
prior to transmission (soit_error).

If the LCB receives a packet with a CRC error, then cor-
ruption has just occurred while traversing the incoming link.
The LCB enters an error recovery mode, and, assuming that
the error was transient, a good version of the packet will
eventually be received and handed up to the router core. In the
meantime, however, the LCB has likely started to forward the
corrupt packet up to the router core. To handle this, when a
CRC error 1s detected, the LLCB sets the status code 1n the tail
phit to PACKET_BAD_WILLRETRY and recomputes the
CRC belore handing the tail phit up to the router core. This
tells the router core logic that the packet 1s going to be retrans-
mitted, and should be discarded 11 possible. The higher level
flow control that manages the space in the router core’s mput
butifer should not acknowledge receipt and consumption of
this packet, because we cannot trust any of the packet con-
tents, including the virtual channel number.

I1 the corrupted packet cannot be discarded betore 1t begins
transmitting over the next link in the network, then the status
in 1ts last phit 1s set to PACKET_BAD by the output port’s
LCB before transmitting i1t. Thereafter, assuming no further
transmission errors, the packet will flow across the network
marked as a bad packet (but with a good CRC), and will be

discarded at the destination, as discussed above.

The physical layer will be discussed next. The serializer/
deserializer (SerDes) implements the physical layer of the
communication stack. In one embodiment, router 106 1nstan-
tiates a high-speed SerDes 1n which each lane consists of two
complimentary signals making a balanced differential pair.

US 7,830,905 B2

7

In one embodiment, the SerDes 1s organized as a macro
which replicates multiple lanes. For full duplex operation, an
8-lane recerver and an 8-lane transmitter macro are instanti-
ated. In one such embodiment, router 106 instantiates forty-
cight (48) 8-lane SerDes macros, twenty-four (24) 8-lane
transmit and twenty-four (24) 8-lane receitve macros, con-
suming approximately of the available silicon 1n a full ASIC
implementation of router 106.

In one embodiment, the SerDes supports two full-speed
data rates: 5 Gbps or 6.25 Gbps. Each SerDes macro 1s
capable of supporting full, half, and quarter data rates using
clock dividers in the PLL module. This allows the following
supported data rates: 6.25, 5.0, 3.1235, 2.5, 1.5625, and 1.25
Gbps. This should be adequate to drive a 6 meter, 26 gauge
cable at the full data rate of 6.25 Gbps, allowing for adequate
printed circuit board (PCB) foil at both ends.

In one such embodiment, shown in FIG. 7, each port on
router 106 1s three bits wide, for a total of 384 low voltage
differential signals coming off each router 106 (192 transmut
and 192 recerve). Since the SerDes macro 702 1s 8 lanes wide
and each router port 1s only 3 lanes wide, a naive assignment
of tiles to SerDes would have 2 and 24 ports (8 lanes) for each
SerDes macro. Consequently, in such an embodiment it can
be usetul to aggregate three SerDes macros (24 lanes) to share
across eight YARC tiles (also 24 lanes). This grouping of
cight tiles 1s called an octant (tiles belonging to the same
octant are shown 1n FIG. 7) and, 1n one embodiment, imposes
the constraint that each octant must operate at the same data
rate.

In one embodiment, the SerDes has a 16/20 bit parallel
interface which 1s managed by the link control block (LCB).
In one embodiment, the positive and negative components of
cach differential signal pair can be arbitrarily swapped
between the transmit/recerve pair. In addition, each of the 3
lanes which comprise the LCB port can be permuted or
“swizzled.” The LCB determines which are the positive and
negative differential pairs during channel imitialization, as
well as which lanes are “swizzled”. This degree of freedom
simplifies the board-level river routing of the channels and
reduces the number of metal layers on a PCB for the router
module.

Speculative Forwarding

As noted above, CRC 1s used to detect soft errors 1n the
pipeline data paths and static memories used for storage. As
noted above, the narrow links of a high-radix router cause a
higher serialization latency to squeeze the packet over a link.
For example, a 32B cache-line write results in a packet with
19 phits (6 header, 12 data, and 1 EOP). Consequently, the
L.CB passes phits up to the higher-level logic speculatively,
prior to verilying the packet CRC, which avoids store-and-
forward serialization latency at each hop. However, this early
forwarding complicates various error conditions in order to
correctly handle a packet with a transmission error and
reclaim the space in the mput queue at the receiver.

In one embodiment, we avoid a store-and-forward delay of
a packet due to CRC checking at the router input port through
speculative forwarding. In such an embodiment, 1ndividual
phits (physical transfer units, each containing 24 bits of
packet data) are forwarded into the router core as they are
received, before the packet’s CRC 1s checked. The head of the
packet may have already flowed out a router exit port and
across a link by the time the packet CRC 1s checked. The error
handling protocols and buifer management are designed to
deal with the case that a CRC error 1s detected.

In one embodiment, before transmitting a tail phit onto the
network link, the LCB checks the current CRC against the

10

15

20

25

30

35

40

45

50

55

60

65

8

packet contents to determine 11 a soft_error has corrupted the
packet. If the packet 1s corrupted, 1t 1s marked as soit_error,
and a good CRC 1s generated so that it 1s not detected by the
receiver as a transmission error. The packet will continue to
flow through the network marked as a bad packet with a soft
error and eventually be discarded by the network interface at
the destination processor.

Because a packet with a transmission error 1s speculatively
passed up to the router core and may have already tlowed to
the next router by the time the tail phit 1s processed, the LCB
and input queue must prevent corrupting the router state.

The speculative forwarding mechamism must, therefore,
take into account the possibility that a corruption could create
a max-sized packet (the LCB will never allow a larger-than
max-sized packet to be created) with an incorrect virtual
channel to be handed up to the router core. The tricky part of
the whole mechanism 1s making sure that the router core’s
flow control for the mput buifer space 1s not corrupted, and
that the input buffer never overtlows.

In one embodiment, the LCB detects packet CRC errors
and marks the packet as transmit_error with a corrected CRC
betfore handing the end-of-packet (EOP) phit up to the router
core. The LCB also monitors the packet length of the recerved
data stream and clips any packets that exceed the maximum
packet length, which 1s programmed nto an LCB configura-
tion register. When a packet 1s clipped, an EOP phit 1s
appended to the truncated packet and 1t 1s marked as
transmit_error. In one embodiment, the LCB will enter error
recovery mode on either error and await the retransmission.

The mput queue 1n the router must be protected from over-
flow. If 1t recerves more phits than can be stored, the mput
queue logic will adjust the tail pointer to excise the bad packet
and discard further phits from the LCB until the EOP phit 1s
received. If a packet marked transmit_error 1s received at the
input buifer, we want to drop the packet and avoid sending
any virtual channel acknowledgments. The sender will even-
tually timeout and retransmait the packet. If the bad packet has
not yet tlowed out of the input buifer, it can simply be
removed by setting the tail pointer of the queue to the tail of
the previous packet. Otherwise, if the packet has tlowed out of
the mput buffer, we let the packet go and decrement the
number of virtual channel acknowledgments to send by the
s1ze ol the bad packet. The transmit-side router core does not
need to know anything about recovering from bad packets.
All effects of the error are contained within the LCB and
router mput queueing logic.

In one embodiment, the link control block (LCB) modifies
phits of a received packet before sending the modified phit up
to the router core. In one such embodiment, the last phit of a
packet, which contains the CRC, also contains a status code
indicating whether the packet 1s:

good (PACKET_OK);

corrupted, and will
BAD_WILLRETRY); or

corrupted, but will not be re-transmitted (PACKET_BAD).

At the router core, packets that are received with good
CRCs will either have a status of PACKET OK or
PACKET_BAD. In either event, they are routed as healthy
packets through the network. At the destination, the packets
are fully recerved before being presented to the compute
node, and any packet with a status of PACKET_BAD 1s
dropped at that time.

Within the router, data 1s used before 1t 1s verified by the
EOP CRC. Due to this, special care must be taken to make
sure that channel errors are managed by the router. Consider
the implications within the router of a single bit error 1n one of
the channel control fields. If the payload bit1s flipped, it could

be retransmitted (PACKET_

US 7,830,905 B2

9

either create an EOP/1dle phit where 1t doesn’t belong (1->0)
or cause one to be missed (0->1).

If an 1dle phit 1s created where 1t doesn’t belong, 1t will be
1gnored and the CRC will fail at the end of the packet. If an
EOP phit 1s created where 1t doesn’t belong, the CRC will be
found bad immediately. In either case, a marked bad packet
will be sent through the router, and all following data will be
discarded by the LCB until reframing has occurred. This
scenar1o doesn’t cause potential butifer overtlows.

A larger problem 1s created 11 the EOP 1s missed. This can
create “super-packets,” where two consecutive packets look
like they’ve been merged 1nto one. This has the potential to
overflow the input VC butters 1n the router. Also, a bad vc bit
in the head phit can cause overtlow 1n the mput VC butiers.

The bottom line 1s that any error on the channel can result
in a bad packet being handed up to the router. To deal with
this, 1n one embodiment, the LCB monitors packet length of
the receive data stream and clips any packets that exceed this
length (by interpreting the phit corresponding to a maximum
packet size (max_pkt_size) as a tail, regardless of its encod-
ing). Such an approach should result in a bad CRC). After this
occurs, the LCB will be 1n error recovery mode, and will
ignore all ncoming data until a re-transmission sequence 1s
received.

At the same time, the mmput builers 1n the router protect
themselves against overtlow. If they receive more phits than
can be stored, the input buffer logic will adjust the queue tail
pointer to remove the bad packet, and discard further phits
from the LCB until an EOP 1s received.

In one embodiment, the LCB retry protocol begins on a
packet boundary. The receiver logic keeps track of the last
successiully recerved packet, and 1f the sender starts re-trans-
mitting with an earlier packet, the receiver throws away pack-
ets until recerving the first packet not previously recerved
correctly.

After a channel error from which the LCB successiully
recovers, the vc credits could be out of sync with each other
because a bad packet has landed 1n one ofthe vc input butiers.
It may have landed 1n the wrong input queue due to an error 1n
the vc bit, or it may be 1n the right queue. It also may possibly
have grown or shrunk, 1f a tail bit was tlipped. It doesn’t really
matter. The bad packet 1tself 1s either consuming input butier
space 1t shouldn’t, or, 1f flowed out of the input buifer, has
generated acks that 1t shouldn’t have. It the channel recovers,
the good packets will eventually be transmitted successtully.
Since the higher level logic that manages vc credits 1s
unaware of the bufler space being consumed by the bad
packet (or else it recerved too many acks), the credits need to
be adjusted when this occurs. The strategy for this 1s as
follows:

1) The mnput fifo will be oversized by max_pkt_size;

2) Packet tlow out of the input butfer will be virtual cut
through (otherwise, the fifo would have to be oversized by
two times max_pkt_size);

3) The mput fifo enqueueing logic will:

a) Count phits as 1t enqueues packets;

b) Clip any packet that would otherwise overtlow (actually

remove the offending packet);

¢) If a bad packet 1s detected (either marked bad, or forced

bad due to clipping), 1f the packet has not yet flowed out
of the queue, 1t will be removed by setting the fifo tail
pointer to the tail of the previous packet. Otherwise, the
credits-to-send counter for the VC recerving the bad
packet will be decremented by the size of the bad packet.

The other end does not need to know anything about the
bad packet. All effects of the error are contained within the
input queueing logic of router 106.

10

15

20

25

30

35

40

45

50

55

60

65

10

Routing

In one embodiment, routing in computing systems 100 and
120 1s performed on variable length packets. The first phit of
a packet 1s the header, which contains all the mandatory
routing fields, and the last phit of a packet 1s an end of packet
(EOP) phit which contains the packet checksum.

In a folded-Clos topology, packet routing 1s performed 1n
two stages: routing up to a common ancestor of the source and
destination processors, and then routing down to the destina-
tion processor. Up routing can use either adaptive or deter-
ministic routing. Down routing, however, 1s always determin-
istic, as there 1s only a single path down the tree from any
router to a destination processor.

Some systems 100 and 120 have a memory consistency
model that requires that requests to the same address maintain
ordering 1n the network. In such systems, request packets
should use deterministic routing. Response packets do not
require ordering, and so can be routed adaptively.

Packet routing 1s algorithmic and distributed. At each hop
in the network, routing logic at the head of the mput queue
calculates the output port for the local router. This 1s per-
formed using routing registers and an eight-entry routing
table 220. The routing logic of route selector 218 1s replicated
in each tile 200, allowing multiple virtual routers per physical
router and providing the needed bandwidth for parallel rout-
ing in all 64 tiles 200.

In the embodiments shown 1n FIGS. 3(a) and (b), there are
three types of links (1.e., routes): uplinks, sidelinks and down-
links. Uplinks go from the injection port to a rank 1 router or
from a rank n router to a rank n+1 router. Sidelinks go from a
rank n router to a peer rank n router (only for R1.5, R2.5 and
R3.5 networks). Downlinks go from a rank n router to a rank
n-1 router or {rom a rank 1 router to the destination processor.

En route from the source to the common ancestor, the
packet will take erther an uplink 110 or a sidelink 108 depend-
ing on the class of the network (e.g.: rank 2 or rank 2.5,
respectively). Upon arrival at the common ancestor, the router
begins routing the packet down the fat tree toward 1ts final
destination using the downlinks.

In one embodiment, the down route 1s accomplished by
extracting a logical port number directly from the destination
processor number. In one such embodiment, each router 106
in computer systems 100 and 120 has 64 ports which have
both a physical number, and an arbitrary logical number.
System software performs network discovery when the sys-
tem 1s 1nitialized and assigns a logical port number to each
physical port number.

Up and down routing will be discussed next. In one
embodiment, each tile 200 has a root detect configuration
register that identifies the subtree rooted at thus router 106,
using a 15-bit router location and a 15-bit mask. As an
example, the root detect register of a rank-1 router connected
to destinations 96-127 would have a router location of O0x0060
(96), and a mask of 0x001F (covering 32 destinations).

If the unmasked bits of the packet destination and the router
location match, then the destination processor i1s contained
within the router’s subtree, and the packet can begin travers-
ing downward. Otherwise the packet must continue to route
up (or over 1f sidelinks are used).

In one embodiment, routing up or over 1s accomplished
using an eight-entry table 220, where each entry contains a
location and mask bits (like the root detect register) 1dentify-
ing a subtree of the network. The packet destination 1s asso-
ciatively checked against the routing table entries. The packet
matches an entry if 1ts destination 1s contained within the
subtree 1dentified by that entry. The matching entry then
provides one or more uplinks/sidelinks that the packet may

US 7,830,905 B2

11

use to reach 1ts destination. In deterministic routing, the rout-
ing logic produces a deterministic exit port for each packet.

In a healthy network, only a single entry 1s required for up
routing, matching the entire network, and 1dentifying the full
set of available uplinks. In a system with faults, additional
routing table entries are used to provide alternative uplinks
tor affected regions of the machine. If multiple entries match,
then the entry with the highest index i1s chosen. Thus, entry 0
could be set to match the entire network, with a full uplink
mask, and entry 1 could be set to match the subtree rooted at
the fault, using a constrained uplink mask that avoids sending,
packets to a router that would encounter the fault en route to
any destination processors in that subtree.

A given network fault casts a shadow over some subtree of
endpoints that can be reached going down from the fault. We
only need fault entries in the routing table for faults that do not
cast a shadow over the local router. A router can also 1gnore a
fault 11 1t cannot be reached from this router (such as faults 1n
another network slice).

In a router with configured sidelinks 108, each peer subtree
1s given 1ts own routing table entry, which defines the set of
sidelinks 108 usable to route to that subtree. No additional
routing entries are required for faults.

In one embodiment, packets in the network adaptively
route on a per-packet basis. In one embodiment, each packet
header (FIG. 6) has an adapta bit 300 that chooses the routing,
policy. I a=1 then the packet will choose the output port
adaptively during up or siderouting. When routing adaptively,
routing table 220 of the input port 190 produces a 64-bit mask
of allowable output ports 192. In one embodiment, the col-
umn mask 1s formed by OR-1ng together the eligible ports
within each column—the resultant 8-bit mask will have bit 1
set 1 any of the eight output ports of column 1 are set 1n the
output port mask produced by the routing table. After con-
structing the set of allowable columns, we choose the winner
(the eventual output column) based on the amount of space
available 1n the row bulfer for each column. Ties are broken
fairly using a matrix arbiter.

When the packet 1s sent across the row bus to the chosen
column 1t 1s accompanied by an 8-bit mask corresponding to
the allowable output rows within that column. This row mask
1s used by the 8x8 subswitch 202 to select an exitrow. The row
selection at the subswitch 1s guided by the space available 1n
the column buifers at the outputs, the row with the most space
available 1n the column buifers 1s chosen.

Packets that are not marked as adaptive (a=0) are routed
deterministically based on the output of a hash function. To
uniformly spread the packets across the available uplinks, the
hash function does an XOR of the mput port, destination
processor, and optional hash bits 11 the hash bit (h) 1s set 1n the
packet header. The hash value 1s then mapped onto the set of
output links 1dentified by the routing table. The input port and
destination processor are hashed on to avoid non-uniformities
1n many-to-one traific patterns. For request packets, the hash
bit 1s set, and a portion of the packet’s address 1s included in
the hash function to further spread the tratfic across the
uplinks. In this way, we can load balance and still guarantee
in-order delivery of packets from source to destination target-
ing a given address.

Once the packet reaches a common ancestor i1t will begin
routing down the subtree. The first step in routing down 1s to
select a logical downlink number. The down route configu-
ration register contains shift (s) and mask (m) values that are
used by first right-shifting the destination processor number
by s bits and then masking the bottom m bits to produce the
logical output port number for the downlink. A rank 1 router,
for example, would have s=0 and m=00011111. The logical

10

15

20

25

30

35

40

45

50

55

60

65

12

port number 1s converted to a physical port number by a
64-entry port mapping table. The packet proceeds down the
tree, shifting and masking the bits of destination processor to
determine the downlink at each level, until i1t reaches the final
egress port where 1t 1s sent to the processor’s network inter-
face.

The Tile

In one embodiment, each tile 200 i1s broken into four
blocks: the link control block (LCB), input buffers, 8x8 sub-
switch, and column butlers. The mput buffer block contains
122 k cells (46% registers, 35% logic, and 19% SRAM)
which includes the routing table and routing logic. A consid-
erable amount of this logic 1s dedicated to handling specula-
tive data forwarding—the LCB passing data up from the
data-link layer prior to veritying the CRC—+to handle error
cases due to transmission errors and soit errors. The 8x8
subswitch accounts for 141 k cells (54% registers, 25% logic,
and 21% SRAM), or approximately 14 of the logic 1n the tile.
The subswitch contains the row buffers and logic that per-
forms the 8-to-1 arbitration among the row buillers, and a
2-to-1 arbitration amongst the virtual channels. The column
builer block which also performs the same two-stage arbitra-
tion as the subswitch only accounts for 62 k cells (71%
registers, and 29% logic). The column builers are 1mple-
mented 1n latches, not SRAMs, so the bulk of the area 1n the
column buifers 1s dedicated to latches. The remaining 111 k
cells, or 25% of the tile area, 1s consumed by the LCB.

Selecting the Radix

The radix at which a network has minimum latency 1s
largely determined by the aspect ratio of the network router.
As noted by Kim, aspect ratio 1s given by:

A=(Ft log N)/L

where B 1s the total bandwidth ot a router, t, 1s the per router
delay, N 1s the size of the network, and L 1s the length of a
packet. In an embodiment where the aspect ratio 1s 1600, the
optimal radix would be 82.

While the optimal radix 1s 82, this 1s not a practical value.
To simplity implementation and routing, the radix should be
a power of 2. A radix that 1s not a power of 2 would require an
integer division and modulo operation to determine the output
port from a destination address. In one design approach, we
consider radices of 64, and 128. Both of these values give
network latency within 2% of the optimal value. Although the
higher radix of 128 theoretically leads to lower cost, this
theory assumes that port widths can be varied continuously.
In one embodiment, we selected a radix of 64 because 1t gives
better performance with our pinout and integral port-width
constraints.

In one radix-64 embodiment, area constraints limited us to
no more than 200 SerDes on the router chip. A radix-64 router
using 3-bit wide ports requires 192 SerDes, fitting nicely
within this constraint. A radix-128 router, on the other hand,
1s limited to 1-bit wide ports requiring 128 SerDes. Such a
router has only 24 the bandwidth of the radix 64 router,
resulting 1n significantly lower performance.

Some computer systems have cabinet-to-cabinet spacing
that requires network links longer than six meters, the maxi-
mum length that can be driven reliably at the full signaling
rate (6.25 Gb/s) of one embodiment of router 106. Such long
links can be realized using optical signaling or using electri-
cal cables with in-line repeaters. However, both of these alter-
natives carry a significant cost premium. If router 106 sup-
ports variable signaling rates (as described for SerDes 702
above) and flexible routing enable, these long links can be

US 7,830,905 B2

13

realized using electrical signaling over passive cables by
using a reverse taper. By reducing the signaling rate on the
link, significantly longer electrical cables can be driven. The
reduced signaling rate can be offset for by doubling the num-
ber of links provisioned at that level of the network (a reverse
taper) to preserve network bandwidth.

We chose a high-radix folded-Clos topology for computer
systems 100 and 120 because 1t offered both lower latency
and lower cost than alternatives such as a torus network while
still providing 8.33 GB/s of global memory bandwidth. We
performed a zero-load latency comparison of the two differ-
ent topologies. For the high-radix Clos network, radix-64
routers were used. For the 3-D torus, the configurations used
were similar to those of the Cray X'1T3. Uniform random
traffic was assumed in calculating the average hop count of
the network.

For a small size network, there 1s a 2x reduction 1n latency
when going from a 3-D torus to a high-radix Clos network. As
the size of the network increases, however, there 1s over a 4x
reduction 1n latency. With the lower hop count, the high-radix
Clos not only reduces latency but also reduces cost. This 1s
because network cost 1s approximately proportional to the
total router bandwidth and, with the network bisection held
constant, 1t 1s proportional to the hop count. Thus, high-radix
Clos networks lead to a lower latency and a lower cost net-
work.

There are also several qualitative attributes of the high-
radix folded-Clos network which made 1t an attractive choice.
Routing 1n torus 1s more complex as turn rules or virtual
channels are needed to prevent deadlocks. In addition, com-
plex routing algorithms are needed to properly load balance
across adversarial traflic pattern.

In contrast, the folded-Clos has very a straightforward
routing algorithm. Because of the path diversity in the topol-
ogy, load balancing 1s achieved by selecting any one of the
common ancestors. The folded Clos 1s also cycle-free by
design so no additional virtual channels are needed to break
deadlock. VC allocation 1s often the critical path 1n the router
implementation and with fewer Vs, the VC allocation 1s also
simplified.

Partitioming the Router

The radix-64 router 106 can be divided into multiple virtual
routers with lower degree. For instance, a single router 106
can serve as two radix-32, four radix-16, or ten radix-6 virtual
routers 106. Since each tile 200 has its own set of routing,
tables 220 and keeps track of the set of allowable exit ports,
system software can partition the router into multiple virtual
routers by programming the routing tables 220 associated
with each virtual router with a set of masks that restricts
output traific to the ports 192 of that virtual router. This
flexibility enables a router such as router 106 to be used 1n
systems where packaging constraints require multiple lower
radix routers.

Virtual routers can also be used to support multiple net-
work slices 1n a single YARC chip 201. For example, a single
YARC chip 201 can be configured as two radix-32 routers to
provide a radix-32 first stage switch for two of the four BW
network slices as shown 1 FIG. 3{c¢).

In one embodiment, router 106 employs virtual cut-
through flow control externally but uses wormhole flow-con-
trol internally due to bufler size constraints. In one such
embodiment, the 64 input buifers 210 are each sized deep
enough (256 phits) to account for a round-trip credit latency
plus the length of a maximum-length packet (19 phits). This
enables us to perform virtual cut-through tlow control (with
packet granularity) on external links.

10

15

20

25

30

35

40

45

50

55

60

65

14

It may not feasible, however, to size the 512 row bullers or
512 column butters large enough to account for credit latency
plus maximum packet size. Thus wormhole flow control (at
flit=phit granularity) 1s performed over both the row buses
and the column channels to manage these buffers. In one
embodiment, the row bullers 212 are 16 phits deep and the
column butfers 214 are 10 phits deep—Ilarge enough to cover
the credit latency over the global column lines. Here a maxi-
mum-length packet can block traific from the same input row
to other outputs 1n the same column (by leaving 1ts tail in the
row bulfer).

In a hierarchical high-radix router 106, a radix-k router 1s
composed ol a number of pxp subswitches 202. The number
needed is (k/p)*. The cost and performance of the router
depend on p. As p 1s reduced, the design approaches that of a
tully butfered crossbar and becomes prohibitively expensive
but provides higher performance. As p 1s increased, the design
approaches an input-butlered crossbar and 1s inexpensive but
has poor performance.

To stress the hierarchical organization, we applied worst-
case traffic to router 106 1n which all of the offered traffic
“turns the corner” at a single subswitch 202. With this
approach, with an offered load of A, one subswitch 202 1n
cach row sees Ap packets per cycle while the other sub-
switches 1n the row are idle. In contrast, uniform random
(UR) traflic does not stress the hierarchical organization
because it evenly distributes traflic across the k p subswitches
202 1 a row with each subswitch 202 seeing only Ap/k
packets per cycle.

We wrote a simulator to evaluate the performance on
worstcase traflic for subswitches with degree p o1 2, 4, 8, 16,
and 32. Subswitches 220 where p 1s 8, 16, or 32 perform
almost 1dentically with a throughput of about 60%. Since a
pxp subswitch 202 provides an internal speedup of k/p, (8, 4
and 2 respectively for p=8, 16 and 32), a sustained throughput
of 60% provides more than suificient performance for uni-
form tratfic. With an 8x8 subswitch 202, we can sustain
approximately five times the average tratfic demand through
our subswitch on uniform traffic, providing plenty of head-
room for non-uniform traffic patterns.

Although 8, 16, or 32 input subswitches 202 provide nearly
identical performance, higher degree subswitches give lower
cost because the buffering required is O(k*/p). However, in
one embodiment, we chose the more expensive p=8 configu-
ration for two reasons. First, the higher-degree subswitches
required too much time to perform the p-to-1 switch arbitra-
tion, which 1s a timing critical path in the implementation.
Early results showed that an 8-to-1 arbitration can be done
within a single 800 MHz clock cycle. A 16- or 32-to-1 arbi-
tration would require a longer clock cycle or a pipelined
arbiter. Second, a subswitch of size p=8 resulted in a modular
design in which the number of ports was equal to the number
of subswitches. This enabled us to build a tile that contained
a single subswitch, a single mput, and a single output.

A higher subswitch size would require each tile to have
multiple mnputs/outputs, while a smaller subswitch size would
require several subswitches to share an mput/output compli-
cating the design effort of the tiles.

Fault Tolerance

The high path diversity of a high-radix folded-Clos net-

work can be exploited to provide a degree of fault tolerance.
The YARC chip 201 1s designed to construct a network that
provides graceful degradation 1n the presence of the follow-
ing faults: a failed network cable or connector; a faulty router
(1.e., a router 106 that stops responding); and a noisy high-
speed serial lane that 1s causing excessive retries.

US 7,830,905 B2

15

In a fault-free network, only a single entry in the routing
table 220 1s necessary to specily the uplinks for the entire
system. However, higher-priority table entries can be used to
override this master entry to restrict routing to a set of desti-
nations. If a fault occurs at a particular node of the network,
the routing tables can be set so that traffic with destinations in
the subtree beneath the fault do not route to the fault or any
ancestors of the fault. This 1s done by creating an entry that
matches this set of destinations that has an uplink mask with
the bits corresponding to the faulty node and/or 1ts ancestors
cleared.

In one embodiment, the sender-side of each port maintains
a forward progress countdown timer for each virtual channel.
If the forward progress timer expires, 1t indicates that a packet
has not flowed 1n a long time and the router must prevent the
error from propagating throughout the network. A forward
progress timeout may happen if the attached processor stops
accepting requests, causing the network to back pressure into
the routers 106. Upon detection of a forward progress tim-
cout, an iterrupt 1s raised to the maintenance controller to
inform the system software that a node has stopped respond-
ing. The router will begin discarding packets that are destined
to port which incurred the timeout.

In one embodiment, a link control block (LCB) handles the
data-link layer of the communication stack. It provides reli-
able packet delivery across each network link using a sliding
window go-back-N protocol. It manages the interface
between the higher-level core logic and the lower-level Ser-
Des interface (physical layer). The LCB counts the number of
retries on a per-lane basis as a figure of merit for that serial
channel. System software defines a threshold for the number
ol tolerable retries for any of the serial lanes within the 3-lane
port.

In one embodiment, 1f the LCB detects that the retry count
exceeded the threshold, it will automatically decommission
the noi1sy lane and operate in a degraded (2-bit wide or 1-bit
wide) mode until the cable can be checked and possibly
replaced. This allows the application to make forward
progress in the presence of persistent retries on a given net-
work link.

If all the lanes in the link are moperable and must be
disabled, the LCB will deassert the link active signal to the
higher-level logic which will cause a system-level interrupt to
the maintenance controller and cause the sending port to
discard any packets destined to the dead port. This prevents
the single link failure from cascading into the rest of the
network.

A folded-Clos topology i1s cycle free and under normal
operating conditions i1s deadlock-iree. In one embodiment,
router 106 1s designed to ensure the following invariant: once
a packet begins traversing downward, 1t remains going down-
ward until it reaches the destination. That 1s, packets that
arrived from an uplink must route to a downlink. This pre-
vents packets from being caught in a cycle containing uplinks
and downlinks. If the router 1s configured properly, this
should never happen. However, software and the program-
mers who create 1t are fallible. This dynamic invariant should
help reduce the debugging time when investigating early-
production routing software.

Non-uniform traific can cause local hot spots that signifi-
cantly increase contention in interconnection networks. To
reduce this network load imbalance, in one embodiment
router 106 performs two types of load balancing: hashing of
deterministic routes to split bulk transiers up over multiple
paths; and adaptive routing.

A system and method for enhancing diversity in routing 1s

described in “LOAD BALANCING FOR COMMUNICA-

5

10

15

20

25

30

35

40

45

50

55

60

65

16

TIONS WITHIN A MULTIPROCESSOR COMPUTER
SYSTEM,” U.S. patent application Ser. No. 12/107,019, filed
herewith, the description of which 1s incorporated herein by
reference.

Adaptive Routing

Implementing an adaptive routing scheme 1n a high-radix
router 1s particularly challenging because of the large number
of ports involved 1n the adaptive decision. Ideally, we would
look at the congestion at all possible output ports (at most 32)
and choose the queue with the most free space. Unfortunately,
this 1s unrealistic ina 1.25 ns clock cycle. Instead, in keeping
with the hierarchical organization of the router, we break the
adaptive decision 1nto two stages: choosing the output col-
umn, and choosing the output row within that column.

We first choose the column, ¢, by comparing the congestion
of the row butfers in each ofthe ¢ row butlfers identified by bits
in the column mask. A tull eight-way, four-bit comparison of
row buller depths was too expensive. Instead we look only at
the most significant bit (IMSB) of the row butier depth, giving
priority to buifers that are less than half tull. We then select the
column based on a round-robin arbitration, and route to the
row butlers of the tile 201. This algorithm 1gnores the number
of eligible output ports 1n each of the target columns, giving
no preference to a column with more eligible outputs. How-
ever, columns with more eligible outputs will tend to drain
faster, leading to more space 1n their subswitch row bulfers.

In the second stage of the adaptive route, we choose the
output row based on the bits of the row mask which are set.
The row mask 1dentifies the set of valid output ports within the
chosen column. We again must rely on imperfect information
to choose the output tile based on the depth of the column
bufters 1n the r rows, where r 1s the number of bits set 1n the
row mask. We choose among the rows by comparing two bits
of the 4-bit column buffer depth (which 1s at most 10). The
most significant bit indicates 1f the column butfer 1s “almost
tull” (1.e. 8 or more phits 1n the butfer), and the upper two-bits
together indicate 1f the column buffer has more than 4 phits
but less than 8 phits—corresponding to “half full.” Finally, 1T
the upper two bits of the buller size are zero, then the column
butler 1s “almost empty.” The adaptive decision will choose
the column butifer based on its current state, giving preference
to those ports which are “almost empty” then those that are

“half tull” and finally those buifers that are “almost full.”

A system and method for flexible routing, including adap-
tive routing, 1s described 1 “FLEXIBLE ROUTING
TABLES FOR A HIGH-RADIX ROUTER,)” U.S. patent
application Ser. No. 12/107,016, filed herewith, the descrip-

tion of which is incorporated herein by reference.

Router 106 1s a high-radix router used 1n the network of
computer systems 100 and 120. Computer systems 100 and
120 that use routers 106 with sixty-four 3-bit wide ports, scale
up to 32K processors using a folded-Clos topology with a
worst-case diameter of seven hops. In one embodiment, each
router 106 has an aggregate bandwidth of 2.4 Tb/s and a
32K-processor BlackWidow system has a bisection band-

width of 2.5 Pb/s.

Router 106 uses a hierarchical organization to overcome
the quadratic scaling of conventional input-butiered routers.
A two level hierarchy 1s organized as an 8x8 array of tiles.
This organization simplifies arbitration with a minimal loss 1n
performance. The tiled organization also resulted 1n a modu-
lar design that could be implemented 1n a short period of time.

The architecture of router 106 1s strongly intluenced by the
constraints of modern ASIC technology. For instance, router
106 takes advantage of abundant on-chip wiring to provide
separate column buses from each subswitch to each output

US 7,830,905 B2

17

port, greatly simplitying output arbitration. To operate using,
limited on-chip bulfering, router 106 uses wormhole flow
control internally while using virtual-cut-through flow con-
trol over external channels.

To reduce the cost and the latency of the network, computer
systems 100 and 120 use a folded-Clos network which, 1n
some cases, 1s modified by adding sidelinks 108 to connect
peer subtrees and statically partition the global network band-
width. Such networks are superior to torus networks 1n terms
of fault tolerance and bandwidth spreading. In some embodi-
ments, both adaptive and deterministic routing algorithms are
implemented 1n the network to provide load-balancing across
the network and still maintain ordering on memory requests.

Speculative data forwarding allows one to reduce packet
latency through a network while still providing reliable link
transmission in hardware using a CRC-based sliding window
protocol. It also allows us to provide reliable transmission
across links (requiring the use of CRCs), keep CRC overhead
down (as opposed to including a CRC with every few bytes of
data), and still avoid introducing a significant store-and-for-
ward delay at each hop while we wait for the next CRC to
ensure reliable transmaission.

Although specific embodiments have been illustrated and
described herein, 1t will be appreciated by those of ordinary
skill 1n the art that any arrangement which 1s calculated to
achieve the same purpose may be substituted for the specific
embodiment shown. This application 1s intended to cover any
adaptations or variations of the present invention. Therefore,
it 1s intended that this invention be limited only by the claims
and the equivalents thereof.

What 1s claimed 1s:

1. A router, comprising:

a plurahty of subswitches arranged 1n a nxp matrix,
wherein each subswitch includes n inputs and p outputs,
wherein both n and p are greater than one;

a plurality of input ports;

local control blocks connected to the plurality of input
butters, wherein the local control blocks include means
for speculative forwarding of phits received by the
router, wherein speculative forwarding comprises for-
warding before a cyclic redundancy code has been veri-
fied:

a plurality of output ports, wherein each output port
includes a multiplexer and an arbiter for selecting data to
be switched onto the output port via the multiplexer;

a plurality of row busses, wherein each row bus receives
data from one of the plurality of input ports and distrib-
utes the data to two or more of the plurality of sub-
switches; and

a plurality of column channels, wherein each column chan-
nel connects one of the outputs of one of the subswitches
to an iput of one of the multiplexers;

wherein each row bus includes a route selector, wherein the
route selector imcludes a routing table which selects an
output port for each packet and which routes the packet
through one of the row busses to the selected output port.

2. The router of claim 1, wherein n equals p.

3. The router of claim 1, wherein the speculative forward-
ing means includes means for discarding packets with incor-
rect cyclic redundancy codes.

4. A router, comprising;:

a plurahty of subswitches arranged 1n a nxp matrix,
wherein each subswitch includes n inputs and p outputs,
wherein both n and p are greater than one;

a plurality of input ports;
local control blocks connected to the plurality of input
butters, wherein the local control blocks include means

10

15

20

25

30

35

40

45

50

55

60

65

18

for speculative forwarding of phits recerved by the
router, wherein speculative forwarding comprises for-
warding before a cyclic redundancy code has been verti-
fied:

a plurality of output ports, wherein each output port
includes a multiplexer and an arbiter for selecting data to
be switched onto the output port via the multiplexer;

distribution means, connected to the iput ports and the
subswitches, for recerving data from one of the plurality
of input ports and for distributing the data to two or more
of the plurality of subswitches; and

a plurality of column channels, wherein each column chan-
nel connects one of the outputs of one of the subswitches
to an mput of one of the multiplexers;

wherein the distribution means includes a route selector,
wherein the route selector includes a routing table which
selects an output port for each packet and which routes
the packet to the selected output port.

5. The router of claim 4, wherein n equals p.

6. The router of claim 4, wherein the speculative forward-
ing means includes means for discarding packets with incor-
rect cyclic redundancy codes.

7. A Computer system, comprising:

a plurality of processor nodes;

a plural t first routers; and

a plural { second routers;

wherein each first router 1s connected to a processor node

and to two or more second routers and wherein each first

router includes:

a plurality of subswitches arranged 1n a nxp matrix,
wherein each sub switch includes p inputs and p out-
puts;

a plurality of input ports;

local control blocks connected to the plurality of mput
butfers, wherein the local control blocks include
means for speculative forwarding of phits recerved by
the router, wherein speculative forwarding comprises
forwarding before a cyclic redundancy code has been
verified;

a plurality of output ports, wherein each output port
includes a multiplexer and an arbiter for selecting data
to be switched onto the output port via the multi-
plexer;

a plurality of row busses, wherein each row bus receives
data from one of the plurality of input ports and dis-
tributes the data to two or more of the plurality of
subswitches: and

a plurality of column channels, wherein each column
channel connects one of the outputs of one of the
subswitches to an input of one of the multiplexers;

wherein each row bus includes a route selector, wherein
the route selector includes a routing table which
selects an output port for each packet and which
routes the packet through one of the row busses to the
selected output port.

8. The computer system of claim 7, wherein n equals p.

9. The computer system of claim 7, wherein the speculative
forwarding means includes means for discarding packets
with 1ncorrect cyclic redundancy codes.

10. A method of speculative forwarding of packets
received by a router, wherein each packet includes phits and
wherein one or more phits include a cyclic redundancy code
(CRC), the method comprising;:

recerving a packet and forwarding phits of the packet to
router logic;

calculating a cyclic redundancy code;

US 7,830,905 B2

19

comparing the calculated cyclic redundancy code to the
packet’s cyclic redundancy code and generating an error
if the cyclic redundancy codes don’t match;

if the cyclic redundancy codes don’t match, modifying a
phit of the packet to reflect the error, correcting the CRC 5
and forwarding the corrected CRC with the phit reflect-
ing the error to the router logic;

at the router logic, determining 11 the packet 1s still within

the router logic;
if the packet 1s still within the router logic and there was a 10
CRC error, discarding the packet; and

i the packet 1s no longer within the router logic and there
was a CRC error, moditying the packet so that the next
router discards the packet.

11. The method of claim 10, wherein comparing the cal- 15
culated cyclic redundancy code to the packet’s cyclic redun-
dancy code includes determining if the packet has a length
greater than the maximum packet length.

12. A method of speculative forwarding of packets
received by a router, wherein each packet includes phits and 20
wherein one or more phits include a cyclic redundancy code
(CRC), the method comprising:

20

recerving a packet comprising a plurality of phats;
calculating a cyclic redundancy code for the packet;

comparing the calculated cyclic redundancy code to the
packet’s cyclic redundancy code; and

11 the cyclic redundancy codes don’t match, discarding the
packet 1n either the recerving router or a subsequent
router.

13. A router, comprising:

an input operable to recerve a packet comprising a plurality
of phits;

a routing element operable to forward a packet before
checking a cyclic redundancy code for the packet; and

an error handler operable to:
calculate a cyclic redundancy code for the packet;

compare the calculated cyclic redundancy code to the
packet’s cyclic redundancy code; and

if the cyclic redundancy codes don’t match, cause the
packet to be discarded 1n either the recerving router or
a subsequent router.

G ex x = e

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,830,905 B2 Page 1 of 1
APPLICATION NO. : 12/107036

DATED : November 9, 2010

INVENTORC(S) . Steven L. Scott et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 1, lines 19-31, delete “This application 1s related to U.S. patent application Ser. No.
12/107,011, entitled “HIGH-RADIX INTERPROCESSOR COMMUNICATIONS SYSTEM AND
METHOD?, filed Apr. 21, 2008; to U.S. patent application Ser. No. 12/352,443, entitled
“HIGH-RADIX INTERPROCESSOR COMMUNICATIONS SYSTEM AND METHOD,” filed
Jan. 12, 2009; to U.S. patent application Ser. No. 12/107,016, entitled “FLEXIBLE ROUTING
TABLES FOR A HIGH-RADIX ROUTER?, filed Apr. 21, 2008; and to U.S. patent application
Ser. No. 12/107,019, entitled “LOAD BALANCING FOR COMMUNICATIONS WITHIN A
MULTIPROCESSOR COMPUTER SYSTEM?”, filed Apr. 21, 2008; each of which is incorporated
herein by reference in its entirety.” and msert the same on Line 10, Col. 1, after “entirety” as a new

paragraph.

In column 1, line 40, above “BACKGROUND INFORMATION" delete
“2. Background Information”.

In column 4, line 6, delete “bandwidth,” and insert --bandwidth.--, therefor.
In column 18, line 31, in Claim 7, delete “sub switch” and insert --subswitch--, therefor.

In column 18, line 31, mn Claim 7, delete “p mputs™ and insert --n inputs--, therefor.

Signed and Sealed this

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

